五年级奥数计算专题讲义

合集下载

五年级奥数经典讲义第9讲通用版

五年级奥数经典讲义第9讲通用版

五年级奥数经典讲义第9讲通用版一、教学目标1、学习复杂平均数应用题;2、初步认识构造法,能够解决相关题目。

二、知识体系 工程问题浓度问题应分数应用题牛吃草问题应用题 (五年级)盈亏问题年龄问题还原问题归一问题平均数问题植树问题鸡兔同笼应用题 (三、四年级)三、知识要点1、平均问题:平均问题是把若干个大小不等的数,在总量不变的条件下,通过移多补少,使它们成为相等的几份,求其中的一份是多少。

平均数不是一个真实的数,它反映一组数据的总体情况,不能反映某一个具体的数据。

解平均数问题,关键是要找准总数量及对应的总份数。

平均问题的数量关系式:①总数量÷总份数=平均数②总数量÷平均数=总份数③总份数×平均数=总数量2、构造法:所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。

构造法是一种重要的数学解题方法,在解题中被广泛应用。

构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、划归的思想,渗透着猜想、探索、特殊化等重要的数学方法。

运用构造法解数学题可从中激发学生的发散思维,使学生思维和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。

例题详解【例1】小朱、小赵、小李三个人去郊游,中餐一共买了八个面包,三人平均分着吃。

买面包时,小李没带钱,所以小朱付了五个面包的钱,小赵付了三个面包的钱。

吃完后,小李计算了一下,拿出应付的2元4角钱,那么小朱、小赵各应取回多少钱【例2】(素质杯全国邀请赛)甲、乙两个班一起去挖地种菜,甲班平均每人挖地45平方米,乙班平均每人挖地30平方米,两班和在一起,平均每人挖地多少平方米?【例3】体育比赛有六位裁判给分,去掉最高分9.8分后,剩下五个分数的平均分就比原来的平均分少了0.05分,再去掉最低分9.42分,剩下的四个分数的平均分是多少分?【例4】五位裁判给一名体操运动员评分,若去掉一个最高分后平均分是9.46分,若去掉一个最低分后平均分是9.66分,那么最高分比最低分高了多少分?【例5】一个长方体的12条棱分别被染成白色和红色,每个面上至少要有一条边是白色的,那么最少有多少条边是白色的?【例6】有一把长为9厘米的直尺,你能否在上面只标出3条刻度线,使得用这把直尺可以两出1至9厘米中任意整数厘米的长度?【例7】在如图所示表格第二行的每个空格内,填入一个整数,使它恰好表示它上面的那个数字在第二行中出现的次数,那么第二行中的5个数字各是几?1234【例8】(1999年第八届日本数学奥林匹克大赛高小组决赛第二题)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子正好8分钟燃尽。

小学五年级下册奥数题型分类讲义 (附答案)

小学五年级下册奥数题型分类讲义 (附答案)

小学五年级奥数分类讲义含答案图形问题专题1 长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。

长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。

二、精讲精练【例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

【思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。

因此,所求周长是18×4=72厘米。

练习11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。

3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

【例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?【思路导航】把截掉的192平方厘米分成A、B、C三块(如图),其中AB的面积是192-4×4=176(平方厘米)。

把A和B移到一起拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。

176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练习21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。

求这个正方形的周长。

2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。

五年级同步奥数讲义(全册)

五年级同步奥数讲义(全册)

第一讲最不利原则例1.盒子里有5支红笔,3支蓝笔,10支黑笔。

现在随意抓一把笔要确保其中至少有1支红笔,则一把必须不少于几支?分析:抓得巧,只要抓1支即可。

然而并不能保证实现这种情况。

最不利的情况是抓了13支,都是不想要的黑笔与蓝笔。

不过,只要再多抓1支就必定包含红的了。

解:10+3+1=14(支)例2.一列2个小方格,每个方格中随意涂红黑两种颜色中的一种,当涂毕第几列时,至少有2列是相同的?(有一列与另一列重复)。

分析:不妨这样想:要实现两列所用颜色一样,涂的顺序也相同。

然而,由于是任意选的,据最不利原则总是先考虑已涂各列没有重复的。

如:红红黑黑……红黑黑红……实际上各不相同的列数总共只有4列。

到第5列就必定重复前面涂过的4种中的某一种。

如果并非遇到最不利情况,那么在前5列中重复的列数就不止2列。

这与“至少2列”并不矛盾。

解:4+1=5(列)练习一1.盒子里有3支红笔,6支蓝笔,10支黑笔。

现在随意抓一把笔要确保其中至少有1支红笔,则一把必须不少于几支?2.鱼池中有30条白鳞鱼,50条黑鳞鱼,50条金鳞鱼。

至少在多少名钓鱼者中才可保证他们一次钓出的鱼中,必有金鳞鱼?3.在一个口袋中有10个黑球、 6个白球、 4个红球。

问:至少从中取出多少个球,才能保证其中有白球?4.口袋中有三种颜色的筷子各10根,问:至少取多少根才能保证三种颜色都取到?5.在三个口袋中各有10个黑球、10个白球、10个红球。

问:至少从中取出多少个球,才能保证其中有白球?第二讲抽屉原理专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

五年级上册秋季奥数培优讲义——5-12-差不变模型4-讲义-教师

五年级上册秋季奥数培优讲义——5-12-差不变模型4-讲义-教师

第12讲差不变模型【学习目标】1、熟悉差不变原理;2、会根据差不变原理解题。

【知识梳理】在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。

就是在多边形的组合图形中,为了计算面积,有时也要用到差不变的原理。

【典例精析】【例1】如图中,甲三角形的面积比乙三角形的面积大多少平方厘米?6×8÷2-4×8÷2=8(cm²)【趁热打铁-1】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度.4×4-6=10(cm²)10×2÷4-4=1(m)【例2】图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6cm²,其中BC=6cm,AB=4cm,求ED的长.6×4+6=30(cm²)30×2÷6-4=6(cm)【趁热打铁-2】如图,A三角形的面积比B三角形的面积大3m²,则a=__4__cm.9×6÷2=27(cm²)(27-3)÷6=4(cm)【例3】如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么三角形BCM的面积与三角形DEM的面积之差是__3__.(10-7)×(4+2)÷2-2×3=3【趁热打铁-3】大、小两个正方形拼在一起,比较图中两块阴影部分面积:S△ABE = S△CDE.【例4】如图,有一个正方形,边长是24厘米,E是AD的中点,甲、乙两个三角形的面积相差多少平方厘米?24×24÷2-24×12÷2=144(cm²)【趁热打铁-4】如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是 60 平方厘米.10×10-8×5=60(cm²)【例5】如图,平行四边形ABCD的边长BC为10厘米,直角三角形ECB的直角边EC长8厘米,已知阴影部分的总面积比三角形EGF的面积大10平方厘米,则平行四边形ABCD的面积为__50__平方厘米。

