第七章-粘弹塑性模型的基本概念教学内容

合集下载

弹塑性力学课件-塑性基本概念

弹塑性力学课件-塑性基本概念

五种简化模型的应力应变关系曲线及相应的机械形态 模型。
机械模型中,力和位移分别 对应于材料的应力和应变。力和 位移的线性关系用弹簧给出,而 干摩擦表示:当力小于某一定值 时,没有发生位Байду номын сангаас,当力达到该 定值时位移可以无限增大(对应 于屈服后的塑性流动)。
如果不考虑材料的强化性质,并且忽略屈服 极限上限的影响,则模型简化为理想弹塑性模型。
2.基本假设
对一般应力状态的塑性理论,作以下基本假设: 1. 材料的塑性行为与时间、温度无关。即只研究常温静载下的材料,认
为材料是非粘性的,在本构关系中没有时间效应。
2. 材料具有无限的韧性,即认为材料可以无限地变形而不出现断裂。
~~
3. 变形前材料是初始各向同性的,且拉伸和压缩的 (真应力—
b) 由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆性,或称为耗散 性(dissipation)。在一个加载-卸载的循环中外力作功恒大于零,这一部 分能量被材料的塑性变形损耗掉了。
c) 当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生 塑性变形的塑性区域。并且随着载荷的变化,两区域的分界面也会产生变化 。
塑性基本概念
1.基本实验 2.基本假设 3.简化模型 4.应力分析
1.基本实验
1.1材料简单拉压实验
弹性与塑性的根本区别不在于应力-应 变关系是否线性,而在于卸载后变形 是否可恢复
没有明显屈服平台的应力应变曲线 有明显屈服阶段的拉伸曲线(低碳钢类) (铝合金类)
卸载后再加载
经过屈服阶段后,材料又恢复了抵抗变形的能力。 在第二次加载过程中,弹性系数仍保持不变,但 弹性极限及屈服极限有升高现象,后继屈服应力 升高程度与塑性变形的历史有关,决定于前面塑 性变形的程度。这种现象称为材料的应变强化。

高分子物理chapter7粘弹性

高分子物理chapter7粘弹性
滞后现象与哪些因素有关? a.化学结构:刚性链滞后现象小,柔性链滞后现象大. b.温度:当不变的情况下,T很高时滞后几乎不出现,温度 很低,也无滞后。在Tg附近的几十度的温度范围内,链段既 可运动又不太容易,此刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的变化, 滞后现象很小; 外力作用频率不太高时,链段可以运动,但是不能完 全跟上外力的变化,表现出明显的滞后现象。 外力作用频率很高时,链段根本来不及运动,聚合物好 像一块刚性的材料,滞后很小。
26
f
F
σ 第7章 聚合物的黏弹性
σ
F
f
σ为拉伸应力 f为内摩擦力 F为回复力
Mechanical loss 力学损耗 Hysteresis loss 滞后损耗,内耗
σ0
1 2 3
第7章 聚合物的黏弹性
2.内耗: 的现象. 由于力学滞后或者力学阻尼而使机械功转变成热
产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
图4 线形非晶态聚合物的蠕变及回复曲线
12
第7章 聚合物的黏弹性
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即恢复,形变直线下降 •通过构象变化,使熵变造成的形变恢复
②理想交联聚合物,不存在粘流态, 3 =0, =1+2
14
第7章 聚合物的黏弹性
蠕变的影响因素
(1)温度:温度升高,蠕变程度变大 原因:外力作用下,温度高使分子运动速度加快,松弛加快

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

粘弹性基本力学模型

粘弹性基本力学模型

粘弹性基本力学模型粘性:在外力作用下,分子与分子之间发生位移,材料的变形和应力随时间变化的变种特性称为粘性。

理想的粘性流体其流动形变可用牛顿定律来描述:应力与应变速率成正比。

因此,材料的本构关系的数学表达式应是反映应力-应变-时间-温度关系的方程。

粘弹性:塑料对应力的响应兼有弹性固体和粘性流体的双重特性称粘弹性。

材料既有弹性,又有粘性。

粘弹性依赖于温度和外力作用的时间。

其力学性能随时间的变化,称为力学松弛,包括应力松弛、蠕变等。

其力学行为介于理想弹性体和理想粘性体之间。

理想弹性体的形变与时间无关,形变瞬时达到,瞬时恢复。

理想粘性体的形变随时间线性发展。

粘弹性体介于这两者之间,其形变的发展具有时间依赖性,也就是说不仅具有弹性而且有粘性。

这种力学性质随时间变化的现象称为力学松弛现象或粘弹性现象。

橡胶对形变同时具有粘性响应和弹性响应。

粘性响应与形变速率成正比,而弹性响应与形变程度成正比。

粘性响应通常以阻尼延迟器为模型,而弹性响应则以金属弹簧为模型。

采用如下两种基本力学元件,即理想弹簧和理想粘壶。

理想弹簧用于模拟普弹形变,其力学性质符合虎克(Hooke)定律,应变达到平衡的时间很短,可以认为应力与应变和时间无关:σ=Eε其中σ为应力;E为弹簧的模量。

理想粘壶用于模拟粘性形变,其应变对应于充满粘度为η的液体的圆筒同活塞的相对运动,可用牛顿流动定律描述其应力应变关系:将弹簧和粘壶串联或并联起来可以表征粘弹体的应力松弛或蠕变过程。

