《运筹学》复习参考资料知识点及习题
运筹学复习资料
一、单选题1.排队系统的状态转移速度矩阵中()元素之和等于零A、每一列B、每一行C、对角线D、次对角线答案: B2.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,顾客在打字室内平均等待时间为().A、1.5小时B、0.75小时C、2.5小时D、3小时答案: B3.以下哪项是面向决策结果的方法的程序().A、收集信息→确定目标→提出方案→方案优化→决策B、确定目标→收集信息标→决策→提出方案→优化方案C、确定目标→收集信息标→提出方案→方案优化→决策D、确定目标→提出方案→收集信息标→优化方案→决策答案: C4.某人要从上海搭乘汽车去重庆,他希望选择一条线路,经过转乘,使得车费最少。
此问题可以转化为().A、最大流量问题求解B、最短路问题求解C、最小树问题求解D、最小费用最大流问题求解答案: B5.为了使各因素之间进行两两比较得到量化的判断矩阵,引入()的标度.A、1~7B、1~8C、1~9D、随便答案: C6.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,若顾客在打字室内的平均逗留时间超过1.25小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为()时,主人才会考虑这样做?A、小于2B、大于2C、小于1.25D、大于1.25答案: D7.动态规划求解的一般方法是什么A、图解法B、单纯形法C、逆序求解D、标号法答案: C8.整数规划数学模型的组成部分不包括().A、决策变量B、目标函数C、约束条件D、计算方法答案: D二、判断题1.风险情况下采用EMV决策准则的前提是决策应重复相当大的次数.A、正确B、错误答案:正确2.正偏差变量应取正值,负偏差变量应取负值.A、正确B、错误答案:错误3.部分变量要求是整数的规划问题称为纯整数规划.A、正确B、错误答案:错误4.方案层在层次模型的最底层.A、正确B、错误答案:错误5.排队系统中,等待时间=逗留时间+服务时间.A、正确B、错误答案:错误6.银行储蓄所有四个服务窗口,到达顾客自选窗口排队,后该储蓄所改为按顾客到达先后发号排队等待,这种改变将有助于缩短顾客的平均等待时间.A、正确B、错误答案:正确7.判断矩阵的维数n越大,判断的一致性将越差,应放宽对高维判断矩阵一致性要求.A、正确B、错误答案:正确8.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键.A、正确B、错误答案:正确9.不平衡运输问题不一定有最优解.A、正确B、错误答案:错误10.根据决策者对物体之间两两相比的关系,主观做出比值的判断,这样得到的矩阵称作判断矩阵.A、正确B、错误答案:正确三、名词解释1.人工变量答案:亦称人造变量.求解线性规划问题时人为加入的变量。
运筹学复习考点
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60
•
整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
《运筹学》期末复习及答案
运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象.4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能.6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11。
运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案.12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解.13用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系.15。
数学模型中,“s·t”表示约束(subject to 的缩写)。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。
A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施22。
建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23。
运筹学 本(复习资料)
《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。
[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。
[ ]3.任何线性规划问题存在并具有惟一的对偶问题。
[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。
[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。
[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。
[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。
[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。
[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。
[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。
[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。
[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。
[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。
[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。
[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。
[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。
[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。
运筹学期末考试复习资料
《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。
答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。
答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。
答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。
答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。
答案:对7.LP 问题的可行域是凸集。
答案:对8.动态规划实质是阶段上枚举,过程上寻优。
答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。
答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。
答案:错11.LP问题的基可行解对应可行域的顶点。
答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。
答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
答案:对14.对偶问题的对偶问题一定是原问题。
答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。
运筹学期末复习资料1
第三节 单纯形法 一,确定初始基可行解 (1)特殊情况 例1maxZ=2x1+3x2 x1+2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 xj ≥ 0
(2)一般情况:大M法
maxZ=3x1-x2 -x3 x1-2x2+x3 ≤ 11 -4x1+x2+2x3 ≥ 3 -2x1+x3 =4 x1, x2 ,x3 ≥ 0
2.无界解
例maxZ=6x1+2x2 +10x3 +8x4 3x1-3x2 +2x3 +8x4 ≤ 25 5x1+6x2 -4x3 -4x4 ≤ 20 4x1-2x2 +x3 +3x4 ≤ 10 x1, x2 ,x3 , x4 ≥ 0 3.无穷多最优解
例maxZ= 4x1+14x2 2x1+7x2 ≤ 21 7x1+2x2 ≤ 21 xj ≥ 0
基本解:基变量XB == (x1, x2, …,xm)'
满足方程BXB=b,则XB=B-1 b,其余XN=0,则 称( x1, x2, …,xm,0…0)'为基本解. 基可行解:若B对应的基本解(XB,…0)'≥0, 则称该解为基可行解. 可行基:对应于基可行解的基为可行基.
