地下洞室围岩稳定性分析
地下气库(LPG)洞室围岩稳定性数值分析
目前应用广泛 的弹塑性模 型主要 有 : 莫 尔一 基于 库伦 屈服 准则 的库 伦模 型 ( ol )德鲁 克一 C u mb 、 o 普拉 格 ( rc— Duk ePae) 型 、 桥 ( a r g ) 型 、 德 ( ae 模 r rgr模 - 剑 C mbi e 模 d 拉 Ld) 型 、 德一 肯 ( aeD na ) 型 等 。 摩 尔一 伦 屈 服 拉 邓 L d— u cn 模 库
挖过 程及 开 挖后 洞室 围岩 的 内力 和 变形 将 怎样 变 化 是 未知 的 , 而造 成 施 工 时 的 风 险 。有 限元 法 作 为 一 种 从 强有 力 的数值 分 析 方 法 , 已经 被 广 泛 地 应 用 于 许 多 工 程分析 与 模拟 中 [2, 11它不仅 可 以求 出土 体 中各 点 的应 -
地下气库 ( P 洞室 围岩稳 定性 数值 分析 L G)
刘红 刘 王秀 王本洲 军 , 泉维 , 海 , 2
( .中国海洋大学海洋环境与生态教育 部重 点实验室,山东 青岛 2 6 0 ; . 1 6 1 0 2 青岛市黄岛 区国土资源局 ,山东 青岛 2 6 0 ) 6 5 0
受压情况, 为避免 2种材料的重叠, 计算 时, 常取 1 个 很大 的法 向刚 度 系数 , 样 就 不 可避 免地 带 来 一 定 的 这 误差 ( 特别 是应 力 ) [ 。而 Dsi ea等人提 出的薄 四边形 单 元则避免了摩擦型接触面单元的这一缺陷, 可以较好的 反 映法 向变形和 切 向变形 以及 应 力的 传递 _。 因此 , 8 J 采 用德塞斯 ( e ) 四边形 单元对接触 面进行模拟 。 Ds 薄 k 接触 面 变形 的数 学 模 型 : si 元 与普 通 单 元 一 Dea单 样 在平 面问题 中有 3 应 力分 量 和 3个 应 变 分 量 。对 个 划入有厚度接触单元内的接触面和其附属 的岩土体来 说 , 形分 为 两部 分 : 变 一是土 体基 本 变形 { e }它与一 △ , 般土体的变形一样 ; 二是破坏变形, 包括滑 动破坏和接 触破坏 {e }总的变形为两者的向量叠加, : △ 2, 即 { e ={ e } △ 2 △ } △ 1 +{ e } () 8 基本 变 形 所 采 用 的 本 构 关 系 与 土 体 其 他 单 元 相 同, 其应力 应变关 系不再重 复。破坏变形对接触面上 的一点来说, 它们的变形都是刚塑性的, 即破坏前接触 面上 无 相 对 位 移 , 旦 破 坏 , 裂 或 错 动 , 对 位 移 不 一 张 相
地下厂房洞室群围岩稳定性方法研究
地下厂房洞室群围岩稳定性方法研究地下厂房洞室群围岩稳定性是指地下厂房洞室周围岩体的稳定性问题。
地下厂房洞室通常是为了满足人们的生产、生活和储存需求,因此洞室群围岩的稳定性对于地下厂房的长期运行、人员安全和资产保障至关重要。
在研究地下厂房洞室群围岩稳定性时,需要考虑以下几个方面的问题:首先,需要分析洞室群围岩的物理力学特性,包括岩石的强度、变形特性和破坏模式。
通过适当的岩石力学试验和野外观测,可以获取岩石的力学参数,如抗压强度、抗拉强度、抗剪强度等。
这些参数对于稳定性分析和设计起着重要的作用。
其次,需要考虑工程参数的影响,如洞室尺寸、埋深和周边岩性的条件。
洞室尺寸对岩体稳定性有直接影响,尤其是高宽比较大的洞室,容易导致岩体的变形和破坏。
洞室的埋深也会影响岩体的应力状态,从而影响岩体的稳定性。
周边岩性的条件决定了岩体的强度和变形特性,需要对周边岩性进行综合分析。
此外,岩体的结构面、节理和隐伏断层等地质构造的影响也需要考虑。
