不等式练习题及答案
不等式与不等式方程练习题(含答案)
不等式与不等式方程练习题(含答案)本文档包含了一系列关于不等式和不等式方程的练题和答案,旨在帮助读者巩固对这些概念的理解和应用。
不等式练题1. 求解不等式:$2x + 5 > 10$。
答案:$x > 2.5$2. 将不等式$3x - 4 < 7$化为标准不等式形式。
答案:$3x < 11$3. 求解不等式组:$\begin{cases} x - 2 > 5 \\ 2x + 3 < 10\end{cases}$。
答案:$x > 7$,$x < 3.5$4. 求解绝对值不等式:$|2x - 3| \leq 7$。
答案:$-2 \leq x \leq 5$5. 求解复合不等式:$-3 < 2x + 1 < 5$。
答案:$-2 < x < 2$不等式方程练题1. 求解不等式方程:$5x - 7 = 3x + 5$。
答案:$x = 6$2. 求解二次不等式方程:$x^2 + 5x - 6 < 0$。
答案:$-6 < x < 1$3. 求解分式不等式方程:$\frac{2x + 1}{x - 3} \geq 2$。
答案:$x \geq 4$4. 求解绝对值不等式方程:$|2x - 5| = 10$。
答案:$x = -2.5$,$x = 7.5$5. 求解复合不等式方程组:$\begin{cases} 3x - 2 \geq 4 \\ 2x + 5 \leq 9 \end{cases}$。
答案:$x \geq 2$,$x \leq 2$以上是一些关于不等式和不等式方程的练习题和答案。
阅读者可以利用这些题目来巩固学习并提高解题能力。
如有任何疑问,请随时提出。
基本不等式题型练习含答案
基本不等式题型练习含答案题目1:解不等式2x + 5 > 9。
解答1: 2x + 5 > 9 首先,将不等式两边都减去5。
2x > 4 然后,将不等式两边都除以2。
x > 2 所以,不等式的解集为x > 2。
题目2:解不等式3 - 2x ≤ 7。
解答2: 3 - 2x ≤ 7 首先,将不等式两边都减去3。
-2x ≤ 4 然后,将不等式两边都除以-2。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x ≥ -2 所以,不等式的解集为x ≥ -2。
题目3:解不等式4x + 3 < 19。
解答3: 4x + 3 < 19 首先,将不等式两边都减去3。
4x < 16 然后,将不等式两边都除以4。
x < 4 所以,不等式的解集为x < 4。
题目4:解不等式5 - 3x > 8。
解答4: 5 - 3x > 8 首先,将不等式两边都减去5。
-3x > 3 然后,将不等式两边都除以-3。
注意,因为除以负数会改变不等号的方向,所以需要将不等号反转。
x < -1 所以,不等式的解集为x < -1。
题目5:解不等式2x - 1 ≤ 5x + 3。
解答5: 2x - 1 ≤ 5x + 3 首先,将不等式两边都减去2x。
-1 ≤ 3x + 3 然后,将不等式两边都减去3。
-4 ≤ 3x 最后,将不等式两边都除以3。
-4/3 ≤ x 所以,不等式的解集为x ≥ -4/3。
题目6:解不等式4 - 2x ≥ 10 - 3x。
解答6: 4 - 2x ≥ 10 - 3x 首先,将不等式两边都加上3x。
4 + x ≥ 10 然后,将不等式两边都减去4。
x ≥ 6 所以,不等式的解集为x ≥ 6。
题目7:解不等式2(3x + 1) > 4x + 6。
解答7: 2(3x + 1) > 4x + 6 首先,将不等式两边都展开。
不等式的题目及答案
不等式的题目及答案【篇一:不等式练习题及答案】x2-x≤0},n={x|1},则m∩n=( b )xa.? b.{1} c.{x|0x≤1}d.{x|x≥1}2x-1a2.不等式组?有解,则实数a的取值范围是( a )x-42a?a.(-1,3)b.(-∞,-1)∪(3,+∞) c.(-3,1)d.(-∞,-3)∪(1,+∞)3.已知a1、a2∈(0,1).记m=a1a2,n=a1+a2-1,则m与n 的大小关系是( b ) a.mnb.mn c.m=nd.不确定66665.若不等式ax2+bx+c0的解集是(-4,1),则不等式b(x2-1)+a(x+3)+c0的解集为( a )44a.(,1)b.(-∞,1)∪()c.(-1,4)d.(-∞,-2)∪(1,+∞)33125a.0 b.-2 c.-d.-327.若不等式x2+ax-20在区间[1,5]上有解,则a的取值范围是( a )f(5)0 232323a.() b.[-,1] c.(1,+∞)d.(-∞,-55510.若不等式-42x-34与不等式x2+px+q0的解集相同,则=________.q711.设函数f(x)=ax+b(0≤x≤1),则“a+2b0”是“f(x)0在[0,1]上恒成立”的____“必要但不充分____条件.(填“充分但不必要”,“必要但不充分”,“充要”或“既不充分也不必要”)12、已知?1?x?y?1,1?x?y?3,求3x?y的取值范围。