例1.maxZ=2x1+3x2
练习: 练习:
maxZ=4x1+3x2 maxZ=-x1-x2 maxZ=10x1+x2 maxZ=x1+20x2 maxZ=-4x1+2x2 2x1+3x2 ≤ 6 -3x1+2x2 ≤ 3 2x2 ≤ 5 2x1+x2 ≤ 4 x1, x2 ≥ 0 ,
4
2 3 D
(完整word版)最全的运筹学复习题及答案
5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。
表示约束条件的数学式都是线性等式或不等式;(3)。
表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18。
如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。
19。
如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。
运筹学-总复习(整理全部重点题目)-
《管理运筹学》总复习第一天:1)(★★★★★)课本Page59第5题(租赁问题):某公司在今后四个月内需租用仓库堆放物资。
已知各个月所需的仓库面积数字如下所示:设第个月签订的打算租用个月合同仓库面积为,那么这个月共有可能有如下合同:第一个月:第二个月:第三个月:第一个月:因此目标函数为:约束条件为:2)(★★★)讲义Page8例1(人力资源问题):福安商场是个中型百货商场,他对销售员的需求经过统计分析如下表。
为了保证售货人员充分的休息,售货人员每周工作5天,休息2天,并且要求休息的两天是连续的。
问如何安排售货人员的工作作息,才能做到既满足工作需要,又使配备的工作人员最少?解:设在星期开始休息的人数为,表示星期一到星期日那么,目标函数为:约束条件为:周一:周二:周三:周四:周五:周六:周日:非负约束:3)(★)【据说出题时会和整数规划相融合】讲义Page10例5(投资问题):某部门现有资金200万,今后五年内考虑给以下项目投资。
已知,项目A:从第一年到第五年都每年年初都可以投资,当年末能收回本利110%;项目B:从第一年到第四年都每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万;项目C:需在第三年初投资,第五年末收回本利140%,但规定最大投资额不能超过80万;项目D:须知第二年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万;据测定每万元每次投资的风险指数如下表:1)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?2)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万的基础上使得其投资总的风险系数最小?解:设第年初投资在项目上的金额为,其中,。
第一年初:,,不能浪费资金,所以有,第一年年末收回:第二年初:,,,用第一年年末的收回投资,所以有:,第二年年末收回:第三年初:,,,用第二年年末收回投资,所以有:,第三年年末收回:第四年初:,,用第三年年末收回进行投资,所以有:,第四年年末收回:第五年初:用第四年年末回收进行投资,所以有:,第五年年末收回:同时,根据项目的要求,有:第(1)问答如下:目标函数为:约束条件为:第(2)问答如下:目标函数为:约束条件为:4)(★★★★)讲义Page11分析讨论题3(工厂布局问题):设有某种原料产地A1,A2,A3,把这种原料经过加工,制成成品,再运往销地。
《运筹学》复习资料
《运筹学》复习资料注:如学员使用其他版本教材,请参考相关知识点一、客观部分:(单项选择、多项选择、判断)(一)多选题1.线性规划模型由下面哪几部分组成?(ABC)A决策变量 B约束条件 C目标函数 D 价值向量★考核知识点: 线性规划模型的构成.(1.1)附1.1.1(考核知识点解释):线性规划模型的构成:实际上,所有的线性规划问题都包含这三个因素:(1)决策变量是问题中有待确定的未知因素。
例如决定企业经营目标的各产品的产量等。
(2)目标函数是指对问题所追求的目标的数学描述。
例如利润最大、成本最小等。
(3)约束条件是指实现问题目标的限制因素。
如原材料供应量、生产能力、市场需求等,它们限制了目标值所能到达的程度。
2.下面关于线性规划问题的说法正确的是(AB)A.线性规划问题是指在线性等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
B.线性规划问题是指在线性不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
C.线性规划问题是指在一般不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。
D.以上说法均不正确★考核知识点: 线性规划模型的线性含义.(1.1)附1.1.2(考核知识点解释):所谓“线性”规划,是指如果目标函数是关于决策变量的线性函数,而且约束条件也都是关于决策变量的线性等式或线性不等式,则相应的规划问题就称为线性规划问题。