应力松弛:就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐衰减的现象。

这种现象也在日常生活中能观察到,例如橡胶松紧带开始使用时感觉比较紧,用过一段时间后越来越松。

也就是说,实现同样的形变量,所需的力越来越少。

未交联的橡胶应力松弛较快,而且应力能完全松弛到零,但交联的橡胶,不能完全松弛到零。

应力松弛同样也有重要的实际意义。

成型过程中总离不开应力,在固化成制品的过程中应力来不及完全松弛,或多或少会被冻结在制品内。

第7章聚合物的粘弹性

第7章聚合物的粘弹性

第7章 聚合物的粘弹性本章教学目的:1、熟悉聚合物的粘弹性现象和分子机理(包括蠕变现象、应力松弛现象、滞后现象、力学损耗)。

2、了解粘弹性的力学模型理论(Maxwell 模型、Kelvin 模型和多元件模型)。

3、了解储能模量、损耗模量、损耗角正切之间关系。

4、了解分子运动与动态力学谱之间的关系。

5、了解时温等效原理(WLF 方程)及应用。

6、了解Boltzmann 叠加原理及应用。

7.1 普通粘弹概念7.1.1 基本概念弹:外力→形变→应力→储存能量外力撤除→能量释放→形变恢复能量完全以弹性能的形式储存,然后又全部以动能的形式释放,没有能量的损耗。

粘:外力→形变→应力→应力松弛→能量耗散外力撤除→形变不可恢复1、理想弹性体其应力-应变关系服从虎克定律,即ζ=E·ε。

应力与应变成正比(即应力只取决于应变),普弹模量E 只与材料本质有关,不随时间改变。

应变在加力的瞬时达到平衡值,除去外力时,普弹形变ε瞬时完全回复。

应力恒定,故应变恒定,见图7-1。

图7-1 聚合物普弹形变ε-时间关系2、理想粘性液体(牛顿流体)其应力-应变行为服从牛顿定律 理想粘性液ζ∝η为常数,等于单位速度梯度时的剪切应力,反映了分子间由于相互作用而产生的流动阻力,即内摩擦力的大小,单位为Pa·s 。

形变ε随时间线性变化,当除去外力时形变不可回复。

应力恒定,故η为常数,应变以恒定速γ率增加,见图7-2。

图7-2 聚合物粘性形变ε-时间关系弹性与粘性比较:弹性 粘性能量储存能量耗散 形变回复 永久形变E(σ,ε,T) 模量与时间无关 模量与时间有关高分子液体,除了粘度特别大以外,其流动行为往往不服从牛顿定律,即η随剪切速率而变化。

原因:流动过程中伴随着构象的改变,η不再是常数;而当外力除去时,链分子重新卷曲(解取向)。

高分子液体在流动过程中仍包含有熵弹性形变,即含有可回复的弹性形变。

高分子固体 力学行为不服从虎克定律。

7 粘弹性

7 粘弹性
图7

t
18
第7章 聚合物的黏弹性
2、应力松弛 Stress Relaxation
• 在恒定温度和形变下,维持此形变所需的应力随时间增加而逐渐衰减
0e

0
t
松弛时间 交联高分子 应力衰减至某一平衡值
Crosslinked polymer
Linear polymer
0
t
未交联高分子 应力最终衰减至零
4
第7章 聚合物的黏弹性
5. 力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛。 包括蠕变及其回复,应力松弛和动态力学实验等。 蠕变 静态的黏弹性 力学松弛 动态黏弹性 力学损耗(内耗)
5
应力松弛 滞后现象
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来 的黏弹现象。
恒值 (t>t2)

t1
t2
t
3-----本体粘度
分子间滑移,不可恢复
11
图3 理想粘性流动蠕变
第7章 聚合物的黏弹性
当聚合物受力时,以上三种形变同时发生,聚合物的总形变 方程:
2+3 1
1 2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
32
tanδ由小到大的顺序:
第7章 聚合物的黏弹性
内耗受温度影响较大
Tg以下,高聚物受外力作用后形变很小, 仅键长、键角变化,速度快,几乎跟得上 应力变化,内耗小
Tg Tf
T Tan
温度升高,高分子向高弹态过渡。链段开始运动,而体系粘度还很大, 链段运动时受到摩擦阻力比较大,高弹形变显著落后于应力的变化,内 耗也大 温度进一步升高,链段运动比较自由,内耗变小 因此,在玻璃化转变区域出现内耗峰 温度继续升高,高分子向粘流态过渡。由于分之间互相滑移,内耗急剧 增加