五年级奥数专题讲义(基础卷+提高卷)-第2讲 等差数列 通用版(含答案)

五年级奥数专题讲义(基础卷+提高卷)-第2讲  等差数列   通用版(含答案)

第 2 讲等差数列基础卷1.计算 1+2+3+ (2012)1+2012=20132+2011=2013以此类推:原式=(1+2012)×2012÷2=20250782.计算 2+3+4+5+ (2588)=(2+2588)×2587÷2=33501653.求首项为 5,公差是 3 的等差数列的前 2000 项的和。

a n=a1+(n-1)d= 5 + 1999 ×3= 6002s n=(a1+a n)×n÷2= (5+6002) ×2000÷2= 60070004.求首项为 10,公差为 5 的等差数列的前 5000 项的和。

首项为10,公差为5的a1=10 d=5等差数列的前5000项的和S n=na1+d×n(n-1)÷2S5000=5000×10+5×5000(5000-1) ÷2=50000+62487500=625375005.计算 11+13+15+ (97)解这是等差数列求和首项为11,末项为97,公差为2即项数11+(n-1)×2=97即n=44即11+13+15+……+97=44(11+97)÷2=23766. 92+90+88+ (2)=2×﹙46+44+43+……+3+2+1)=2×(46+1)×46÷2=2162提高卷1.计算 2012-2010+2008-2006+......+4-2。

将两个数字看成一组2012-2010+2008-2006+……+4-2=(2012-2010)+(2008-2006)+……+(4-2)2是这个式子的第(2012-2)÷2 +1=1006项则一共可以配成503组=503×2=10062.计算 9000-8997+8994-8991+......+6-3。

