2020年湖南省长沙市一中高三第1次月考 理科数学(含答案)

合集下载

湖南省长沙市第一中学2020届高三第一次月考数学(理)试题

湖南省长沙市第一中学2020届高三第一次月考数学(理)试题

绝密★启用前湖南省长沙市第一中学2020届高三第一次月考数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .1【答案】B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.2.已知i 为虚数单位,a ∈R ,若复数z =a +(1-a ) i 的共轭复数在复平面内对应的点位于第一象限,且5z z ⋅=,则z =( ) A .2-iB .-1+2iC .-1-2iD .-2+3i试卷第2页,总21页【答案】A 【解析】 【分析】通过复数的运算得到方程()2215a a +-=,根据其在复平面的位置得到结果. 【详解】由5z z ⋅=可得()2215a a +-=,解得1a =-或2a =, ∴12z i =-+或2z i =-,∵在复平面内对应的点位于第一象限, ∴2z i =-,故选A. 【点睛】本题主要考查了复数的运算以及其几何意义,属于基础题. 3.设x ∈R ,则“x 2<1”是“lg x <0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】解出不等式,结合充分条件、必要条件的概念即可得到结果. 【详解】∵21x <11x ⇔-<<,lg 0x <⇔01x <<,01x <<⇒11x -<<,11x -<<不能推出01x <<,∴“21x <”是“lg 0x <”的必要不充分条件,故选B. 【点睛】本题主要考查了不等式的解法,充分条件、必要条件的概念,属于基础题. 4.已知向量a =(1,0),b =(-3,4)的夹角为θ,则sin2θ等于 ( ) A .725-B .725C .2424-D .2425【答案】C 【解析】 【分析】首先根据向量夹角公式求出cos θ的值,然后求出sin θ,最后根据二倍角正弦公式即可得出结果. 【详解】33cos 155a b a bθ⋅==-=-⨯⋅, ∵0θπ≤≤, ∴4sin 5θ==,24sin 22sin cos 25θθθ==-,故选C. 【点睛】本题主要考查了向量夹角的计算以及二倍角正弦公式的应用,属于中档题. 5.设a =183log ,b =244log ,c =342,则a 、b 、c 的大小关系是 ( )A .a <b <cB .a <c <bC .b <c <aD .c <b <a【答案】D 【解析】 【分析】利用指数函数和对数函数的单调性可得2c <,2a >,2b >,将,a b 分别表示为631log a =+,641log b =+,进而可得结果.【详解】314222c =<=,18933log log 2a =>=,241644log log 2b =>>, 所以c 最小,因为18633log 1log a ==+,24644log 1log b ==+, ∵6643log log <,∴a b >,故选D【点睛】本题主要考查了指数函数,对数函数的单调性的应用,寻找中间量是解题的关键,属于中档题.6.函数f (x )=(33)ln xxx -+的图象大致为( )试卷第4页,总21页…………线…………○………………线…………○……A . B .C .D .【答案】D 【解析】 【分析】由函数为偶函数可排除B ,由()0,1x ∈,()0f x <,可排除,A C ,进而可得结果. 【详解】∵()(33)ln xxf x x -=+,函数定义域为{}0x x ≠,()()(33)ln (33)ln x x x x f x x x f x ---=+-=+=,∴函数()f x 为偶函数,其图象关于y 轴对称,可排除B.当()01x ∈,时,330x x -+>,ln 0x <,()0f x <,其图象应在x 轴下方,可排除,A C ,故选D. 【点睛】本题主要考查了由函数的解析式判断函数的图象,主要根据函数的性质利用排除法得到结果,属于中档题.7.运行如图所示的程序框图,若输出的S 的值为101,则判断框中可以填( )○…………线…………○……_○…………线…………○……A .200?i >B .201?i ≥C .202?i >D .203?i >【答案】C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】程序的功能是计算3571sin3sin5sin 7sin 2222S ππππ=⨯+⨯+⨯+⨯+=1357-+-+,而101150213579199201=+⨯=-+-++-+,2012203i =+=,故条件为202?i >,故选C. 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有( ) A .50种 B .60种 C .70种 D .90种【答案】C 【解析】 【分析】试卷第6页,总21页根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案. 【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种, 丙同学可以从剩下的10种中任意选,∴选法有1131030C C ⋅=种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有种1141040C C ⋅=,不同的选法共有304070+=种,故选C. 【点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题. 9.将函数()2sin(2)16f x x π=--的图象向左平移6π个单位长度得到函数()g x 的图象,则下列说法正确的是 ( ) A .函数()g x 的最小正周期是2π B .函数()g x 的图象关于直线12x π=-对称C .函数()g x 在,62ππ⎛⎫⎪⎝⎭上单调递减D .函数()g x 在0,6π⎛⎫⎪⎝⎭上的最大值是1【答案】C 【解析】 【分析】求出函数的周期判断A 的正误;函数的对称轴判断B 的正误;函数的单调性判断C 的正误;函数的最值判断D 的正误; 【详解】由题意知:()2sin(2)16g x x π=+-,最小正周期T 22ππ==,选项A 错误; 当12x π=-时,112g π⎛⎫-=- ⎪⎝⎭,即函数()g x 的图象关于点(,1)12π--对称,选项B 错误;当(,62x ππ∈时,72(,)626x πππ+∈,∴函数()g x 在,62ππ⎛⎫⎪⎝⎭上单调递减,选项C 正确;∵函数()g x 在0,6π⎛⎫⎪⎝⎭上单调递增,()()16g x g π<=, 即函数()g x 在0,6π⎛⎫⎪⎝⎭上没有最大值,∴选项D 错误,故选C. 【点睛】本题考查三角函数的简单性质,最值、单调性、周期以及单调性,考查命题的真假的判断,属于中档题.10.若()ln f x x =与()23g x x x a ++=两个函数的图象有一条与直线y x =平行的公共切线,则a = ( ) A .-1 B .0C .1D .3【答案】B 【解析】 【分析】求出切线方程,利用公切线结合判别式0=推出结果即可. 【详解】在函数()ln f x x =上的切点设为(,)x y , 根据导数的几何意义得到11x=⇒1x =, 故切点为(10),,可求出切线的方程为1y x =-, 因为直线l 和()23g x x x a ++=也相切,从而231x x a x ++=-,化简得到2210x x a +++=,只需要满足()4410a ∆-+==,所以0a = 故选B. 【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,属于中档题.11.设函数()1,0,x f x x ⎧=⎨⎩为有理数为无理数,则关于函数()f x 有以下五个命题:①x ∈R ,()()1f f x =; ②()(),,()x y R f x y f x f y ∃∈+=+;试卷第8页,总21页③函数()f x 是偶函数;④函数()f x 是周期函数; ⑤函数()f x 的图象是两条平行直线 其中真命题的个数是( ) A .5 B .4C .3D .2【答案】B 【解析】 【分析】由()0f x =或1,计算可判断①;由0x =0y =定义可判断③;由周期函数的定义可判断④;由x 的范围可判断⑤. 【详解】 由()10x f x x ⎧=⎨⎩,为有理数,为无理数,可得()0f x =或1,则x R ∀∈,()f x 为有理数,则()()1ff x =,故①正确;当0x =0y =()()()0000f x y f x f y +=+,故②正确; ∵x 为有理数,则x -为有理数,x 为无理数,则x -为无理数, ∴函数()f x 是偶函数,故③正确;任何一个非零的有理数T ,都有()()f x T f x +=,则T 是函数的周期, ∴函数()f x 是周期函数,故④正确;由于x 为有理数,()1f x =;x 为无理数时,()0f x =,()f x 的图象不为连续的直线,故⑤错误.∴真命题的个数是4个,故选B . 【点睛】本题考查命题的真假判断,主要是分段函数的周期性和函数值的特点,以及图象特点,考查判断能力和推理能力,属于基础题.12.已知三棱锥D —ABC 的四个顶点在球O 的球面上,若AB =AC =BC =DB =DC =1,当三棱锥D —ABC 的体积取到最大值时,球O 的表面积为( ) A .53π B .2π C .5π D .203π【答案】A 【解析】 【分析】订…………○…………__考号:___________订…………○…………三棱锥D-ABC 的体积取到最大值时,平面ABC ⊥平面DBC ,取BC 的中点G ,连接AG ,DG ,分别取△ABC 与△DBC 的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体ABCD 的球心,求出外接球的半径,然后求解球的表面积. 【详解】 如图,当三棱锥D ABC -的体积取到最大值时,则平面ABC 与平面DBC 垂直, 取BC 的中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥ 分别取ABC △与DBC △的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O , 则O 为四面体ABCD 的球心,由1AB AC BC DB DC =====,得正方形OEGF 的边长为6,则OG ∴四面体A BCD -的外接球的半径R ===∴球O 的表面积为=2543ππ⨯=,故选A. 【点睛】本题考查直线与平面垂直的判断,几何体的外接球的表面积的求法,几何体的体积的求法,考查空间想象能力以及计算能力.试卷第10页,总21页第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.已知定义在R 上的奇函数()f x 满足()()3f x f x +=,且当3[0,2x ∈时,()2f x x =-,则112f ⎛⎫= ⎪⎝⎭____【答案】14【解析】 【分析】求出函数的周期,结合函数的奇偶性,转化求解函数值即可. 【详解】由()()3f x f x +=知函数()f x 的周期为3, 又函数()f x 为奇函数,所以2111111(()((22224f f f =-=-==, 故答案为14. 【点睛】本题考查函数的奇偶性的性质与应用,函数值的求法,考查转化思想以及计算能力,属于基础题.14.已知ABC △是等腰直角三角形,1,2()AC BC CP CA CB ===+,则AP BP ⋅=____ 【答案】4 【解析】 【分析】利用已知条件将,AP BP 分别用,CA CB 表示,然后求解向量的数量积即可. 【详解】∵2,2AP AC CP CA CB BP BC CP CA CB =+=+=+=+. ∴22(2)(2)224AP BP CA CB CA CB CA CB ⋅=+⋅+=+=, 故答案为4. 【点睛】本题主要考查了向量的线性运算,考查向量的数量积的运算,是基本知识的考查. 15.秦九韶是我国南宋著名数学家,在他的著作数书九章》中有已知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂余半之,自乘于上以小斜幂乘大斜幂减上,余四约之为实一为从隅,开平方得积”如果把以上这段文字写成公式就是S =,共中a 、b 、c 是△ABC 的内角A ,B ,C 的对边。

高三数学上学期第一次月考试题含解析

高三数学上学期第一次月考试题含解析

一中2021-2021学年第一学期高三年级阶段性检测〔一〕创作人:历恰面日期:2020年1月1日数学学科一、填空题:本大题一一共14小题,每一小题5分,一共70分.,,那么___________.【答案】【解析】【分析】此题是集合A与集合B取交集。

【详解】因为,所以【点睛】交集是取两集合都有的元素。

是虚数单位)是纯虚数,那么实数的值是___________.【答案】-2【解析】【分析】此题考察的是复数的运算,可以先将复数化简,在通过复数是纯虚数得出结果。

【详解】,因为是纯虚数,所以。

【点睛】假如复数是纯虚数,那么。

3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或者“既不充分又不必要〞〕.【答案】充分不必要【解析】【分析】可以先通过“直线与直线互相垂直〞解得的取值范围,再通过与“〞进展比照得出结论。

【详解】因为直线与直线互相垂直,所以两直线斜率乘积为或者者一条直线与轴平行、一条与轴平行,所以或者者,解得或者者,由“〞可以推出“或者者〞,但是由“或者者〞推不出“〞,所以为充分不必要条件。

【点睛】在判断充要条件的时候,可以先将“假设A那么B〞中的A和B化为最简单的数集形式,在进展判断。

的递增区间是___________.【答案】【解析】【分析】此题可以先通过的取值范围来将函数分为两段函数,再依次进展讨论。

【详解】当时,,开口向下,对称轴为,所以递增区间是,当时,,开口向上,对称轴是,所以在定义域内无递增区间。

综上所述,递增区间是。

【点睛】在遇到带有绝对值的函数的时候,可以根据的取值范围来将函数分为数段函数,在依次求解。

5.按如下图的程序框图运行后,输出的结果是63,那么判断框中的整数的值是___________.【答案】5【解析】【分析】此题中,,可根据这几个式子依次推导出每一个A所对应的S的值,最后得出结果。