岩体中存在的结构面和节理体,会导致岩体的开裂和滑动,对岩体的稳定性产生不利影响。
隐伏断层的活动可能导致岩体的滑动和破坏,需要对其进行综合分析和评估。
最后,需要进行数值模拟和力学分析,包括有限元分析、离散元分析和解析方法等。
通过数值模拟可以模拟地下厂房洞室群围岩的应力-应变状态,预测岩体的破坏形态和稳定性。
数值模拟还可以进行灵敏度分析,评估不同参数对岩体稳定性的影响,为优化设计和工程措施提供依据。
综上所述,地下厂房洞室群围岩稳定性的研究是一项复杂的工作,需要考虑岩石力学特性、洞室尺寸与周边岩性、地质构造和数值模拟等多个方面的问题。
通过综合分析和评估,可以为地下厂房洞室的设计和建设提供科学依据,保障其长期稳定和安全运行。
8-1 地下洞室围岩稳定性分析
洞顶位移底鼓在岩石地下工程中,受开应力状态发生改二、地下洞室开挖所产生的岩体力学问题向新的平衡应力状态调整,应力状态的调整过程,称(redistribution of stress)。
洞顶位移底鼓由于洞径方向的变形远大于洞轴方向的变形,当洞室半径远小于洞长时,洞轴方向的变形可以忽略不计,因此地下洞室问题可视为平面应变问题深埋于弹性岩体中的水平圆形洞室,其围岩重分布应力按柯西课题求解(1)柯西课题概化模型无限大弹性薄板,其边界上受到沿方向的外力作用,薄板中有一半径为的小圆孔。
x p R 弹性薄板柯西课题分析示意图pp 1.深埋圆形水平洞室围岩重分布应力以圆的圆心为原点取极坐标,由弹性理论,若不考虑体积力,可求得薄板中任一点的应力及其方向。
(,)M r θ弹性薄板柯西课题分析示意图p p若应力函数为φ22211r r r r φφσθ∂∂=+∂∂径向应力:22rθφσ∂=∂环向应力:2211r r r r θφφτθθ∂∂=−∂∂∂剪切应力:(2)柯西课题解弹性薄板柯西课题分析示意图p p边界条件:()cos 222r r b p pσθ==+()sin 22r r b pθτθ==−0b R >>()()0r r r b r b θτσ====0b R =0b R >>vσxθMvσ0R r弹性薄板pp柯西课题力学模型中极坐标轴与力的作用方向相同。
因此,需进行极角变换。
2420002423411cos22v r R R R r r r σσθ⎡⎤⎛⎞⎛⎞=−−+−⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦240024311cos22v R R r r θσσθ⎡⎤⎛⎞⎛⎞=+++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦420042321sin22v r R R rr θστθ⎛⎞=−+⎜⎟⎝⎠2)由柯西课题解得到作用下圆形洞室围岩重分布应力v σ22θθπ→−2θσσ=④随着距离增大,增大,减小,并且都逐渐趋近于天然应力。
大型地下洞室围岩稳定性分析及实践探讨
。建筑 与工程 0
S I N E E H O O YI F R TO CE C &T C N L G O MA I N N
20 0 8年
第 2 期 l
大型地下洞室围岩稳定性分析及实践探讨
(. 1河海大 学 土木 工程 学院 江苏
冯 科锋 ’ 杨师 东 郭纹华 南京 2 0 9 ; . 1 0 8 2 中南 勘测 设计研 究 院
形情况, 得尤为重要。 显 本 文 分 析 了某 电站 地 下 厂 房 开 挖 过 程 中 的 围 岩 变 形 特 征 , 论 了 讨 围岩 支 护 的 合 理 时 间 及 重 要 性 , 类 似 洞 室 的 设 计 、 挖 提 供 有 效 的 为 开 参考 。
2 工程 概 况 .