五年级数学 奥数精品讲义1-34讲

五年级数学 奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)第一讲消去问题(一)在有些应用题里;给出了两个或者两个以上的未知数量间的关系;要求出这些未知数的数量.我们在解题时;可以通过比较条件;分析对应的未知数量变化的情况;想办法消去其中的一个未知量;从而把一道数量关系较复杂的题目变成比较简单的题目解答出来.这样的解题方法;我们通常把它叫做“消去法”.例题与方法在学习例题前;我们先进行一些基本数量关系的练习;为用消去法解题作好准备.(1)买1个皮球和1个足球共用去40元;买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克;1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵;照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯;一共用去172元;每个水瓶18元;每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯;共用去134元;第二次又买了同样的3个水瓶和16个差杯;共用去118元.水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元;买同样的6个篮球和3个足球共用去519元.篮球和足球的单价各是多少元?练习与思考1、 1袋黄豆和1袋绿豆共重50千克;同样的7袋黄豆和7袋绿豆共重()千克.2、买5条毛巾和5条枕巾共用去90元;买1条毛巾和1条枕巾要()元.3、买4本字典和4本笔记本共、用去了68元;买同样的9本字典和9本笔记本一共要()元.4、9筐苹果和9筐梨共重495千克;找这样计算;2筐苹果和2筐梨共重()千克.5、妈妈买了5米画布和3米白布;一共用去102元.花布每米15元;白布每米多少元?6、果园里有14行桃树和20行梨树;桃树和梨树一共有440棵.每行梨树15棵;每行桃树多少棵?8、食堂第一次运来6袋大米和4袋面粉;一共重400千克;第二次又运来9袋大米和4袋面粉;一共重550千克.每袋大米和每袋面粉各重多少千克?9、3豹味精和7包糖共重3800克;同样的3包味精和14包糖共重7300克.每包味精和每包糖各重多少克?10、育新小学买了8个足球和12个篮球;一共用去了984元;青山小学买了同样的16个足球和10个篮球;一共用去1240元.每个足球和每个篮球各多少元?11、买15张桌子和25把椅子共用去3050元;买同样的 5张桌子和20张椅子;需要1600元.买一张桌子和一把椅子需要多少元?12、3头牛和6只羊一天共吃草93千克;6头牛和5只羊一天共吃草130千克.每头牛每天比每只羊多吃多少千克?第二讲消去问题(二)例1、7袋大米和3袋面粉共重425千克同样的3袋大米和7袋面粉共重325千克.求每袋大米和每袋面粉的重量.3..三头牛和8只羊每天共吃青草93千克;5头牛和15只羊每天吃青草165千克.一头牛和一只羊每天各吃青草多少千克?练习与思考1.3个皮球和5个足球共245元;同样的6个皮和10个足球共()元.2.5盒铅笔和9盒钢笔共190支;同样的2盒铅笔和6盒钢笔共100支.3盒铅笔和3盒钢笔共()支;1盒铅笔和1支钢笔共()支.3.育才小学体育组第一次买了4个篮球和3个排球;共用去了141元;第二次买了5个篮球和4个排球;共用去180元.每个篮球和每个排球各多少元?4.3筐苹果和5筐梨共重138千克;5筐同样的苹果和3筐同样的共重134千克.;每筐苹果和每筐梨各重多少千克?5.某食堂第一次运进大米5袋;面粉7袋;共重1350千克;第二次运进大米3袋;面粉5袋;共重850千克.一袋大米和一袋面粉各重多少千克?6.3件上衣和7条裤子共430元;同样的7件上衣和3条裤子共470元.每件上衣和每条棵子各多少元?7.2千克水果糖和5千克饼干共64元;同样的3千克水果糖和4千克饼干共68元.每千克水果糖和每千克饼干各多少元?8.5包科技书和7包故事书共620本;6包科技书和3包故事书共420本.每包科技书比每包故事书少多少本?9.3个水瓶和8个茶杯共92元;5个水瓶和6个茶杯共102元.每个水瓶和每个茶杯各多少元?10.甲有5盒糖;乙有4盒糕共值44元.如果甲、乙两人对换一盒;则每人所有物品的价值相等.一盒糖、一盒糕各值多少元?第三讲一般应用题在小学里;通常把应用题分为“一般应用题”和“典型应用题|”两大类.“典型应用题”有基本的数量关系、解题模式;较复杂的问题可以通过“转化”;向基本的问题靠拢.我们已经学过的“和差问题”、和“倍差问题”等等;都是“典型应用题”.“一般应用题|”没有各顶的数量关系;也没有可以以来的解题模式.解题时要具体问题具体分析;在认真审题;理解题意的基础上;理清一知条件与所求问题之间的数量关系;从而确定解题的方法.对于比较复杂的问题;可以借助线段图、示意图、直观演示等手段帮助分析.例题与方法例 1、把一条大鱼分成鱼头、鱼身、鱼尾三部分;鱼尾重4千克;鱼头的重量等于鱼尾的重量加身一般的重量;而鱼身体、的重量等于鱼头的重量加上鱼尾的重量.这条鱼重多少千克?例2、一所小学的五年级有四个班;其中五(1)班和五(2)班共有81人;五(2)班和五(3)班共有83人五(3)班和五(4)班共有86人;五(1)班比五(4)班多2人.这所学校五年级四个班各有多少人?例 3、甲、乙两位渔夫在和边掉鱼;甲钓了5条;乙钓了3条;吃鱼时;来了一位客人和甲、乙平均分吃这条鱼.吃完后来客付了8角钱作为餐费.问:甲、乙两为渔夫各应得这8角钱中的几角?例 4、一个工地用两台挖土机挖土;小挖土机工作6小时;大挖土机工作8小时;一共挖土312方.已知小挖土机5小时的挖土量等于大挖土机2小时的完土量;两种挖土机每小时各挖土多少方?例 5、甲、乙、丙三人用同样多的钱合买西瓜.分西瓜时;甲和丙都比乙多拿西瓜7.5千克.结果甲和丙各给乙1.5元钱.每千克西瓜多少元|?例 6、小红有一个储蓄筒;存放的都是硬币;其中2分币比5分币多22个.而按钱数算;5分币比2分币多4角.已知这些硬币中有36个1分币.问:小红的储蓄筒里共存了多少钱?练习与思考(第1~4题13分;其余每题12分;共100分.)1.有一段木头;不知它的长度.用一根绳子俩量它;绳子多15米;如果将绳子对折以后再来量;又不够04米.问:这段绳子长多少米?2.甲、乙两人拿出同样多的钱合买一段花布;原约定各拿花布同样多.结果甲拿了6米;乙拿了14米.这样;乙就要给甲12元钱.每米花布的单价是多少元?3.甲、乙丙合三人各出同样多的钱合买苹果若干千克.分苹果时;甲和丙都比乙多拿7.8千克苹果;这样甲和丙各应给乙6元钱.每千克苹果多少钱?4.学校买了2张桌子和5把椅子;共付了330元 .每张桌子的价钱是每把椅子的3倍.每张桌子多少元?5.某校六年级有甲、乙、丙丁四个班;不算甲班;期于三个班的总人数是131人;不算丁班;期于三个班的总人数是134人.已知乙、丙两个班的总人数比甲、丁两个班的总人数少1人;甲、乙丙、丁四个班共有多少人?6.李大伯买了15千克特制面粉和35千克大米;共用去31.2元.已知1千克特特制面粉的价格是1千克大米的 2倍.李大伯买特制面粉和大米各用去多少元?7.14千克大豆的价钱与8千克花生的价钱相等;已知1千克花生比1千克大豆贵12元;大豆和花生的单价各是多少元?8.某车间按计划每天应加工50个零件;实际每天加工56个零件.这样;不仅提前3天完成原计划加工凌驾的任务;而求多加工了120个零件.这个车间实际加工了多少个零件?9.用8千克丝可以织6分米宽的绸4米;现在有10千克的丝;要织75分米宽的绸;可以织几米?|第四讲盈亏问题(一)盈亏问题又叫盈不足问题;是指把一定数量的物品平均分给固定的对象;如果按某种标准分;则分配后会有剩余(盈);按另一种标准分;又会不足(亏);求物品的数量和分配对象的数量.例如:小朋友分苹果;如果每人分2个;就多余16个;如果每人分5个;就缺少14个.小朋友有多少个?苹果有多少个?比较两次分的结果;第一次余16个;第二次少14个;两次相差1+14=30(个).