【详解】因为当时输出结果,所以【点睛】在计算程序框图时,理清每一个字母之间的关系,假如次数较少的话可以依次罗列出每一步的运算结果,最后得出答案。

湖南省长沙市2023-2024学年高一上学期第一次月考数学试题含解析

湖南省长沙市2023-2024学年高一上学期第一次月考数学试题含解析

2023年下学期高一第一次月考数学(答案在最后)(时量:120分钟分值:150分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“200,1x x ∃∈≠R ”的否定是()A.2,1x x ∀∈=RB.2,1x x ∀∉=RC.200,1x x ∃∈=R D.200,1∃∉=x x R 【答案】A 【解析】【分析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“200,1x x ∃∈≠R ”的否定是“2,1x x ∀∈=R ”.故选:A.2.设集合A 含有2-,1两个元素,B 含有1-,2两个元素,定义集合A B ,满足1x A ∈,2x B ∈且12x x A B ∈e ,则A B 中所有元素之积为()A.8- B.16- C.8D.16【答案】C 【解析】【分析】根据集合A B 的定义先求出集合A B ,然后再把集合中所有元素相乘即可求解.【详解】由题意{}2,1A =-,{}1,2B =-,由集合A B 的定义可知,集合A B 中有以下元素:①()212-⨯-=,②224-⨯=-,③()111⨯-=-,④122⨯=,根据集合中元素满足互异性去重得{}4,1,2A B =--e ,所以A B 中所有元素之积为()4128-⨯-⨯=.故选:C.3.若函数()31y f x =+的定义域为[]2,4-,则()y f x =的定义域是()A.[]1,1- B.[]5,13- C.[]5,1- D.[]1,13-【答案】B 【解析】【分析】根据函数()31y f x =+中[]2,4x ∈-,即可得出[]315,13x +∈-,即可选出答案.【详解】因为函数()31y f x =+的定义域为[]2,4-,即24x -≤≤所以53+113x -≤≤所以()y f x =的定义域是[]5,13-故选:B.【点睛】本题考查隐函数的定义域,属于基础题.解本题的关键在于正确理解函数的定义域是x 的取值范围与同一个函数其括号里面的取值范围一样.4.下列命题正确的是()A.“a b >”是“22a b >”的充分条件B.“a b >”是“22a b >”的必要条件C.“a b >”是“22ac bc >”的充分条件D.“a b >”是“22ac bc >”的必要条件【答案】D 【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:对于A :由a b >推不出22a b >,如0a =,1b =-满足a b >,但是22a b <,故A 错误;对于B :由22a b >推不出a b >,如1a =-,0b =满足22a b >,但是a b <,即a b >不是22a b >的必要条件,故B 错误;对于C :由a b >推不出22ac bc >,当0c =时220ac bc ==,故C 错误;对于D :若22ac bc >,则20c ≠,即20c >,所以a b >,即a b >是22ac bc >的必要条件,故D 正确;故选:D5.用C (A )表示非空集合A 中的元素个数,定义A *B =()()()()()()()(),,C A C B C A C B C B C A C A C B ⎧-≥⎪⎨-<⎪⎩若A ={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于()A.1B.3C.5D.7【答案】B 【解析】【分析】根据题意可得()1C B =或()3C B =,进而讨论a 的范围,确定出()C B ,最后得到答案.【详解】因为()2C A =,*1A B =,所以()1C B =或()3C B =,由20x ax +=,得120,x x a ==-,关于x 的方程220x ax ++=,当=0∆时,即a =±()3C B =,符合题意;当0>∆时,即a <-或a >0,-a 不是方程220x ax ++=的根,故()4C B =,不符合题意;当<0∆时,即a -<<时,方程220x ax ++=无实根,若a =0,则B ={0},()1C B =,符合题意,若0a -<<或0a <<,则()2C B =,不符合题意.所以{0,S =-,故()3C S =.故选:B .【点睛】对于新定义的问题,一定要读懂题意,一般理解起来不难,它一般和平常所学知识和方法有很大关联;另外当<0∆时,容易遗漏a =0时的情况,注意仔细分析题目.6.函数[]y x =在数学上称为高斯函数,也叫取整函数,其中[]x 表示不大于x 的最大整数,如[1.5]1,[2.3]3,[3]3=-=-=.那么不等式24[]12[]50x x -+≤成立的充分不必要条件是()A.15[,22B.[1,2]C.[1,3)D.[1,3]【答案】B 【解析】【分析】先解不等式,再结合充分条件和必要条件的定义求解即可.【详解】因为24[]12[]50x x -+≤,则[]()[]()21250x x --≤,则[]1522x ≤≤,又因为[]x 表示不大于x 的最大整数,所以不等式24[]12[]50x x -+≤的解集为:13x ≤<,因为所求的时不等式24[]12[]50x x -+≤成立的充分不必要条件,所以只要求出不等式24[]12[]50x x -+≤解集的一个非空真子集即可,选项中只有[1,2]⫋[)1,3.故选:B .7.已知1,0,0x y y x +=>>,则121x x y ++的最小值为()A.54B.0C.1D.2【答案】A 【解析】【分析】根据“1”技巧,利用均值不等式求解.【详解】1x y += ,12x y ∴++=,1(1)11221441x y x y x x y x y +++∴+=++++,0,0y x >> ,10,041y x x y +∴>>+,111152144144x y x x y x y +∴+=++≥+++,当且仅当141y x x y +=+,即23x =,13y =时等号成立,故选:A8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当q x p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则()注:p ,q 为互质的正整数()p q >,即q p为已约分的最简真分数.A.()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B.()()()R a b R a R b ⋅≥⋅C.()()()R a b R a R b +≥+ D.以上选项都不对【答案】B 【解析】【分析】设q A x x p ⎧⎫==⎨⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C 选项:分①a A ∈,b A ∈;②a B ∈,b B ∈;③a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【详解】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数,故选项A 错误;对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅;②当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;③当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误,故选:B.【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.若不等式20ax bx c -+>的解集是(1,2)-,则下列选项正确的是()A.0b <且0c >B.0a b c -+>C.0a b c ++> D.不等式20ax bx c ++>的解集是{|21}x x -<<【答案】ABD 【解析】【分析】根据一元二次不等式的解集可判断出a 的正负以及,,a b c 的关系,由此可判断各选项的对错.【详解】因为20ax bx c -+>的解集为()1,2-,解集属于两根之内的情况,所以a<0,又因为0420a b c a b c ++=⎧⎨-+=⎩,所以2b ac a =⎧⎨=-⎩;A .0,20b a c a =<=->,故正确;B .因为()11,2∈-,所以0a b c -+>,故正确;C .因为解集为()1,2-,所以0a b c ++=,故错误;D .因为20ax bx c ++>即为2220ax ax a +->,即220x x +-<,解得()2,1x ∈-,故正确;故选:ABD.10.命题:p x ∃∈R ,2220x x m ++-<为假命题,则实数m 的取值可以是()A.1- B.0 C.1D.2【答案】ABC 【解析】【分析】先求出命题为真命题时实数m 的取值范围,然后利用补集思想求出命题为假命题时m 的取值范围,由此可得出合适的选项.【详解】若命题:p x ∃∈R ,2220x x m ++-<为真命题,则()2Δ242440m m =--=->,解得1m >,所以当命题:p x ∃∈R ,2220x x m ++-<为假命题时,1m £,符合条件的为A 、B 、C 选项.故选:A BC.11.设a ,b 为两个正数,定义a ,b 的算术平均数为()2a bA a b +=,,几何平均数为()G a b =,,则有:()(),,G a b A a b ≤,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即()11,p pp p p a b L a b a b--+=+,其中p 为有理数.如:()0.50.50.50.50.5,11a b L a b a b --+==+.下列关系正确的是()A.()()0.5,,L a b A a b ≤ B.()()0,,L a b G a b ≥C.()()21,,L a b L a b ≥D.()()1,,n n L a b L a b +≤【答案】AC 【解析】【分析】根据新定义逐个选项代入,化简后根据基本不等式与柯西不等式判断即可.【详解】A :()()0.5,,112a bL a b A a b +===,故A 对;B:001102(,)(,)a b ab L a b G a b a b a b --+==≤++,故B 错;C :()222,a b L a b a b+=+,()1,2a b L a b +=,而()()()()()22222222222222122,1,22a b a b L a b a b a b L a b a b ab a b aba b +++++===≥+++++,故C 对;D :由柯西不等式,()()()()()112111112211(,)1(,)n n n n n n n n n n n n n n n n n n n n a b a b a b a b L a b a b a b L a b a b a b a b++++--+--+++++==≥=++++,故D 错.故选:AC.12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A.224a b -≤B.214a b+≥C.若不等式20x ax b +-<的解集为()12,x x ,则120x x >D.若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【答案】ABD 【解析】【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.13.已知111f x x ⎛⎫=⎪+⎝⎭,那么f (x )的解析式为________.【答案】()(0,1)1xf x x x x=≠≠-+.【解析】【分析】用1x代换已知式中的x ,可得,注意x 有取值范围.【详解】解:由111f x x ⎛⎫=⎪+⎝⎭可知,函数的定义域为{x |x ≠0,x ≠﹣1},用1x代换x ,代入上式得:f (x )=111x+=1x x +,故答案为:()(0,1)1xf x x x x=≠≠-+.【点睛】本题考查求函数解析式,掌握函数这定义是解题关键.求解析式时要注意自变量的取值范围.14.设集合{43}M xx =-<<∣,={+2<<21,}N x t x t t -∈R ∣,若M N N ⋂=,则实数t 的取值范围为____________.【答案】(],3-∞【解析】【分析】由M N N ⋂=可知N M ⊆,讨论N =∅与N ≠∅,即可求出答案.【详解】因为M N N ⋂=,所以N M ⊆,当N =∅时:2213t t t +≥-⇒≤,满足题意;当N ≠∅时:+2<21>34+262132t t t t t t t --≤⇒≥--≤≤⎧⎧⎪⎪⎨⎨⎪⎪⎩⎩,无解;所以实数t 的取值范围为(],3-∞.故答案为:(],3-∞15.已知函数()2f x x =-,()()224R g x x mx m =-+∈,若对任意[]11,2x ∈,存在[]24,5x ∈,使得()()12g x f x =,则m 的取值范围______.【答案】54⎡⎢⎣【解析】【分析】由题意可判断(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤,由此求出()[]2,3f x ∈,可得相应不等式恒成立,转化为函数最值问题,求解即可.【详解】由题意知(){}(){},12,45y y g x x y y f x x =≤≤⊆=≤≤;当[]4,5x ∈时,()[]2,3f x ∈,故()()224R g x x mx m =-+∈需同时满足以下两点:①对[]1,2x ∀∈时,()2243g x x mx =-+≤∴12m x x≥+恒成立,由于当[]1,2x ∀∈时,1y x x=+为增函数,∴1522,24m m ≥+∴≥;②对[]1,2x ∀∈时,()2242g x x mx =-+≥,∴22m x x≤+恒成立,由于2x x+≥2x x =,即[1,2]x =时取得等号,∴2m m ≤∴≤∴54m ⎡∈⎢⎣,故答案为:54⎡⎢⎣16.若,a b R ∈,且22231a ab b +-=,则22a b +的最小值为_______.【答案】14【解析】【分析】根据a 2+2ab ﹣3b 2=1得到(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,用x ,y 表示a ,b ,然后代入a 2+b 2,利用均值不等式求解.【详解】由a 2+2ab ﹣3b 2=1得(a +3b )(a ﹣b )=1,令x =a +3b ,y =a ﹣b ,则xy =1且a 34x y +=,b 4x y-=,所以a 2+b 2=(34x y +)2+(4x y -)22252184x y ++=≥,当且仅当x 2=,y 25=时取等号.故答案为14.【点睛】本题主要考查均值不等式的应用,还考查了转化求解问题的能力,属于中档题.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.(其中第17题10分,18~22题每题12分,共70分)17.已知全集U =R ,集合502x A x x ⎧⎫-=≤⎨⎬-⎩⎭,{}11,B x a x a a =-<<+∈R .(1)当2a =时,求()()U UA B ⋂痧;(2)若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【答案】(1)()(){1U UA B x x ⋂=≤痧或}5x >(2){}34a a ≤≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用补集和交集的定义可求得集合()()U U A B ⋂痧;(2)分析可知,BA ,利用集合的包含关系可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【小问1详解】因为{}50252x A x x x x ⎧⎫-=≤=<≤⎨⎬-⎩⎭,当2a =时,{}13B x x =<<,因为全集U =R ,则{2U A x x =≤ð或}5x >,{1U B x x =≤ð或}3x ≥,因此,()(){1U U A B x x ⋂=≤痧或}5x >.【小问2详解】易知集合{}11,B x a x a a =-<<+∈R 为非空集合,因为x A ∈是x B ∈的必要不充分条件,则BA ,所以,1215a a -≥⎧⎨+≤⎩,解得34a ≤≤.因此,实数a 的取值范围是{}34a a ≤≤.18.已知a ,b ,c 均为正实数,且1a b c ++=.(1)求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭;(2)求111a b c++的最小值.【答案】(1)证明见解析(2)9【解析】【分析】(1)根据111111111++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---=---⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭a b c a b c a b c a b c a b c 结合基本不等式即可得证;(2)根据111a b c a b c a b c a b c a b c++++++++=++结合基本不等式即可得解.【小问1详解】原式111a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫=--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭()()()b c a c a b abc+++=222bc ac ababc≥8abc abc=8=.当且仅当13a b c ===是取等号,所以1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭;【小问2详解】原式a b c a b c a b c a b c++++++=++3b a c a c b a b a c b c ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3≥2339=⨯+=.当且仅当13a b c ===是取等号,所以111a b c++的最小值为9.19.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值..【答案】(1)64(2)18【解析】【分析】(1)利用基本不等式构建不等式即可得结果;(2)将28x y xy +=变形为分式型281y x +=,利用“1”的代换和基本不等式可得结果.【小问1详解】∵0x >,0y >,280x y xy +-=,∴28xy x y =+≥=,当且仅当28x y =时取等号,8≥∴64xy ≥,当且仅当416x y ==时取等号,故xy 的最小值为64.【小问2详解】∵28x y xy +=,则281y x+=,又∵0x >,0y >,∴2828()()101018x y x y x y y x y x +=++=++≥+=,当且仅当212x y ==时取等号,故x y +的最小值为18.20.济南市地铁项目正在加火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量;(2)若该线路每分钟的净收益为()()8265660p t Q t t -=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【答案】(1)2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩;450(2)发车时间间隔为4分钟时,每分钟的净收益最大为132元.【解析】【分析】(1)由题设,有2()500(10)p t k t =--且(2)=372p ,求k 值,进而写出其分段函数的形式即可.(2)由(1)写出()Q t 解析式,讨论210t ≤<、1020t ≤≤求最大值即可.【小问1详解】由题设,当210t ≤<时,令2()500(10)p t k t =--,又发车时间间隔为2分钟时的载客量为372人,∴2(2)500(102)372p k =--=,解得=2k .∴2300+402,2<10()=500,1020t t t p t t -≤≤≤⎧⎨⎩,故=5t 时,2(5)5002(105)450p =-⨯-=,所以当发车时间间隔为5分钟时,列车的载客量为450人.【小问2详解】由(1)知:25626016,2<10()=134460,1020t t t Q t t t--≤-≤≤⎧⎪⎪⎨⎪⎪⎩,∵210t ≤<时,()260132Q t ≤-当且仅当=4t 等号成立,∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==,综上,时间间隔为4分钟时,每分钟的净收益最大为132元.21.已知二次函数22y ax bx =++(a ,b 为实数)(1)若1x =时,1y =且对()2,5x ∀∈,0y >恒成立,求实数a 的取值范围;(2)若1x =时,1y =且对[]2,1a ∀∈--,0y >恒成立,求实数x 的取值范围.【答案】(1)3a >-(2)11,44⎛⎫-+ ⎪ ⎪⎝⎭【解析】【分析】(1)由题意求出1b a =--可得()2120y ax a x =-++>对()2,5x ∀∈恒成立,分离参数,即得2max 2x a x x -⎛⎫> ⎪-⎝⎭,令()20,3t x =-∈,则可得()123f t t t=++,利用基本不等式即可求得答案;(2)由题意()212y ax a x =-++,变更主元:令a 为主元,视x 为参数,则()()220g a x x a x =-+->,对[]2,1a ∀∈-恒成立,由此可得不等式组,即可求得答案.【小问1详解】将1x =,1y =代入得1,1a b b a +=-∴=--∴()2120y ax a x =-++>对()2,5x ∀∈恒成立,即()22a x x x ->-对()2,5x ∀∈恒成立,当()2,5x ∈时,由于2y x x =-在()2,5上单调递增,故22220x x ->->,∴2max2x a x x -⎛⎫> ⎪-⎝⎭,()2,5x ∀∈,令()20,3t x =-∈,则()()()2213232223t t f t t t t t t t ===≤=-+++-+++,当且仅当2t t=,即()0,3t =时等号成立,∴3a >-【小问2详解】由题意()()21,12b a y ax a x =-+∴=-++,变更主元:令a 为主元,视x 为参数,令()()22g a x x a x =-+-,对[]2,1a ∀∈-,()()220g a x x a x =-+->恒成立,故只需()()()2222220120g x x x g x x x ⎧-=-++->⎪⎨-=--+->⎪⎩,即2222020x x x ⎧--<⎨-<⎩,解得1111,,4444x x x ⎧⎛⎫<<+⎪∴∈ ⎪⎨ ⎪⎝⎭⎪<<⎩.22.已知函数()f x =,()g x =.(1)求函数()f x 的定义域和值域;(2)已知a 为非零实数,记函数()()()x x h f g x a =-的最大值为()m a ,求()m a .【答案】(1)[]0,2,2⎤⎦(2)12,0211(),2222a a am a a aaa⎧⎛⎫⎪-<≠⎪⎪⎝⎭⎪⎛⎪=+≤≤⎨⎝⎭⎪⎛⎫>⎪⎪⎝⎭⎩且【解析】【分析】(1)根据根式的概念可得()f x定义域,再计算()22f x=+求解可得()f x值域;(2)令2t⎤=⎦,设函数()22aF t t t a=-++,2t⎤∈⎦,再根据二次函数对称轴与区间的位置关系分类讨论求解即可.【小问1详解】定义域:[]0,220xxx≥⎧⇒∈⎨-≥⎩,()222f x x x=+=+-+2=+当[]0,2x∈时,()[]2110,1x--+∈,∴()[]()22,4,0f x f x∈≥,∴()2f x⎤∈⎦;【小问2详解】()h x=-2t⎤=+⎦,则22222tt-=+,设()22222t aF t t a t t a-=-=-++,2t⎤∈⎦,1°若a<0,此时二次函数对称轴10ta=<<()()max2F t F=2a=-.2°若0a >,此时对称轴:10t a =>,①当12a >即102a <<时,开口向下,则()()max 2F t F =2a =-;12a ≤≤即122a ≤≤,对称轴1t a =,开口向下,则()max 1F t F a ⎛⎫= ⎪⎝⎭12a a =+,③1a <即2a >时,开口向下,()max F t F==综上:12,0211(),2222a a a m a a a a a ⎧⎛⎫⎪-<≠ ⎪⎪⎝⎭⎪⎛⎫⎪=+≤≤ ⎪⎨ ⎪⎝⎭⎪⎛⎫> ⎪ ⎪⎝⎭⎩且.。

2020届长沙市一中高三第1次月考试卷-理数试卷及答案

2020届长沙市一中高三第1次月考试卷-理数试卷及答案

8!1!解析如果同学甲选牛#那么同学乙只能选兔*狗和羊中的一种#丙同学可以从剩下的"&种中任意选#
'选法有 1" %$1""&$%&种+
如果同学甲选马#那么同学乙能选牛*兔*狗和羊中的一种#丙同学可以从剩下的"&种中任意选#
'选法有 1" 0$1""&$0&种#
'不同的选法共有%&+0&$;&种!故选 1!
4!运行如图所示的程序框图%若输出的+ 的值为!$!% 则判断框中可以填
(!,'#$$+
*!,(#$!+
+!,'#$#+
,!,'#$'+
"!中 国 有 十 二 生 肖%又 叫 十 二 属 相%每 一 个 人 的 出 生
年份对应了 十 二 种 动 物 !鼠$牛$虎$兔$龙$蛇$马$
羊$猴$鸡$狗$猪 "中 的 一 种!现 有 十 二 生 肖 的 吉 祥 物各一个%甲$乙$丙 三 位 同 学 依 次 选 一 个 作 为 礼
! " !!"若点1 的坐标为 !%'# %求椭圆/ 的方程,
!#"若'11)%求椭圆/ 的离心率的取值范围!
数学!理科"试题!一中版"!第!%页!共"页"
#$!!本小题满分!#分" 某创业者计划在某旅游景区附近租赁一套农房发展成特色)农家乐*%为 了确定未来发展方向%此创业者对该景区附近五家 )农家乐*跟踪调查了 !$$天%这五家 )农家乐*的收费标准互不相同%得到的统计数据如下表% # 为收费标准!单位#元1日"%6为入住天数!单位#天"%以频率作为各自 的 )入住率*%收费标准# 与)入住率*$ 的散点图如图!