21工 程 简 介 . 该 水 电 站 装 机 容 量 6 0 MW ,枢 纽 建 筑 物 主要 有混 凝 土 重 力 坝 、 00
影 响 。
图 1 主 厂 房 轴 线 地 质 剖 面 示 意 图
3 围岩 变 形 监 测 、 形 时 效 特 征 分 析 及 其 回 归 曲 线 . 变
3 1 形 监测 .变
图 3 M 4断商各深度围岩变形一 时间曲线 4
髑
岩 体 作 为 一种 非 线 性 介 质 . 室 开 挖 后 围 岩 中发 生 的 物 理 、 学 变 形 趋 势 会 越 来越 平 缓 . 现 了水 利 工 程 地 下 洞 室 开 挖 的 洞 室 群 效要 有 两 大 类 : 是 由岩 体 结 构 面 和 开 挖 面 组 合 形 成 一 的局 部 块 体 稳 定 性 问 题 口 另 一 类 是 由岩 体 强 度 和 岩 层 层 面 、 间 破 碎 : 层 带 或 断 层 控 制 的洞 室 整 体 稳 定 性 问 题 。 于 大 型地 下 洞 室 跨 度 一 般 较 由 大 , 深 较 深 , 以 施 工 难 度 较 高 , 开 挖 的 过程 中 , 时 掌 握 围岩 的变 埋 所 在 及
工程地质讲稿-第9章:地下洞室围岩稳定性
地下水作用
地下水压力、渗透性等对围岩 稳定性产生影响,特别是在软
弱岩体中更为显著。
围岩稳定性评价方法
工程地质分析法
通过对地质勘察资料进行综合 分析,评估围岩的稳定性和可
能发生的不良地质现象。
数值分析法
利用数值计算方法模拟围岩应 力分布、变形和破坏过程,为 工程设计和施工提供依据。
谢谢观看
重要性
围岩稳定性是地下洞室工程设计 和施工中的关键问题,直接关系 到工程的安全性、经济性和可行 性。
围岩稳定性影响因素
01
02
03
04
地质条件
包括岩体的物理性质、岩层结 构、节理裂隙发育程度和地下
水状况等。
洞室设计
洞室的跨度、形状、埋深、支 护方式等设计因素岩的扰动程度和 支护结构的及时性有直接影响
控制地下水压力
设置排水系统
在洞室周边设置排水系统,以降 低地下水压力和防止涌水。
采取止水措施
在洞室周边采取止水措施,如注 浆、粘土填塞等,以防止地下水
渗入。
合理选择施工方法
根据地下水压力情况,选择合适 的施工方法,如逆作法、分部开 挖法等,以减少对围岩稳定性的
影响。
监测与预警系统
设置监测点
在洞室周边设置监测点,对围岩位移、变形、应 力等情况进行实时监测。
工程地质讲稿-第9章地下洞室围岩 稳定性
目录
• 地下洞室围岩稳定性概述 • 地下洞室围岩应力分析 • 地下洞室围岩破坏模式与机理 • 提高地下洞室围岩稳定性措施 • 地下洞室围岩稳定性工程实例
01
地下洞室围岩稳定性概 述
定义与重要性
定义
地下洞室围岩稳定性是指围岩在 一定时间内保持其自身结构完整 性和稳定性的能力。
围岩稳定性评价总结
◈
◈
(5)长引水隧洞的水力学问题研究
长引水隧洞水力过渡过程的试验研究;研究长引水 隧洞不衬砌或喷砼段减少糙率的措施;长引水隧洞 调压室的设计。
补充:洞室位址选择的地质论证
一、围岩稳定性分析 地 质 方 面 影 响 因 素 岩性-影响洞室稳定性最基本的因素 岩体结构-对岩体变形破坏起控制作用 天然应力状态-取决于垂直洞轴的水平应力 σH、天然应力比系数λ 地质构造-关注断层破碎带、裂隙密集带、 褶皱轴部 水文地质条件-影响围岩应力状态及围岩强度
建筑物特性--
施工方法--
调整与再分配。
支护方法— 临时支护、永久性支护;半衬、全衬。
影响—围岩中的应力重分布→变形→围压稳定性。
二、洞室位址选择论证
按工程特点与设计要求,考虑岩性、构造、地
形、水文等因素综合评判。
无需衬砌 自稳性好 易施工
选择稳定性好的岩体→
1、地形-
洞口-山体厚、施工条件好,岩坡 陡壁;避开地表径流;避开可能滑 动的坡体;避开断层破碎带。
第四章 地下工程
4.6 围岩稳定性评价
第四章 地下工程
第1节
概述
第2 节
第3节 第4节 第5节 第6节 第7节
围岩应力分布
围岩变形破坏 围岩分类 围岩压力 围岩稳定性评价 地下工程超前预报
第6节
围岩稳定性评价
围岩稳定性是地下建筑工程研究的核心 一般采用定性与定量结合的方法进行。
2、岩体结构⑴ 岩体性状-
对岩体变形破坏起控制作用。