这是因为第二次比第一次每人多分了5-2=3(个)苹果.相差30个;就说明有30÷3=10(个)小朋友.请小读者自己算出苹果的个数.例题与方法例1、将一些糖果分给幼儿园小班的小朋友;如果每人分3 粒;就会余下糖果17粒;如果每人分5粒;就会缺少糖果13粒.问:幼儿园下班有多少个小朋友|这些糖果共有多少粒?例 2、学生搬一批砖;每人搬4块;其中5人要搬两次;如果么人搬5块;就有两人没有砖可搬.搬砖的学生有多少人?这批砖共有多少块?例3某校在植树活动中;把一批树苗分给各班;如果每班分18棵;就会有余下24棵;如果每班分20棵;正好分完.这个学校有多少个班?这批树苗共有多少棵?练习与思考1.小朋友分糖果若每人分4粒则多9粒;若每人呢分5粒则少6粒.问:有多少小朋友?有多少粒糖果?2.小朋友分糖果;每人分10粒正好分完;若每人呢分16粒;则有3个小朋友分不到糖果.问:有多少粒糖果?3.在桥上测量桥高.把绳长对折后垂到水面;还余4米;把绳长3折后垂到水面;还余1米.桥高多少米?绳长多少米?4.某校安排新生宿舍;如果每间住12人;就会有34人没有宿舍住;如果每间住14人就会有空出4间宿舍.这个学校有多少间?要安排多少个新生?5.在依次大扫除中;有一些同学被分配擦玻璃;他们当中如果有2人擦4块;其余的人各擦5块;就会多下12块玻璃没有人擦;如果么人擦6块;刚好擦完.擦玻璃的同学有多少人?玻璃共有多少块?6.有一个数;减去3所的差的4倍;等于它的2倍加上36.这个数是多少?7.体育老师和一个朋友一起上街买足球.他发现自己身边的钱;如果买10个“冠军”牌足球;还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球;结果多了13元.体育老师原来身边带了多少元?8.某小学生乘汽车去春游;如果每辆车坐65人;就会有15人不能乘车;如果每辆车多坐5人恰好多余了一辆车.一共有多少辆汽车?有多少个学生?第五讲盈亏问题(二)上一讲;我们讲了盈亏问题的一般情形;也就是在量词分配中恰好洋盈(多余);一次亏(不足).事实上;在许多问题里;也会出现两次都是盈(多余);或者两次都是亏(不足)的情况.例 1、学校将一批铅笔奖给三好学生;每人9支缺15支;每人7支就缺7支.问:三好学生有多少人;铅笔有多少支?例2、某小学的部分同学外出参观;如果每辆车坐55人就会余下30个座位;如果每辆车坐50人;就还可以坐10人.有多少辆车?去参观的学生多少人?例3、学校规定上午8时到校.王强上学去;如果每分钟走60米;可以提早10分钟到校;如果每分钟作呕50米可以提早8分钟到校.问:王强什么时候离开家?他家离学校多远?练习与思考(第1~4题13分;其余每题12分;共100分.)1.同学们打羽毛球;每两人一组.每组分6个羽毛球;少10个球;每组分4个羽毛球;少2个球.问:共、有多少个同学打球?有多少个羽毛球?2.学校将一批钢笔奖给三好学生;每人8支缺11支;每人7支缺7支.问:三好学生有多少人?钢笔有多少支?3.某小学的部分学生去春游;如果每辆车坐50人;就会余下30个座位;如果每辆车坐40个人;还可以坐10人.问有多少辆车?去春游的学生多少人?4.一筐苹果分给一个小组;每人5个剩16个;每人7个缺12个.这个小组有多少人?共有多少苹果?5.一些学生分练习本.其中两人每人分6本;其余每人分4本;就会多4本;如果有一人分10本;其余每人分6本;就会少18本.学生有多少人?练习本多少本?6.一个学生从家到学校;先用每分50米的速度走了2分;如果这样走下去;他会迟到8分;后来他改用每分60米的速度前进;结果早到学校5分.这个学生家到学校的路程是多少米?7.筑路对计划每天筑路720米;实际每天比原计划多筑802米;这样;在规定完成任务时间的前3天;就只剩下1160米未筑.这条路多长?8.老师给幼儿园小朋友分苹果.每2人3个苹果;多2个苹果;每3人5个苹果;少4个苹果.问:有多少小朋友?多少苹果?第六讲流水问题想一想:从南京长江逆流而上去长江三峡;与从长江三峡顺水而下回南京;哪个花的时间少?哪个花的时间多?为什么?原因很简单.在长江行船与在一个平静的湖这行船是不一样的;因为长江的水是一直从西向东(也就是从上游向下游)流着的;船的速度会受到江水的影响.而在平静的湖水中行船时;船的速度不会受到水流的影响.考虑船在水流速度的情况下行驶的问题;就是我们这一讲要讲的流水问题.船在顺水航行时(比方说;从长江三峡顺流而下到南京);船一方面按照自己本身的速度即船速(船在静水中行驶的速度)行驶;同时整个水面又按照水的流动速度在前进;水推动着船向前;所以;船顺水时的航行速度应该等于船本身的速度与水流速度的和.也就是顺水速度=船速+水速比方说;船在静水中行驶10千米;水流速度是每小时5千米;那么;船顺水航行的速度就是每小时10+5=15(千米).同学们可以想一想;上面的问题中;如果是问“船逆水航行的速度是多少?”答案又该怎么样呢?船逆水行驶;情况恰好相反.本来船每小时行驶10千米;但由于水每小时又把它往回推了5千米;结果船每小时只向上游行驶了10—5=5(千米).也就是船在逆水中的速度等于船速度与水速之差.即逆水速度=船速—水速例1、一艘每小时行驶30千米的客轮;在一河水中顺水航行165千米;水速每小时3千米.问:这艘客轮需要航行多少小时?例2、一艘船顺水行320千米需要8小时;水流速度是每小时15千米;这艘船逆水每小时行多少千米?这艘船逆水行这段路程;需要多少小时?例3、甲船逆水航行360千米需要18小时;返回原地需要10小时;乙船逆水航行同样的异端水路需要15小时;返回原地需要多少小时?练习与思考1.一只小船以每小时30千米的速度在176千米长的河中逆水而行;用了211小时.这只小船返回原处需要用多少小时?2.船在静水中的速度是每小时25千米;河水流速位每小时5千米;一只船往返甲、乙两港共花了9小时;两港相距多少千米?3.两地距280千米;一艘轮船在期间航行;顺流用去14小时;逆流用去20小时.求这艘轮船在静水中的速度和水流的速度.4.一架飞机所带的燃料;最多可以用6小时;飞机去是顺风;每小时可以飞1500千米;飞回时逆风;每小时可以飞1200千米.这架飞机最多飞出多少千米;就需要往回飞?5.乙船顺水航行2小时;行了120千米;返回原地用了4小时.甲船顺水航行同一段水路;用了3小时.甲船返回原地比去时多用多少小时?第七讲等差数列(1)1;2;3;4;5;6;7;8;…(2)2;4;6;8;10;12;14;16;…(3)1;4;9;16;25;36;49;…上面三组数都是数列.数列中称为项;第一个数叫第一项;又叫首项;第二个数叫第二项……以此类推;最后一个数叫做这个数列的末项.项的个数叫做项数.一个数列中;如果从第二项起;每一项与它前面一项的差都相等;这样的数列叫等差数列.后项与前项的差叫做这个等差数列的公差.如等差数列:4;7;10;13;16;19;22;25;28.首项是4;末项是28;共差是3.这一讲我们学习有关等差数列的知识.例题与方法例1、在等差数列1;5;9;13;17;…;401中401是第几项?例2、100个小朋友排成一排报数;每后一个同学报的数都比前一个同学报的数多3;小明站在第一个位置;小宏站在最后一个位置.已知小宏报的数是300;小明报的数是几?例3、有一堆粗细均匀的圆木;堆成梯形;最上面的一层有5根圆木;每向下一层增加一根;一共堆了28层.最下面一层有多少根?例4、1+2+3+4+5+6+…+97+98+99+100=?例5、求100以内所有被5除余10的自然数的和.例6、小王和小胡两个人赛跑;限定时间为10秒;谁跑的距离长谁就获胜.小王第一秒跑1米;以后每秒都比以前一秒多跑0.1米;小胡自始至终每秒跑1.5米;谁能取胜?练习与思考(每题10分;共100分.)1.数列4;7;10;……295;298中298是第几项?2.蜗牛每小时都比前一小时多爬0.1米;第10小时蜗牛爬了1.9米;第一小时蜗牛爬多少米?3.在树立俄;10;13;16;…中;907是第几个数?第907个数是多少?4.求自然数中所有三位数的和.5.求所有除以4余1的两位数的和.6.0.1+0.3+0.58.