湖南省长沙市第一中学2020届高三上学期第一次月考数学(理科)试题 含答案

湖南省长沙市第一中学2020届高三上学期第一次月考数学(理科)试题 含答案

长沙市一中2020届高三月考试卷(一)数学(理科)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={3|),(x y y x =},A={x y y x =|),(},则B A 的元素个数是A. 4 B. 3 C. 2D. 12.已知i 为虚数单位,R a ∈,若复数i a a z )1(-+=的共轭复数z 在复平面内对应的点位于第一象限,且5=⋅z z ,则=zA. 2-iB.-l + 2iC.-1-2iD.-2+3i3.设R x ∈,则“1<2x ”是“1<lg x ”的 (B) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知向量a=(l ,0),b=(-3,4)的夹角为θ,则θ2sin 等于 A. 257-B. 257C. 2524-D. 25245.设43432,24log ,18log ===c b a ,则c b a ,,的大小关系是A. a<b<cB. a<c<bC. b<c<aD. c<b<a6.函数||lg )33()(x x f xx-+=的图象大致为 (D)7.运行如图所示的程序框图,若输出的S 的值为101,则判断框中可以填 A. i>200? B. i>201? C. i>202? D. i>203?8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有 A. 50 种 B. 60 种 C. 70 种D. 90 种9.将函数)62sin(2)(π-=x x f 的图象向左平移6π个单位长度得到函数的图象,则下列说法正确的是(C)A.函数)(x g 的最小正周期是2π B.函数)(x g 的图象关于直线12π-=x 对称C.函数)(x g 在)2,6(ππ上单调递减 函数)(x g 在)6,0(π上的最大值是110.若函数x x f ln )(=与a x x x g ++=3)(2两个函数的图象有一条与直线x y =平行的公共切线,则=aA.-1B. 0C. 1D. 311.设函数⎩⎨⎧=为无理数为有理数x x x f ,0,1)(,则关于函数)(x f 有以下五个命题:①1))((,=∈∀x f f R x ;②)()()(,,y f x f y x f R y x +=+∈∃; ③函数)(x f 是偶函数; ④函数)(x f 是周期函数;⑤函数)(x f 的图象是两条平行直线.12.已知三棱锥D —ABC 的四个顶点在球0的球面上,若AB=AC=BC=DS = DC=1,当三棱锥 D-ABC 的体积取到最大值时,球0的表面积为 A.35π B. π2 C. π5 D. 320π二、填空题:本大题共4小题.每小题5分,共20分。

湖南省长沙市第一中学2020届高三第一次月考数学(文科)试题 含答案

湖南省长沙市第一中学2020届高三第一次月考数学(文科)试题 含答案

长沙市一中2020届高三月考试卷(一)数学(理科)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知i 为虚数单位,若复数2)1(1i z -+=,则=||z A. 1B. 2C. 2D. 52.已知集合A={21|≤≤-x x },B={2,1,0},则=B A A. 21|≤≤-x x B. {2,1,0} C. {2,1-} D. {1,0}3. 通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:附表:随机变量:))()()(()(22d b c a d c b a bc ad n K ++++-=经计算,统计量K 2的观测值4.762,参照附表,得到的正确结论是 A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” C.有97.5%以上的把握认为“爱好该项运动与性别有关" D.有97.5%以上的把握认为“爱好该项运动与性别无关”4. 已知向量b a b k a +=-=),2,2(),2,(为非零向量,若)(b a a +⊥,则实数k 的值为 A.0 B.2 C.-2 D.15. 美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为 A.21 B. 22 C. 23 D. 316.若21212,)21(,8.0log -===c b a π,则有A. a<b<cB. a<c<bC. c<a<bD. b<c<a7.函数21)(xexx f -=的图象大致是8.如图,点A 为单位圆上—点,3π=∠xOA ,点A 沿单位圆逆时针方向旋转角α 到点B )22,22(-,则=αsin A.462+- B. 462- C.462+ D . 462+- 9. 已知函数MOD 是一个求余函数,记MOD(m ,n)表示m 除以n 的余数,例如MOD(13,3) = 1,下图是某个算法的程序框图,当输入m 的值为27时,则输出i 的值为A.2B.3C.4D.510.在平面直角坐标系xOy 中,已知圆C:0822=-++m x y x 与直线012=++y x 相交于A ,B两点,若△ABC 为等边三角形,则实数m 的值为A. 11B. 12C.-11D.-1211. 设椭圆C :)0>,0>(12222b a by a x =+的两个焦点分别为F1,F2,22||21=F F ,P 是C 上一点,若a PF PF =-||||21,且31sin 21=∠F PF ,则椭圆C 的方程为A. 13422=+y xB. 13622=+y x C.14622=+y x D. 12422=+y x 12.已知函数x x f x f sin 2)()(+-=,又当0≥x 时,1)('≥x f ,则关于x 的不等式)4(sin 2)2()(ππ-+-≥x x x f x f 的解集为 A. ),4[+∞π B. ),4[+∞-πC.)4,[π-∞ D. )4,[π--∞二、填空题:本大题共4小题.每小题5分,共20分。

湖南省长沙市第一中学2020届高三月考试卷(八)理科数学试题(PDF版含答案)

湖南省长沙市第一中学2020届高三月考试卷(八)理科数学试题(PDF版含答案)

二个 a 和三个 b 排列而成.记 S= x ⋅ y1 + x2 ⋅ y2 + x3 ⋅ y3 + x4 ⋅ y4 + x 5 ⋅ y5 ,Smin 表
示 S 所有可能取值中的最小值.则下列命题正确的个数是
rr
r
①S 有 5 个不同的值;
②若 a ⊥ b ,则 Smin 与| a |无关;
rr
r
③若 a // b ,则 Snim 与 b 无关;
B.a2+b2> 1
C. a<1 或 b<1
D. a≤1 且 b≤1
9.中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,反映了中华民族对生
命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系.某科研机
构研究发现,一品种中医药的药物成份甲的含量 x(单位:克)与药物功效 y(单位:药物单位)之间
P 的长度的最小值为_____。
三、解答题:本大题共 70 分.解答应写出文字说明、证明过程或演算步骤.第
17~21 题为必考题,每个试题考生都必须作答.第 22、23
题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17. (本题满分 12 分)
已知 a,b,c 分别为△ABC 的内角 A,B,C 的对边,且 2 sin2 B + 2b cos2 A = b + c
D.5
6.我校星期一至星期五每天上午共安排五节课,每节课的时间为 40 分钟,第一节课上课
的时间为 7: 50~8:30,课间休息 10 分钟.某同学请假后返校,若他在 8: 50~9: 30 之间随机到达教
室,则他听第二节课的时间不少于 20 分钟的概率为

2020届长沙市一中高三第1次月考试卷-理数答案

2020届长沙市一中高三第1次月考试卷-理数答案
资料下载来源:高中数学教师教研及资料共享群:1072106043
炎德英才大联考长沙市一中届高三月考试卷!一"
数学理科参考答案
选择题
"!#!解析由幂函数"$#%#"$# 的图象可以知道#它们有%个交点!!"#!""#!&#&"#!"#""#
'集合$"% 有%个元素!故选 #!
(!)!解析由&$&$*可得'(+!"!'"($*#解得'$!"或'$(#'&$!"+(,或&$(!,#
*
则<)$,6$"&6*,"&,,(!!**&&$( "$"("0!;0(!(!0*!5**5!%(*8>5*&;!*7!&>0;7!&!*# ,$"
<'$"!<)$&8$&!*+&!0;5*!%*7%!&# 所求的回归方程为"<$!&!*.6#+%!&! 8分 !%"依题意#=!#"$"&&!!&!*.6#+%!&"#$!*&#.6#+%&&##
!方法二"-4"!(#&#'直线74" 的方程为"$()'((!#+("!
4"$()'((!#+("#

湖南省长沙市一中2020届高三月考试卷(四)数学理科试题(附答案与全解全析)

湖南省长沙市一中2020届高三月考试卷(四)数学理科试题(附答案与全解全析)

长沙市一中2020届高三月考试卷(四)数学(理科)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设121iz i i-=++,则z =( )A. 0B. 12C. 1D.2. 设x R ∈,则“31x >”是“1x >”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件D. 既不充分也不必要条件3. 下列命题中,m ,n 表示两条不同的直线,α,β,γ表示三个不同的平面. ①若m α⊥,//n α,则m n ⊥;②若αγ⊥,且βγ⊥,则//αβ; ③若//m α,//n α,则//m n ;④若//αβ,//βγ,m α⊥,则m γ⊥. 其中正确的命题是( ) A. ①③B. ②③C. ①④D. ②④4. 将函数()sin 2f x x =的图象保持纵坐标不变,先将横坐标缩短为原来的12,再向右平移6π个单位长度后得到()g x ,则()g x 的解析式为( ) A. ()sin 6g x x π⎛⎫=-⎪⎝⎭B. ()sin 6g x x π⎛⎫=+⎪⎝⎭C. ()2sin 43g x x π⎛⎫=-⎪⎝⎭D. ()sin 46g x x π⎛⎫=-⎪⎝⎭5. 如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”数列:1,3,3,4,6,5,10,…,则这个数列的第19项为( )A. 55B. 110C. 58D. 2206. 已知一个几何体的三视图如图所示,则该几何体的体积为( )A.43B. 8C. 4D.837. 若等差数列{}n a 的公差为2,且5a 是2a 与6a 的等比中项,则数列{}n a 的前n 项和n S 取最小值时,n 的值等于( ) A. 4B. 5C. 6D. 78. 假设有两个分类变量X 和Y 的22⨯列联表:注:()()()()()22n ad bc K a b c d a c b d -=++++对同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组为( ) A. 45a =,15c =B. 40a =,20c =C. 35a =,25c =D. 30a =,30c =9. 法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占12,每局输赢相互独立,那么这700法郎如何分配比较合理( ) A. 甲400法郎,乙300法郎 B. 甲500法郎,乙200法郎 C. 甲525法郎,乙175法郎D. 甲350法郎,乙350法郎10. 已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( )A.B. 3C. 6D.11. 设直线1l ,2l 分别是函数()ln f x x =图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则PAB ∆的面积的取值范围是( ) A. ()0,1B. ()0,2C. ()0,+∞D. ()1,+∞12. 设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A. 10111432⎛⎫⋅+ ⎪⎝⎭B. 111132⎛⎫+ ⎪⎝⎭C. 111132⎛⎫- ⎪⎝⎭D. 10111232⎛⎫⋅+ ⎪⎝⎭二、填空题:本大题共4小题,每小题5分,共20分.把各题答案的最简形式写在题中的横线上.13. 设x R ∈,向量(),1a x =r ,()1,2b =-r,且a b ⊥r r ,则2a b +=r r ______.14. 有4名优秀学生A 、B 、C 、D 全部被保送到甲、乙、丙3所学校,每名学生只能被保送到1所学校,每所学校至少1名,则不同的保送方案共有______种.(填写数字)15. 已知函数()f x 满足()12f =,且()f x 在R 上的导数()'1f x <,则不等式()1f x x <+的解集是______.16. 如图,在ABC ∆中,已知角A 、B 、C 对应的边分别为a ,b ,c ,其中a =,且()()()sin sin sin a b A B c b C +-=-,D 是AC 边上一点,若AB AD =,则CBD ∆的周长的取值范围是______.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知正项数列{}n a 的前n 项和为n S ,且1n a +是4与n S 的等比中项. (1)求{}n a 的通项公式;(2)求数列()111n n n n a a ++⎧⎫-⋅⎪⎪⎨⎬⋅⎪⎪⎩⎭的前2n 项和2n T .18. 如图,四棱锥P ABCD -的底面是菱形,平面PAD ⊥底面ABCD ,O ,E 分别是AD ,AB 的中点,6AB =,5DP AP ==,60BAD ∠=︒.(1)求证:AC PE ⊥;(2)求直线PB 与平面POE 所成角的正弦值.19. 已知椭圆C :22221x y a b+=,设直线l :x ty λ=+是椭圆C 的一条切线,两点()12,M y -和()22,N y 在切线l 上.(1)若()11,1P ,()20,1P,31,2P⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上,求椭圆C 的方程;。