松散结构及碎裂结构岩体稳定性最差;薄层状岩体次之; 厚层状岩体稳定性最好
地下洞室围岩稳定性分析方法综述
问题,然而,由于岩石力学的研究对象是复杂的岩土体材料,一 般均具有非线性、非连续性、非均质及多相性等特点,尤其是天 然岩体,由于其赋存的特殊性,它被各种地质构造(如断层、节 理、层理等)切割成既连续又不连续的形态,从而一般均形成一 个从松散体到弱面体再到连续体的材料序列,而且,天然岩体所 涉及的力学问题是一个多场(应力场、温度场、渗流场)、多相 (气相、固相、液相)等影响下的复杂耦合问题,再加上工程开 挖和外部环境的影响,致使许多情况下,我们不能获得较为准确 的力学参数和本构模型。“力学参数和本构模型不准”已成为岩 石力学理论分析和数值模拟的“瓶颈”问题。
值或变形速率判据用于软弱围岩往往时效不佳,根据牛顿运动 定律,物体从运动转变为静止状态的必要条件是,加速度由负 值渐趋为零。因此,围岩稳定性判据应以加速度为主,辅以变 形值或变形速率,据此提出了变形速率比值判据。
然而采用不同的失稳判据得到的稳定安全度一般是不相同 的,如何建立一个具有理论基础的、可得到唯一解的失稳判据 是今后需要解决的问题。
2存在的问题21参数及本构岩石力学参数和本构模型是岩石力学研究中最核心的两个问题然而由于岩石力学的研究对象是复杂的岩土体材料一般均具有非线性非连续性非均质及多相性等特点尤其是天然岩体由于其赋存的特殊性它被各种地质构造如断层节理层理等切割成既连续又不连续的形态从而一般均形成一个从松散体到弱面体再到连续体的材料序列而且天然岩体所涉及的力学问题是一个多场应力场温度场渗流场多相气相固相液相等影响下的复杂耦合问题再加上工程开挖和外部环境的影响致使许多情况下我们不能获得较为准确的力
传统的岩石力学理论是以岩石的加载试验(包括室内及现 场原位试验)为基础,引入成熟的弹塑性理论等建立起来的而 地下洞室岩体开挖后的实际情况是以卸荷为主,且往往有较大 的拉应力区出现。显然传统的岩石力学理论统一采用加载试验 获取的岩体力学参数,应用适合于加载情况的力学分析软件进 行分析与计算,得到的变形及稳定分析结论与现场的实际情况 必然有巨大区别,甚至连趋势都无法反映[4]。
工程地质 第七章 地下洞室围岩稳定性的工程地质分析
处围岩的应力降低,加之新开裂处岩体在 水和空气影响下加速风化,岩体向洞内产 生塑性松胀。这种塑性松胀的结果,使原 来由洞边附近岩石承受的应力转移一部分 给邻近的岩体。因而邻近的岩体也就产生 塑性变形。这样,当应力足够大时,塑性 变形的范围是向围岩深部逐渐扩展的。由 于这种塑性变形的结果,在洞室周围形成 了一个圈,这个圈一般称为塑性松动圈
机理:破碎、松散岩体在重力、渗压、动荷载作用下产生塌落 产生条件:
1) 断层破碎带、裂隙密集带、槽状、囊状风化带、溶洞堆积物; 2)多位于洞顶→边墙.
溶洞堆积物
⑸松软岩体
局部塌方
表现形式:内鼓、缩径、局部挤出、剪切、滞后性。 机理:塑性变形、膨胀、流变、蠕变。
产生条件:
1)岩性软弱:形成年代新、胶结差;
—— 松软或破碎岩体
r
工程类比法
7.4 围岩工程地质分类
BQ的分类方法在第四章已经介绍过了。 在这具体提出修正系数的取值
[BQ]=BQ-100(K1+K2+K3)
指:未对洞壁采取任何支护措施,围岩由变形发展至 破坏的时间
式中:t切向拉应力,切向压应力,Rt围岩的抗拉强度,Rb饱和抗压强度
•围岩的抗剪强度是否适应围岩的剪应力。 例:如图
K
F T
洞顶块体Q1和洞壁块体Q2的稳定性系数分别为
K 2(c1l1 c2l2)(ctg ctg)/ L23
K (Q2 costg4 c4l4 ) / Q2 sin
情况的工程 隧 洞 分 类●
无压隧洞(承受围岩压力、外水压力)
⑵ 弹性抗力 —— 一般指有压隧洞冲水后,围岩在内水压力作用 下产生压缩变形的同时对衬砌所形成的反力
浅谈城市人防地下工程洞室围岩的稳定性分析
一
断扩大 , 土地利用率越来越高, 在原 有地下建筑的上部 建造高层建筑己经屡见不鲜 , 由此引发的工程事故也越
来越 多 。可 见 , 强城 市 防 空 洞 围岩 稳 定 性 评价 工作 , 加 以期 采取合理 可靠 的处 理措施 , 到既保 证 上部建 筑 的 做
1 2 定量 分析 法 .
