高中数学人教A版必修三 2.系统抽样PPT全文课件
合集下载
《系统抽样》人教版高中数学必修三PPT课件(第2.1.2课时)
新知探究
系统抽样:
1.定义: 当总体的个体数较多时,采用简单随机抽样太麻烦,这时将总体分成均衡的几个部分,然后按
照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法称为系统抽 样。有时也叫等距抽样或机械抽样.
新知探究
系统抽样的步骤:
(1)先将总体的N个个体编号。 (2)确定分段间隔k,对编号进行分段,当N/n(n是样本容量)是整数时,取k= N/n; (3)在第1段用简单随机确定第一个个体编号m(m≤k)
(4)按照一定的规则抽取样本。通常是将m加上间隔k得到第二个个体编号(m+k),再加k得到 第3个个体编号,依次进行下去,直到获得整个样本。
课堂练习
1 老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,
其最可能用到的抽样方法为
A.简单随机抽样
B.抽签法
C.随机数法
√D.系统抽样
课堂练习
思考7:系统抽样适合在哪种情况下使用?系统抽样公平吗? [注意]:①系统抽样适合于总体的个体数较多的情形.
②系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,其概率仍为P=n/N,从而 保证了抽样的公平性.
课堂练习
例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40
新知探究
用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体 编号怎样抽取?
用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个 体编号,通常是将第1段抽取的号码依次累加间隔k.
新知探究
思考3:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义?
人教版高中数学 A版 必修三 第二章 《2.1.2系统抽样》教学课件
A.容量较小
B.容量较大
C.个体数较多但不均衡
D.任何总体
12345
答案
12345
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,
采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往
后将65号,115号,165号,……发票上的销售金额组成一个调查样本.
这种抽取样本的方法是C( )
剔除几个个体,再
重新编号,然后分段;
(3)在第1段用简单随机抽样 确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k 得到第2个个体编号 (l+k),
再加 k 得到第3个个体编号 l+2k ,依次进行下去,直到获取重点难点 个个击破
类型一 系统抽样的概念 例1 下列抽样中不是系统抽样的是( )
解析答案
12345
5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进
行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选
取5枚导弹的编号可能是B( )
A.5,10,15,20,25
B.3,13,23,33,43
C.1,2,3,4,5
D.2,4,6,16,32
解析 用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+
解析答案
类型二 系统抽样的实施 例2 某校高中三年级的295名学生已经编号为1,2,…,295,为了了解 学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进 行抽取,并写出过程. 解 按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把295 名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是 编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名 学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不
人教A版高中数学必修三课件2.1.2系统抽样(共31张PPT)
【解】 (1)系统抽样. (2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽 样间隔:33000=10,其他步骤相应改为确定随机数字:取一 张人民币,末位数为 2.(假设)确定第一样本户:编号 02 的 住户为第一样本户;确定第二样本户:2+10=12,12 号为 第二样本户. (3)确定随机数字:取一张人民币,其末位数为 2.
被剔除的概率是相等的,都是1 0303,每个个体不被剔除的
概率也是相等的,都是11 000003;在剩余的 1 000 个个体中,
采用系统抽样时每个个体被抽取的概率都是1 50000;所以在
整个抽样过程中每个个体被抽取的概率仍相等,都是11
000 003
×1 50000=1 50003.所以系统抽样是公平的、均等的.
(5)从第一段即1~5号中随机抽取一个号作为起始号,如l. (6)从后面各段中依次取出l+5,l+10,l+15,…,l+245这 49个号. 这样就按1∶5的比例抽取了一个样本容量为50的样本. 【名师点评】 应用系统抽样时,要看总体容量能否被样本 容量整除,若能,样本容量为多少,就需要将总体均分成多 少组;若不能,要先按照简单随机抽样将多余编号剔除,再对剔 除后剩下的个体进行重新编号,然后按号码顺序平均分段.
• 灿若寒星整理制作
高中数学课件
第二章 统计
2.1.2 系统抽样
学习导航
学习目标
结合实例 ―了―解→ 系统抽样的概念 ―理―解→
系统抽样的思想 ―掌―握→ 系统抽样的方法
重点难点 重点:系统抽样的概念和步骤. 难点:利用系统抽样解决实际问题.
新知初探思维启动
1.系统抽样的概念及特点 (1)系统抽样的概念 在抽样中,当总体中个体数较多时,可将总体分成均衡的几 个部分,然后按照预先制订的规则,从每一部分抽取一个个 体,得到所需要的样本,这样的抽样方法叫做系统抽样. (2)系统抽样的特点 ①适用于_个__体__较__多__,但__均__衡__的总体; ②在整个抽样的过程中,每个个体被抽到的_可__能__性__相__等___.