湖南省长沙市第一中学2020届高三月考卷(七)理科数学试卷附全解全析

湖南省长沙市第一中学2020届高三月考卷(七)理科数学试卷附全解全析

长沙市一中2020届高三月考试卷(七)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅰ卷时,将答案写在答题卡,上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U Z =,{}1,2,3,4A =,{}(1)(3)0,x x x z B x +->=∈,则()U A C B =I ( ) A.{}1,2B.{}2,3C.{}1,2,3D.{}1,2,3,42.已知复数12iz i-=+,则z 的共轭复数z =( ) A.1355i -B.1355i +C.1355i --D.1355i -+ 3.函数1(0,1)xy a a a a=->≠的图象可能是( ) A. B.C. D.4.61-2)(1)t t +(的展开式中,3t 项的系数( ) A.20B.30C.10-D.24-5.2013年华人数学家张益唐证明了孪生素数(注:素数也叫做质数)猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数p 使得2p +是素数,素数对(),2p p +称为孪生素数,从20以内的素数中任取两个,其中能构成孪生素数的概率为( )A.114B.17C.314D.136.如图所示的程序框图,则输出的,,x y z 的值分别是( )A.13009,600,11203B.1200,500,300C.1100,400,600D.300,500,12007.若[,],sin 242ππθθ∈=sin θ=( )A.35B.45D.348.在平面直角坐标系xOy 中,抛物线()2:20C y px p =>的焦点为,F M 是抛物线C 上的一点,若OFM ∆的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p =( )A.2B.4C.6D.89.在三棱锥P ABC -中,PA ⊥平面ABC ,ABC ∆为等边三角形,,PA AB E =是PC 的中点,则异面直线AE 和PB 所成角的余弦值为( ) A.16B.14C.13D.1210.直线2x =与双曲线221169x y -=的渐近线交于,A B 两点,设P 为双曲线上任意一点,若OP aOA bOB =+u u u r u u u r u u u r(,,a b R O ∈为坐标原点),则下列不等式恒成立的是( )A.2ab =B.224a b +≥C.2a b -≥D.2a b +≥11.已知函数()cos sin2f x x x =,给出下列命题: ①x R ∀∈,都有()()f x f x -=-成立;②存在常数0,T x R ≠∀∈恒有()()f x T f x +=成立;③()f x ; ④()y f x =在[,]66ππ-上是增函数. 以上命题中正确的为( ) A.①②③④B.②③C.①②③D.①②④12.已知函数21()ln (1)(0)2f x x ax a x a a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A.(]0,1B.()1,+∞C.40,3⎛⎤ ⎥⎝⎦D.4,3⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把各题答案的最简形式写在题中的横线上.13.已知向量(1,4),(2,)a b k ==-r r ,且(2)a b +r r 与2)a b -r r(共线,则实数k =________ 14.某中学有学生3600名,从中随机抽取300名调查他们的居住地与学校之间的距离,其中不超过1公里的学生共有15人,不超过2公里的学生共有45人,由此估计该学校所有学生中居住地到学校的距离在(]1,2公里的学生有_____人.15.如图所示,在正四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,,E F 分别是,AB CD 的中点,os c PEF ∠=,,,,A B C D P 在同一球面上,则此球的体积为______.16.如图,在ABC ∆中,,AC BC D ⊥为BC 边上的点,M 为AD 上的点,1,CD CAB MBD DMB =∠=∠=∠,则AM =__________.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)已知等差数列{}n a 和递增的等比数列{}n b 满足:111,3a b ==且3522423,2b a a b a =+=+. (1)分别求数列{}n a 和{}n b 的通项公式;(2)设n S 表示数列{}n a 的前n 项和,若对任意的,n n n N kb S *∈≥恒成立,求实数k 的取值范围.18.(本小题满分12分).如图,三棱柱1l l ABC A B C -中,11,,60AC BC AB AA BAA ==∠=︒.(1)求证:111AC B A ⊥; (2)若平面ABC ⊥平面11ABB A ,且AB BC =,求直线1CB 与平面1A BC 所成角的正弦值. 19.(本小题满分12分)2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:(1)研究员甲根据以上数据认为y 与x 具有线性回归关系,请帮他求出y 关于x 的线.性回归方程(1)ˆˆˆybx a =+(保留小数点后两位有效数字) (2)研究员乙根据以上数据得出y 与x 的回归模型:(2)4.8ˆ0.8yx=+.为了评价两种模型的拟合效果,请完成以下任务:①完成下表(计算结果精确到0.01元)(备注:ˆi e 称为相应于点(,)i i x y 的残差);②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较12,Q Q 的大小,判断哪个模型拟合效果更好. (3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)参考公式:()()()1122211ˆˆˆ,nnii i ii i nni ii i xx y y x ynx y by bxa x x xnx ====---⋅===+--∑∑∑∑. 参考数据:()()()552115.3,21.2i i i i i x x y y x x ==--=--=∑∑.20.(本小题满分12分)已知()()00,0,0,A x B y 两点分别在x 轴和y 轴上运动,且1AB =,若动点(),P x y 满足2OP OA =+u u u r u u u r u u r .(1)求出动点P 的轨迹C 的标准方程;(2)设动直线l 与曲线C 有且仅有一个公共点,与圆227x y +=相交于两点12,P P (两点均不在坐标轴上),求直线12,OP OP 的斜率之积. 21.(本小题满分12分) 已知函数()ln 1af x x x =+-(,a R a ∈为常数). (1)讨论函数()f x 的单调性;(2)若函数()f x 在(),e +∞内有极值,试比较1a e-与1e a-的大小,并证明你的结论.(二)选考题:共10分.请考生在22、23两题中任选一题作答,若多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 已知在平面直角坐标系xOy 中,直线l 的参数方程为,4x t y t=-⎧⎨=+⎩(t 为参数),曲线1C 的方程为()2211x y +-=.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线1C 的极坐标方程; (2)曲线2=0,0:2C πθαρα⎛⎫><<⎪⎝⎭分别交直线l 和曲线1C 于点,A B ,求||||OB OA 的最大值及相应α的值. 23.(本小题满分10分)选修4-5:不等式选讲. 已知函数()33f x x a x =-++. (1)若3a =,解不等式()6f x ≤;(2)若不存在实数x ,使得()162f x a x ≤--+,求实数a 的取值范围.长沙市一中2020届高三月考试卷(七)数学(理科)参考答案一、选择题1.C 【解析】由题{|(1)(3)0,}{|13,}{1,0,1,2,3}U B x x x x Z x x x Z =+-∈=-∈=-剟?ð,则(){1,2,3}U A B ⋂=ð,故选C. 2.B 【解析】1(1)(2)221132(2)(2)555i i i i i z i i i i ------====-++-,∴1355z i =+.故选B. 3.D 【解析】∵0a >,∴10a >,∴函数x y a =需向下平移1a个单位,不过(0,1)点,所以排除A.当1a >时,∴101a <<,所以排除B.当01a <<时,∴11a>,所以排除C.故选D. 4.C 【解析】6(1)t +展开式的通项为16r rr T C t +=.所以6(12)(1)t t -+的展开式中3t 项的系数为3266210C C -=-,故选C.5.B 【解析】依题意,20以内的素数共有8个,从中选两个共包含2828C =个基本事件,而20以内的孪生素数有(3,5),(5,7),(11,13),(17,19)共四对,包含4个基本事件,所以从20以内的素数中任取两个,其中能构成字生素数的概率为28417P C ==.故选B. 6.B 【解析】根据程序枢图得:①300,1y i ==,满足3i <;②400,2y i ==,满足3i <;③500,300y z ==,1200,3x i ==,不满足3i <.故输出的1200,500,300x y z ===.故选B.7.D 【解析】∵,42ππθ⎡⎤∈⎢⎥⎣⎦,∴2,2πθπ⎡⎤∈⎢⎥⎣⎦,∴1cos 28θ===-,∵2cos212sin ,sin 0θθθ=->,∴3sin 4θ==,故选D. 8.D 【解析】依题意得,OFM ∆的外接圆半径为6,OFM ∆的外接圆圆心应位于线段OF 的垂直平分线4p x =上,圆心到准线2p x =-的距离等于6,即有642p p+=,由此解得8p =,故选D.9.B 【解析】取BC 的中点F ,连接,EF AF ,则//EF PB ,所以AEF ∠或其补角就是异面直线AE 和PB 所成角.因为ABC ∆为正三角形,所以60BAC ︒∠=.设2PA AB a ==,因为PA ⊥平面ABC ,所,AF AE ==,EF =,所以1cos 4AEF ∠==,故选B.10.D 【解析】由题意,双曲线的渐近线方程为34y x =±,联立直线2x =,解得32y =±,∴不妨设332,,2,,(,)22A B P x y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∵OP aOA bOB =+u u u r u u u r u u u r ,∴3322,22x a b y a b =+=-,∵P 为双曲线C 上的任意一点,∴2233(22)221169a b a b ⎛⎫- ⎪+⎝⎭-=,∴1ab =, ∴222()244a b a b ab ab +=++=…(a b =时等号成立),可得||2a b +…,故选D. 11.D 【解析】①()cos()sin(2)cos sin2()f x x x x x f x -=--=-=-,为奇函数,正确;②(2)()f x f x π+=,为周期函数,正确;③()223()2sin cos 2sin 1sin 2sin 2sin f x x x x x x x ==-=-,令sin ,[1,1]t x t =∈-,则3()22y t t t =-,令2260y t '=-=,得t =且(1)0,y y -==⎝⎭为最大值,错误;④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,11sin ,2233x ⎡⎡⎤∈-⊆-⎢⎢⎥⎣⎦⎣⎦,所以()f x 在,66ππ⎡⎤-⎢⎥⎣⎦上为增函数,正确.故选D. 12.D 【解析】1(1)(1)()1,1ax x f x ax a x x x+-'=-+-=>时,()0f x '<;01x <<,()0f x '>, ∴()f x 在(0,1)上递增,在(1,)+∞上递减,max 3()(1)12f x f a ==-,即()f x 的值域为3,12a ⎛⎤-∞- ⎥⎝⎦.令()f x t =,则3[()]()12y f f x f t t a ⎛⎫==- ⎪⎝⎭…,∵()f t 在(0,1)上递增,在(1,)+∞上递减,要使()y f t =的值域为3,12a ⎛⎤-∞- ⎥⎝⎦,则3411,23a a -厖,∴a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭,故选D. 二、填空题13.8- 【解析】由己知得,2(3,42),2(4,8)a b k a b k +=-+-=-r r r r ,由于(2)a b +r r 与(2)a b -r r共线,所以3(8)4(42)k k --=⨯+,得8k =-.故答案为8-.14.360 【解析】依题意可知,样本中(1,2]公里的人数所占的比例为45150.1300-=,故全体学生中居住地到学校的距离在(1,2]公里的人数为36000.1360⨯=人.15.36π 【解析】由题意得,底面ABCD 是边长为4的正方形,cos 2PEF ∠=1PO 为2.易知正四棱锥P ABCD -的外接球的球心在它的高1PO 上,记球心为O ,则111,2,2AO PO AO R PO OO R =====-或12OO R =-(此时O 在1PO 的延长线上),在直角1AO O ∆中,2222211(2)R AO OO R =+=+-,解得3R =,所以球的体积为334433633V R πππ==⨯=.16.2 【解析】设CAB MBD DMB θ∠=∠=∠=.在AMD ∆中,902MBA θ︒∠=-,180BMA θ︒∠=-,由正弦定理得:()()sin 902sin 180AM AB θθ︒︒=--,即cos2sin AB AM θθ⋅=,在ACD ∆中,90,2ACD CDA θ︒∠=∠=,由正切定义:tan2AC θ=,在ACB ∆中,90ACB ︒∠=,BAC θ∠=,由余弦定义:tan 2cos cos AC AB θθθ==,∴tan 2cos2cos 2sin AM θθθθ⋅==. 三、解答题17. 【解析】(1)由题意,设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由23522423351,1,21b a a q d b a q d ⎧=+⎧=+⎪⇒⎨⎨=+=+⎪⎩⎩则231160q q -+=,解得23q =(舍去)或3, 所以3nn b =;代入方程组得2d =,因此21n a n =-. 综上,21,3nn n a n b =-=. (2)由题意,()212n n n a a S n +==, 由*,n n n N kb S ∀∈…得23n n k ≥ 设2222111(1)221,3333n n n n n n n n n n n n c c c ++++-++=-=-= 当211,0n c c =->;当12,0n n n c c +-<…; 由数列{}n c 的单调性可得,{}()2max 49n c c ==所以4,9k ⎡⎫∈+∞⎪⎢⎣⎭.18.【解析】如图,设AB 的中点为D ,连接1,CD A D , 又设2AB =,则1112AD AA ==. (1)在ABC ∆中,,AC BC AB =的中点为D ,故AB CD ⊥ 在1ABA ∆中,11,60AB AA BAA ︒=∠=,所以1ABA ∆为等边三角形. 又AB 的中点为D ,所以1AB DA ⊥,因为AB CD ⊥,1AB DA ⊥,且1CD DA D ⋂=, 所以AB ⊥平面1CDA ,∵1CA ⊂平面1CDA ,所以1AC BA ⊥, 又11//AB B A ,所以111AC B A ⊥.(2)因为平面ABC ⊥平面11ABB A ,平面ABC ⋂平面11ABB A AB =,且AB CD ⊥, 故CD ⊥平面11AA B B ,如图,建立空间直角坐标系,则11(0,0,0),(1,0,0),(D A C B B --,故11(1,0,(CA CB CB ==-=-u u u r u u u r u u u r, 设平面1A CB 的法向量()1111,,n x y z =r,则有11110,x -=--=⎪⎩令11z =,得1(n =r,设直线1CB 与平面1A BC 所成角为θ,则111111sin cos ,||||CB n CB n CB n θ⋅====u u u u r u r u u u r u r r u r u u , 故直线1CB 与平面1A BC所成角的正弦值为519. 【解析】(1)由题知: 4.4, 2.2x y ==,()()()1215.3ˆ0.2521.2niii nii x x yy bx x ==---===--∑∑, ˆˆ 2.20.25 4.4 3.30ay bx =-=+⨯=故(1)ˆ0.25 3.30yx =-+.(2)①经计算,可得下表:222222212(0.40)(0.15)(0.30)(0.15)(0.20),(0.14)(0.1)Q Q =+-+-+-+=+,因为12Q Q >,故模型(2)4.8ˆ0.8yx=+的拟合效果更好. (3)若生猪存栏数量达到1万头,由(2)模型乙可知,每头猪的成本为4.80.8 1.2810+=元, 这样一天获得的总利润为(7.5 1.28)1000062200-⨯=(元);若生猪存栏数量达到1.2万头,由(2)模型乙可知,每头猪的成本为4.80.8 1.212+=元, 这样一天获得的总利润为(7.2 1.2)1200072000-⨯=(元),因为7200062200>,所以选择生猪存栏数量1.2万头能获得更多利润.20. 【解析】(1)因为2OP OA =+u u u r u u u r u u r,即())()0000(,)2,00,2x y x y x =+=所以002,x x y ==,所以001,2x x y y ==又因为||1AB =,所以22001x y +=,即221123x y ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,即22143x y +=. 所以曲线C 的标准方程为22143x y +=. (2)当直线l 的斜率存在时,设l 的方程为y kx m =+.由方程组22,143y kx m x y =+⎧⎪⎨+=⎪⎩得()2224384120k x kmx m +++-=.∵直线l 与椭圆C 有且仅有一个公共点,∴()()2221(8)4434120km k m ∆=-+-=,即2243m k =+. 由方程组22,7y kx m x y =+⎧⎨+=⎩得()2221270k x kmx m +++-=, 则()()2222(2)4170km k m ∆=-+->.设()()111222,,,P x y P x y ,则212122227,11km m x x x x k k --+=⋅=++, 设直线12,OP OP 的斜率分别为12,k k ,所以()()()221212121212121212kx m kx m k x x km x x my y k k x x x x x x +++++===222222222272711771m kmk km m m k k k m m k --⋅+⋅+-++==--+, 将2243m k =+代入上式,得2122333444k k k k -+==--. 当直线l 的斜率不存在时,由题意知l 的方程为2x =±.此时,圆227x y +=与l 的交点12,P P 也满足1234k k =-. 综上,直线12,OP OP 的斜率之积为定值34-. 21. 【解析】(1)定义域为(0,1)(1,)⋃+∞,2221(2)1()(1)(1)a x a x f x x x x x -++'=-=-- 设22()(2)1,(2)4h x x a x a =-++∆=+-当40a -剟时,2(2)40a ∆=+-„,此时()0h x „,从而()0f x '…恒成立, 故函数()f x 在(0,1)上是增函数,在(1,)+∞上是增函数;当4a <-时,函数2()(2)1h x x a x =-++图象开口向上,对称轴202a x +=<,又(0)10h => 所以此时()0h x …,从而()0f x '…恒成立, 故函数()f x 在(0,1)上是增函数,在(1,)+∞上是增函数;当0a >时,2(2)40a ∆=+->,设2()(2)1h x x a x =-++有两个不同的实根12,x x , 共中121220,1x x a x x +=+>⋅=,令1201x x <<<,则12(2)(2)22a a x x +-++==令()0f x '>,得10x x <<或2x x >;令()0f x '<,得11x x <<或21x x <<,故函数()f x 在()10,x 上是增函数,在()2,x +∞上是增函数,在()1,1x 上是减函数,在()21,x 上是减函数. 综上,当0a „时,函数()f x 在(0,1)上是增函数,在(1,)+∞上是增函数;当0a >时,函数()f x 在(2)0,2a ⎛⎫+- ⎪ ⎪⎝⎭上是增函数,在(2)2a ⎛⎫+++∞ ⎪ ⎪⎝⎭上是增函数,在(2)2a ⎛⎫+-⎪ ⎪⎝⎭上是减函数,在(2)1,2a ⎛++ ⎪⎝⎭上是减函数. (2)要使()y f x =在(,)e +∞上有极值,由(1)知0a >,①则2()(2)1h x x a x =-++有一变号零点在区间(,)e +∞上,不妨设2x e >, 又因为121x x ⋅=,∴1210x e x e<<<<,又(0)1h =, ∴只需10h e ⎛⎫< ⎪⎝⎭,即211(2)10a e e -++<,∴12a e e>+-,② 联立①②可得:12a e e>+-. 从而1a e -与1e a-均为正数.要比较1a e-与1e a-的大小,同取自然底数的对数,即比较(1)ln a e -与(1)ln e a -的大小,再转化为比较ln 1e e -与ln 1aa -的大小.构造函数ln ()(1)1xx x x ϕ=>-,则211ln ()(1)x x x x ϕ--'=-, 再设1()1ln m x x x =--,则21()xm x x-'=,从而()m x 在(1,)+∞上单调递减, 此时()(1)0m x m <=,故()0x ϕ'<在(1,)+∞上恒成立,则ln ()1xx x ϕ=-在(1,)+∞上单调递减. 综上所述,当12,a e e e ⎛⎫∈+- ⎪⎝⎭时,11a e e a --<; 当a e =时,11a e ea --=;当(,)a e ∈+∞时,11a e ea -->.22.【解析】(1)∵4y x -=-,∴直线l 的普通方程为:40x y +-=, 直线l 的极坐标方程为cos sin 40ρθρθ+-=.曲线1C 的普通方程为222x y y +=,因为cos ,sin x y ρθρθ==, ∴1C 的参数方程为:2sin ρθ=.(2)直线l 的极坐标方程为cos sin 40ρθρθ+-=,令θα=,则4||cos sin OA αα=+.又||2sin OB α=,∴||1sin (sin cos )||2OB OA ααα=⋅+ 2111sin sin cos (1cos2sin 2)224ααααα=+=-+1sin 2444πα⎛⎫=-+ ⎪⎝⎭ ∵02πα<<,∴32444πππα-<-<, ∴242ππα-=,即38πα=时,||||OB OA取得最大值14+.23.【解析】(1)3,()|33||3|6a f x x x ==-++…当3x -„时,3336x x ---≤,解得32x -…,∴x ∈∅; 当31x -<„时,3336x x -++≤,解得0x ≥,∴[0,1]x ∈;当1x >时,3336x x -++≤,解得32x „,∴31,2x ⎛⎤∈ ⎥⎝⎦. 综上所述,不等式()6f x ≤的解集为3|02x x ⎧⎫⎨⎬⎩⎭剟. (2)不存在实数x ,使得()1|62|f x a x --+„,等价于()1|62|f x a x >--+恒成立, 即|3||93|1x a x a -++>-恒成立.∵|3||93||(3)(93)||9|x a x x a x a -++--+=+…,∴|9|1a a +>- 当9a <-时,91a a -->-,解得a ∈∅; 当9a ≥-时,91a a +>-,解得4a >-.∴4a >-时,不存在实数x ,使得()1|62|f x a x --+„.。