3.下面关于图解法解线性规划问题的说法不正确的是( BC )A在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B 图解法适用于两个或两个以上决策变量的线性规划C 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D 以上说法A正确,B,C不正确★考核知识点: 线性规划图解法的条件. (1.2)附 1.1.3(考核知识点解释):线性规划图解法的条件:对于只有两个变量的线性规划问题,可以在二维直角坐标上作图.4.在下面电子表格模型中,“决策变量”的单元格地址为( AB )A . C12B . D12C . C4 D. D4★考核知识点: 电子表格中如何建立线性数学模型. (1.3)附1.1.4(考核知识点解释):电子表格中的数学模型的建立:(1)要做出的决策是什么?(决策变量);(2)在做出这些决策时有哪些约束条件?(约束条件);(3)这些决策的目标是什么?(目标函数),将对应的问题数据放在相应的电子表格中即可.5.通常,在使用“给单元格命名”时,一般会给(ABCD )有关的单元格命名A 公式B 决策变量C 目标函数D 约束右端值★考核知识点: 给单元格命名的原则. (1.3)附1.1.5(考核知识点解释):给单元格命名的原则:一般给跟公式和模型有关的四类单元格命名。
运筹学复习题及答案
运筹学复习题及答案运筹学复习题及答案运筹学是一门应用数学学科,旨在通过数学建模和分析,优化决策和解决问题。
它在各个领域都有广泛的应用,如供应链管理、生产调度、交通规划等。
在学习运筹学的过程中,我们需要不断进行复习和练习,以巩固所学的知识。
下面是一些常见的运筹学复习题及其答案,希望对大家的复习有所帮助。
1. 线性规划问题a. 什么是线性规划问题?b. 线性规划问题的标准形式是怎样的?c. 解释线性规划问题中的最优解、可行解和无界解。
d. 举例说明线性规划问题的应用场景。
答案:a. 线性规划问题是一类优化问题,目标函数和约束条件都是线性的。
b. 线性规划问题的标准形式为:最小化(或最大化)目标函数,满足一系列线性约束条件。
c. 最优解是指在满足约束条件的前提下,使目标函数取得最小(或最大)值的解;可行解是指满足约束条件的解;无界解是指目标函数可以无限增大或无限减小的解。
d. 例如,在生产调度中,我们希望最小化生产成本,同时满足各种资源约束条件,这就可以用线性规划来解决。
2. 整数规划问题a. 什么是整数规划问题?b. 整数规划问题与线性规划问题有什么区别?c. 解释整数规划问题中的最优整数解和最优松弛解。
d. 举例说明整数规划问题的应用场景。
答案:a. 整数规划问题是一类线性规划问题,目标函数和约束条件都是线性的,但是变量需要取整数值。
b. 整数规划问题与线性规划问题的区别在于变量的取值范围不同,线性规划问题的变量可以取任意实数值,而整数规划问题的变量只能取整数值。
c. 最优整数解是指在满足约束条件的前提下,使目标函数取得最小(或最大)值的整数解;最优松弛解是指在不考虑变量取整数的限制下,使目标函数取得最小(或最大)值的解。
d. 例如,在旅行商问题中,我们希望找到一条最短的路径,使得旅行商可以依次访问多个城市,这就可以用整数规划来解决。
3. 网络流问题a. 什么是网络流问题?b. 网络流问题的常见模型有哪些?c. 解释网络流问题中的最大流和最小割。
《运筹学》期末复习及答案
运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据.3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境.10.用运筹学分析与解决问题,是一个科学决策的过程.11。
运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束(subject to 的缩写)。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动.18。
1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。
A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施22。
建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23。
《运筹学》期末复习与答案
运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束(subject to 的缩写)。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。
A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施22.建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23.模型中要求变量取值( D )A可正 B可负 C非正 D非负24.运筹学研究和解决问题的效果具有(A )A 连续性 B整体性 C 阶段性D再生性25.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
运筹学复习试题和参考答案解析
《运筹学》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. T2. F3. T4.T5.T6.T7. F8. T9. F10.T 11. F 12. F 13.T 14. T 15. F1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( T )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( F )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( T )4. 满足线性规划问题所有约束条件的解称为可行解。