数学人教A版必修3课件:2.1.2 系统抽样2
知识点二、系统抽样的步骤
[化解疑难] (1)系统抽样的几个特征 ①系统抽样适用于总体容量较大,且分布均衡(即个体间无明显的差异)的情 况; ②系统抽样的本质是“等距抽样”,要取多少个样本就把总体分成多少组,每 组中取一个;
③若总体个数不能被样本个数整除,则先从总体中剔除若干个个体达到整除 状态,重新编号,并根据样本个数进行分组;
变式训练 2.从某厂生产的 802 辆轿车中抽取 80 辆测试某项性能.请合理选择抽样 方法进行抽样,并写出抽样过程. 解:由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法, 步骤如下:第一步,先从 802 辆轿车中剔除 2 辆轿车(剔除方法可用随机数法); 第二步,将余下的 800 辆轿车编号为 1,2,…,800,并均匀分成 80 段,每段 含 k=88000=10 个个体;第三步,从第 1 段即 1,2,…,10 这 10 个编号中, 用简单随机抽样的方法抽取一个号(如 5)作为起始号;
变式训练 3.某集团有员工 1 019 人,其中获得过国家级表彰的有 29 人,其他人 员 990 人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的 人员 5 人,其他人员 30 人,如何确定人选?
解:获得过国家级表彰的人员选 5 人,适宜使用抽签法;其他人员选 30 人, 适宜使用系统抽样法.
当堂检测
1.系统抽样适用的总体应是( )
A.容量较少的总体
B.容量较多的总体
C.个体数较多但均衡的总体
D.任何总体
【解析】由系统抽样的特点可得. 【答案】C
2.高考结束后,某市教育局为了了解该市 20 000 名考生的有关情况,决定从
这 20 000 名考生中抽取 200 名考生的成绩进行分析,根据从 1 到 20 000 的编号,
【高中课件】高中数学人教A版必修三2.1.2系统抽样课件ppt.ppt
⑤某校高中三年级的295名学生已经编号为1,2,……,295, 为了了解学生的学习情况,要按1:5的比例抽取一个样本,用 系统抽样的方法进行抽取,并写出过程。
解:样本容量为295÷5=59.
2.简单随机抽样的方法:抽签法 3.具体步骤:
随机数表法
抽签法:编号;制签;搅匀;抽签;取个体。
随机数表法:编号;选数;读数;取个体。
下面的抽样方法是简单随机抽样吗?为什么? ①某班45名同学,指定个子最高的5名学生参加学校 组织的某项活动; ②从20个零件中一次性抽取3个进行质量检查; 是 ③一儿童从玩具箱中的20件玩具中随意拿出一件来 玩,玩后放回再拿一件,连续玩了5件。
判断的依据: 简单随机抽样的特点
①总体的个数有限;②从总体中逐个进行抽取; ③是不放回抽样; ④是等可能抽样。
实例
为了了解高二年级1000名同学 的视力情况,从中抽取100名同学 进行检查。
请问:应该怎样抽样?
当总体的个体数较多时,采用简单随机抽样太麻烦, 这时将总体分成均衡的几个部分,然后按照预先定出的 规则,从每一部分抽取一个个体,得到所需要的样本, 这种抽样叫做系统抽样(也称为等距抽样)。
①某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂
中坐满了学生,会后为了了解有关情况,留下座位号是15的所有 25名学生进行测试,这里运用的是 系统 抽样方法。
②从2005个编号中抽取20个号码入样,采用系统抽样的方
法,则抽样的间隔为
(C)
A.99
B、99.5 C.100 D、样
2.1.2 系统抽样
本课主要学习系统抽样的相关内容,具体包括系统抽 样的概念、特点及一般步骤。
因此本课开始回顾了简单随机抽样的概念、特点以及 抽样法和随机数表法的一般步骤,并用一个习题加深理解 。接着以一个抽样的案例作为课前导入,处理案例的过程 中引入系统抽样的方法,引出系统抽样的概念,并具体介 绍系统抽样的特点和适用范围。 紧接着以五个问题带领学 生探索系统抽样的一般步骤,对一般步骤进行总结,并通 过一个例题加深理解。最后通过一系列例题及习题对内容 进行加深巩固。
解:样本容量为295÷5=59.