湖南省长沙2025届高三上学期月考(一)数学试题含答案

湖南省长沙2025届高三上学期月考(一)数学试题含答案

2025届高三月考试卷(一)数学(答案在最后)本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合[),A a =+∞,()1,2B =-,若A B =∅ ,则()A.1>-aB.2a > C.1a ≥- D.2a ≥【答案】D 【解析】【分析】根据题意,结合集合的交集的运算,即可求解.【详解】由集合[),A a =+∞,()1,2B =-,因为A B =∅ ,则满足2a ≥.故选:D.2.已知复数z 满足22z -=,z 的取值范围为()A.[]0,2 B.()0,2 C.[]0,4 D.()0,4【答案】C 【解析】【分析】根据题意,利用复数模的几何意义,得到复数z 在复平面内对应的轨迹,进而结合圆的性质,即可求解.【详解】由题意知复数z 满足22z -=,可得复数z 在复平面内对应的轨迹为以(2,0)A 为圆心,2r =为半径的圆,且z 表示圆上的点到原点(0,0)O 的距离,则max min 224,220z OA r z OA r =+=+==-=-=,所以z 的取值范围为0,4.故选:C.3.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC=A.1B.2C.2D.2【答案】C 【解析】【分析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果.【详解】由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v(),设BC 的中点为D ,则AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,又因为2BC CA CA AB⋅=⋅uu u v uu v uu v uu u v即2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C BC A BC A BC⋅=⋅-=-+-=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuvuu u v uu u v uu u v uu u v uu u v ()所以2AB BC=uu u v uu u v .【点睛】本题主要考查平面向量的线性运算.4.若函数()2211x x f x x ++=+的最大值为M ,最小值为N ,则M N +=()A.1 B.2 C.3D.4【答案】B 【解析】【分析】将函数解析式化为()211xf x x =++,令()21xg x x =+,判断()g x 的奇偶性,然后利用函数的奇偶性求解即可.【详解】()2222221111111x x xf x x x x x x x +==+=+++++++,令()21x g x x =+,则其定义域为R ,又()()()2211x x g x g x x x --==-=-+-+,所以()21xg x x =+为奇函数,则()()max min 0g x g x +=,所以()()()()max min max min 112f x f x g x g x +=+++=,则2M N +=.故选:B.5.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面AB,是线段ED 的中点,则A.BM EN =,且直线,BM EN 是相交直线B.BM EN ≠,且直线,BM EN 是相交直线C.BM EN =,且直线,BM EN 是异面直线D.BM EN ≠,且直线,BM EN 是异面直线【答案】B 【解析】【分析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F .连BF , 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,,22MF BF BM ==∴=.BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.6.tan10tan503tan50︒+︒+︒︒的值为()A.3B.3C.3D.33【答案】B 【解析】【分析】利用正切的和角公式,逆用即可求出结果.【详解】tan10tan503tan10tan50︒+︒︒︒()()tan 10501tan10tan 503tan 50=︒+︒-︒︒+︒︒)31tan10tan503tan 50=-︒︒+︒︒33tan10tan503tan50=-︒︒︒︒3=故选:B.7.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A.第一次朝上面的数字是偶数B.第一次朝上面的数字是1C.两次朝上面的数字之和是8D.两次朝上面的数字之和是7【答案】D 【解析】【分析】根据题意,由相互独立事件的定义,对选项逐一判断,即可得到结果.【详解】抛掷骰子两次,共有6636⨯=个基本事件数,则()()()()()()()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,3,1,3,2,3,3,3,4,3,5,3,6M =,()()()()()()}5,1,5,2,5,3,5,4,5,5,5,6共18个基本事件,则()181362P M ==,设事件E 为第一次朝上面的数字是偶数,则事件M 与事件E 是对立事件,故A 错误;设事件F 为第一次朝上面的数字是1,则F M ⊆,故B 错误;设事件N 为两次朝上面的数字之和是8,则()()()()(){}2,6,3,5,4,4,5,3,6,2N =共5个基本事件,则()536P N =,且()(){}3,5,5,3MN =,则()213618P MN ==,()()()P MN P M P N ≠⋅,所以C 错误;设事件Q 两次朝上面的数字之和是7,则()()()()()(){}1,6,2,5,3,4,4,3,5,2,6,1Q =,则()61366P Q ==,且()()(){}1,6,3,4,5,2MQ =,则()313612P MQ ==,因为()()()P MQ P M P Q =⋅,所以事件M 与事件Q 相互独立.故选:D8.一只蜜蜂从蜂房A 出发向右爬,每次只能爬向右侧相邻的两个蜂房(如图),例如:从蜂房A 只能爬到1号或2号蜂房,从1号蜂房只能爬到2号或3号蜂房,…,以此类推,用n a 表示蜜蜂爬到n 号蜂房的方法数,则10a =()A.10B.55C.89D.99【答案】C 【解析】【分析】根据给定条件,求出数列{}n a 的递推公式,再依次计算求出10a .【详解】依题意,12n n n a a a --=+(*n ∈N ,3n ≥),11a =,22a =,所以34567893,5,8,13,21,34,55,a a a a a a a =======1089a =.故选:C二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知一组样本数据1x ,2x ,…,()201220x x x x ≤≤≤ ,下列说法正确的是()A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差D.若1x ,2x ,…,10x 的均值为2,方差为1,11x ,12x ,…,20x 的均值为6,方差为2,则1x ,2x ,…,20x 的方差为5【答案】BC 【解析】【分析】由百分位数的定义即可判断A ;由极差的定义即可判断C ,由频率分布直方图中中位数、平均数的求法画出图形即可判断B ;由方差计算公式即可判断D.【详解】对于A ,由2060%12⨯=,所以样本数据的第60百分位数为12132x x +,故A 错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如下图,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,故B 正确;对于C ,剔除某个数据i x (1i =,2,…,20)后得到新样本数据的极差不大于原样本数据的极差,故C 正确;对于D ,由10102642020x =⨯+⨯=,则()()22210101112426420202s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦,所以则1x ,2x ,…,20x 的方差为112,故D 错误.故选:BC.10.在平面直角坐标系中,O 为坐标原点,抛物线()220y px p =>的焦点为F ,点()1,2M ,()11,A x y ,()22,B x y 都在抛物线上,且0FA FB FM ++=ruu r uu r uuu r ,则下列结论正确的是()A.抛物线方程为22y x= B.F 是ABM 的重心C .6FA FM FB ++= D.2223AFO BFO MFO S S S ++=△△△【答案】BCD 【解析】【分析】把点代入可得抛物线的方程,结合向量运算可得F 是ABM 的重心,利用抛物线的定义可得6FA FM FB ++= ,利用三角形面积公式及122x x +=,可得2223AFO BFO MFO S S S ++=△△△.【详解】对于A ,由()1,2M 在抛物线上可得42p =,即抛物线方程为24y x =,错误;对于B ,分别取,AB AM 的中点,D E ,则2FA FB FD +=uu u u r uu r u r ,2FM FD =-uuu r uu u r,即F 在中线MD 上,同理可得F 也在中线BE 上,所以F 是ABM 的重心,正确;对于C ,由抛物线的定义可得121,2,1FA x FM FB x =+==+uu r uuu r uu r,所以124++=++FA FM FB x x uu r uuu r uu r.由()10F ,是ABM 的重心,所以12113x x ++=,即122x x +=,所以1246++=++=FA FM FB x x uu r uuu r uu r,正确;对于D ,112AFO S OF y =△,221114AFO S y x ==△;同理222214BFOSy x ==△,21MFO S =△,所以2221213AFO BFO MFO S S S x x ++=++=△△△,正确.故选:BCD.11.已知函数()()()322,,R ,f x x ax bx c a b c f x =-++'∈是()f x 的导函数,则()A.“0a c ==”是“()f x 为奇函数”的充要条件B.“0a b ==”是“()f x 为增函数”的充要条件C.若不等式()0f x <的解集为{1xx <∣且1}x ¹-,则()f x 的极小值为3227-D.若12,x x 是方程()0f x '=的两个不同的根,且12111x x +=,则0a <或3a >【答案】ACD 【解析】【分析】根据函数的奇偶性和充分、必要条件的判定方法,可判定A 正确;结合导数和函数的单调性间的关系,结合充分、必要条件的判定方法,可判定B 错误;利用导数求得函数()f x 的单调性,进而求得()f x 的极小值,可判定C 正确;结合二次函数的性质,结合0∆>,列出不等式,可判定D 正确.【详解】对于A 中,当0a c ==时,函数()3f x x bx =+,则满足()()3f x x bx f x -=--=-,所以()f x 为奇函数,所以充分性成立;若()f x 为奇函数,则()322f x x ax bx c -=---+=()322f x x ax bx c -=-+--,则24ax -20c =恒成立,所以0a c ==,所以必要性成立,所以A 正确;对于B 中,当0a b ==时,()3f x x c =+,可得()230f x x '=≥,所以()f x 为增函数;由()234f x x ax b =-+',当()f x 为增函数时,216120a b ∆=-≤,所以“0a b ==”是“()f x 为增函数”的充分不必要条件,所以B 错误;对于C 中,由()234f x x ax b =-+',若不等式()0f x <的解集为{|1x x <且1}x ¹-,则()f x 在R 上先增后减再增,则()1f '-=()()0,110f f =-=,解得21a b c ===-,故()()()232111f x x x x x x =+--=+-,可得()()()2321311f x x x x x '=+-=-+,令()0f x '=,解得=1x -或13x =,当(),1x ∈-∞-内,()0f x '>,()f x 单调递增;当11,3x ⎛⎫∈- ⎪⎝⎭内,()0f x '<,()f x 单调递减;当1,3x ⎛⎫∈+∞ ⎪⎝⎭内,()0f x '>,()f x 单调递增,所以()f x 的极小值为2111321133327f ⎛⎫⎛⎫⎛⎫=+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 正确.对于D 中,由()234f x x ax b =-+',因为12,x x 是方程()0f x '=的两个不同的根,所以216120a b ∆=->,即2430a b ->,且1x +2124,33a bx x x ==,由12111x x +=,可得1x +212x x x =,所以433a b =,即4b a =,联立方程组,可得230a a ->,解得0a <或3a >,所以D 正确.故选:ACD .三、填空题(本大题共3小题,每小题5分,共15分.)12.点M 在椭圆221259x y +=上,F 是椭圆的一个焦点,N 为MF 的中点,3ON =,则MF =_________.【答案】4【解析】【分析】根据椭圆的对称性,利用三角形中位线定理求得||MF ',再由椭圆定义求解||MF 即可.【详解】如图,根据椭圆的对称性,不妨设F 为左焦点,F '为右焦点,由椭圆221259x y +=,得5a =,210a =,N Q 是MF 的中点,O 是FF '的中点,ON ∴为FMF ' 的中位线,||2||6MF ON ∴'==,∴由椭圆的定义得||2||1064MF a MF =-'=-=.故答案为:4.13.如图,将一个各面都涂了油漆的正方体切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值()=E X ______.【答案】65【解析】【分析】根据题意得出X 的所有可能取值为0,1,2,3,然后分析出涂3面油漆,2面油漆,1面油漆,0面油漆的各有多少个小正方体,从而计算X 取每个值时的概率,从而求X 的均值.【详解】X 的所有可能取值为0,1,2,3,大正方体8个顶点处的8个小正方体涂有3面油漆;每一条棱上除了两个顶点处的小正方体外剩余的都涂有两面油漆,所以涂有两面油漆的有31236⨯=个;每个表面去掉四条棱上的16个小正方体,还剩9个小正方体,这9个都是一面涂漆,所以一共有9654⨯=个小正方体涂有一面油漆;剩余的()1258365427-++=个内部的小正方体6个面都没有涂油漆,所以()270125P X ==,()541125P X ==,()362125P X ==,()83125P X ==,()()()()()00112233E X P X P X P X P X =⨯=+⨯=+⨯=+⨯=2754368150601231251251251251255=⨯+⨯+⨯+⨯==.故答案为:65.14.若函数()()52cos sin 2f x a x x x =-+在R 上单调递增,则a 的取值范围是_________.【答案】11,22⎡⎤-⎢⎥⎣⎦【解析】【分析】求导,根据()0f x '≥在R 上恒成立,即可结合二次函数的性质求解.【详解】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+,()f x 在R 上单调递增,()0f x '∴≥在R 上恒成立,令cos x t =,[]1,1t ∈-,则()f x '可写为()2942g t at t =-+,[]1,1t ∈-,根据题意()g t 在[]1,1-上的最小值非负,∴()()10,10,g g ⎧-≥⎪⎨≥⎪⎩解得1122a -≤≤.故答案为:11,22⎡⎤-⎢⎥⎣⎦四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知向量(),sin m b a C =-- ,(),sin sin n c b A B =++,满足//m n u r r .(1)求A ;(2)若角A 的平分线交边BC 于点D ,AD 长为2,求△ABC 的面积的最小值.【答案】(1)23A π=(2)【解析】【分析】(1)由//m n u r r 得出等式,再由正、余弦定理即可解出;(2)把ABC 的面积用等积法表示可得,b c 关系,再利用基本不等式得出bc 的最小值,即得面积最小值.【小问1详解】因为//m n u r r ,所以()()()()sin sin sin b a A B c b C -+=+-,由正弦定理得()()()()b a a b c b c -+=+-,所以222b c a bc +-=-,所以2221cos 222b c a bc A bc ab +--===-,因为()0,A π∈,故23A π=.【小问2详解】∵AD 平分∠BAC ,∴123BAD CAD BAC π∠=∠=∠=,∵ABD ACD ABC S S S +=△△△,∴1sin 2AB AD BAD ⋅⋅∠11sin sin 22AC AD CAD c A +⋅⋅∠=⋅⋅,即22sin 2sin sin 333c b bc πππ+=,∴22c b bc+=由基本不等式可得:22bc b c =+≥,∴16bc ≥,当且仅当4b c ==时取“=”,∴1sin 2ABC S bc A ==≥ 即ABC V的面积的最小值为.16.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=o ,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A 到平面1A PO 的距离;(2)求二面角1A PB O --的余弦值大小.【答案】(1)32;(2)277.【解析】【分析】(1)根据等体积法,由11A AOP A A OP V V --=即可求出点A 到平面1A PO 的距离;(2)先证明PB AP ⊥,1PB AA ⊥,由线面垂直的判定定理可得PB ⊥面1AA P ,进而可得1A PA ∠即为所求二面角的平面角,在1Rt A PA 中,计算11cos AP A PA A P∠=即可求解.【详解】(1)因为113AA OO ==,122AO AB ==,所以1AO ===在AOP中,由余弦定理可得:AP ===所以1A P ==,2OP =,在1AOP中,由余弦定理可得222111121cos 27A P OP A O A PO A P OP +-∠===⋅,所1sin7A PO∠==,所以11227A OPS=⨯=,设点A到平面1A PO的距离为d,由11A AOP A A OPV V--=,得111133AOP AO PS AA S d⋅⋅=⋅⋅,即1111233223d⨯⨯⨯⨯=,解得:32d=,所以点A到平面1A PO的距离为32;(2)二面角1A PB O--即二面角1A PB A--,因为AB是圆O的直径,点P在圆柱1OO的底面圆O上,所以PB AP⊥,因为1AA⊥面ABP,PB⊂面ABP,可得1PB AA⊥,因为1AP AA A⋂=,所以PB⊥面1AA P,因为1A P⊂面1AA P,AP⊂面1AA P,所以PB⊥AP,PB⊥1A P,所以1A PA∠即为二面角1A PB O--的平面角,在1Rt A PA中,1A P=,AP=所以11cos7APA PAA P∠===,所以二面角1A PB O--的余弦值为7.17.双曲线()2222:10,0x yC a ba b-=>>的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且ABD△是直角三角形.(1)求双曲线C的方程;(2)M、N是C右支上的两动点,设直线AM、AN的斜率分别为1k、2k,若122k k=-,求点A到直线MN的距离d的取值范围.【答案】(1)2213y x -=(2)(⎤⎦【解析】【分析】(1)根据等腰直角三角形的性质,转化为,,a b c 的方程,即可求解;(2)首先设直线MN 的方程为x my n =+,与双曲线方程联立,利用韦达定理表示122k k =-,并根据2m 的取值范围,求点到直线的距离的取值范围.【小问1详解】依题意,90BAD ∠=,焦半径2c =,由AF BF =,得2b ac a+=,得22222a a a +=-,解得:1a =(其中20a =-<舍去),所以222413b c a =-=-=,故双曲线C 的方程为2213y x -=;【小问2详解】显然直线MN 不可能与轴平行,故可设直线MN 的方程为x my n =+,联立2233x my n x y =+⎧⎨-=⎩,消去x 整理得()()222316310m y mny n -++-=,在条件2310Δ0m ⎧-≠⎨>⎩下,设()11,M x y ,()22,N x y ,则122631mn y y m +=--,()21223131n y y m -=-,由122k k =-,得()()12122110y y x x +++=,即()()12122110y y my n my n +++++=,整理得()()()()2212122121210m y y m n y y n ++++++=,代入韦达定理得,()()()()()22222312112121310n m m n n n m -+-+++-=,化简可消去所有的含m 的项,解得:5n =或1n =-(舍去),则直线MN 的方程为50x my --=,得d =又,M N 都在双曲线的右支上,故有2310m -<,2103m ≤<,此时1≤<,(d ⎤=⎦,所以点A 到直线MN 的距离d的取值范围为(⎤⎦.18.已知函数()()e xf x x a =-,a ∈R .(1)当1a =时,求()f x 的极值;(2)若函数()()ln g x f x a x =-有2个不同的零点1x ,2x .(i )求a 的取值范围;(ii )证明:12112e x x a x x +->.【答案】(1)极小值为0,无极大值(2)(i )()e,+∞;(ii )证明见解析【解析】【分析】(1)将1a =代入函数解析式,求导,判断其单调性,进而得出极值;(2)(i )化简函数()g x 的解析式,令e x t x =,问题可转化为()ln h t t a t =-在(0,)t ∈+∞有2个零点1t ,2t ,再利用导数研究函数()h t 的性质即可得出答案;(ii )等价于证明21e a t t >,再利用极值点偏移法即可得证.【小问1详解】1a =时,()()e 1xf x x =-,()()1e 1x f x x =+'- ,令()()()(),2e xm x f x m x x ''=∴=+,(),2x ∞∴∈--,()0m x '<;()2,x ∞∈-+,()0m x '>,()f x ∴'在(),2∞--单调递减,()2,∞-+单调递增,x →-∞ 时,10x +<,e 0x >,则′<0,()21210ef '--=-<,()00f '=,x →+∞时,()f x ∞'→+,(),0x ∞∴∈-时,′<0;∈0,+∞,′>0,∴在(),0∞-单调递减,在0,+∞单调递增,∴的极小值为()00f =,无极大值.【小问2详解】(i )()()()()ln e ln e ln e x x x g x f x a x x a x x x a x =-=-+=-,∈0,+∞,令e x t x =,()0,t ∞∈+,()1e 0x t x =+'> ,e x t x ∴=在0,+∞单调递增,令()ln h t t a t =-,即()h t 在()0,t ∞∈+有2个零点1t ,2t ,且111e x t x =,222e xt x =,()1a t a h t t t-='-= ,0a ∴≤时,()0h t '>,()h t 在()0,t ∞∈+单调递增,不存在2个零点,0a ∴>,()0,t a ∈ 时,()0h t '<;(),t a ∞∈+时,()0h t '>,()h t ∴在()0,a 单调递减,在(),a ∞+单调递增,0t → 时,()h t ∞→+;t →+∞时,()h t ∞→+,()()()min 1ln 0h t h a a a ∴==-<,()e,a ∞∴∈+.(ii )设12t t <,()110h => ,()e e 0h a =-<,∴由(i )知,121e t a t <<<<,即证:12e t t a >,即证:21e a t t >,2t a > ,1e a a t >,()h t 在(),a ∞+单调递增,∴即证:()21e 0a h t h t ⎛⎫=> ⎪⎝⎭,11ln t a t = ,()1111111e e e e e e ln ln ln ln 1ln a a a h a a a t t t t t t t ⎛⎫⎛⎫⎡⎤∴=-=-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令()()111e ln ln 1p t t t =+-,()11,e t ∈,即证:()10p t <,()1112211111eln e 1ln ln t t p t t t t t t -=='-+,令()111eln q t t t =-,()11,e t ∈,()1111e e 10t q t t t -=-='< ,()1q t ∴在()1,e 单调递减,()()1e 0q t q >=,()10p t ∴'>,()1p t ∴在()1,e 单调递增,()()1e 0p t p ∴<=,【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.已知集合{}()1,2,3,,,3A n n n =∈≥ N ,W A ⊆,若W 中元素的个数为()2m m ≥,且存在u ,()v W u v ∈≠,使得()2k u v k +=∈N ,则称W 是A 的()P m 子集.(1)若4n =,写出A 的所有()3P 子集;(2)若W 为A 的()P m 子集,且对任意的s ,()t W s t ∈≠,存在k ∈N ,使得2k s t +=,求m 的值;(3)若20n =,且A 的任意一个元素个数为m 的子集都是A 的()P m 子集,求m 的最小值.【答案】(1){}{}1,2,3,1,3,4;(2)2;(3)13.【解析】【分析】(1)根据()P m 子集的定义,即可容易求得;(2)取{}1,3W =,求得2m =,再利用反证法假设3m ≥,推得10a <与11a ≥矛盾即可;(3)令{}020,19,18,17,11,10,9,3,16,8,4,2W =,讨论12m ≤时不满足题意,再验证13m ≥时的情况满足题意,即可求得m 的最小值.【小问1详解】当4n =时,{}1,2,3,4A =,A 的所有()3P 子集为{}{}1,2,3,1,3,4.【小问2详解】当3n ≥时,取{}1,3W =,因为2132+=,所以W 是A 的()2P 子集,此时2m =;若3m ≥,设123,,a a a W ∈且1231a a a ≤<<,根据题意,3121213232,2,2kk k a a a a a a +=+=+=,其中123,,N k k k ∈;因为121323a a a a a a +<+<+,所以312222k k k <<,所以123k k k <<;又因为123,,N k k k ∈,所以321k k ≥+;因为()3121232222k k k a a a ++=++,所以()31212312222k k k a a a ++=++,所以()()3331212111222222222k k k k k k k a =++-=+-;因为3122221222222k k k k k k ++<+=≤,所以3122220k k k +-<,所以10a <,与11a ≥矛盾.综上所述,2m =.【小问3详解】设{}{}{}{}{}1234520,12,19,13,18,14,17,15,11,5,A A A A A ====={}{}{}{}{}{}{}678123410,6,9,7,1,3,2,4,8,16A A AB B B B =======,设W 的元素个数为m ,若W 不是A 的()P m 子集,则W 最多能包含1238,,,,A A A A 中的一个元素以及1234,,,B B B B 中的元素;令{}020,19,18,17,11,10,9,3,16,8,4,2W =,易验证0W 不是A 的()12P 子集,当12m ≤时,0W 的任意一个元素个数为m 的子集都不是A 的()P m 子集,所以,若A 的任意一个元素个数为m 的子集都是A 的()P m 子集,则13m ≥;当13m ≥时,存在{}1,2,3,4,5,6,7,8i ∈,使得W 中必有两个元素属于i A ,同时i A 中两个元素之和为2的某个正整数指数幂,P m子集;所以W是A的()所以,m的最小值为13.P m子集的定义,【点睛】关键点点睛:本题考查集合新定义问题,处理问题的关键是充分把握题中对()同时要熟练的使用证明方法,属综合困难题.。