粘弹性介绍全解

粘弹性介绍全解

小结: 静态粘弹性现象:
蠕变:在一定的温度和恒定应力的作用下,观察 试样的应变随时间增加而增大的现象。
ε



t
静态粘弹性现象:
应力松弛:在一定的温度和恒定应变的作用下, 观察试样的应力随时间增加而衰减的现象。 0 交联聚合物 线形聚合物
t
线性粘弹性模型: Maxwell模型
由一个弹簧与一个粘壶串联组成
Maxwell 模型
一个弹簧与一个粘壶串联组成
E η F
t=0 t=∞
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
Maxwell 模型: 可模拟线形聚合物的应力松驰行为。
7.3.1
Maxwell 模型
理论分析:
E η
∵两元件串联 ∴σ = σE = σV ε = εE + εV
牛顿流体定律的比例常数为粘度η
y
d d x 1 dx ( ) dt dt y y dt
应变速率为速度梯度
x
∴粘度η等于单位速度梯度时的剪切应力,反映了分 子间由于相互作用而产生的流动阻力,即内摩擦力的 大小,单位为Pa·S
弹性
(1)储能:能量储为应变能 (2)可逆:记忆形状 (3)瞬时:不依赖时间 E=E(σ, ε, T) 虎克固体
)
Temperature dependence
分子运动的温度依赖性
Arrhenius Equation 阿累尼乌斯方程
0e
T
E / RT
E - 松弛所需的活化能 activation energy
T

7.2 Creeping and Relaxation 蠕变和应力松弛

第七章 粘弹塑性模型的基本概念

第七章 粘弹塑性模型的基本概念

第七章 粘弹塑性模型的基本概念7 . 1 引言为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。

弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。

理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。

实际工程材料的本构关系可以用这些简单模型的各种组合来构成。

理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图7-1( a ))。

其本构方程为虎克定律。

一维条件下,如单轴压缩和纯剪清况下,表达式分别为: E σε= (7.1.1)G τγ= (7.1.2)式中E —— 弹性模量、G ——剪切模量。

剪切模量与弹性模量和泊松比的关系如下式所示:()21E G ν=+ (7.1.3) 式中 ν ——泊松比。

三维条件下本构方程可表示为下述形式:m K νσε= (7.1.4)式中 K ——体积弹性模量。

(a ) (b )图7-1 理想弹性模型体积弹性模量与弹性模量和泊松比的关系如下式所示:()312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。

通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。

粘壶内充满粘滞液体和一个可移动的活塞。

活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。

一维条件如单轴压缩或纯剪情况下,表达式分别为: σϕε= (7.1.7) τηγ= (7.1.8)式中 ϕ、η ——粘滞系数。

由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。

与理想弹性体的方程相对应,类似式7.1.3,存在下述关系:()*21ϕην=+ (7.1.9)式中 *ν ——粘性应变速率的横向比值。

(a ) (b )图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关,即不具有体积粘性。

高分子物理chapter7粘弹性讲义

高分子物理chapter7粘弹性讲义
物理意义:蠕变大小反映了材料尺寸的稳定性和长期负载能力。
6
第7章 聚合物的黏弹性
7
第7章 聚合物的黏弹性
蠕变:一定温度、较小的恒定外力下,材料的形变随时间增加而逐渐增大
2+3
Creep
1 2 Retraction
1
0
3
t
8
(t)
第7章
普弹形变
聚合物的黏弹性
从分子运动的角度解释:
材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
静态的黏弹性
蠕变
力学松弛
应力松弛 滞后现象
动态黏弹性
力学损耗(内耗) 5
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来的
黏弹现象。
1、蠕变Creep
在一定的温度和恒定应力(拉力,扭力或压力等)作用下, 材料的形变随时间的增长而逐渐增加的现象。
若除掉外力,形变随时间而减小--称为蠕变回复。
3
12
第7章 聚合物的黏弹性
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即恢复,形变直线下降 •通过构象变化,使熵变造成的形变恢复 •分子链间质心位移不能恢复
2
0
E2
1 et
推迟时间 2
高弹模量
’ 分子链从一个松弛的平衡态构象变到
一个紧张的平衡态构象所需的时间
t1
t2
t
链段运动,可逐渐恢复
第7章 聚合物的黏弹性

第七章-粘弹性PPT课件

第七章-粘弹性PPT课件

.
35
(4)结构 主链钢性:分子运动性差,外力作用下,蠕变小
ε(%)
2.0
1.5
1.0
0.5
聚砜
ABS(耐热级)
聚苯醚
聚甲醛
聚碳酸酯 尼龙
改性聚苯醚 ABS
1000 2000 3000
t
交联与结晶:
交联使蠕变程度减小,
结晶也类似于交联作用,使蠕变减小。
.
36
广义力学模型与松弛时间 单一模型表现出的是单一松弛行为,单一松弛时间的指 数形式的响应,实际高聚物:
T≈Tg: Tg附近时,链段开始运动,而体系粘度很大, 链段运动很难,内摩擦阻力大,形变显著落后 于应力的变化, tgδ大(转变区)
T>Tg: 链段运动较自由、容易,受力时形变大,tgδ小, 内摩擦阻力大于玻璃态。
向粘流态过度,分子间的相互滑移,内摩擦大, T≈Tf: 内耗急剧增加, tgδ大
.
24
频率的影响:(温度恒定)
(1)交变应力的频率小时: (相当于高弹态) 链段完全跟得上交变应力的变化,内耗小,E’小,E” 和tgδ都比较低.
(2)交变应力的频率大时: (相当于玻璃态) 链段完全跟不上外力的变化,不损耗能量,E’大, E”和tgδ≈0
(3)频率在一定范围内时: 链段可运动,但又跟不上外力的变化,表现出明显的 能量损耗,因此E”和tgδ在某一频率下有一极大值
(t)0et/ 应力松弛方程
t=τ时, σ(t) = σ0 /e τ的物理意义为应力松弛到σ0 的 1/e的时间--松弛时间
t ∞ ,σ(t) 0
应力完全松弛
.
30
2、Voigt(Kelvin)模型
描述交联高聚物的蠕变方程