3x?y?1*(x?y)?2*(x?y) ?1,7?13、已知a?b?c,且a?b?c?0,求c/a的取值范围。
bc,a2cabc0,a0,c/a1/2 ab,2acabc0,c2a,a0,c/a2综上所述c/a的取值范围是??2,?1/2?14、正数x,y满足x?2y?1,求1/x?1/y的最小值。
3?2215、设实数x,y满足x?(y?1)?1,当x?y?c?0时,求c的取值范围。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
不等式测试卷及答案解析
2021年新高考数学总复习不等式测试卷及答案一、选择题1.下列说法正确的是( )A .若a >b ,c >d ,则a -c >b -dB .若ac >bc ,则a >bC .若a >b >0,则a +1b >b +1aD .若a ,b ∈R ,则a +b 2≥ab 答案 C解析 对于A ,a =8,b =2,c =7,d =-1,此时a -c =1,b -d =3,显然不成立; 对于B ,当c <0时,a <b ,显然不成立;对于C ,∵a >b >0,∴a +1b -b -1a =(a -b )+a -b ab=(a -b )⎝⎛⎭⎫1+1ab >0,∴a +1b >b +1a,显然成立; 对于D ,当a =b =-1时,显然不成立,故选C.2.不等式ax 2+bx +2>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13,则a +b 等于( ) A .14 B .-14 C .-10 D .10答案 B解析 由题意可得,不等式ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13, 所以方程ax 2+bx +2=0的解为-12或13, 所以-b a =-16,2a =-16. 所以a =-12,b =-2,所以a +b =-14.故选B.3.已知a >0,b >0,若不等式3a +1b ≥m a +3b恒成立,则m 的最大值为( ) A .9 B .12 C .18 D .24答案 B解析 由3a +1b ≥m a +3b, 得m ≤(a +3b )⎝⎛⎭⎫3a +1b =9b a +a b +6.又9b a +a b+6≥29+6=12 ⎝⎛⎭⎫当且仅当9b a =a b ,即a =3b 时等号成立, ∴m ≤12,∴m 的最大值为12.4.不等式x 2-2x -2x 2+x +1<2的解集为( ) A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2}答案 A解析 ∵x 2+x +1>0恒成立,∴原不等式⇔x 2-2x -2<2x 2+2x +2⇔x 2+4x +4>0⇔(x +2)2>0,∴x ≠-2.∴不等式的解集为{x |x ≠-2}.5.关于x 的不等式x 2-(m +1)x +(m +1)≥0对一切x ∈R 恒成立,则实数m 的取值范围为( )A .[-3,1]B .[-3,3]C .[-1,1]D .[-1,3]答案 D解析 ∵关于x 的不等式x 2-(m +1)x +(m +1)≥0对一切x ∈R 恒成立,∴Δ=(m +1)2-4(m +1)=(m +1)(m -3)≤0,解得-1≤m ≤3,∴实数m 的取值范围为[-1,3].故选D.6.设a >0,b >0,若a +b =1,则1a +1b的最小值是( ) A .4 B .8 C .2 D.14答案 A解析 由题意1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·a b =4,当且仅当b a =a b ,即a =b =12时取等号.故选A.7.在1和17之间插入n -2个数,使这n 个数成等差数列,若这n -2个数中第一个为a ,第n -2个为b ,当1a +25b取最小值时,n 的值为( ) A .6 B .7 C .8 D .9答案 D。
不等式习题及详细答案分析