+0.7+0.9+0 11+0 13+0 15+…0 99的和是多少?7.梯子最高一级宽32厘米;最底一级宽110厘米;中间还有6级;各级的宽度成等差数列;中间一级宽多少厘米?8.有12个数组成等差数列;第六项与第七项的和是12;求这12个数的和.9.一个物体从高空落下;已知第一秒下落距离是4.9米;以后每秒落下的距离是都比前一秒多9.8米50秒后物体落地.求物体最初距地面的高度.10.求下面数字方阵中所有数的和.1;2;3;…;98;99;1002;3;4;…99;100;1013;4;5;…;100;101;102……100,101,102, …197,198,199第八讲找规律你能找出下面各数列暴烈的规律吗?请在括号内填上合适的数》(1)8;15;22;();36;…;(2)17;1;15;1;13;1;();();9;1;…;(3)45;1;43;3;41;5;();();37;9;…;(4)1;2;4;8;16;();64;…;(5)10;20;21;42;43;();();174;175;…;(6)1;2;3;5;8;13;21;();55.例1. 1;2;3;2;3;4;3;4;5;4;5;6;6;7;…从第一个数算起;前100个数的和是多少?.练习与思考(第1题30分;其余每题10分;共100分.)(1)找规律;在括号内填上合适的数.(1)1,3,9,27,( ),243;(2)2,7,12,17,22,( ),( ),37;(3)1,3,2,4,3,( ),4;(4)0,3,8,15,24,( ) ,.48;(5)6,3,8,5,10,7,12,9,( ),11;(6)2,3,5,( ),( ),17,23;(7)81,64,();36;();16;9;4;1;(8)21;26;19;24;();();15;20;(9)1;8;9;17;26;();69;(10)4;11;18;25;();39;46;2.一串数按下面规律排列:1;3;5;2;4;6;3;5;7;4;6;8;5;7;9;…从第一个数算起;前100个数的和是多少?3.有一串黑白相间的珠子(如下图);第100个黑珠前面一共有多少个白珠?4.在平面中任意作100条直线;这些直线最多能形成多少个交点?5.在平面中任意作20条直线;这些直线最多可把这个平面分成多少个部分?6.序号 1 2 3 4 5算式1+1 2+3 3+5 1+7 2+9序号 6 7 8 9 …算式3+11 1+13 2+15 3+17 …根据上面的规律;第40个序号的算式是什么?算式‘1+103“的序号上多少?7.小正方形的边长是1厘米;依次作出下面这些图形.已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周长是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?已知第一幅图的周长是10厘米.(1)36个正方形组成的图形的周厂是多少厘米?(2)周长是70厘米的图形;由多少个正方形组成?8在方格纸上画折线(如本讲例4图);小方格的边长是1;图中的1;2;3;4;…分别表示折线扩大第1;2;3;4;…段.求折线中第100段的长度.长度是30的是第几段?能力测试(一)一、填空题(每空3分;工39分).1.在下面的括号里按照规律填上适当的数字.(1)1;2;3;4;8;16;();64;128.(2)5;10;15;20;25;();35;40.(3)4;7;10;13;16;();22;25.(4)1;1;2;3;5;8;13;21;()(5)1024;512;256;();64;32;16;8;4.(6)2;5;11;20;32;();65;86.(7)1;3;2;4;3;5;();6;5.(8)1;4;9;16;25;();49;64.1.9个人9天共读书1620页;平均1个人1天共读书()页;照这样计算;5个同学5天读书()页.2.如果平均1个同学1天植树()棵;那么;3个同学4天共植树120棵.3.买3只足球和9只篮球共用了570元;买9只足球和27只篮球要用()元.二、计算题(每小题5分;共10分).1.2+4+6+8+10+ … +22+24+262.1+2+3+4+5+6+ … +1996+1997+1998三、应用题(第1~4题10其余每题10分;第5题11分;共51分).1.李老师将一叠练习本分给第一组的同学;如果每人分7本;还多7本.如果每人分9;那么有一个同学译本也分不到.第一组有多少同学?这叠练习本一共有多少本?2.一只小船在河中逆流航行176千米;用了11小时.一知水流速度是每小时4千米;这只小船返回原处要用多少小时?3.4只篮球和8只足球共买560元;6只篮球和3只足球共买390元.问:一只篮球和一只足球各买多少元?4.有10元钞票与5元钞票共128张;其中10元比5元多260元.两种面额的钞票各是多少张?5.下面是一种特殊数列的求和方法.要求数列2;4;8;16;32;64;…;1024;2048的和;方法如下:S= 2+4+8+16+32+64+ … +1024+204822S = 4+8+16+32+64+ … +1024+2048+4096用下面的式子减去上面的式子;就得到S =4096 – 2 = 4094即数列2;4;8;16;32;64;…;1024;2048的和是4094.仔细阅读上面的求和方法;然后利用这种方法求下面数列的和.1;3;9;27;81;243;…;177147;531441.第九讲加法原理在日常生活与实践中;我们经常会遇到分组、计数的问题.解答这一类问题;我们通常运用加法与那里与乘法原理这两个基本的计数原理.熟练掌握这两个原理;不仅可以顺利解答这类问题;而求可以为今后升入中学后学习排列组合等数学知识打下好的基础.什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海;可以乘火车;也可以乘汽车、轮船或者飞机.假如一天中南京到上海有4班火车、6班汽车;3班轮船、2班飞机.那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法;那么从南京到上海;乘火车有4种走法;乘汽车有6种走法;乘轮船有3种走法;乘坐飞机有2种走法.因为每一种走法都可以从南京到上海;因此;一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法.我们说;如果完成某一种工作可以有分类方法;一类方法中又有若干种不同的方法;那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和.即N = m1 + m2 + … + m n (N代表完成一件工作的方法的总和;m1,m2, … m n 表示每一类完成工作的方法的种数).这个规律就乘做加法原理.例1 书架上有10本故事书;3本历史书;12本科普读物.志远任意从书架上取一本书;有多少种不同的取法?例2一列火车从上上海到南京;中途要经过6个站;这列火车要准备多少中不同的车票?例3在4 x 4的方格图中(如下图);共有多少个正方形?例4 妈妈;爸爸;和小明三人去公园照相:共有多少种不同的照法?练习与思考1.从甲城到乙城;可乘汽车;火车或飞机.已知一天中汽车有2班;火车有4班;甲城到乙城共有()种不同的走法.2.一列火车从上海开往杭州;中途要经过4个站;沿途应为这列火车准备____种不同的车票.3.下面图形中共有____个正方形.4.图中共有_____个角.5.书架上共有7种不同的的故事书;中层6本不同的科技书;下层有4钟不同的历史书.如果从书架上任取一本书;有____种不同的取法.6.平面上有8个点(其中没有任何三个点在一条直线上);经过每两个点画一条直线;共可以画_____条直线.7.图中共有_____个三角形.8.图中共有____个正方形.9.从2;3;5;7;11;13;这六个数中;每次取出两个数分别作为一个分数的分子和分母;一共可以组成_____个真分数.10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的。