2020届湖南省长沙市一中高三月考试题(四)数学(理)试题

2020届湖南省长沙市一中高三月考试题(四)数学(理)试题

2020届湖南省长沙市一中高三月考试题(四)数学(理)试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1D【答案】C分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.若x ∈R ,则“31x >”是“1x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A分别求解两个不等式再判断即可. 解:因为3y x =为增函数,故31x >解得1x >,又1x >解得1x >或1x <-,故“31x >”是“1x >”的充分不必要条件. 故选:A 点评:本题主要考查了幂函数与绝对值不等式的求解与充分不必要条件的判断,属于基础题型.3.下列命题中,,m n 表示两条不同的直线,α、β、γ表示三个不同的平面. ①若m α⊥,//n α,则m n ⊥; ②若αγ⊥,βγ⊥,则//αβ;③若//m α,//n α,则//m n ; ④若//αβ,//βγ,m α⊥,则m γ⊥. 正确的命题是( ) A .①③ B .②③C .①④D .②④【答案】C对于①,由线面垂直的判定定理知,直线m 与平面α内的任意一条直线垂直,由n αP 知,存在直线b α⊂内,使n b P ,所以,m b m n ⊥⊥,故①正确;对于②,平面α与平面β可能相交,比如墙角的三个平面,故②错误;对于③,直线m 与n 可能相交,可能平行,可能异面,故错误;对于④,由面面平行的性质定理有m αγγ⊥P , ,正确.故正确命题为①④,选C.4.将函数()sin 2f x x =的图像保持纵坐标不变,先将横坐标缩短为原来的12,再向右平移6π个单位长度后得到()g x ,则()g x 的解析式为A .()sin()6g x x π=-B .()sin()6g x x π=+C .2()sin(4)3g x x π=- D .()sin(4)6g x x π=-【答案】C将函数()sin2f x x =的图像保持纵坐标不变,先将横坐标缩短为原来的12得到sin 4y x =,再向右平移6π个单位长度后 得到()g x ,2()sin 4()sin(4)63g x x x ππ=-=-,故选C. 5.如图,在杨辉三角形中,斜线l 的上方从1按箭头所示方向可以构成一个“锯齿形”数列:1,3,3,4,6,5,10,…,则这个数列的第19项为( )A .55B .110C .58D .220【答案】A先对“锯齿形”的数列的奇数项找规律,求出通项公式,然后利用“锯齿形”数列的第19项即为新数列的第10项即可求出结论.解:设“锯齿形”的数列的奇数项构成数列{}n b ,由21312b b -=-=,32633b b -=-=,431064b b -=-=,5415105b b -=-=1n n b b n -⇒-=,所以可得()()1212nn n b b +-=+,即22nn nb +=, 又因为“锯齿形”数列的第19项即为新数列的第10项,2101010552b +==,故选:A 点评:本题考查了递推关系式求数列的通项公式,考查了叠加法求通项公式,属于中档题. 6.已知一个几何体的三视图如图所示,则该几何体的体积为( )A .43B .8C .4D .83【答案】D由三视图可知几何体为四棱锥,俯视图为底面,主视图的高为棱锥的高, 代入体积公式计算可得选项. 解:由三视图可知该几何体是底面为正方形的四棱锥,底面是边长为2的正方形,棱锥的高为2,∴2182233V =⨯⨯=. 故选:D. 点评:本题考查根据三视图得出原几何体,并且求其体积的问题,关键在于由三视图准确地还原几何体,属于基础题.7.若等差数列{}n a 的公差为2,且5a 是2a 与6a 的等比中项,则该数列的前n 项和n S 取最小值时,n 的值等于( ) A .4 B .5 C .6 D .7【答案】C 解:因为5a 是2a 与6a 的等比中项,()()225262222689a a a a a a a ∴=∴+=+∴=-,所以通项公式为()()22922213n a a n d n n =+-=-+-=-,令0n a ≤得6n ≤,所以该数列的前n 项和n S 取最小值时n 的值等于6 8.假设有两个分类变量X 和Y 的22⨯列联表如下:对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为( ) A .45a =,15c = B .40a =,20c = C .35a =,25c = D .30a =,30c =【答案】A 由题意得,当10a a +与30cc +相差越大时,X 与Y 有关系的可能性越大,即可得到答案.解:由题意可得,当与相差越大时,X 与Y 有关系的可能性越大,分析四组选项,A 中的a ,c 的值最符合题意,故选A. 点评:本题主要考查了独立性检验的判定及应用,其中熟记独立性检验的相关知识和2K 的计算公式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 9.法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占12,每局输赢相互独立,那么这700法郎如何分配比较合理( ) A .甲400法郎,乙300法郎 B .甲500法郎,乙200法郎 C .甲525法郎,乙175法郎 D .甲350法郎,乙350法郎【答案】C通过分析甲可能获胜的概率来分得奖金,假定再赌一局,甲获胜的概率为12;若再赌两局,甲才获胜的概率为111224⨯=,从而得甲获胜的概率为113424+=,可得出奖金的分配金额. 解:假定再赌一局,甲获胜的概率为12;若再赌两局,甲才获胜的概率为111224⨯=, ∴甲获胜的概率为113424+=,∴甲应分得:37005254⨯=(法郎),乙应分得:17001754⨯=(法郎).故选:C. 点评:本题考查概率知识的实际应用,关键在于明确概率的原理,以达到理论联系实际,属于中档题.10.已知12F F ,是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为() A 6B .3C .6D 3【答案】C利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+,再利用均值不等式得到答案. 解:设椭圆长轴12a ,双曲线实轴22a ,由题意可知:1222F FF P c ==, 又1211222,2F P F P a F P F P a +=-=Q ,111222,22F P c a F P c a ∴+=-=,两式相减,可得:122a a c -=,22112122242222e a a a c ce c a ca ++=+=Q ,()222222222122242842422222c a a c e ca a c a ce ca ca c a ++++∴+===++. , 2222222222a a cc c a c a +≥⋅=Q ,当且仅当2222a c c a =时等立, 21e 2e 2∴+的最小值为6, 故选:C .点评:本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示21e 2e 2+是解题的关键,意在考查学生的计算能力.11.已知12,l l 分别是函数()|ln |f x x =图象上不同的两点12,P P 处的切线,12,l l 分别与y 轴交于点,A B ,且1l 与2l 垂直相交于点P ,则ABP ∆的面积的取值范围是( ) A .(0,1) B .(0,2)C .(0,)+∞D .(1,)+∞【答案】A由题意得()ln ,01ln ln ,0x x f x x x x -<<⎧==⎨>⎩.设11122212(,ln ),(,ln )(1,01)P x x P x x x x -><<,由导数的几何意义可得切线12,l l 的斜率分别为121211,k k x x ==-, 由条件可得121211k k x x =-=-,所以121=x x ,故211x x =.又切线1l 的方程为1111ln ()-=-y x x x x ,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--,在两切线方程中,分别令0x =可得切线与y 轴的交点分别为 11(0,1ln ),(0,1ln )A x B x -++,故||2AB =.由1111111ln ()1ln ()y x x x x y x x x x ⎧-=-⎪⎪⎨⎪-=--⎪⎩,可得点2111221121(,ln )11x x P x x x -+++. ∴21122112111211ABPP x x S AB x x x ∆+==<=++(由于11x ≠,故等号不成立). ∴ABP ∆的面积的取值范围是()0,1.选A . 点睛:(1)由于曲线的两条切线垂直,故切点的横坐标必为一个小于1,一个大于1,解题时要注意这一隐含条件.(2)三角形面积的最值问题可根据题意得到面积的表达式,然后根据表达式的特征,选择是利用基本不等式求解还是利用函数知识求解,利用基本不等式时要注意不等式使用的条件.12.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭【答案】D由题意,设第n 次爬行后仍然在上底面的概率为n P .①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为123n P -;②若上一步在下面,则第1n -步不在上面的概率是11n P --.如果爬上来,其概率是()1113n P --,两种事件又是互斥的,可得()1121133n n n P P P --=+-,根据求数列的通项知识可得选项.解:由题意,设第n 次爬行后仍然在上底面的概率为n P .①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为()1223n P n -≥; ②若上一步在下面,则第1n -步不在上面的概率是()11,2n P n --≥.如果爬上来,其概率是()()111,23n P n --≥, 两种事件又是互斥的,∴()1121133n n n P P P --=+-,即11133n n P P -=+,∴1112213n n P P -⎛⎫-- ⎪⎝⎭=, ∴数列12n P ⎧-⎫⎨⎬⎩⎭是以13为公比的等比数列,而123P =,所以111232nn P ⎛⎫=⋅+ ⎪⎝⎭, ∴当10n =时,1010111232P ⎛⎫=⋅+ ⎪⎝⎭, 故选:D. 点评:本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.二、填空题 13.设,向量,且,则______ .【答案】由题意可得,由此解得的值,可得的坐标,从而求得的值.解: 由题意可得,解得,所以, 所以,故答案是5. 点评:该题所考查的是有关向量的问题,涉及到的知识点有平面向量的坐标运算,平面向量垂直的条件,平面向量数量积的运算以及向量的模的求解,正确应用公式是正确解题的关键.14.有4名优秀学生A 、B 、C 、D 全部被保送到甲、乙、丙3所学校,每名学生只能被保送到1所学校,每所学校至少1名,则不同的保送方案共有______种.(填写数字) 【答案】36.根据题意首先把4名学生分为3组,则有24C 种分法,再把分好的3组分到3个学习小组,则有33A 种分法,进而再利用分步计数原理计算出答案 解:因为4名学生分配到3个学习小组,每个小组至少有1学生, 所以首先把4名学生分为3组,则有一个组有2人,共有24C 种分法, 再把分好的3组分到3个学习小组,则有33A 种分法,所以共有234336C A ⋅=种分法.故答案为:36. 点评:本题主要考查了分配问题,解决此类问题的关键是熟练掌握分步计数原理与分步计数原理,一般是先分组再分配,属于基础题.15.定义在R 上的连续函数()f x 满足()12f =,且()f x 在R 上的导函数()'1f x <,则不等式()1f x x <+的解集为__________. 【答案】{}|1x x >设()()1h x f x x =--,则()()//10h x fx =-<,即()()1h x f x x =--是单调递减函数,而()()11110h f =--=,所以()1f x x >+等价于()10f x x -->,即()()1h x h >,所以1x >,故不等式的解集为{}1x x ,应填答案{}1x x .点睛:本题的解答过程中,充分借助题设条件,巧妙地构造函数()()1h x f x x =--,从而借助导数的求导法则及导数与函数单调性的关系,判断出该函数的单调递减函数,进而为解不等式创造出模型.解答本题的难点在于怎样观察并构造出函数,然后再用导数知识判断其单调性,进而将不等式进行等价转化.16.如图,在ABC ∆中,已知角A 、B 、C 对应的边分别为a ,b ,c ,其中3a =,且()()()sin sin sin a b A B c b C +-=-,D 是AC 边上一点,若AB AD =,则CBD∆的周长的取值范围是______.【答案】(23,32⎤⎦由已知等式利用正弦定理化简,得到三边的关系式,利用余弦定理求出cos A ,进而确定出角A 的值, 得出ABD ∆为等边三角形,求CBD ∆的周长的取值范围得以转化为求AC 的范围,再运用正弦定理,运用三角函数的值域求得范围.解:设CBD ∆的周长为l ,由正弦定理得()()2a b a b c bc +⋅-=-,即222c b a bc +-=,∴2221cos 22b c a A bc +-==,0A π<<Q ,∴3A π=. ∵AB BD =,∴ABD ∆为等边三角形,∴l BD DC BC AD DC BC AC BC =++=++=+.在ABC ∆3sin sin3ACABC =∠,∴2sin AC ABC =∠,∵233ABC ππ<∠<3sin 1ABC <∠≤32sin 2ABC <∠≤,∴2sin 2ABC AC <∠+≤∴(2l ⎤∈⎦.故答案为:(2⎤⎦. 点评:此题考查运用正弦、余弦定理,求解三角形,关键在于得到等边三角形,将所求的周长的范围转化为求三角形的边的范围,再运用正弦定理,转化为求角的三角函数值的范围,属于中档题.三、解答题17.已知正项数列{}n a 的前n 项和为n S ,且1n a +是4与n S 的等比中项. (1)求{}n a 的通项公式;(2)求数列()111n n n n a a ++⎧⎫-⋅⎪⎪⎨⎬⋅⎪⎪⎩⎭的前2n 项和2n T .【答案】(1)21n a n =-(2)41nn +(1)由题意得:()214n n a S +=,①,当2n ≥时,()21114n n a S --+=.②,①-②得()()1120n n n n a a a a --+--=. 