2.简单随机抽样的方法:抽签法 3.具体步骤:
随机数表法
抽签法:编号;制签;搅匀;抽签;取个体。
随机数表法:编号;选数;读数;取个体。
下面的抽样方法是简单随机抽样吗?为什么? ①某班45名同学,指定个子最高的5名学生参加学校 组织的某项活动; ②从20个零件中一次性抽取3个进行质量检查; 是 ③一儿童从玩具箱中的20件玩具中随意拿出一件来 玩,玩后放回再拿一件,连续玩了5件。
判断的依据: 简单随机抽样的特点
①总体的个数有限;②从总体中逐个进行抽取; ③是不放回抽样; ④是等可能抽样。
实例
为了了解高二年级1000名同学 的视力情况,从中抽取100名同学 进行检查。
请问:应该怎样抽样?
当总体的个体数较多时,采用简单随机抽样太麻烦, 这时将总体分成均衡的几个部分,然后按照预先定出的 规则,从每一部分抽取一个个体,得到所需要的样本, 这种抽样叫做系统抽样(也称为等距抽样)。
①某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂
中坐满了学生,会后为了了解有关情况,留下座位号是15的所有 25名学生进行测试,这里运用的是 系统 抽样方法。
②从2005个编号中抽取20个号码入样,采用系统抽样的方
法,则抽样的间隔为
(C)
A.99
B、99.5 C.100 D、样
2.1.2 系统抽样
本课主要学习系统抽样的相关内容,具体包括系统抽 样的概念、特点及一般步骤。
因此本课开始回顾了简单随机抽样的概念、特点以及 抽样法和随机数表法的一般步骤,并用一个习题加深理解 。接着以一个抽样的案例作为课前导入,处理案例的过程 中引入系统抽样的方法,引出系统抽样的概念,并具体介 绍系统抽样的特点和适用范围。 紧接着以五个问题带领学 生探索系统抽样的一般步骤,对一般步骤进行总结,并通 过一个例题加深理解。最后通过一系列例题及习题对内容 进行加深巩固。
人教A版高中数学必修三课件系统抽样
高中数学课件
灿若寒星整理制作
系统抽样
简单随机抽样的特点:
1、要求被抽取的样本的总体的个体个数有限,这样便 于对其中各个个体被抽取的概率进行分析.
2、是从总体中逐个地进行抽取,这样便于在实践中进 行操作.
3、是一种不放回抽样.
4、是一种等可能抽样.
不仅每次从总体中抽取一个个体时,各个个体被抽取的
可能性相等,而且在整个抽样过程中,各个个体被抽取的
系统抽样的特点:
1、适用于总体容量较大的情况
2、剔除多于个体及第一段抽样都用简单随机 抽样,因而与简单随机抽样有密切联系
3、是等可能抽样,每个个体被抽到的可能性
都是n/N。
P (任一个个体 )
n N
样本容量 总体容量
系统抽样的步骤:
(1) 先将总体的N个个体编号,按照随机抽样的方法编 号,有时也可直接利用个体自身所带的号码,如学号、准 考证号、门牌号等
我们按照这样的方法来抽样:首先将这1000名学生从1开 始进行编号,然后按号码顺序以一定的间隔进行抽取.由于
1000 20, 这个间隔可以定为20,即从号码为1~20的第一个
50
间隔中随机地抽取一个号码,假如抽到的是6号,然后从第 6号开始,每隔20个号码抽取一个,得到
6,26,46,,986.
④按所得的号码抽取样本.
3、什么样的总体适宜用简单随机抽样? 由于简单随机抽样适用于个体不太多的总体, 那么当总体个数较多时,适宜采用什么抽取方法? 新的抽样方法——系统抽样
学校为了了解高二年级学生对教师教学的意见,打 算从高二年级1000名学生中抽取50名学生进行调查. 除了用简单随机抽样获取样本外,你能否设计其他抽样 样本的方法?
灿若寒星整理制作
系统抽样
简单随机抽样的特点:
1、要求被抽取的样本的总体的个体个数有限,这样便 于对其中各个个体被抽取的概率进行分析.
2、是从总体中逐个地进行抽取,这样便于在实践中进 行操作.
3、是一种不放回抽样.
4、是一种等可能抽样.
不仅每次从总体中抽取一个个体时,各个个体被抽取的
可能性相等,而且在整个抽样过程中,各个个体被抽取的
系统抽样的特点:
1、适用于总体容量较大的情况
2、剔除多于个体及第一段抽样都用简单随机 抽样,因而与简单随机抽样有密切联系
3、是等可能抽样,每个个体被抽到的可能性
都是n/N。
P (任一个个体 )
n N
样本容量 总体容量
系统抽样的步骤:
(1) 先将总体的N个个体编号,按照随机抽样的方法编 号,有时也可直接利用个体自身所带的号码,如学号、准 考证号、门牌号等
我们按照这样的方法来抽样:首先将这1000名学生从1开 始进行编号,然后按号码顺序以一定的间隔进行抽取.由于
1000 20, 这个间隔可以定为20,即从号码为1~20的第一个
50
间隔中随机地抽取一个号码,假如抽到的是6号,然后从第 6号开始,每隔20个号码抽取一个,得到
6,26,46,,986.