(完整word版)五年级上册奥数讲义

(完整word版)五年级上册奥数讲义

↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数. (2)1是任何整数的因数。

3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10-6).必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a,则a 叫做b 的倍数,b 叫做a 的因数。

记作:b|a例如:如果6|36,9|36,那么[6,9]|36.例如:如果2|72,9|72,且(2,7)=1,那么18|72.例:如果7|14,14|28,那么7|28。

4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。

(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。

(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.例:1864能否被4整除?解:1864=1800+64,因为4|64,4是1864的因数,1864是4的倍数,所以4|1864。

(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。

例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。

(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。

小学五年级奥数讲义 (1)

小学五年级奥数讲义   (1)
1、(2+4+6+…+2004)-(1+3+5+…2003)
2、3.74×5.8+62.6×0.58
3、0.125×0.25×0.5×64
课后巩固
(作业)
计算。
1、347+358+352+349+351+353+348
2、12.37+9.08+7.63-1.08
3、59.2×7.4+26×5.92
4、求首项为5公差是3的等差数列的前2000项的和。
4、求首项为10,公差为5的等差数列的前5000项的和。
自我评价
合作探究
(二)
我们很棒的。
计算:18.6-9.3+1.4-1.7
精讲释疑
(二)
在同一级运算中,任意两个数都可以随意交换位置,两数交换位置时,必须将它们前面的符号一起与之移动,就像小朋友交换座位时,书包也要跟这位小朋友一起移动,这种交换数位置的方法,我们形象地称之为带“符号搬家”。
训练检测与能力挑战
计算.
合作探究
(一)
尝试一下。
计算:999+1003+995+997+1001+1000+1009
精讲释疑
(一)
仔细观察发现,8个加数比较接近,可以选择一个(称为基准数)作为计算的基础。这里的基准数是2000,那么1991=2000-9,2011=2000+11…
自主学习
(二)
例2计算:65.4-4.29+24.6-5.71
a+(b-c)=a+b-c a×(b÷c)=a×b÷c
a-(b+c)=a-b-c aБайду номын сангаас(b×c)=a÷b÷c
a-(b-c)=a-b+c a÷(b÷c)=a÷b×c
3、大家还记得哪些简算方法?
课前检测
1、简算。

五年级数学奥数辅导讲义一

五年级数学奥数辅导讲义一

五年级数学奥数辅导讲义一第一课时整数与小数四则混合运算示例:在以下五个0.5之间,添加适当的运算符号+、-×、÷和括号,使以下等式为真。

0.50.50.50.50.5=2【思路导航】:我们可以很难解决上述问题,但通常很难做到,也很难找到解决问题的规律。

这个问题可以通过逆向思考来解决。

解:(0.5+0.5)÷0.5-0.5+0.5=2(0.5+0.5)÷0.5+0.50.5=2(0.5+0.5+0.5-0.5)÷0.5=2(0.5+0.5)÷(0.5×0.5)×0.5=2注:上述问题中使用的分析方法是从公式的最后一个数字逐步向前推断。

这种方法称为反向外推。

倒转问题是解决数学问题的一种常用方法,特别是在条件很难启动的情况下,这种方法可以帮助我们找到问题的突破口。

试试:在下面的式子里添上运算符号,使等式成立。

⑴0.50.50.50.50.5=0⑵0.50.50.50.50.5=1⑶0.50.50.50.50.5=3⑷0.50.50.50.50.5=4⑸0.50.50.50.50.5=5平均第二学时数(I)解决平均数问题的关键是根据已知条件确定“总数”和“份数”。

它们之间具有下列数量关系:平均份数=总份数÷总份数=平均份数×份数=总份数÷平均份数例1:某商店将4千克水果糖和6千克奶糖混合成什锦糖,已知水果糖每千克4.2元,奶糖每千克5.6元,那么什锦糖每千克多少元?溶液(4.2)×4+5.6×6)÷(4+6)=50.4÷10=5.04元答什锦糖每千克5.04元。

例2:公共汽车在a和B之间来回行驶,行驶速度为30公里/小时,返回速度为60公里/小时。

找出汽车的平均往返速度。

解设甲、乙两地的路程是120千米。

120×2÷(120÷30+120÷60)=240÷(4+2)=40(千米)两地之间的平均速度是每小时40公里。

五年级奥数讲义-第2讲(速算与巧算一)

五年级奥数讲义-第2讲(速算与巧算一)

计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1、四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-6+12-11+4-5)=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2、某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

求平均每块麦田的产量。

五年级上册数学培优奥数讲义-第4讲小数巧算2

五年级上册数学培优奥数讲义-第4讲小数巧算2

第4讲小数巧算2知识装备整数的加减乘除混合运算技巧在小数中仍然适用,可运用运算性质和运算定律,如:乘法分配律、除法的性质等,将算式转化后进行巧算。

初级挑战1用简便方法计算下面各题。

(1)8×25×2×1.25×0.5×0.4 (2)64×12.5×0.25思路引领:当乘法算式中出现25、125或与之相关的数时,可考虑运用乘法交换律、结合律凑整,使计算简便。

(1)8×25×2×1.25×0.5×0.4=(8×1.25)×(25×0.4)×(2×0.5)=10×10×1=100(2)64×12.5×0.25=8×4×2×12.5×0.25=(8×12.5)×(4×0.25)×2=100×1×2=200能力探索1用简便方法计算下面各题。

(1)4×0.8×0.2×12.5×5×2.5 (2)32×1.25答案:(1)4×0.8×0.2×12.5×5×2.5=(0.8×12.5)×(4×2.5)×(0.2×5)=10×10×1=100(2)32×1.25=4×8×1.25=4×10=40初级挑战2用简便方法计算下面各题。

(1)492÷0.25÷0.4 (2)320÷1.25÷0.8思路引领:在连除算式中,除数可以凑整时,可利用除法性质先将除数凑成整数,再计算。

四则运算(一)奥数五年级讲义

四则运算(一)奥数五年级讲义

第一讲计算问题的题型及解法(一)教学目标1、四则混合运算法则和定律、性质的简便计算、分数运算技巧——变形约分等方法;2、区分每个方法所对应题目的特征,知道题目该用什么方法比较好;3、熟悉综合计算问题(多方法综合运用)。

教学重点:熟练掌握每个方法,每个方法之间的区别和联系。

教学难点:1、记住所学的方法以及每个方法所对应的题目的特征;2、利用已学的方法综合应用解计算题。

方法点拨1、考点与题型:主要考查四则混合运算的意义和运算顺序,四则运算各部分之间的关系,和、差、积、商的变化规律,运算定律和运算性质,脱式运算,简算,巧算,估算,倒算,定义算,解方程,列式算。

主要题型是填空题、计算题和解答题。

2、分值与解法:分值都在20%~35%。

对于一般的算法,要按四则混合运算的法则,一步一步地脱式计算;运算复杂题时,算一步回头查验一步,做到一步一回头,步步无差错;对于特殊算法,可采用变形、约分、裂项、消去、活用定律性质、设字母代换、分组找规律等方法。

模块一定义新运算1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例1: 定义新运算为a△b=(a+1)÷b,求的值。