刚(粘)塑性有限元法

刚(粘)塑性有限元法

§1 刚(粘)塑性变分理论
一、刚塑性材料变形的边值问题
刚塑性边值问题由塑性方程和边界条件定义:
ij, j 0 V ijij 0
ij
1 2
ui, j u j,i
SP
刚性区 z
塑性区
ij
3 2
ij
y
f Y o
x Su
ij n j pi S S p
ui ui S Su
Y
s
g
与马尔可夫变分原理相同,可以采用拉格朗日 乘子法和罚函数法等方法引入体积不变条件
§2 刚塑性有限元的基本列式
以罚函数法为例
Π2
dV
V
V VV dV
Sp piuidS
0
形状函数矩阵
应变矩阵
位移 u~ N ue 应变 Bue
2 3
ijij
T D
ue T BT D Bue ue T Aue
造新的泛函式。
罚因子(如α=106)
dV
V
2
V V2dV
Sp piuidS
塑性变形功率 体积变形惩罚项 外力功率
极值条件
Π
dV
V
V VV dV
Sp pi uidS
0
3、体积可压缩法
认为塑性变形过程有体积的变化,屈服应力 也与平均应力有关。
*
3 2
ij
ij
g
2 m
*
第七章 刚(粘)塑性有限元法
金属 塑性 成形
金属 板料 成形
金属 体积 成形
金属板料成形中弹性变形影响 大,不能忽略,成形过程必须 采用弹塑性有限元法分析。
金属体积变形中弹性变形影响 小,可以忽略,成形过程可以 采用刚(粘)塑性有限元法分析。

高分子物理chapter7粘弹性

高分子物理chapter7粘弹性

特点:受外力作用平衡瞬时达到,除去外力应变立即恢复.
2.理想的黏性液体:符合牛顿流体的流动定律的流体,= 特点:应力与切变速率呈线性关系,受外力时应变随时间线 性发展,除去外力应变不能恢复.
“黏”指糨糊或胶水等所具有的能使一个物体附着在另一个物 体上的性质,如黏性液体、黏米等;“粘”指黏的东西附着在 物体上或相互连接,或用黏的东西使物件连接起来,如粘连。
29
第7章 聚合物的黏弹性
P194 式7-14
30
内耗的表达
第7章 聚合物的黏弹性
弹性形变的动力
克服摩擦阻力 反映弹性大小
反映内耗大小
第7章 聚合物的黏弹性
内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
' '
0 如果E 定义为同相的应力和应变的比值, E cos 0 0 '' E 为相差90角的应力和应变的振幅的比值E" sin 0
32
第7章 聚合物的黏弹性
应力的表达式
( t ) 0 E 'sin t 0 E ' 'cost
第7章 聚合物的黏弹性 Polymer Viscoelasticity
本章的主要内容 内部尺度--弹性和黏性
黏 弹 性 外观表现--4个力学松弛现象 力学模型描述 时温等效原理--实用意义,WLF方程
1
第7章 聚合物的黏弹性
一、黏弹性的基本概念 1.理想弹性固体:受到外力作用,形变立刻响应,且符合胡 克定律。 =E= /D, E杨氏模量, D柔性模量.

第七章 粘弹性-高分子物理

第七章 粘弹性-高分子物理
第7章 聚合物的粘弹性
The Viscoelasticity of Polymers
1
一、粘弹性的基本概念 1.理想弹性固体:受到外力作用形变很小,符合胡克定 律 =E1=D1,E1普弹模量, D1普弹柔量. 特点:受外力作用平衡瞬时达到,除去外力应变立即恢复. 2.理想的粘性液体:符合牛顿流体的流动定律的流体,=
t2 )
3-----本体粘度
12
当聚合物受力时,以上三种形变同时发生聚合物的
总形变方程:
2+3 1
1 2 3
(t) 1 2 3
(1
-t
e
)
t
E1 E2
3
t
图4 线形非晶态聚合物的蠕变及回复曲线
13
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
2.频率很高,链段运动完全跟 不上外力的变化,内耗小,高聚 物呈刚性,玻璃态的力学性质.
3.链段运动跟上、但又不能完 全跟上外力的变化,分子运动 将外力做功部分转化为热能, 将在某一频率出现最大值, 表 现出粘弹性
40
内耗主要存在于交变场中的橡胶制品中,塑料处Tg、Tm以下,损耗小
41
力学松弛——总结 聚合物的力学性质随时间变化的现象,叫力学松弛。 力学性质受到,T, t,的影响, 在不同条件下,可以观察到不同类型的粘弹现象。
42
具体表现: 静态的粘弹性
蠕变:固定和T, 随t增加而逐渐 增大
应力松弛:固定和T, 随t增加而逐 渐衰减
力学松弛 动态粘弹性
滞后现象:在一定温度和和交变应 力下,应变滞后于应力变化.
力学损耗(内耗): 的变化落后于的 变化,发生滞后现象,则每一个循环都 要消耗功,称为.