可得数列{}n a 是以1为首项,2为公差的等差数列,根据等差数列的通项公式的解法可求得; (2)()()1111212142121n n n n a a n n n n +⎛⎫==+ ⎪-+-+⎝⎭,则可得2111111143354141n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=+-++⋅⋅⋅-+ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦,可求得答案. 解:(1)由题意得:()214n n a S +=,①,当2n ≥时,()21114n n a S --+=.②,①-②得()()1120n n n n a a a a --+--=.∵0n a >,∴()122n n a a n --=≥,当1n =时,()21114a a +=,11a =,∴{}n a 是以1为首项,2为公差的等差数列,∴21n a n =-.(2)()()1111212142121n n n n a a n n n n +⎛⎫==+ ⎪-+-+⎝⎭,设()()111111142121n nnn nnba a n n+++-⋅-⎛⎫==⋅+⎪-+⎝⎭,∴2111111143354141nTn n⎡⎤⎛⎫⎛⎫⎛⎫=+-++⋅⋅⋅-+⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦1114144144141n nn n n⎛⎫=-=⨯=⎪+++⎝⎭.点评:本题考查由数列的前项的和求数列的通项,裂项求和法求数列的和,关键在于先将1n nna a+式子进行处理,然后再将整个式子按裂项相减法的步骤化简即可得到结果,需要注意的是裂项之后还剩哪些项,搞清楚,属于中档题.18.如图,四棱锥P ABCD-的底面是菱形,平面PAD⊥底面ABCD,O,E分别是AD,AB的中点,6AB=,5DP AP==,60BAD∠=︒.(1)求证:AC PE⊥;(2)求直线PB与平面POE所成角的正弦值.【答案】(1)证明见解析(2312986(1)连接BD,由菱形的性质可得:AC BD⊥,结合三角形中位线的性质可知://OE BD,故OE AC⊥,再由平面PAD⊥平面ABCD可得AC OP⊥,得AC⊥平面POE,可得证;(2)由题意结合菱形的性质易知OP OA⊥,OP OB⊥,OA OB⊥,以点O为坐标原点,建立如图所示的空间直角坐标系O xyz-,求得平面POE的一个法向量,向量PBu u u r,根据线面角的空间向量坐标公式可求得直线PB与平面POE所成角的正弦值. 解:(1)连接BD,由菱形的性质可得:AC BD⊥,结合三角形中位线的性质可知://OE BD,故OE AC⊥,∵5DP AP==,∴PO AD⊥,∵平面PAD⊥平面ABCD,AD=平面PAD I平面ABCD,PO⊂平面PAD,∴PO⊥底面ABCD,AC⊂底面ABCD,故AC OP⊥,且OP OE O⋂=,故AC⊥平面POE,PE⊂平面POE,∴AC PE⊥.(2)由题意结合菱形的性质易知OP OA⊥,OP OB⊥,OA OB⊥,以点O为坐标原点,建立如图所示的空间直角坐标系O xyz-,则()0,0,4P,()0,33,0B,()0,0,0O,33,3,022E⎛⎫⎪⎝⎭,设平面POE的一个法向量为(),,m x y z=u r,则:40333022m OP zm OE x y⎧⋅==⎪⎨⋅=+=⎪⎩u u u vvu u u vv,据此可得平面POE的一个法向量为()3,1,0m=-u r,而()0,33,4PB=-u u u r,设直线PB与平面POE所成角为θ,则333sin12986243PB mPB mθ⋅===⨯⨯u u u r u ru u u r u r.所以直线PB与平面POE所成角的正弦值为312986.点评:本题考查空间的线线垂直的证明,线面角的计算,注意在求线面角时,线面角的正弦值是平面的法向量与线向量所成的余弦值的绝对值,这个问题是易错点,属于中档题. 19.已知椭圆C:22221x ya b+=,设直线l:x tyλ=+是椭圆C的一条切线,两点()12,M y-和()22,N y在切线l上.(1)若()11,1P ,()20,1P,3P ⎛- ⎝⎭,4P ⎛ ⎝⎭中恰有三点在椭圆C 上,求椭圆C 的方程;(2)在(1)的条件下,证明:当t ,λ变化时,以MN 为直径的圆恒过定点,并求出定点坐标.【答案】(1)2214x y +=(2)证明见解析;定点()(1)由于3P ,4P 关于y 轴对称,得C 过3P ,4P ,2P ,C 不过1P ,代入可得椭圆的标准方程;(2)联立直线与椭圆的方程消去x 得()2224240t y t y λλ+++-=.由直线与椭圆相切得:224t λ-=,再由M 、N 在切线上,代入可得1212,y y y y +,代入以MN 为直径的圆的方程中,可得定点. 解:(1)由于3P ,4P 关于y 轴对称,∴C 过3P ,4P ,∴221314a b+=,又由222211134a b a b +>+知,C 不过1P , ∴2P 在C 上,∴222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,∴2241a b ⎧=⎨=⎩.∴椭圆C 的方程为2214x y +=.(2)联立2214x y x ty λ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240t y t y λλ+++-=.由直线与椭圆相切得:224t λ-=,∵M 、N 在切线上,∴1222ty ty λλ-=+⎧⎨=+⎩,∴12y t λ--=,22y t λ-=,∴22122241t y y t tλ-===,122t y y λ+=-, 而以MN 为直径的圆的方程为()()()()12220x x y y y y +-+--=,∴22230x y y t λ++-=,令0y =,则230x -=,∴0y x =⎧⎪⎨=⎪⎩,∴过定点(). 点评:本题主要考查直线与椭圆的综合应用能力,具体涉及到求曲线过定点,解题时要注意合理地进行等价转化.对数学思维的要求比较高,有一定的探索性.综合性强,属于难度题. 20.已知函数()()2ln 1f x x ax =++,0a >.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间()1,0-有唯一零点0x ,证明:2101e x e --<+<.【答案】(Ⅰ)见解析;(Ⅱ)见解析.试题分析:(Ⅰ)求导得()2221'1ax ax f x x ++=+, 分0∆<, 0∆=,0∆>,三种情况讨论可得单调区间.(Ⅱ)由(1)及()00f =可知:仅当极大值等于零,即()10f x =且 ()1‘0f x =所以2002210ax ax ++=,且()()2000ln 10f x x ax =++=,消去a 得()()00ln 1021x x x +-=+,构造函数,证明单调且零点存在且唯一即可.试题解析:(Ⅰ)()21221'211ax ax f x ax x x ++=+=++,1x >-, 令()2221g x ax ax =++,()24842a a a a ∆=-=-,若0∆<,即02a <<,则()0g x >,当()1,x ∈-+∞时,()'0f x >,()f x 单调递增, 若0∆=,即2a =,则()0g x ≥,仅当12x =-时,等号成立, 当()1,x ∈-+∞时,()'0f x ≥,()f x 单调递增. 若0∆>,即2a >,则()g x 有两个零点1x =,2x =由()()1010g g -==>,102g ⎛⎫-< ⎪⎝⎭得121102x x -<<-<<,当()11,x x ∈-时,()0g x >,()'0f x >,()f x 单调递增; 当()12,x x x ∈时,()0g x <,()'0f x <,()f x 单调递减; 当()2,x x ∈+∞时,()0g x >,()'0f x >,()f x 单调递增. 综上所述,当02a <≤时,()f x 在()1,-+∞上单调递增;当2a >时,()f x 在⎛ - ⎝⎭和⎫⎪+∞⎪⎝⎭上单调递增,在⎝⎭上单调递减. (Ⅱ)由(1)及()00f =可知:仅当极大值等于零,即()10f x =时,符合要求. 此时,1x 就是函数()f x 在区间()1,0-的唯一零点0x .所以2002210ax ax ++=,从而有()00121a x x =-+,又因为()()2000ln 10f x x ax =++=,所以()()00ln 1021x x x +-=+,令01x t +=,则1ln 02t t t--=, 设()11ln 22h t t t =+-,则()221'2t h t t-=, 再由(1)知:102t <<,()'0h t <,()h t 单调递减,又因为()22502e h e --=>,()1302e h e --=<, 所以21e t e --<<,即2101ex e --<+<点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.21.据长期统计分析,某货物每天的需求量()*r r N∈在17与26之间,日需求量r (件)的频率()P r 分布如下表所示:已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.(1)设每天的进货量为()16,1,2,,10n n X X n n =+=L ,视日需求量()16,1,2,,10i i r r i i =+=L 的频率为概率()1,2,,10i P i =L ,求在每天进货量为n X 的条件下,日销售量n Z 的期望值()n E Z (用i P 表示);(2)在(1)的条件下,写出()n E Z 和()1n E Z +的关系式,并判断n X 为何值时,日利润的均值最大?【答案】(1)当19n ≤≤时,()()()10111616n n iii i n E Z i P n P ==+=+++∑∑;当10n =时,()()1101016i i E Z i P ==+∑.(2)()1n E Z +=()101n ii n E Z P =++∑;20nX=时,日利润均值最大(1)分日需求量与进货量的大小关系,确定日销售量,从而得出日销售量n Z 的期望值;(2)由(1)可得()()()11011216161n n iii i n E Z i P n P ++==+=++++∑∑,可得()n E Z 和()1n E Z +的关系,设每天进货量为n X 时,日利润为n ξ,则()()()()5316n n n E E Z n E Z ξ=-+-⎡⎤⎣⎦()()8316n E Z n =-+,分析()()1n n E E ξξ+-正负可得出日利润均值的最大值.解:(1)当日需求量n r X ≤时,日销售量n Z 为r ;当日需求量n r X >时,日销售量n Z 为n X ,故日销售量n Z 的期望值为:当1n =时,每天的进货量为116117X =+=,根据货物的日需求量的频率表得,此时的日销售量为17件,∴()()()11210161P E Z P P =++++L ;当2n =时,每天的进货量为216218X =+=,根据货物的日需求量的频率表得, 此时日销售量为17件的概率为1P ,日销售量为18件的概率为2310P P P +++L , ∴()()()()212310161162P P P E Z P =++++++L ;当3n =时,每天的进货量为316319X =+=,根据货物的日需求量的频率表得, 此时日销售量为17件的概率为1P ,日销售量为18件的概率为2P ,日销售量为19件的概率为3410P P P +++L ,∴()()()()()3123410161162163E Z P P P P P =++++++++L ;L L ,同理可得: ()()()()()()9123910161162163169P P P P E Z P =+++++++++L ; ()()()()()10123101611621631610P E P P P Z =++++++++L ;所以当19n ≤≤时,()()()10111616n n iii i n E Z i P n P ==+=+++∑∑;当10n =时,()()1101016i i E Z i P ==+∑.(2)()()()11011216161n n i ii i n E Z i P n P ++==+=++++∑∑()()101116161n iii i n i P n P==+=++++∑∑()101n ii n E Z P =+=+∑.设每天进货量为n X 时,日利润为n ξ,则()()()()5316n n n E E Z n E Z ξ=-+-⎡⎤⎣⎦()()8316n E Z n =-+,∴()()()()1183n n n n E E E Z E Z ξξ++-=--⎡⎤⎣⎦()121083n n PP P ++=++⋅⋅⋅+-.由()()112508n n n E E P P P ξξ+-≥⇒+⋅⋅+≤+⋅. 又∵123450.668P P P P +++=>,12350.538P P P ++=<, 即()()()()()()1234510E E E E E E ξξξξξξ<<<>>>L , ∴()4E ξ最大,∴应进货20件时,日利润均值最大. 点评:本题考查实际问题中的期望值的问题的处理,关键在于对实际问题的理解,如何将生活实际中的数据转化为数学概率中的数据,并且注意对抽象问题的处理的方式,逐一推导找到一般的规律和利用递推之间的关系,属于难度题. 22.选修4-4:坐标系与参数方程 在平面直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为(且).(I )求直线的极坐标方程及曲线的直角坐标方程; (Ⅱ)已知是直线上的一点,是曲线上的一点,,,若的最大值为2,求的值.【答案】(I);. (Ⅱ)(I )利用参数方程、极坐标方程和普通方程互化的公式求直线的极坐标方程及曲线的直角坐标方程;(Ⅱ)先利用极坐标方程求出,,再求出,即得,解之即得a 的值.解:解:(I )消去参数,得直线的普通方程为, 由,,得直线的极坐标方程为,即. 曲线的极坐标方程为(且),即,由,,得曲线的直角坐标方程为.(Ⅱ)∵在直线上,在曲线上, ∴,,∴∴,.点评:本题主要考查参数方程、极坐标方程和普通方程的互化,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.选修4-5:不等式选讲已知函数.(I)求函数的最大值;(Ⅱ)若,求实数的取值范围.【答案】(I) 最大值为1. (Ⅱ)(I)利用绝对值三角不等式求函数的最大值;(Ⅱ)利用函数f(x)的单调性化简得,再解不等式得解.解:解:(Ⅰ)函数可化为,由,即时“=”成立,所以原函数取得最大值为1.(Ⅱ)函数在上单调递增,∵,,,∴,即,所以,∴.即实数的取值范围是.点评:本题主要考查绝对值三角不等式,考查函数单调性的应用和绝对值不等式的解法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。