6△(3△4)例2: 规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。

计算下式:[(7◎3)& 5]×[ 5◎(3 & 7)]例3: 羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。

小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼,这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了。

对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)例4: 规定新运算※:a※b=3a-2b.若x※(4※1)=7,则x= .例5: 规定:6※2=6+66=722※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=模块二、加减法凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例1】、计算:(1)117+229+333+471+528+622(2)(1350+249+468)+(251+332+1650)(3)9+99+999+……+999999999【巩固】计算:19999919999199919919++++【例2】、计算:17+117+1117+...+1111111117=______。

小学五年级奥数计算题精讲精品课件

小学五年级奥数计算题精讲精品课件

乘法分配律
乘法分配律: a b a c a b c
9. 55.5×11.1-45.5×11.1 =(55.5 - 45.5)×11.1 =10×11.1 =111
10. 2.1×8+3.2×8+4.7×8 =(2.1+3.2+4.7)×8 =10×8 =80
乘法分配律
乘法分配律: a b a c a b c
等差数列的和
等差数列的和怎么求?
19. 2.2+4.2+6.2+8.2+10.2+…+100.2 =(2+100)×50÷2+0.2×50 =102×50÷2+10 =2550+10 =4959.9
等差数列的和=(首项+末项)×项数÷2
分组法
怎么分组?可以分几组?
20. 30.1─29.1+28.1─27.1+…+2.1─1.1 =(30.1─29.1)+(28.1─27.1)+…+(2.1─1.1) =1×15 =15
较复杂的简便计算
21. 15.37×7.89─9.37×7.89+15.37×2.11─9.37×2.11 =(15.37─9.37)×7.89+(15.37─9.37)×2.11 =6×7.89+6×2.11 =6×(7.89+2.11) =6×10 =60
较复杂的简便计算
22. 42×137─80÷15+58×138─70÷15 =42×137+58×138 ─ 80÷15 ─ 70÷15 =42×137+58×(137+1) ─ (80÷15 + 70÷15) =42×137+58×137+58 ─(80+70)÷15 =(42+58)×137+58 ─ 10 =13700+58 ─ 10 =13748

五年级下册春季奥数培优讲义——5-05-分数加减巧算3-讲义-学生

五年级下册春季奥数培优讲义——5-05-分数加减巧算3-讲义-学生

第5讲 分数加减巧算【学习目标】1、熟悉分数加减计算;2、掌握循环小数换分数的方法;3、握分数加减计算中的简算技巧。

【知识梳理】1、等差数列求和=(首项+末项)×项数÷2;2、叠数:一个数里的数字有规律的重复出现;3、借一换一:先给题中加上某个数,然后在计算的最后减去加上的这个数,从而达到简算;4、循环小数换分数:(1)纯循环小数:小数点后有几位,分母就有几个9,分子为一个循环节,该化简就化简即可。

如:••5430.=999345; (2)混循环小数:小数点后第一位到第一次循环结束组成的多位数减去非循环小数部分作为分子,循环节内有几位数,分母就有几个9,非循环部分有几位,就在9后面写几个0,再化简。

如:9900229990002-0231130.02==•• 【典例精析】【例1】计算: (1)152511322-- (2)313213121312+--)( (3)125.054187545+-+【趁热打铁-1】计算:(1)10352311++ (2)73274118515-- (3)181125.118775.4-+-(4) ⎪⎭⎫ ⎝⎛--15233017151315(5) ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-211133212122314211317(6)511522534554465147524853495450-++-+-+-【趁热打铁-2】计算:(1(2)19899899989999899999899999+++++【例3】计算:10099432114321132112111++⋯⋯+++++⋯⋯++++++++++【趁热打铁-31043211432113211+⋯⋯+++++⋯+++++++50321254321243212+⋯++++⋯++++++++++【例4】计算:2019)20181918()2024232()201413121(+++⋯⋯++⋯⋯++++⋯⋯+++【趁热打铁-4121123211220192020201921 +++++++++⋅⋅⋅+++⋅⋅⋅++++⋅⋅⋅++222333332020202020202020202020202020【例5】【趁热打铁-5】计算:(1(2【例6】计算:25611281641321161814121+++++++【趁热打铁-6】计算:(1)1280140120110151+⋯⋯++++(2)1281212813641432151616817418219+++++++【例7】计算:••••••••++-625.073.0291.092.0【趁热打铁-7】计算:(1))()(••••••••••++++++++6.05.04.03.02.01.0-46.037.028.019.0(2)••••••••+++++++98.087.076.065.054.043.032.021.0【过关精炼】 1、计算:5485498549985499985499998++++2、计算:20432114321132112111+⋯⋯++++-⋯-+++-++-+-3.4、计算:10241--321-161-81-41-21-1⋯•••••••••4.55645.610.16.721.22.333.4+9++++++7.888.97+5、计算:。

五年级奥数讲义:数与运算

五年级奥数讲义:数与运算

1.0.09 的计数单位是( )
A.千分之一
B.百分之一
C.十分之一
2.12.6 亿中的“6”表示( )
A.0.6
B.60000000
C.600000000
D.60000
3
3.下面各数中,去掉 0 而大小不变的数是( )
A.0.065
B. 400
4.48.995 保留两位小数是( )
C. 4.740
8.甲数的 1 和乙数的 2 相等,乙数是 105,甲数是 (
).
2
7
二、判断.(正确的在括号内画“√”,错误的在括号内画“×”) 1.比 2 小的整数只有 1.( ) 2.小数点的后面添上 0 或者去掉 0,小数的大小不变.( )
3.把一个小数的小数点左移一位得到的数是原小数的 10 倍.…( ) 三、选择.
精解名题 例 1、学生 133 人,编成几个小组,每个小组的人数相等,每个小组最多能有多少人?一共可以编成多 少个这样的小组?
例 2、甲、乙、丙三根长绳分别长 8 米、10 米和 16 米,把它们分别剪成长度相等的短绳(以米为单 位),问一共最少能剪成多少条短绳?
4
例 3、爸爸对小敏说:“你用一个由相同的数字组成的 3 位数,除以这 3 个数之和,我可以知道它的 答案是多少.”小敏试了几次,发现果然不错,而且几次的答案都是一个固定的数. 你知道这个固定的数是多少吗?
重点及难点
1、熟练掌握四则运算法则 2、小数的简便运算
考点及考试要求
知识精要 1.我们学过的数
整数
自然数
分数
正整数
零 负整数
正分数
负分数 纯小数
小数
带小数 有限小数
无限小数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义新运算知识框架一、定义新运算(1)基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