④按所得的号码抽取样本.
3、什么样的总体适宜用简单随机抽样? 由于简单随机抽样适用于个体不太多的总体, 那么当总体个数较多时,适宜采用什么抽取方法? 新的抽样方法——系统抽样
学校为了了解高二年级学生对教师教学的意见,打 算从高二年级1000名学生中抽取50名学生进行调查. 除了用简单随机抽样获取样本外,你能否设计其他抽样 样本的方法?
高中数学人教A版必修3第二章2.1.2 系统抽样课件
结束
阅读课本1
阅读课本58页上半部分,我可以看到的内容 是。。。。。
上一页 下一页 第一页 尾页
结束
我发现课本给出的问题是?
某学校为了了解高一年级学生对教师教学的意见, 打算从高一年级500名学生中抽取50名进行调查, 除了用简单随机抽样获取样本外,你能否设计其他 抽取样本的方法?
上一页 下一页 第一页 尾页
(3)在第一部分的个体编号1,2,3,…,50中,利用简单随 机抽样抽取一个号码,比如18.
(4)以18为起始号码,每间隔50抽取一个号码,这样得 到一个容量为20的样本:18,68,118,178…
细读课本我注意到了:
变:某市学有10003名高一学生,打算抽取200名学生调查 他们对奥运会的看法,k=N/n,k不是整数怎么办?
2.1.2 系统抽样
上一页 下一页 第一页 尾页
结束
思考
昭通市有10000名高一学生,打算抽取200名学生调查他们 对数学的看法,可否采用简单随机抽样?出现了什么情况?
可以,由于总体过大,采用简单随机抽样时,无论是抽签 法还是随机数法,实施过程很复杂,需要大量的人力和物力
上一页 下一页 第一页 尾页
【例2】 为了了解参加某种知识竞赛的1 000名学生 的成绩,抽取20名学生作为个体应采用什么抽样方法 较恰当?简述抽样过程.
分析:按照系统抽样的特点可知,应该采用系统抽样.
解:适宜选用系统抽样,抽样过程如下:
(1)随机地将这1 000名学生编号为1,2 ,3,…,1 000.
(2)将总体按编号顺序均分成20部分,每部分包括50 个个体.
分析:由于1003/50不是整数,所以先从总体中随机剔除3个个 体.
解:步骤:
新课标人教A版高中数学必修三2.1.2系统抽样课件
【情境】
•
为了了解某地区去年高一年级学生期末考 试数学学科的成绩,打算从参加考试的15000名 学生的数学成绩中抽取容量为150的样本,怎样 抽取操作性强且更具有随机性呢?
【探究】:除了用简单随机抽样获取样本外,你能 否设计其他抽取样本的方法?
(1)编号:1~15000; (2)分段:样本容量与总体容量的比为150:15000=1:100, 将总体平均分为150个部分;
§2.1.2 系统抽样
复习回顾
1、简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不 放回地抽取n个个体作为样本,如果每次抽取时总体 内的各个个体被抽到的机会都相等,就把这种抽样 方法叫做简单随机抽样. 2、简单随机抽样的特点: (1)总体个数有限; (2)逐个抽取; (3)是不放回的抽样。 (5)每个个体被抽取的可能性均为n/N.(等概率抽样)
例题分析:
例1 某校高中三年级的295名学生已经编号为1, 2,……,295,为了了解学生的学习情况,要按1:5 的比例抽取一个样本,用系统抽样的方法进行抽取, 并写出过程。
解:样本容量为295÷5=59. (1)将295名学生编号; (2)确定分段间隔k=5,将编号分为59段; (3)采用简单随机抽样的方法,从第一组5名学生中抽 出一名学生,如确定编号为3的学生,依次取出的学生 编号为3,8,13,…,288,293 ,这样就得到一个样本容 量为59的样本.
A .2
B .3
C .4
D .5
11、要从1002个学生中选取一个容量为20的样本,试用系 统抽样的方法给出抽样过程。 12、某单位的在岗工作为624人,为了调查工作上班时, 从家到单位的路上平均所用的时间,决定抽取10%的工作人员 调查这一情况,如何采用系统抽样的方法完成这一抽样?