弹塑性力学第七章屈服条件

弹塑性力学第七章屈服条件

其他领域中的屈服条件应用
生物医学
在生物医学领域,如人体骨骼、牙齿等组织 的力学性能分析中,需要考虑材料的屈服条 件。
能源工程
在核能、太阳能等能源工程领域,相关设备的材料 选择和设计需要考虑其屈服条件。
环境工程
在环境工程领域,如土压力、岩石压力等问 题的分析中,需要利用屈服条件来评估结构 的稳定性和安全性。
20世纪初,德国科学家R.Von Mises 提出Von Mises屈服条件,成为弹塑 性力学中最为广泛应用的屈服条件之 一。
现代屈服条件的进展
随着计算机技术和数值计算方法的不 断发展,现代屈服条件的研究更加深 入和广泛。
目前,研究者们正在探索更加精确和 实用的屈服条件,以适应各种复杂材 料和工程应用的需求。
弹塑性力学的重要性在于,许多工程结构和材料在承受外力 时,其变形行为既不是完全弹性也不是完全塑性,而是介于 两者之间。因此,理解弹塑性行为对于准确预测结构的响应 和保证工程安全至关重要。
屈服条件的概述
屈服条件是弹塑性力学中的一个基本概念,它描述了材料在应力达到某一特定值时开始发生屈服(即 塑性变形)的条件。
07 总结与展望
总结
屈服条件的定义与分类
总结了屈服条件的定义,以及按不同标准分类的屈服条件类型, 如按材料性质、应力状态等。
屈服条件的物理意义
解释了屈服条件在材料力学行为中的物理意义,包括材料内部的微 观结构变化、应力分布等。
屈服条件的应用场景
列举了屈服条件在不同工程领域中的应用,如结构稳定性分析、材 料强度设计等。
混合阶段中,应力-应变关系表现为非线性,材料同时具有弹性和 塑性行为。
加载和卸载路径的影响
在混合阶段,材料的响应不仅取决于当前的应力状态,还受到之前 加载和卸载路径的影响。

第七章 粘弹性-2014

第七章 粘弹性-2014

又一重要特征。
高聚物力学性质随时间而变化的现象称为 力学松弛或粘弹现象 蠕变
形变 线性高聚物 理想粘性体 理想弹性体 交联高聚物
应力松弛
力学松弛 滞后 力学损耗
时间 不同材料在恒应力作用下形变与时间的关系
力学松弛或粘弹现象
线性粘弹性 Linear viscoelasticity 若粘弹性完全由符合虎克定律的理想弹性 体和符合牛顿定律的理想粘性体所组合来 描述,则称为线性粘弹性。 最基本的力学 松弛现象分类 静态粘弹性 蠕变、应力松弛
Ideal elastic solid 理想弹性体 形变对时间不存在依赖性
牛顿定律 Newton’s law
d dt
.
粘度 Viscosity
比例常数(粘度)是常数,不随剪切力和剪 切速率的大小而改变的。这种类型的流体称 为牛顿流体。 剪切应力与剪切速率成正 比:流体的流速越大,受 到的阻力越大
影响内耗的因素
(1) 高聚物本身的结构
顺丁橡胶(BR) 内耗小 分子链上没有取代集团,链段 运动内摩擦阻力较小。 丁苯橡胶(SBR)和丁腈橡胶(NBR) 内耗较大 因为 丁苯橡胶有庞大的苯侧基,丁腈橡胶有极性较强的侧氰 基,链段运动的内摩擦阻力较大。 丁基橡胶(IIR)的侧甲基虽没有苯基大,也没有氰基极 性强,但他的侧基数目比丁苯、丁腈多得多,因而内耗 比丁苯、丁腈还要大。 内耗较大的橡胶,吸收冲击能量较大,回弹性就较差。
Ideal viscous liquid 理想粘性液体
外力除去后完全不回复
高分子液体不完全服从牛顿流动定律,属于非牛顿型流体 。
→0)近似遵循牛顿流动 对大多数高分子熔体而言,低速流动时( 定律,其粘度称零剪切粘度,也记为 0 ;流速较高时,剪切应力 与剪切速率之间不再呈直线关系。