将上 式积 分 , 引进 边 界 条件 z 0d一q z 并 一 , ; —H,
()近似结构力学分析法 : 1
①按无 铰拱计 算 验 算 : 洞顶 呈 拱 形 时 , 无 铰拱 当 按 验算 , 据无 铰抛 物线拱 或 圆弧拱 计算 公式 求拱脚 和拱 根 顶 的支 座反 力和力矩 后 , 再求 出铰拱 最 小安 全厚 度 。 ②按 板 梁验算 : 当顶 板岩 层较 完整 、 强度 较高 、 层理 厚且 已知顶板 厚度 和 裂 隙切 割 情 况 时 , 可按 板 梁验 算 。 当跨 中有 裂缝 、 顶板 两端 支 座 处 的 岩 石 坚 固完 整 时 , 按
摘
要 : 市 中广泛存 在 的人 防地 下 工程给 城 市建设 带来 了工程 隐患 , 必要加 强洞 室 围岩 稳定性 评 城 有
价 工作 。在 综述 常 用的 围岩 稳定 性分析 方 法 的基 础上 , 举例说 明 了有 限元 分析在 此领 域的应 用 。
关键词 : 防地 T= 程 ; 室稳定性 ; 人 n 洞 有限元 中图分 类号 : 5 . 1 文献标 识 码 : 文 章编 号 :0 4 5 1 ( 0 7 0 - 0 2 - 0 U4 6 3 B 10- 76 20 )5 12 2
常常受到其适用性的限制 , 而且同一个模型计算出来的
结果差别很大。而数值模 拟分析方法具有考虑各种因
地下洞室围岩稳定性分析(DOC)
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
隧道开挖围岩稳定性分析
Sui dao kai wa wei yan wen ding xing fen xi
隧道开挖围岩稳定性分析
唐春琴
一、地形地貌 某隧道所在区海拔高程介于 93.05m ~ 640.1m 之间, 相对高差 547.05m,地层岩性主要为侏罗系中统自流井 组(J2z)、(J2z)及沙溪庙组侏罗系下统三叠系上统香溪 群(T3-J1x),岩性以砂岩、泥岩、砂质泥岩、粉砂岩, 局部夹薄层炭质页岩和炭质泥岩。
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
>11 <1 <0.6 变形小
7-11 1-2.5 0.6-1.6 轻微 477 18.08 13.11 12.64 1.43 1.04
5-7 2.5-5 1.6-3.2 中等
<5 >5 >3.2 严重
单元层代号 <1-3> <1-3>
二、软弱岩组稳定性
1. 软弱岩组工程地质特性
岩石的单轴抗压强度小于 30MPa 的岩层称为软岩,
软弱岩层是指强度低、孔隙度差、胶结程度大、受结构面
切割及风化影响显著。在隧道围岩压力的作用下产生显著
变形的工程岩体。软岩隧道围岩强度低,结构松软,易吸
水膨胀,因而围岩隧道变形大。隧道围岩含有大量的软弱
岩组如表 1。
2. 软弱岩组围岩变形分析
关于围岩是否会发生大变形以及变形量有多大,在有
支护压力、原地应力作用下隧道围岩的相对变形和掌子面
变形预测公式,计算公式如下 : εt(%)=0.15(1-pi/po)(σcm/Po)-(3Pi/Po+1)/(3.8Pi/Po+0.54)
第六节 地下洞室围岩应力分布和稳定性判别
第六节地下洞室围岩应力分布和稳定性判别
一、岩石受破坏规律和强度特性
初始围岩应力:自重引起或者地质构造运动引起
二、岩石的初始应力场—海姆假定
在岩体深处的初始垂直应力(由自重引起的)与其上覆盖的岩体重量成正比,而水平应力与垂直应力几乎相等。
自重产生的初始地应力:视岩体为表面水平的半无限体,无地质构造作用,则深度Z处由自重产生的垂直应力为:
式中,为岩石的容重。
都是主应力,且无侧向(水平向)变形:
式中, M —静止侧压力系数或泊松系数.
初始地应力的现场量测方法:应力解除法,应力恢复法.