人教版高中数学必修三:211-2简单随机抽样系统抽样(共64张PPT)
“……某减肥药真的灵,其减肥的有效率为75%.”
“现代研究证明,99%以上的人皮肤感染有螨虫…….”
“……某化妆品,可以彻底清除脸部皱纹,只需10
天,就能让你的肌肤得到改善.”
第39页,共64页。
练习3: 某中学有高一学生323名,为了了解学生 的身体状况,要抽取一个容量为40的样本,用系统抽 样法如何抽样?
小结243简单随机抽样每个个体入样的可能性都相等均为nn但是这里一定要将每个个体入样的可能性第n次每个个体入样的可能性特定的个体在第n次被抽到的可能性这三种情况区分开来避免在解题中出现错误252627复习1简单随机抽样有哪些常用方法
2.1 随机抽样
第1页,共64页。
2.1 随机抽样
2.1.1 简单随机抽样 2.1.2 系统抽样
(如8,18,28,…,498)
第31页,共64页。
上述抽样方法称为系统抽样. 怎样理解系统抽样的含义? 将总体分成均衡的n个部分,再按照预先定出的规则, 从每一部分中抽取1个个体,即得到容量为n的样本.
第32页,共64页。
用系统抽样从含有N个个体的总体中抽取一个容量为
n的样本的操作步骤: 第一步,将总体的N个个体编号.有时可以直接利用
例2:假设我们要考察某公司生产的500克袋装牛奶的 质量是否达标,现从800袋牛奶中抽取60袋进行检验, 可以怎样操作?
随机抽样中,另一个常被采用的方法是随机数法.即 利用随机数表、随机数骰子或计算机产生的随机数进 行抽样.
随机数表由数字0,1,2,……,9组成,并且每个数 字在表中各个位置出现的机会都是一样的.
第35页,共64页。
探究:用系统抽样抽取样本时,每段各取一个号 码,其中第1段的个体编号怎样抽取?以后各段的个体编号
“现代研究证明,99%以上的人皮肤感染有螨虫…….”
“……某化妆品,可以彻底清除脸部皱纹,只需10
天,就能让你的肌肤得到改善.”
第39页,共64页。
练习3: 某中学有高一学生323名,为了了解学生 的身体状况,要抽取一个容量为40的样本,用系统抽 样法如何抽样?
小结243简单随机抽样每个个体入样的可能性都相等均为nn但是这里一定要将每个个体入样的可能性第n次每个个体入样的可能性特定的个体在第n次被抽到的可能性这三种情况区分开来避免在解题中出现错误252627复习1简单随机抽样有哪些常用方法
2.1 随机抽样
第1页,共64页。
2.1 随机抽样
2.1.1 简单随机抽样 2.1.2 系统抽样
(如8,18,28,…,498)
第31页,共64页。
上述抽样方法称为系统抽样. 怎样理解系统抽样的含义? 将总体分成均衡的n个部分,再按照预先定出的规则, 从每一部分中抽取1个个体,即得到容量为n的样本.
第32页,共64页。
用系统抽样从含有N个个体的总体中抽取一个容量为
n的样本的操作步骤: 第一步,将总体的N个个体编号.有时可以直接利用
例2:假设我们要考察某公司生产的500克袋装牛奶的 质量是否达标,现从800袋牛奶中抽取60袋进行检验, 可以怎样操作?
随机抽样中,另一个常被采用的方法是随机数法.即 利用随机数表、随机数骰子或计算机产生的随机数进 行抽样.
随机数表由数字0,1,2,……,9组成,并且每个数 字在表中各个位置出现的机会都是一样的.
第35页,共64页。
探究:用系统抽样抽取样本时,每段各取一个号 码,其中第1段的个体编号怎样抽取?以后各段的个体编号
人教A版高中数学必修三课件高一:2.1.2系统抽样.pptx
这样抽出的样本就是我们需要的样本.
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
系统抽样的应用
【例3】采用系统抽样法从960人中抽取32人做问卷调查,为此将他
们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方
高中数学课件
(金戈铁骑 整理制作)
2.1.2 系统抽样
-2-
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
1.理解系统抽样的定义、适用条件及其步骤. 2.会利用系统抽样抽取样本.
目标导航
Z Z D 知识梳理 HISHISHULI
数为总体中的个体数除以样本容量所得的余数.