8第7章聚合物的黏弹性

8第7章聚合物的黏弹性
着在另一个物体上的性质。
7.1.2 材料的粘、弹基本概念
材料对外界作用力 的不同响应情况 恒定力或形变------静态 变化力或形变------动态
典 型
小分子固体 – 弹性 小分子液体 – 粘性
7.1.3 理想弹性体(Ideal elastic solid)
虎克定律( Hooke’s law)
σ σ0
σ
η
0
t1
t2
t
ε
ε2
γ&
0
t1
t2
t
外 力 除 去 后 完 全 不 回 复
形 变 与 时 间 有 关
弹性与粘性比较
弹性 能量储存 形变回复 虎克固体 粘性 能量耗散 永久形变 牛顿流体
σ = ηγ& = η
dε dt
σ = Eε
E(σ,ε,T) 模量与时间无关
E(σ,ε,T,t) 模量与时间有关
ε2 =
σ0 ⎛
⎜1 − e E2 ⎝
− t
τ'
⎞ 推迟时间 ⎟ ⎠
高弹模量 聚合物受力时,高分子链通 过链段运动产生的形变,形 变量比普弹形变大得多,但 不是瞬间完成,形变与时间 相关。当外力除去后,高弹 形变逐渐回复。
C. 塑性形变(粘性流动ε3)
σ0 ε3 = t η0
本体粘度
受力时发生分子链的相对位 移,外力除去后粘性流动不 能回复,是不可逆形变。
7.3.2滞后
在交变力的作用下,形变落后于应力变化的现象
σ (t ) = σ 0 sin ωt
ε (t ) = ε 0 sin(ωt − δ )
外力变化的 角频率 形变落后于应 力的相位差
机理
之所以应变落后于应力的变化,是由于链段运动时要 受到内摩擦阻力的作用,也就是链段运动有一个时间 过程。当外力变化时,链段运动跟不上外力的变化, 所以形变落后于应力,存在一个相位差δ。

材料力学中的弹塑性本构模型建立

材料力学中的弹塑性本构模型建立

材料力学中的弹塑性本构模型建立在工程和力学实践中,弹塑性是一种非常重要的材料本构模型。

它能够对许多材料的力学性能进行准确预测,因此在设计和分析中得到广泛应用。

本文将介绍弹塑性本构模型的基本概念和建立方法。

一、弹塑性基本概念弹塑性是一种材料可能表现出的力学特性,它包括两个不同的行为:弹性和塑性。

弹性是指材料恢复原来形状和大小的能力,这是由于分子等微观结构的作用而产生的。

而在材料接受持续变形时,会发生形变不可逆的情况。

这种现象被称为塑性。

当材料被施加应力时,如果应力不超过一定范围,材料会发生弹性形变;一旦应力超过一定界限,材料就会发生塑性变形。

材料的弹塑性是由其微观结构决定的,因此不同的材料会表现出不同的弹塑性特性。

二、弹塑性本构模型的基本原理弹塑性本构模型是描述材料弹塑性问题的一类物理模型。

它基于能量守恒原理,建立材料固体在应力和应变作用下的不同状态之间的关系。

本构模型的目的是把材料行为和材料力学特性建立起来,便于进行物理和工程分析。

所以在材料力学中,弹塑性本构模型是一个非常重要的基本理论。

材料弹塑性本构模型的建立过程包含以下三个步骤。

1. 实验数据获取该步骤是建立弹塑性本构模型的基础。

通过物理实验,可以得到材料的应力-应变曲线,即通过外力施加不同载荷,测量材料在相应的应力状态下的应变表现。

从这些实验数据中可以得到材料的力学特性。

2. 建立本构关系本构关系是弹塑性本构模型中最基本的方程。

它建立材料中的形变应力与形变大小和方向之间的关系。

大多数情况下,本构关系并不只是一个公式,而是一系列方程的集合,不同的方程适用于不同的材料。

在建立本构关系时,通常需要将材料划分为一定数量或限制条件下的应力状态,并在这些状态下建立相应的方程形式。

然后,通过插值或其它数值方法可以精确地计算出材料弹塑性的行为。

3. 参数确定弹塑性本构模型的参数是过程中最难确定的部分。

参数在本构模型中的作用类似于提供具体材料的物理性质或形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章-粘弹塑性模型的基本概念第七章 粘弹塑性模型的基本概念7 . 1 引言为了描述土体应力一应变关系受时间的影响,需要采用与时间有关的类模型(如粘弹胜模酬、粘塑性模型,粘弹塑隆模型)来描述土的性状。

弹性、塑性和粘性是连续介质的三种基本性质,各在定条件F 独自反映材料本构关系的一个方面的特性。

理想弹性模型、理想塑胜模型(或称刚塑性模型)和理想粘性模型是反映这三种性质的理想模型,通常称为简单模型。

实际工程材料的本构关系可以用这些简单模型的各种组合来构成。

理想弹性模型又称虎克弹性模型,通常用理想弹簧表示(图7-1( a ))。

其本构方程为虎克定律。

一维条件下,如单轴压缩和纯剪清况下,表达式分别为:E σε= (7.1.1)G τγ= (7.1.2)式中E —— 弹性模量、G ——剪切模量。

剪切模量与弹性模量和泊松比的关系如下式所示:()21E G ν=+ (7.1.3) 式中 ν ——泊松比。

三维条件下本构方程可表示为下述形式:m K νσε= (7.1.4)式中 K ——体积弹性模量。

(a ) (b )图7-1 理想弹性模型体积弹性模量与弹性模量和泊松比的关系如下式所示:()312E K ν=- (7.1.6) 理想粘性模型又称牛顿粘滞体模型。