(2)基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

(3)关键问题:正确理解定义的运算符号的意义。

(4)注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二、定义新运算分类(1)直接运算型(2)反解未知数型(3)观察规律型(4)其他类型综合重难点(1)正确理解新运算的规律。

(2)把不熟悉的新运算变化成我们熟悉的运算。

(3)新运算也要遵守运算规律。

【例 1】 对于任意两个数x 和y ,定义新运算◆和⊗,规则如下:x ◆y = 22x y x y ++,3x y x y x y ⨯⊗=+÷ .如:1◆2= 212122⨯++⨯,1212123⨯⊗=+÷. 由此计算:..0.36◆141__________.2⎛⎫⊗= ⎪⎝⎭【巩固】 对于任意两个数,x y ,定义新运算,运算,规则如下:x ◆y = 2x y x ⨯-÷,2x y x y ⊕=+÷ .按此规则计算:3.6◆2=__________,..0.12◆()7.5 4.8_______.⊕=【例 2】 如果a 、b 、c 是3个整数,则它们满足加法交换律和结合律,即⑴;⑵()()a b c a b c ++=++。

现在规定一种运算"*",它对于整数 a 、 b 、c 、d 满足: 。

例:(4,3)*(7,5)(4735,4735)(43,13)=⨯+⨯⨯-⨯=请你举例说明,"*"运算是否满足交换律、结合律。

a b b a +=+(,)*(,)(,)a b c d a c b d a c b d =⨯+⨯⨯-⨯例题精讲【例 3】 用{}a 表示a 的小数部分,[]a 表示不超过a 的最大整数。

例如:{}[]{}[]0.30.3,0.30;4.50.5,4.54====记2()21x f x x +=+,请计算(){}()11,;1,133f f f f ⎧⎫⎡⎤⎛⎫⎛⎫⎡⎤⎨⎬ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎩⎭⎣⎦的值。

【例 4】 在计算机中,对于图中的数据(或运算)的读法规则是:先读第一分支圆圈中的,再读与它相连的第二分支左边的圆圈中的,最后读与它相连的第二分支右边的圆圈中的,也就是说,对于每一个圆圈中的数据(或运算)都是按"中→左→右"的顺序。

如:图A 表示:2+3, B 表示2+3×2-1。

图C 中表示的式子的运算结果是________ 。

【例 5】 对于任意有理数x , y ,定义一种运算“※”,规定:x ※y =ax by cxy +-,其中的,,a b c 表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m =x (m ≠0),则m 的数值是 _________。

【巩固】 x 、y 表示两个数,规定新运算“*”及“△”如下:x *y =mx +ny ,x △y =kxy ,其中 m 、n 、k 均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.【例 6】 喜羊羊喜欢研究数学,它用计算器求3个正整数()a b c +÷的值。

当它依次按了,,,,,,a b c +÷=得到数字5。

而当它依次按,,,,,b a c +÷=时,惊讶地发现得到的数值却是7。

这时喜羊羊才明白计算器先做除法再做加法。

于是,她依次按(),,,,,,,a b c +÷=,得到了正确的结果为 。

(填出所有可能情况)【例 7】 国际统一书号ISBN 由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。

核检码可以根据前9个数字按照一定的顺序算得。

如:某书的书号是ISBN 7-107-17543-2,它的核检码的计算顺序是:①7×10+1×9+0×8+7×7+1×6+7×5+5×4+4×3+3×2=207;②207÷11=18……9;③11-9=2。

这里的2就是该书号的核检码。

依照上面的顺序,求书号ISBN -7-303-07618-□的核检码。

【例 8】 “华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是________.【例 9】 已知:10△3=14, 8△7=2, 43△141=,根据这几个算式找规律,如果 85△x =1,那么x = .【例 10】 64222=⨯⨯222⨯⨯⨯表示成()646f =;24333333=⨯⨯⨯⨯表示成()2435g =.试求下列的值:(1)()128f =(2)(16)()f g = (3)()(27)6f g +=;(4)如果x , y 分别表示若干个2的数的乘积,试证明:()()()f x y f x f y ⋅=+.【例 11】 对于任意的两个自然数a 和b ,规定新运算*: a *b (1)(2)(1)a a a a b =+++++++-,其中a 、b 表示自然数.⑴求1*100的值;⑵已知x *10=75,求x 为多少?⑶如果(x *3)*2=121,那么x 等于几?【巩固】两个不等的自然数a和b,较大的数除以较小的数,余数记为a☉b,比如5☉2=1,7☉25=4,6☉8=2. (8级)(1)求1991☉2000,(5☉19)☉19,(19☉5)☉5;(2)已知11☉x=2,而x小于20,求x;(3)已知(19☉x)☉19=5,而x小于50,求x.【例 12】设a,b是两个非零的数,定义a※ba bb a =+.(1)计算(2※3)※4与2※(3※4).(2)如果已知a是一个自然数,且a※3=2,试求出a的值.【巩固】定义运算“⊙”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的差记为a⊙b.比如:10和14,最小公倍数为70,最大公约数为2,则10⊙14=70-2=68.(1)求12⊙21,5⊙15;(2)说明,如果c整除a和b,则c也整除a⊙b;如果c整除a和a⊙b,则c也整除b;(3)已知6⊙x=27,求x的值.【随练1】 如果 1※2=1+112※3=2+22+222 3※4=3+33+333+333+3333计算 (3※2)×5。

【随练2】 规定新运算※:a ※b =3a -2b .若x ※(4※1)=7,则x = .【作业1】 规定a △b (2)(1)a a a b =⨯+-+-, 计算:(2△1)++(11△10)=______.【作业2】 规定:6※2=6+66=72家庭作业课堂检测2※3=2+22+222=246,1※4=1+11+111+1111=1234.7※5=【作业3】 如图2一只甲虫从画有方格的木板上的A 点出发,沿着一段一段的横线、竖线爬行到B ,图1中的路线对应下面的算式:121221216-+++-++=.请在图2中用粗线画出对应于算式:21222111--++++++的路线.【作业4】 “⊙”表示一种新的运算符号,已知:2⊙3=234++;7⊙2=78+:3⊙5=34567++++,……按此规则,如果n ⊙8=68,那么,n =____.【作业5】 羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼,以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了。

小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼,这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了。

对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)【作业6】 一个数n 的数字中为奇数的那些数字的和记为()S n ,为偶数的那些数字的和记为()E n ,例如()134134S =+=,()1344E =. ()()12(100)S S S +++= ;()(1)(2)100E E E +++= .学生对本次课的评价○特别满意 ○满意 ○一般家长意见及建议家长签字:教学反馈1、 灵活运用分数裂差计算常规型分数裂差求和2、 能通过变型进行复杂型分数裂差计算求和一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)( ()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222hhn n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦ ()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

相关文档
最新文档