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
系统抽样的基本概念 【例1】下列问题中,最适合用系统抽样抽取样本的是( ) A.从10名学生中,随机抽取2名学生参加义务劳动 B.从全校3 000名学生中,随机抽取100名学生参加义务劳动 C.某市有30 000名学生,其中小学生有14 000人,初中生有10 000人, 高中生有6 000人,从中抽取300名学生以了解该市学生的近视情况 D.从某班周二值日小组6人中,随机抽取1人擦黑板 解析:A项中总体个体无差异,但个数较少,适合用简单随机抽样;同 样D项中也适合用简单随机抽样;C项中总体中个体有差异不适合 用系统抽样;B项中,总体中有3000个个体,个数较多且无差异,适合 用系统抽样. 答案:B
高中数学人教A版必修3第二章2.1.1_2.1.3随机抽样、系统抽样、分层抽样课件(共26张PPT)
通常利用l+k,l+2k,l+3k,... 这种不断添加分段间隔的方 式确定样本编号.本题最终选
取的编号为: 9,19,29,39,49,...,499
系统抽样的概念
• 将总体平均分成几部分,然后按照一定的规则,从每一部分抽 取一个个体作为样本,这种抽样的方法叫做系统抽样。
系统抽样,实质上是将转化思想.
将500名学生按 1,2,3,...,500进行编
号.
10人一组(即k=10), 将500名学生分为50组. 即:第1组10名学生的编 号为1~10,第2组学生的 编号为11~20,以此类推.
在第一组10名同学中,采 用简单随机抽样(抽签法 或随机数法),确定第一 个个体的编号l(l≤k).
假设抽到的是9.
明。
• 答:对于容量较大的总体,系统抽样更加便于操作。但系统抽样有时又会因为编号变化 的周期性,导致样本代表性差。例如:男生女生交替排成一路纵队进行编号,用系统抽 样,可能会导致抽到的全部为男生或全部为女生;如果将全班同学按体重顺序进行编号, 此时用系统抽样是合理的。另外,实际生产生活中,对生产线上的产品进行检测时,往 往也采用系统抽样,便于操作。
2.1 随机抽样
2.1.1 简单随机抽样 2.1.2 系统抽样 2.1.3 分层抽样
目录
CONTENTS
1
统计学的产生与发展
2 简单随机抽样
3 系统抽样
4 分层抽样
5
随机抽样的应用
统计学的产生与发展
背景知识--你了解统计学吗?
• 统计一词起源于国情调查,最早意为国情学。 • 统计:指对某一现象有关的数据的搜集、整理、计算、分析、解释、表述
开始
4、分层抽样的一般步骤:
高中数学人教A版必修3课件:2.1.2-2.1.3系统抽样和分层抽样(共18张PPT)
③分层抽样
2. 从2005个编号中抽取20个号码入样,采用系统抽 样的方法,则抽样的间隔为( C)
A.99 B、99.5 C.100 D、100.5
3. 采用系统抽样从个体数为83的总体中抽取一个样 本容量为10的样本,那么每个个体人样的可能性为
10
83
4.某工厂生产A、B、C三种不同型号的产品,产品数量之 比为2:3:5,现用分层抽样方法抽取一个容量为n的样本, 样本中A型产品有16种,那么此样本容量n=8__0_____.
1、知道系统抽样和分层抽样; 2、能用系统抽样和分层抽样的方、
法进行抽样。
一.系统抽样的定义:
将总体平均分成几部分,然后按照一定的规则,从每一部分抽 取一个个体作为样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体平均分成几部分指的是将总体分段,分段的
C.1,2,3,4,5
D.2,4,6,16,32
[分析]用系统抽样的方法抽取至的导弹编号应该
k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中
用简单随机抽样方法得到的数,因此只有选项B满足
要求,故选B.
三、分层抽样的定义
一般地,当总体由差异明显几部分组成时,为了使 样本更客观地反映总体情况,我们常常将总体中的个 体按不同的特点分成层次比较明显的几部分,然后按 照各部分在总体中所占的比实施抽样,这种抽样方法 叫分层抽样。
【注】分层抽样又称类型抽样,应用分层抽样应遵循以下要求: (1)分层:将相似的个体归人一类,即为一层,分层要求每层 的各个个体互不交叉,即遵循不重复、不遗漏的原则。 (2)分层抽样为保证每个个体等可能入样,需遵循在各层中进 行简单随机抽样或系统抽样,每层样本数量与每层个体数量的比 与样本容量与总体容量的比相等或相近。
2. 从2005个编号中抽取20个号码入样,采用系统抽 样的方法,则抽样的间隔为( C)
A.99 B、99.5 C.100 D、100.5
3. 采用系统抽样从个体数为83的总体中抽取一个样 本容量为10的样本,那么每个个体人样的可能性为
10
83
4.某工厂生产A、B、C三种不同型号的产品,产品数量之 比为2:3:5,现用分层抽样方法抽取一个容量为n的样本, 样本中A型产品有16种,那么此样本容量n=8__0_____.