( T )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( T )6. 对偶问题的对偶是原问题。
( T )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( F )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( T )9. 指派问题的解中基变量的个数为m+n。
( F )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( T )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( F)12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( F )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
(T )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( T )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( F )二、单项选择题1.A2.B3.D4.B5.A6.C7.B8.C9. D 10.B11.A 12.D 13.C 14.C 15.B1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为( A )。
运筹学重点及部分习题
阶段ⅤK = 5F6(S6)=0有:
F5(S5)= Max{4X5+6S5}
0≤X5≤S5
因为4X5+6S5随X5单调递增,所以取X5=S5
此时X5=S5F5(S5)=10S5
阶段ⅣK= 4
F4(S4)=Max{4X4+6S4+F5(S5))}
0≤X4≤S4
= Max {4X4+6S4+F5(S5)}
= Max {18S3–(1/2)X3}
0≤X3≤S3
由于18S3–(1/2)X3随X3单调递减所以取X3=0
此时:X3= 0F3(S3)= 18S3
阶段ⅡK = 2
F2(S2)= Max {4 X2+6 S2+ F3(S3)}
= Max {4 X2+6 S2+18S3}
= Max {4 X2+6 S2+18(0.8 S2-0.3 X2)}
\= Max {22.32 S1-2.12 X1}
0≤X1≤S1
同理取X1=0
此时X1=0F1(S1) = 22.32 S1
将S1=125代入得:F1(S1)= F1(125) =22.32X125=2790(万元)
即公司五年内可获得最大收益值为2790万元,最优生产计划方案为表6—9所示表6—9
年份
总费用V3+F4
最佳生产量(X3)
3
0
2
13.2
0
13.6
26.8
4
3
19.5
1
7.5
27
4
25.8
2
0.8
26.6
1
1
7.3
运筹学复习笔记
运筹学复习笔记Part 1 题型1.选择题(20分)2.填空题(40分)3.建模题(40分)4.决策问题(20分)5.运输问题(10分)计算Part 2 需要掌握的知识点Chapter 2 线性规划与单纯型法一、线性规划问题(建模)二、求解两个变量的线性规划模型——图解法附:图解法的启示1)图解法求解结果的几种可能情况:➢唯一最优解➢无穷多最优解➢无界解(并不是说可行域是无界的线性规划问题的解就一定是无界解)➢无可行解2)若线性规划问题的可行域非空,则可行域是一个凸集。
3)若线性规划问题的最优解存在,则一定可以在可行域的凸集的某个顶点达到。
(线性规划问题的基可行解X对应于可行域D的顶点。
)三、单纯形法准备知识——标准型1) 标准型的四个条件➢ 目标函数为极大(max ) ➢ 所有的约束条件满足等式 ➢ 所有的决策变量非负 ➢ 右端常数均为非负数 2) 化为标准型的方法➢ 若要求目标函数实现最大化,即max z=CX 。
这时只需将目标函数最小化变换求目标函数最大化,即令 z ′=-z ,于是得到max z ′= -CX 。
这就同标准型的目标函数的形式一致了。
➢ 约束方程为不等式。
这里有两种情况:一种是约束方程为‘≤’不等式,则可在‘≤’不等式的左端加入非负松弛变量j x ,把原‘≤’不等式变为等式,j x 0;另一种是约束方程为‘≥’不等式,则可在‘≥’不等式的左端减去一个非负剩余变量k x (也可称松弛变量),把不等式约束条件变为等式约束条件,目标函数中加上k x 0 (松弛变量).➢ 若变量约束中:0≤i x ,则令i i x x -=',得到0≥'i x ;若R ∈j x ,则令"'=j j j x x x -,其中0≥"'j j x x ,,用 'i x 、'j x 、"j x 分别代替i x 、j x 后得到线性规划的变量约束均为非负约束。
《管理运筹学》复习题及参考答案
《运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括( A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
(完整版)《运筹学》复习参考资料知识点及习题
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
运筹学复习题-1
第一章线性规划及单纯形法一、复习思考题1 试述线性规划数学模型的结构及各要素的特征。
2 线性规划的解有哪几种情况。
3 什么是线性规划问题的标准形式,如何将一个非标准型的线性规划问题转化为标准形式。