通常用一粘壶(或称阻尼器)表示(图7-2 ( a ) )。

粘壶内充满粘滞液体和一个可移动的活塞。

活塞在粘滞液体中的移动速度与所受阻力成正比关系,反映了粘性介质内一点的应力与该点处应变速率成正比例关系的性质。

一维条件如单轴压缩或纯剪情况下,表达式分别为:σϕε=& (7.1.7)τηγ=&(7.1.8) 式中 ϕ、η ——粘滞系数。

由上两式可以看出,从数学表达的形式上与理想弹性体单轴压缩和纯剪时的本构方程相类似。

与理想弹性体的方程相对应,类似式7.1.3,存在下述关系:()*21ϕην=+ (7.1.9)式中 *ν ——粘性应变速率的横向比值。

(a ) (b )图7-2 理想粘性模型 理想粘性体的体积变化与形状变化速率无关,即不具有体积粘性。

因此,*ν应等于0.5 。

于是式7.1.9成为:3ϕη= (7.1.10)这与弹性不可压缩时的E=3G 相对应。

在三维条件下理想粘性体本构方程可表示为:2ij ij S e η=& (7.1.11)理想塑性模型又称Saint-Venant 塑性模型,或称刚塑性模型。

通常采用两块接触的粗糙面表示(图7-3 (a ))。

面上存在有一称晰脚擦阻力,与作用在面上的法向压力无关,是一常数。

若外作用力心婚此起始摩擦阻力,物体不发生变形。

一维条件如单轴压缩或此钾扮况,当轴向应力或剪应力小于某一数值时,物体不发生变形.当软祠应力或剪应力等于某数值时,物体产生流动,变形无限制增长.理想塑性模刮的体积应变等于零,即体积不发生改变。

在三维条件下理想塑性体的本构方程可表示为:(a ) (b )图 7-3 理想塑性体模型当 ij ij S H <时,0ij e =当 ij ij S H =时,2ij ij S e λ=& (7.1.12)式中 ij H ——起始摩擦阻力,或称塑性条件;λ——比例常数。

式7.1.12表明,理想塑性体的塑性应变偏量的变化率与应力偏量成正比。

由理想弹性模型、理想粘性模型和理想塑性模型等简单模型可以组合成许多复杂模型。

由理想弹性模型和理想塑性模型可以组合成理想弹塑性模型。

由弹性模型和粘性模型可以组合成各种粘弹性模型。

由粘性模型和塑性模型可以组合成各种粘塑性模型。

由弹性模型、粘性模型和塑性模型可以组合成各种粘弹塑性模型。

理想弹塑性模型已在第六章作了介绍。

在以下几节将对几种由简单模型组成的粘弹性模型、粘塑性模型和粘弹塑胜模型作简单介绍。

利用简单模型可以组合成各种复杂模型,从而可以建立各种材料的本构方程。

但是进一步的研究发现,许多材料的实际性状并不能满意地用简单的组合模型来描述,而目采用复杂的组合模型又常遇到数学上的困难。

因此,常常在试验的基础上,通过假设一实验一理论的方法建立材料的本构力程。

在本章的最后一节将简要介绍描述材料蠕变现象的蠕变力程。

7 . 2 粘弹性模型既具有弹性又具有粘性的性质称为粘弹性。

蠕变和应力松弛现象是人们熟悉的也是特别受重视的粘弹性胜质粘弹性性质的特点是在本构方程中除了有应力和应变项外,还包括有它们对时间导数的项。

对线性粘弹胜材料,其本构方程的一般表达式为:()()0101m n m n a a a b b b σσσεεε+++=+++&&L L (7.2.1) 式中 ,i i a b ——与材料性质有关的参数。

下面首先介绍几种简单的粘弹性模型,然后再介绍较复杂的情况。

7.2.1Maxwell 模型Maxwell 模型又称松弛模型。

它是由线性弹簧和牛顿枯壶串联组成,如图7 -4 (a )所示。

在串联条件下,作用在两元件上的应力相同,而总的应变应为两个元件应变的和,即εεε'''=+ (7.2.2)或εεε'''=+&&& (7.2.3) 式中 ,εε'''——分别为线性弹簧和粘壶的应变;,εε'''&&——分别为线性弹簧和粘壶的应变率。

考虑到线性弹簧有/E εσ'=&&和牛顿粘壶有/εσϕ''=&,则式7.2.3可改写成: E σσεϕ=+&& (7.2.4)(a ) (b ) (c )图7-4 Maxwoll 模型 写成如式7.2.1的标准形式,上式可改写为: n σσϕε+=&&(7.2.5) 式中 n ——松驰时间,n E ϕ=,量纲为时间。