1、知道系统抽样和分层抽样; 2、能用系统抽样和分层抽样的方、
法进行抽样。
一.系统抽样的定义:
将总体平均分成几部分,然后按照一定的规则,从每一部分抽 取一个个体作为样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体平均分成几部分指的是将总体分段,分段的
C.1,2,3,4,5
D.2,4,6,16,32
[分析]用系统抽样的方法抽取至的导弹编号应该
k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中
用简单随机抽样方法得到的数,因此只有选项B满足
要求,故选B.
三、分层抽样的定义
一般地,当总体由差异明显几部分组成时,为了使 样本更客观地反映总体情况,我们常常将总体中的个 体按不同的特点分成层次比较明显的几部分,然后按 照各部分在总体中所占的比实施抽样,这种抽样方法 叫分层抽样。
【注】分层抽样又称类型抽样,应用分层抽样应遵循以下要求: (1)分层:将相似的个体归人一类,即为一层,分层要求每层 的各个个体互不交叉,即遵循不重复、不遗漏的原则。 (2)分层抽样为保证每个个体等可能入样,需遵循在各层中进 行简单随机抽样或系统抽样,每层样本数量与每层个体数量的比 与样本容量与总体容量的比相等或相近。
人教版系统抽样-高中数学(共29张PPT)教育课件
从 2 008 名学生志愿者中选取 50 名组成一个志愿团,若采 用下面的方法选取:先用简单随机抽样方法从 2 008 人中剔除 8 人,余下的 2 000 人再按系统抽样的方法进行选取,则每人入选 的机会是________,分段间隔为________.
解析:在抽样过程中,每个个体被抽取的概率相等,均为Nn , 故每人入选的机会都是2 50008,分段间隔为2 50000=40.
思考7:系统抽样适合在哪种情况下使用? 系统抽样公平吗?
[注意]:①系统抽样适合于总体的个体数 较多的情形.
②系统抽样也是等概率抽样,即每个 个体被抽到的概率是相等的,其概率仍 为P=n/N,从而保证了抽样的公平性.
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?
己
弄
五
分
钟
就
弄
完
所
以
最
我
自
己
弄
。
但
这
样
做
有
一
个
不
好
的
后
果
就
是
当
你
真
的
■
电
:
“
色
情
男
女
是
你
和
尔
东
口
罗
其
实
不
是
❖■ 电 你 是 否 有 这 样 经 历 , 当 你 在 做 某 一 项 工 作 和 学 习 的 时 候 , 脑 子 里 经 常 会 蹦 出 各 种 不 同 的 需 求 。 比 如 你 想 安 心 下 来 看 2 小 时 的 书 , 大 脑 会 蹦 出 口 渴 想 喝 水 , 然 后 喝 水 的 时 候 自 然 的 打 开 电 视 。 。 。 。 。 。 , 一 个 小 时 过 去 了 , 可 能 书 还 没 看 2 页 。 很 多 时 候 甚 至 你 自 己 都 没 有 意 思 到 , 你 的 大 脑 不 停 地 超 控 你 的 注 意 力 , 你 就 这 么 轻 易 的 被 你 的 大 脑 所 左 右 。 你 已 经 不 知 不 觉 地 变 成 了 大 脑 的 奴 隶 。 尽 管 你 在 用 它 思 考 , 但 是 你 要 明 白 你 不 应 该 隶 属 于 你 的 大 脑 , 而 应 该 是 你 拥 有 你 的 大 脑 , 并 且 应 该 是 你 可 以 控 制 你 的 大 脑 才 对 。 一 切 从 你 意 识 到 你 可 以 控 制 你 的 大 脑 的 时 候 , 会 改 变 你 的 很 多 东 西 。 比 如 控 制 你 的 情 绪 , 无 论 身 处 何 种 境 地 , 都 要 明 白 自 己 所
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习4.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本, 那么每个个体人样的可能性为 _________.
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
课堂小结
1.系统抽样的概念
将总体分成均衡的几部分,然后按照预先定出的规则,从每一个部分 抽取一个个体,得到所需样本的抽样方法叫做系统抽样. (1)步骤:
的学号是( )
A.10
B.11
C.12
D.16
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
2.(2019 年百色月考)为了了解某地参加计算机水平测试的 5 008 名学生的
成绩,2.从(2中01抽9 年取百了色月2考00)名为学了了生解的某成地绩参进加行计统算计机水分平析测,试运的用5系00统8 抽名学样生方的法抽取样
取方案吗?