4 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。
5 试述单纯形法的计算步骤,如何在单纯形表上去判别问题是具有惟一最优解、无穷多最优解、无界解或无可行解。
6 如果线性规划的标准型式变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解。
7 在确定初始可行基时,什么情况下要在约束条件中增添人工变量,在目标函数中人工变量前的系数为(一M)的经济意义是什么。
8 什么是单纯形法计算的两阶段法,为什么要将计算分两个阶段进行,以及如何根据第一阶段的计算结果来判定第二阶段的计算是否需继续进行。
9 简述退化的含义及处理退化的勃兰特规则。
10 举例说明生产和生活中应用线性规划的方面,并对如何应用进行必要描述。
二、判断下列说法是否正确1、图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;2、线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;3、线性规划问题的每一个基解对应可行域的一个顶点.4、如线性规划问题有最优解,则最优解一定对应可行域边界上的一个点;5、用单纯形法求解标准型式的线性规划问题时,与>j对应的变量都可被选作换入变量;6、单纯形法计算中,选取最大正检验数σk 对应的变量xk作为换入变量,将使目标函数值得到最快的增长;7、线性规划问题任一可行解都可以用全部基可行解的线性组合表示;9、对一个有n个变量,m个约束的标准型的线性规划问题,其可行域的顶点恰好为mn C个;10、单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解;11、若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;12、线形规划可行域的某一项点若其目标函数值优于所有顶点的目标函数值,则该顶点处的目标函数值达到最优。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。
定义:达到目标的可行解为最优解。
㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。
1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。
4、确定最优解及目标函数值。
㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。
由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。
由方程组⎩⎨⎧=+=12524211x x x 解出x 1=4,x 2=54∴X *=⎪⎪⎭⎫⎝⎛21x x =(4,54)T∴min z =-3×4+54=-1151⑴⑵ ⑶ ⑷ ⑸ ⑹、⑺二、标准型线性规划问题的单纯形解法: ㈠一般思路:1、用简单易行的方法获得初始基本可行解;2、对上述解进行检验,检验其是否为最优解,若是,停止迭代,否则转入3;3、根据θL 规则确定改进解的方向;4、根据可能改进的方向进行迭代得到新的解;5、根据检验规则对新解进行检验,若是最优解,则停止迭代,否则转入3,直至最优解。
㈡具体做法(可化归标准型的情况):设已知max z = c 1x 1+ c 2x 2+…+ c n x ns.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+++≤+++≤+++n j x bx a x a x a b x a x a x a b x a x a x a j mn mn m m n n n n ,,,,...210 (2)2112222212111212111 对第i 个方程加入松弛变量x n+i ,i =1,2,…,m ,得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=++++=++++=+++++++n j x b x x a x a x a b x x a x a x a b x x a x a x a j m m n n mn m m n n n n n n ,,,,...210 (22112)22222121111212111 列表计算,格式、算法如下:注①: z j =c n+1 a 1j + c n+2 a 2j +…+ c n+m a mj =∑=+mi ij in a c1,(j=1,2,…,n+m )σj =c j -z j ,当σj ≤0时,当前解最优。
注②:由max{σj }确定所对应的行的变量为“入基变量”;由θL =⎭⎬⎫⎩⎨⎧>0min ik ik i ia ab 确定所对应的行的变量为“出基变量”,行、列交叉处为主元素,迭代时要求将主元素变为1,此列其余元素变为0。