三、地下洞室围岩应力的弹性理论
圆形洞室围岩应力的分布:开挖洞室的影响在3倍洞高之内。
判断围岩的稳定性:
(1)弹性理论: r<0, 出现拉应力, 洞顶不稳定, 需进行衬砌;
(2) 自然平衡拱理论
(3) 经验方法:围岩分类法(将岩石分为五类)。
水电站施工中地下洞室围岩稳定性分析
水电站施工中地下洞室围岩稳定性分析作者:严凯来源:《装饰装修天地》2018年第21期摘要:在水电站工程施工过程中,地下洞室过程中,为了保证施工质量,应当展开水电站地下洞室围岩稳定性的分析。
文章以实际工程为例,对水电站施工中地下洞室围岩稳定性进行了分析,以期优化施工效果。
关键词:水电站施工;地下洞室;围岩稳定性1 前言随着水电开发技术的日益成熟,大型水电枢纽工程的开发与建设受地区地形条件限制,多采用地下厂房式布置,进而形成了规模巨大的地下厂房洞室群,其洞室高边墙及洞室之间围岩的稳定性成为工程建设中成败的关键因素。
2 地下洞室围岩稳定性分析概述地下洞室的稳定性课题属于一项非线性力学问题,较为复杂,一般而言具有非均匀性、非连续性变形以及大位移等特征。
围岩稳定性的主要影响因素主要包括两个方面:天然地质条件以及工程因素。
天然地质条件方面涉及到初始地应力场、地质构造、地下水情况、围岩结构等;工程因素涵盖了洞室实际情况、洞室开挖施工、支护形式等。
近年来,岩石力学理论以及测试技术不断发展,电子计算机技术以及有限元方法得到了推广和应用,再加上科研工作者坚持不懈的努力,涌现出了许多新的研究方法,在岩体构造以及力学特征、地下围岩不稳定机理以及支护受力机制方面的研究,新设计理论以及方法等方面的研讨都取得了可喜的成果,为地下围岩的稳定性分析与评价提供了支持和途径。
然而作为地下工程的根源问题之一的围岩失稳分析,现阶段尚没有构成统一理论,针对地下围岩稳定性进行分析,主要是通过分析与考虑具体的地质条件和工程的情况要求,结合多种方法进行综合评价,因此有必要总结目前的地下洞室稳定性分析,以助力工程实践中可以进行科学判断。
3 地下洞室围岩稳定性分析思路洞室围岩稳定性分析是多学科理论方法、专家经验、监测量与计算机技术综合集成的科学。
洞室失稳是一个极其复杂的力学过程,在实际工程中更是受到了许多因素的影响。
通常伴随着非均匀性、非连续性变形和大位移,是一个高度非线性的问题。
地下洞室围岩稳定性分析与评价
地下洞室围岩稳定性分析与评价地下洞室围岩稳定性是地下工程中非常重要的问题之一,对地下工程的安全和经济运行具有重要意义。
地下洞室围岩稳定性的分析与评价可以帮助我们判断洞室围岩的稳定程度和寿命,为洞室工程的设计和施工提供可靠的依据。
首先,对地下洞室围岩的力学性质进行测试和分析。
这包括围岩的弹性模量、抗压强度、抗剪强度等力学参数的测定。
通过测试和分析得到的力学参数可以为后续的围岩稳定性分析提供基础数据。
其次,对围岩的岩性和结构进行详细的地质调查和研究。
通过对围岩的地质构造、结构洞的位置、破碎度和节理特征等进行详细的调查和研究,可以了解围岩的变形和破坏机理,为后续的稳定性分析提供依据。
然后,进行数值模拟和分析。
根据实际工程情况,可以使用有限元方法或者其他数值模拟方法对围岩的稳定性进行模拟和分析。
通过模拟和分析,可以得到围岩的应变、应力分布以及稳定性指标,进一步评价围岩的稳定性。
最后,根据分析和评价结果,对围岩稳定性进行评价。
根据实际工程要求和标准,可以将围岩的稳定性进行分级评价,确定围岩的稳定等级,并提出相应的建议和措施,以提高围岩的稳定性。
在地下洞室围岩稳定性分析与评价过程中,需考虑不同因素对围岩稳定性的影响。
例如,水文地质条件、地应力状态、围岩的强度参数、地震和地下水位变化等因素都会对围岩的稳定性产生重要影响,需要对这些因素进行综合分析和评价。
总之,地下洞室围岩稳定性的分析与评价是地下工程设计和施工的重要环节。
通过科学的测试、调查、分析和数值模拟,可以全面、准确地评价围岩的稳定性,为地下洞室工程的建设提供可靠的基础。
破碎岩体中修建地下洞室群的围岩稳定性分析
条, 其特性详见表 1r级小断层和挤压面发育共揭 ; f
露 5 余条 , O 它们一般具 以下 四个特征 : ①除流面为
中缓倾角外 , 以陡倾角为主; 以压扭性 的复合结构 ② 面为主 , 错距小 ; ③产状变化大, 破碎带宽度多变 , 常
为主 , 由地表向深处风化逐渐减弱 , 受构造、 地形影 响 , 状风 化 和差 异风 化特 征 明显 。在 断层 带 、 压 槽 挤 带、 节理密集带及其交汇部位附近 , 岩体风化普遍较
2 工 程地质条件
2 1 基本 地质 条件 .