2020长沙一中高一第一学期第一次月考试卷(答案)

2020长沙一中高一第一学期第一次月考试卷(答案)

G1-1-2020-2021-104一中高一第一学期第一次月考试卷数学参考答案二、填空题13.814.10,1,2⎧⎫-⎨⎬⎩⎭15.6 16.8三、解答题17.【解析】(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332AB x x ⎧⎫=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =-经检验满足题意. (2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立选②,110213m BA m m -≤-⎧⇒⇒≤≤⎨+≤⎩选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立18.【解析】(1)即23208kx kx ++>,对x ∈R 恒成立1 当0k =,满足;2°当0k ≠时,2030030k k k k >⎧⇒-<⇒<<⎨∆<⎩ 综上:03k ≤<时,函数()f x 的定义域为R (2)1k =-时,令2328y x x =--+21112422x ⎛⎫=-++≤ ⎪⎝⎭故02<≤∴()f x 的值域为)+∞19.【解析】(1)由题意知0m <且321212n m mn n m ⎧+=-⎪=-⎧⎪⇒⎨⎨=⎩⎪⋅=-⎪⎩. 则2221722024nx mx x x x ⎛⎫++=-+=-+> ⎪⎝⎭即220nx mx ++>的解集为R(2)()()()211110ax a x ax x -++=-->1 当0a <,不等式()()11101x ax x x a⇔-+-<⇒<< 2 当0a =,不等式101x x -+>⇒< 3 当01a <<时,11a> 则()()1101ax x x -->⇒<或1x a>综上所述:1)当0a <时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭2)当0a =时,不等式的解集为{}1x x <3)当01a <<时,不等式的解集为11x x x a ⎧⎫<>⎨⎬⎩⎭或 20.【解析】(1)∵22a b ab +=,变形得122a b+= ∴()112222a b a b a b ⎛⎫+=⋅+⋅+ ⎪⎝⎭12252b a a b ⎛⎫=++ ⎪⎝⎭ ∵224b a a b +≥,∴922a b +≥当且仅当22b a a b =,即23a b ==时,等号成立(2)212293a a +≥= 21293b b +≥21293c c +≥()2221233a b c a b c ⇒+++≥++.即22213a b c ++≥当且仅当13a b c ===时,等号成立21.【解析】(1)(ⅰ)()01f =,表示没有用水清洗时,衣服上的污渍不变()213f =,表示用1个单位的水清洗时,可清除衣服上残留的污渍的13(ⅱ)函数()f x 的定义域为[)0,x ∈+∞,值为()(]0,1f x ∈,在()0,+∞上单调递减 (2)设清洗前衣服上的污渍为1,用a 单位量的水清洗1次后,残留的污渍为1W 则()12212W f a a=⨯=+ 如果用2a 单位的水清洗1次,则残留的污渍为28128a f a⎛⎫⨯= ⎪+⎝⎭ 然后再用2a 单位的水清洗1次后,残留的污渍为()22226428a W f a ⎛⎫== ⎪⎝⎭+. 由于()()()()22122222222162642828a a W W a a a a --=-=++++,所以,12W W -的符号由216a -决定 当4a >时,12W W >,此时,把a 单位的水平均分成2份后,清洗两次,残留的污渍较少 当4a =时,12W W =,此时,两种清洗方法效果相同当4a <时,12W W <,此时,用a 单位的水清洗一次,残留的污渍较少22.【解析】(1)()220,0x x f x x x ⎧+≥=⎨-<⎩,易知()f x 在R 上递增[)1,x ∃∈+∞,使()()min 2020f x a a f x a a --<⇔--<()120f a a ⇒--< ()12120a a a ⇒---<(ⅰ)当21a ≥,()12120a a a --≤<,满足题意(ⅱ)当()2221124510a a a a a <⇒--=-+<114a ⇒<<,即1142a << 综上上述,当14a >时,满足题意(2)()221,011,011,x mx x g x x mx x m x mx x m ⎧⎪--+≤⎪⎪=-+<<⎨⎪⎪+-≥⎪⎩1 当12m m ≤,即0m <≤时,()g x 在21,m ⎛⎫-- ⎪⎝⎭,,2m ⎛⎫+∞ ⎪⎝⎭递增,在2,2m m ⎛⎫- ⎪⎝⎭递减当()g x 有最小值,则需()21g m g ⎛⎫≤- ⎪⎝⎭())22144144021m m m m m ⇒-+-=-+-≤⇒-≤≤2 当12m m>,即m >对0x ≤,22m -≤-,此时()()min 01g x g ==对0x >,()g x 在0,1m ⎛⎫ ⎪⎝⎭递减,在1,m ⎛⎫+∞ ⎪⎝⎭递增.()min 2111g x g m m⎛⎫==< ⎪⎝⎭ 存在最小值.综上,当)21m ≥-时,()g x 在()1,-+∞上有最小值.。

【2020届】湖南省 长沙市 第一中学 高三数学第一次月考试题文

【2020届】湖南省 长沙市 第一中学 高三数学第一次月考试题文

- 1 -湖南省长沙市第一中学2020届高三数学第一次月考试题 文时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知i 为虚数单位,若复数2)1(1i z -+=,则=||zA. 1B. 2C. 2D. 52.已知集合A={21|≤≤-x x },B={2,1,0},则=B A IA. 21|≤≤-x xB. {2,1,0}C. {2,1-}D. {1,0}3. 通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:附表:随机变量:))()()(()(22d b c a d c b a bc ad n K ++++-=- 2 -经计算,统计量K 2的观测值4.762,参照附表,得到的正确结论是 A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关” B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关” C.有97.5%以上的把握认为“爱好该项运动与性别有关" D.有97.5%以上的把握认为“爱好该项运动与性别无关”4. 已知向量b a b k a +=-=),2,2(),2,(为非零向量,若)(b a a +⊥,则实数k 的值为A.0B.2C.-2D.15. 美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括了明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成60°角,则该椭圆的离心率为A.21 B.22 C. 23 D. 316.若21212,)21(,8.0log -===c b a π,则有A. a<b<cB. a<c<bC. c<a<bD. b<c<a7.函数21)(x exx f -=的图象大致是- 3 -8.如图,点A 为单位圆上—点,3π=∠xOA ,点A 沿单位圆逆时针方向旋转角α 到点B )22,22(-,则=αsin A.462+- B. 462- C.462+ D . 462+- 9. 已知函数MOD 是一个求余函数,记MOD(m ,n)表示m 除以n 的余数,例如MOD(13,3) = 1,下图是某个算法的程序框图,当输入m 的值为27时,则输出i 的值为A.2B.3C.4D.510.在平面直角坐标系xOy 中,已知圆C:0822=-++m x y x 与直线012=++y x 相交于A ,B 两点,若△ABC 为等边三角形,则实数m 的值为A. 11B. 12C.-11D.-12- 4 -11. 设椭圆C :)0>,0>(12222b a by a x =+的两个焦点分别为F1,F2,22||21=F F ,P 是C 上一点,若a PF PF =-||||21,且31sin 21=∠F PF ,则椭圆C 的方程为A. 13422=+y xB. 13622=+y xC. 14622=+y xD.12422=+y x 12.已知函数x x f x f sin 2)()(+-=,又当0≥x 时,1)('≥x f ,则关于x 的不等式)4(sin 2)2()(ππ-+-≥x x x f x f 的解集为A. ),4[+∞πB. ),4[+∞-πC.)4,[π-∞ D. )4,[π--∞二、填空题:本大题共4小题.每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

" "
(!#/-
*!/!.#-
+!/!/#-
,!/#.'-
" '!设#%%则)##&!*是)01#&$*的 "
"
(!充分不必要条件
*!必要不充分条件
" "
+!充要条件
,!既不充分也不必要条件
" "
)!已知向量&!!%$"%&!/'%)"的夹角为%则2-3#等于
" "
(!/#4%
*!#4%
+!/##)%
数学!理科"试题!一中版"!第!4页!共"页"
!二"选考题#共!$分!请考生在##$#'两题中任选一题作答%如果多做%则按 所做的第一题记分!
##!!本小题满分!$分"选修)/)#坐标系与参数方程 在极坐标系中%曲线/ 的极坐标方程为&6852!以极点为原点%极轴为 # 轴 的 正 半 轴 建 立 平 面 直 角 坐 标 系%直 线 : 的 参 数 方 程 为
程,!7&%7(的结果精确到$:!"
!'"根据第!#"问所求的回归方程%试估计收费标准为多少时%!$$天销售
额8 最大+ !!$$天销售额8&!$$;入住率;收费标准#"
9
参考数据#7(&,2&!#9,$,/9#($%7&&$/7((#%#&#)$%2%#,#&'6%$$$%
2#,#/9##
,&!
,&!
!一"必考题#共6$分! !4!!本小题满分!#分"
已知+"%/ 的内角"%%%/ 的对边分别为&%(%)%满足885522%".(& &#()且
(&)! !!"求角 %, !#"求+"%/ 周长的最大值!
数学!理科"试题!一中版"!第!'页!共"页"
!"!!本小题满分!#分" 已知四棱锥 1/"%/. 的底面"%/. 是等腰梯形% "%//.%"/$%.&0%1%0"/%1"&1%&"%& #/.&#槡#%"/&'! !!"证明#平面 1%.0平面 "%/., !#"点3 是棱1/ 上一点%且03/平面1".%求二面 角3/0%/" 的正弦值!
#
!$$
!%$#$$ຫໍສະໝຸດ '$$)%$
6
7$
6%
)%
'$
#$
!!"若从以上五家)农家乐*中随机抽取两家深入调查%记为)入住率*超
过$!6的农家乐的个数%求的概率分布列, !#"令'&03#%由散点图判断7$&7(#.7& 与$7&7('.7& 哪个更合适于此模
型!给出判断即可%不必说明理由"+ 并根据你的判断结果求回归方
% *
#'4,6$
槡"!234($
0 *
#4,6($(4,6234$
!( (0 *!故
选 1! *!7!解析-($(%0 #(#'$.3/%"8'.3/%9$(#)$.3/0(0'.3/0":'(#'(最小#
-'$.3/%"8$"+.3/%:#)$.3/0(0$"+.3/0:#-.3/0:#.3/%:#''')!故选 7!
取%1 的中点2#连接$2#02#则$2)%1#02)%1#
数学理科试题参考答案一中版!" !
分别取*$%1 与*0%1 的外心3#4#分别过3#4 作平面$%1 与平面0%1 的垂线# 相交于5#则5 为四面体$!%10 的球心#
,!##)%
"
" "
'
%!设&&051'!"%(&051)#)%)&#) %则&%(%)的大小关系是
"
(!&&(&)
*!&&)&(
+!(&)&&
,!)&(&&
" "
6!函数*!#"& !'#.'/# "03###的图象大致为
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
班!级!
学!校!
数学!理科"试题!一中版"!第! 页!共"页"
数学!理科"试题!一中版"!第!"页!共"页"
炎德英才大联考长沙市一中届高三月考试卷!一"
数学理科参考答案
选择题
"!#!解析由幂函数"$#%#"$# 的图象可以知道#它们有%个交点!!"#!""#!&#&"#!"#""#
'集合$"% 有%个元素!故选 #!
(!)!解析由&$&$*可得'(+!"!'"($*#解得'$!"或'$(#'&$!"+(,或&$(!,#
.%&./&!%当三棱锥 ./"%/ 的体积取到最大值时%球0 的表面积为
(!%'
*!#
+!%
,!#$'
数学!理科"试题!一中版"!第!#页!共"页"
二$填空题#本大题共)小题%每小题%分%共#$分!把各题答案的最简形式 写在题中的横线上!
!'!已知定 义 在 上 的 奇 函 数 *!#"满 足 *!#.'"&*!#"%且 当 #%
4!运行如图所示的程序框图%若输出的+ 的值为!$!% 则判断框中可以填
(!,'#$$+
*!,(#$!+
+!,'#$#+
,!,'#$'+
"!中 国 有 十 二 生 肖%又 叫 十 二 属 相%每 一 个 人 的 出 生
年份对应了 十 二 种 动 物 !鼠$牛$虎$兔$龙$蛇$马$
羊$猴$鸡$狗$猪 "中 的 一 种!现 有 十 二 生 肖 的 吉 祥 物各一个%甲$乙$丙 三 位 同 学 依 次 选 一 个 作 为 礼
*!函数-!#"的图象关于直线#&/!#对称
! " +!函数-!#"在
% 6#
上单调递减
! " ,!函数-!#"在 $%6 上的最大值是!
!$!若*!#"&03# 与-!#"&##.'#.& 两个函数的图象有一条与直线$&# 平行的公共切线%则&&
(!/!
*!$
+!!
,!'
& !!!设函数*!#"&
数学!理科"试题!一中版"!第!)页!共"页"
!7!!本小题满分!#分"
如图%在平面直角坐标系#0$ 中%椭圆 /#
## &#
.$(##
&!!&'('$"的
左$右





4!%4#%1 为椭圆/ 上一点%且 14# 垂直于
# 轴%连结14! 并延长交椭圆于另一点 5% 设1-,5&4-!,5!
学!号!
姓!名!
" "
炎德英才大联考长沙市一中#$#$届高三月考试卷!一"
"
"
" "
数!学!理科"
"
" "
长沙市一中高三理数备课组组稿
" "
时量#!#$分钟!!!满分#!%$分
" "
得分!!!!!!
"
"
" "
一$选择题#本大题共小题%每小题分%共分!在每小题给出的四
"
个选项中%只有一项是符合题目要求的!
:!7!解析函数*#是偶函数#当#(&#"时#*##&#故选 7!
;!1!解析程序的功能是计算+$"4,6
(
+%4,6%(+*4,6*(+;4,6;(+($"!%+*!;+(#
而"&"$"+*&5($"!%+*!;+9+(!"99+(&"#
相关文档
最新文档