①将13000名高一学生数学期末考试答卷编号为1,2,3,…, 13000;
系
统
③在第1部分中用简单随机抽样抽取一个号码(如6号);
抽
④从该号码起,每隔100个号码取一个号码,就得到一个容
样
量为130的样本. (如6,106,206,…,12906)
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
巩固练习
1.下列抽样问题中最适合用系统抽样法抽样的是( )
A.从全班 48 名学生中随机抽取 8 人参加一项活动
B.一个城市有 210 家百货商店,其中大型商店 20 家,中型商
店 40 家,小型商店 150 家,为了掌握各商店的营业情况,要从
C、20
D、12
练习2.为了了解一次知识竞赛的1252名学生的成绩,决定采用系统抽样的方
法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )
A、2
B、4
C、52
D、25
练习3.工厂生产的产品,用传送带将成品送入包装车间之前,检查人员 从传送带上每隔5分钟抽一件产品检查,这种抽样方法为 系统抽样 .
中抽取一个容量为 21 的样本
C.从参加模拟考试的 1 200 名高中生中随机抽取 100 人分析试
题作答情况
D.从参加模拟考试的 1 200 名高中生中随机抽取 10 人了解某
些情况
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
1.系统抽样的概念
将总体分成均衡的几部分,然后按照预先定出的规则,从每一个部分 抽取一个个体,得到所需样本的抽样方法叫做系统抽样. (1)步骤: (2)特点:①适用于总体容量较大的情况;
3,…, 13000;
样
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
练习1.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取
一个容量为30的样本,考虑采用系统抽样,则分段间隔k为( )
A、40
B、30
1.系统抽样的概念
将总体分成均衡的几部分,然后按照预先定出的规则,从每一个部分
抽取一个个体,得到所需样本的抽样方法叫做系统抽样. 有时可直接利用个体
(1)步骤:
自身所带的号码,如 学号、考号、门牌号
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
有规律的学号 周期性的号码
1.下列抽样中不是系统抽样的是( ) A.从标有 1~15 号的 15 个小球中任选 3 个作为样本,按从小 号到大号排序,随1 再数起)号入样 B.工厂生产的产品,用传送带将产品送入包装车间前,检验 人员从传送带上每隔十分钟抽一件产品检验 C.进行某一市场调查,规定在商场门口随机抽一个人进行询 问,直到调查到事先规定的调查人数为止 D.电影院调查观众的某一指标,通知每排(每排人数相等)座位 号为 14 的观众留下来座谈
简单随机抽样的每个个体进入样本的可能性均为
思考:为了对某市13000名高一学生数学期末考试答卷进行分析, 拟从中抽取130名学生的答卷作为样本.
简单随机抽样方法(抽签法或随机数表法)进行抽取.
编号
抽
签
制签
法
搅匀
13000试卷从1到13000编号 制作1到13000个号签
将13000个号签搅拌均匀
抽取
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
课堂小结
1.系统抽样的概念
将总体分成均衡的几部分,然后按照预先定出的规则,从每一个部分 抽取一个个体,得到所需样本的抽样方法叫做系统抽样. (1)步骤:
(2)特点:①适用于总体容量较大的情况;
随机从中抽出130个签,并取出对应试卷
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
随机数表法
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
思考:为了对某市13000名高一学生数学期末考试答卷进行分析,
拟从中抽取130名学生的答卷作为样本.
还有其它的抽
④是不放回的抽样.
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
为了对某市13004名高一学生数学期末考试答卷进行分析,拟从中
抽取130名学生的答卷作为样本,请你设计一个合理的抽取方案.
系
①先从13004份答卷中,用简单随机抽样抽取4份,将其剔除;
统
②将余下的13000名高一学生数学期末考试答卷重新编号为1,2, 抽
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
④是不放回的抽样.
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
[再练一题]
2.某班共有 52 人,现根据学生的学号,用系统抽样的方法抽取一个容量
为 4 的样本.已知 3 号、29 号、42 号同学在样本中,那么样本中还有一个同学
本成时绩,,每从中组抽的取容了量2为00 名学生的成绩进行统计分析,运用系统抽样方法抽取样
本时,每组的容量为
A.24
A.24
C.26
C.26
B.25
B.25
D.28
D.28
()
()
高中数学【人教A版必修】三 2.系统抽样PPT全文课件【完美课件 】
2.1.2系统抽样
复习
1.简单随机抽样的概念
2.简单随机抽样操作办法: 抽签法:①编号、②制签、③搅拌、④抽取 随机数表法:①编号、②选开始的数、③取号
总体 个体 样本 样本容量
1.简单随机抽样的概念
注意:(1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)每个个体被抽到的可能性是相同的.