工程区处于青藏滇缅印尼歹字型构造体系中部 东支、 云南山字型构造 体系和纬 向构造体系的复合
具 尖 灭再 现特 征 ; ④破 碎 带物 质 以碎块 岩 、 裂岩 为 碎
主, 内岩体多发生高岭土化蚀变 , 带 断层泥薄而不连
续 。工程 枢纽 区地 应力 为 中低 地应 力场 。 枢纽 区大 部地 段基 岩 裸露 , 盖层厚 度 较小 , 覆 崩
塌、 坍滑、 泥石流等不 良物理地质现象不发育 , 岩体 风化、 卸荷作用较强烈 。岩体风化以表层均匀风化
1 工程概况
漫湾 二 期 装 机 1 0 ×30MW, 程 枢 纽 建 筑 物均 工
系松散层所覆盖 ; 地层 、 岩性为三叠系中统忙怀组第 二段第三层(2 ) T 的流纹岩 , 局部夹岩脉; 为一倾
向山内的单斜构造。工程枢纽区出露 Ⅱ 级断层结构 面有 7条 、 Ⅲ级 断 层 1 8条 , Ⅳ级 小 断 层 和 挤 压 面 发 育, 其发育 的平均间距为 8 1m 节理发育至极发 ~1 ;
压力 钢管道 、 主厂 房 运输 洞 、 风 洞 、 水 调 压 井 通 排 尾 风洞 、 出线 洞 、 房一 、 、 厂 二 三层 排 水 洞 、 5~7号施 工
地下洞室围岩稳定性分析
第八章地下洞室围岩稳定性分析第一节概述地下洞室(underground cavity)是指人工开挖或天然存在于岩土体中作为各种用途的构筑物。
从围岩稳定性研究角度来看,这些地下构筑物是一些不同断面形态和尺寸的地下空间。
较早出现的地下洞室是人类为了居住而开挖的窑洞和采掘地下资源而挖掘的矿山巷道。
如我国铜绿山古铜矿遗址留下的地下采矿巷道,最大埋深60余米,其开采年代至迟始于西周(距今约3000年)。
但从总体来看,早期的地下洞室埋深和规模都很小。
随着生产的不断发展,地下洞室的规模和埋深都在不断增大。
目前,地下洞室的最大埋深已达2 500m,跨度已超过30m;同时还出了多条洞室并列的群洞和巨型地下采空系统,如小浪底水库的泄洪、发电和排砂洞就集中分布在左坝肩,形成由16条隧洞(最大洞径14.5m)并列组成的洞群。
地下洞室的用途也越来越广。
地下洞室按其用途可分为交通隧道、水工隧洞、矿山巷道、地下厂房和仓库、地下铁道及地下军事工程等类型。
按其内壁是否有内水压力作用可分为有压洞室和无压洞室两类。
按其断面形状可分为圆形、矩形、城门洞形和马蹄形洞室等类型。
按洞室轴线与水平面的关系可分为水平洞室、竖井和倾斜洞室三类。
按围岩介质类型可分为土洞和岩洞两类。
另外,还有人工洞室、天然洞室、单式洞室和群洞等类型。
各种类型的洞室所产生的岩体力学问题及对岩体条件的要求各不相同,因而所采用的研究方法和内容也不尽相同。
由于开挖形成了地下空间,破坏了岩体原有的相对平衡状态,因而将产生一系列复杂的岩体力学作用,这些作用可归纳为:(1)地下开挖破坏了岩体天然应力的相对平衡状态,洞室周边岩体将向开挖空间松胀变形,使围岩中的应力产生重分布作用,形成新的应力状态,称为重分布应力状态。
(2)在重分布应力作用下,洞室围岩将向洞内变形位移。
如果围岩重分布应力超过了岩体的承受能力,围岩将产生破坏。
(3)围岩变形破坏将给地下洞室的稳定性带来危害,因而,需对围岩进行支护衬砌,变形破坏的围岩将对支衬结构施加一定的荷载,称为围岩压力(或称山岩压力、地压等)。
第6及7章地下工程围岩稳定性分析
第6、7章 地下工程围岩稳定性分析学习指导:本章主要介绍了两部分内容:(一)山岩压力与围岩稳定性分析,(二)有压隧洞稳定性分析。
前部分介绍了围岩应力重分布,地下洞室脆性围岩和塑性围岩的变形破坏形式,影响地下工程岩体稳定的因素,着重介绍了山岩压力与围岩稳定性分析方法,其中包括山岩压力的概念、影响因素,太沙基理论;后部分重点介绍了围岩内附加应力的计算、有压隧洞围岩和衬砌的应力计算。