例1:用单纯形法求解(本题即是本资料P2“图解法”例1的单纯形解法;也可化“对偶问题”求解)max z =70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x , 解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+30x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,0720394505554093521421321j x x x x x x x x x x j 列表计算如下:∴X *=(75,15,180,0,0)T ∴max z =70×75+30×15=5700例2:用单纯形法求解max z =7x 1+12x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200543604921212121x x x x x x x x , 解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =7x 1+12x 2+0 x 3+0 x 4+0 x 5 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032005436049521421321j x x x x x x x x x x j 列表计算如下:∴X*=(20,24,84,0,0)T∴max z =7×20+12×24=428三、非标准型线性规划问题的解法:1、一般地,对于约束条件组:若为“≤”,则加松弛变量,使方程成为“=”;若为“≥”,则减松弛变量,使方程成为“=”。
我们在前面标准型中是规定目标函数求极大值。
如果在实际问题中遇到的是求极小值,则为非标准型。
可作如下处理:由目标函数min z=∑=nj jj xc 1变成等价的目标函数max (-z )=∑=-nj jjx c 1)(令-z=z /,∴min z=-max z /2、等式约束——大M 法:通过加人工变量的方法,构造人造基,从而产生初始可行基。
人工变量的价值系数为-M ,M 是很大的正数,从原理上理解又称为“惩罚系数”。
(课本P29)类型一:目标函数仍为max z ,约束条件组≤与=。
例1:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥=+≤≤018231224212121x x x x x x , 解:加入松弛变量x 3,x 4,得到等效的标准模型:max z =3x 1+5x 2 s.t.⎪⎪⎩⎪⎪⎨⎧=≥=+=+=+4,3,2,1,018231224214231j x x x x x x x j 其中第三个约束条件虽然是等式,但因无初始解,所以增加一个人工变量x 5,得到: max z =3x 1+5x 2-M x 5s.t. ⎪⎪⎩⎪⎪⎨⎧=≥=++=+=+5,...,2,1,0182312245214231j x x x x x x x x j单纯形表求解过程如下:∴X *=(2,6,2,0)T ∴max z =3×2+5×6=36类型二:目标函数min z ,约束条件组≥与=。
例2:用单纯形法求解min z =4x 1+3x 2 s.t.⎪⎩⎪⎨⎧≥≥+≥+012231642212121x x x x x x , 解:减去松弛变量x 3,x 4,并化为等效的标准模型:max z / =-4x 1-3x 2 s.t.⎪⎩⎪⎨⎧=≥=-+=-+4,3,2,1,012231642421321j x x x x x x x j增加人工变量x 5、x 6,得到:max z / =-4x 1-3x 2-Mx 5-Mx 6 s.t⎪⎩⎪⎨⎧=≥=+-+=+-+6,...,2,1,01223164264215321j x x x x x x x x x j单纯形表求解过程如下:∴X*=(2,3,0,0)T∴min z =-max z/ =-(-17)=17四、对偶问题的解法: 什么是对偶问题?1、在资源一定的条件下,作出最大的贡献;2、完成给定的工作,所消耗的资源最少。
引例(与本资料P2例1 “图解法”、P7例1 “单纯形法”同):某工厂生产甲、乙两种产品,这些产品均需在A 、B 、C 三种不同的设备上加工,每种产品在不同设备上加工时需要不同的工时,这些产品售后所能获得的利润值以及这三种加工设备因各种条件下所能使用的有效总工时数如下表:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? 解:原问题——设x 1、x 2为生产甲、乙产品的数量。
max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x , 将这个原问题化为它的对偶问题——设y 1、y 2、y 2分别为设备A 、B 、C 单位工时数的加工费。
min w = 540y 1+450y 2+720y 3 s.t.⎪⎩⎪⎨⎧=≥≥++≥++32103035970953321321,,,i y y y y y y y i用大M 法,先化为等效的标准模型:max w / =-540y 1-450y 2-720y 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,0303597095353214321j y y y y y y y y y j增加人工变量y 6、y 7,得到:max z / =-540y 1-450y 2-720y 3-My 6-My 7 s.t⎪⎩⎪⎨⎧=≥=++-++=+-++5,...,2,1,030359709537532164321j y y y y y y y y y y y j大M 法单纯形表求解过程如下:∴该对偶问题的最优解是y *=(0,2,320,0,0)T最优目标函数值min w =-(-5700)=5700五、运输规划问题:运输规划问题的特殊解法——“表上作业法”解题步骤:1、找出初始调运方案。
即在(m×n)产销平衡表上给出m+n-1个数字格。
(最小元素法)2、(对空格)求检验数。
判别是否达到最优解。
如已是最优解,则停止计算,否则转到下一步。
(闭回路法)3、对方案进行改善,找出新的调运方案。