式7.2.5称为Maxwell 方程。

若物体获得初始应变0ε以后总应变保持不变(图7-4b) ,即0ε=&,式7.2.5成为:0n σσ+=& (7.2.6) 积分上式,得/t n Ce σ-= (7.2.7)式中 C ——积分常数。

应用初始条件,0t =,0σσ=代人式7.2.7解出C ,再代人式7.2.7 , 得 /0t n e σσ-= (7.2.8 ) 式7.2.8表示,Maxwell 模型在保持总应变不变的条件下,发生应力随时间衰减的松弛现象,如图7-4c 所示。

若物体获得初始应力0σ以后,保持应力不变,即0σ=&,则式7.2.5成为:0σϕε=& (7.2.9 )式7.2.9表示材料应变率为常数,即应变随时间成比例地增长,因此变形随时间无限地发展。

下面讨论松弛试验的情况。

在松弛试验中,首先对试件施加应变0ε,然后保持应变为定值,进而测量作为时间函数的应力值,确定松弛规律。

松弛试验中应变可记为:()0u t εε= (7.2.10) 式中 ()u t ——单位阶梯函数。

单位阶梯函数定义为:()1110,1,t t u t t t t <⎧-=⎨>⎩ (7.2.11) 在松弛试验中10t =()1u t t -可表示为()u t 。

将式7.2.10代人式7.2.5,得()E t nσσεδ+=& (7.2.12) 式中 ()t δ——脉冲δ函数,()()d t u t dt δ=⎡⎤⎣⎦。

脉冲δ函数定义为:()0,0,0t t t δ≠⎧=⎨+∞=⎩(7.2.13) ()1t t dt δ-∞=⎰(7.2.14) 脉冲δ函数具有下述性质,对于任何连续函数()f t ,当1t t >时,有()()()()111t f t d f t u t t τδττ-∞-=-⎰ (7.2.15)利用式7.2.15,积分式7.2.12,可得()()/0t n t E e u t σε-= (7.2.16)式7.2.16表示Maxwell 模型的应力松弛规律,简记为:()()0t t σε=Φ (7.2.17)式中 ()t Φ——松弛函数,其表达式为()()/t n t Ee u t -Φ= (7.2.18)7.2.2 Kelvln 模型Kelvln 模型又称非松弛模型。

这种模型曾由W . Voigt 和Kelvin 提出,故又称为Voigt —Kelvin 模型。

它是由线性弹簧和牛顿粘壶并联组成,如图7-5 (a )所示。

在并联条件下,两个元件的应变相同,而总的应力应为两个元件的应力之和,即E σσσεϕε'''=+=+& (7.2.19)若在0t =时,瞬时地加上应力0σσ=,并保持不变,则由式7.2.19可得 0E ϕεεσ+=& (7.2.20)积分上式,得 ()01t e E λσε-=- (7.2.21) 式中 λ——衰减系数,1E n λϕ==; n ——滞后时间。

(a ) (b )图7-5 Kelvln 模型由式7.2.21可知,当t →∞,应变趋于个稳定值0/E σ。

若物体获得初始弹性应变0ε之后保持应变不变,即0ε=&。

由式7.2.19得0E σε==常量 (7.2.22)上式表明在这种情况下应力不衰减。

下面讨论蠕变试验的情况。

在蠕变试验中,首先对试件施加应力0σ,然后保持应力为定值来量取作为时间函数的应变值。

若取瞬时加载的时刻为0t =,则加载过程可表示为:()0u t σσ= (7.2.23) 式中 ()u t ——单位阶梯函数。

将式7.2.23代人式7.2.19,得()0u t σελεϕ+=& (7.2.24) 注意到单位阶梯函数有如下性质()()()()111ttt f u t d u t f d ττττττ-∞-=-⎰⎰ (7.2.25) 此处τ为积分变量。

积分式7.2.24,得()()()01tt e u t E λσε-=- (7.2.26) 式中1E n λϕ== 式7.2.26表示Kelvin 模型的蠕变规律,可简记为:()()t t εσ=ψ (7.2.27)式中 ()t ψ——蠕变函数。

蠕变函数的表达式为()()()11t t e u t Eλ-ψ=- (7.2.28) 7.2.3 三元件粘弹性模型 图7-6a 表示个三元件粘弹性模型。

它是由线性弹簧和Kelvin 模型串联组成,包括二个线性弹簧和一个牛顿粘壶,共三个元件,故称三元件粘弹性模型。

用ε''表Kelvin 模型的应变,ε'表示与Kelvin 模型串联的线性弹簧的应变,σ'表示Kelvin 模型中线性弹簧中的应力,σ''表示牛顿粘壶中的应力,σ和ε分别表示总应力和总应变。

分析各元件的应力或应变相互间关系,不难得到下列各式:εεε'''=+ (7.2.29)σσσ'''=+ (7.2.30)E σε''= (7.2.31)E σε'''''= (7.2.32)σϕε''''= (7.2.33)式中 E '——与Kelvin 模型串联的线性弹簧的弹性模量;E ''——Kelvin 模型中线性弹簧的弹性模量;ϕ——牛顿粘壶的粘滞系数。

相关文档
最新文档