重 点:1 地下洞室开挖引起的围岩应力重分布2 地下洞室围岩的变形破坏3 地下工程岩体稳定性的影响因素4 洞室围岩稳定性分析6.1 地下洞室开挖引起的围岩应力重分布由于在岩体内开挖洞室,洞室围岩各质点的原有应力的平衡状态就受到破坏,各质点就要产生位移调整,以达到新的平衡位置。
岩体内某个方向原来处于紧张压缩状态,现在可能发生松胀,另一个方向可能反而挤压的程度更大了。
相应地,围岩内的应力大小和主应力方向也发生了改变,这种现象叫做围岩应力重分布。
围岩应力重分布只限于围岩一定范围内,在离洞壁较远的岩体内应力重分布甚微,可以略去不计。
地下开挖引起的围岩变形是有一定规律的。
变形终止时围岩内的应力就是重新分布的应力。
这个重新分布的应力对于评价围岩的稳定性具有重要意义。
为了便于说明起见,我们在这一节中对于最简单的条件(即在连续的均质的各向同性的岩体内开挖圆形隧洞,而且岩体的侧压力系数10=K ,即静水压力式的初始应力状态)下的围岩应力重分布问题,作定性分析,以便对于应力重分布的情况有一概念。
如图6-1所示,设岩体为连续的、均质的以及各向同性的,其侧压力系数为10=K ,亦即岩体的初始应力状态为静水压力式的。
此外,洞室的长度远较横截面的尺寸为大,所以可作为平面应变问题来研究。
在地下开挖以前,岩体内任一点A 的应力,即等于该点的自重应力v p ,而且由于10=K ,所以通过该点任何方向的应力都是v p 。
如果用极坐标来表示该点的应力状态,则该点的应力为:v r p =0σv p =0θσ式中 0r σ 岩体的径向应力;0θσ 岩体的切向应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下洞室围岩稳定性分析
在进行地下洞室围岩稳定性分析时,一般需要考虑以下几个主要因素:
1.岩层的力学性质:岩层的力学性质是岩石稳定性的基础。
要进行稳
定性分析,首先需要获取岩层的力学参数,如岩石的强度、弹性模量和剪
胀性等。
通常可以通过室内试验、现场调查和实测等方法获得这些参数,
或者借助已有的类似工程的资料进行评估。
2.地下水:地下水是地下洞室稳定性分析中重要的一项因素。
地下水
对围岩的稳定性产生的主要影响是增加孔隙水压,降低岩层的有效应力,
促使岩体产生破坏。
因此,需要充分考虑地下水对岩层的影响,包括水位
高度、水质状况、渗流特性等。
3.岩体结构:岩体的结构对于岩层稳定性具有重要影响。
岩体的结构
主要表现为节理、裂隙、岩体层理等。
这些结构特征对洞室的稳定性有直
接影响,形成控制洞室稳定的主要因素之一、因此,在进行稳定性分析时,需要对岩体的结构特征进行详细调查和分析,选择合适的建模方法进行模拟。
4.洞室开挖方式和支护措施:洞室的开挖过程和支护措施对围岩稳定
性有着直接的影响。
开挖过程中,洞室周围会受到剪切应力和变形等影响,进而对围岩稳定性产生影响。
因此,在稳定性分析中需要考虑洞室开挖方
式和支护措施的影响,选择合适的岩体应力场和支护材料。
在进行地下洞室围岩稳定性分析时,常用的方法包括力学分析法、数
值模拟法和现场监测法等。
力学分析法通过分析力学参数和地质参数,计
算岩体的稳定系数,从而评估围岩的稳定性。
数值模拟法通过建立数学模型,采用有限元或边界元方法,模拟洞室周围围岩的变形和破坏过程,预
测洞室的稳定性。
现场监测法是指通过安装监测点,对洞室周围的围岩变形和破坏进行实时监测,从而评估围岩的稳定性。
综上所述,地下洞室围岩稳定性分析是一个复杂的工程问题,需要考虑多个因素的综合影响。
只有充分了解地下洞室周围的地质和力学条件,选择合适的分析方法和模型,才能有效评估围岩的稳定性,并制定出合理的支护措施,确保地下洞室的安全和持续稳定。