1. 如果,,a b c 满足cb a <<,且0ac <,那么下列选项中不一定成立的是( ) A.ab ac > B.()0c b a -> C.22cb ab < D. ()0ac a c ->解析:由题意知0,0c a <>,则A 一定正确,B 一定正确,D 一定正确,故选C(当b=0 2.对于实数a b 、,“()0b b a -≤”是“1a b≥”成立的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件 解析:由10()0a a b b b a b b-≥⇒≥⇒-≤;反之不成立.选 C 3.若22ππαβ-<<<,则αβ-的取值范围是 解析:由,2222ππππαβ-<<-<-<,αβ<可得(,0)π-4、设a =2-5,b =5-2,c =5-25,则a 、b 、c 之间的大小关系为____________.解析:a =2-5=4-5<0,∴b >0.c =5-25=25-20>0.b -c =35-7=45-49<0.∴c >b >a .答案:c >b >a5. 如果一辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,如果它每天行驶的路程比原来少12 km ,那么它行驶同样的路程得花9天多的时间,这辆汽车原来每天行驶的路程(km)范围是________________. 解析:这辆汽车原来每天行驶的路程为x km ,则⎩⎨⎧+<>+19),8(x 12)-9(x 200, 219)8(x 解之,得 256<x <260.答案:256<x <260 6..若a <b <0,则下列不等式不能..成立的是 A.a 1>b 1 B.2a >2b C.|a |>|b | D.(21)a >(21)b 解析:由a <b <0知ab >0,因此a ·ab 1<b ·ab1,即a 1>b 1成立; 由a <b <0得-a >-b >0,因此|a |>|b |>0成立. 又(21)x 是减函数,所以(21)a >(21)b 成立. 故不成立的是B.答案:B7、已知:m >n ,a <b ,求证:m -a >n -b .证法一:由m >n 知m -n >0,由a <b 知b -a >0.∴(m -a )-(n -b )=(m -n )+(b -a )>0⇒m -a >n -b ;证法二:∵a <b ∴-a >-b又∵m >n ∴m +(-a )>n +(-b )∴m -a >n -b .8. 设,0,0>>b a 求证.)()(2121212212b a ab b a +≥+ 证法一:左边-右边=)()()(33b a abb a +-+ =ab b a ab b ab a b a )())((+-+-+ = ab b ab a b a )2)((+-+ =0))((2≥-+abb a b a ∴原不等式成立。
(完整版)不等式练习及答案汇总
一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
不等式考试题及答案
不等式考试题及答案一、选择题(每题5分,共20分)1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),则下列哪个不等式有相同解集?A. \( ax^2 + bx + c < 0 \)B. \( -ax^2 - bx - c > 0 \)C. \( ax^2 + bx + c \leq 0 \)D. \( -ax^2 - bx - c < 0 \)答案:B2. 对于不等式 \( |x - 3| < 2 \),下列哪个区间是其解集?A. \( (1, 5) \)B. \( (-1, 7) \)C. \( (-2, 4) \)D. \( (3, 5) \)答案:A3. 若不等式 \( x^2 - 5x + 6 < 0 \) 的解集为 \( A \),则 \( A \) 与 \( (2, 3) \) 的交集是什么?A. \( \emptyset \)B. \( (2, 3) \)C. \( (2, 3) \cap A \)D. \( (3, 4) \)答案:C4. 已知不等式 \( x^3 - 3x^2 + 2x > 0 \) 的解集包含 \( (1, 2) \),那么下列哪个不等式也包含 \( (1, 2) \) 作为其解集的一部分?A. \( x^3 - 3x^2 + 2x < 0 \)B. \( -x^3 + 3x^2 - 2x < 0 \)C. \( x^3 - 3x^2 + 2x \leq 0 \)D. \( -x^3 + 3x^2 - 2x \geq 0 \)答案:B二、填空题(每题5分,共20分)1. 若不等式 \( 2x - 3 < 5 \) 的解为 \( x < 4 \),则 \( 2x -3 > 5 \) 的解为 \( x > \_\_\_\_\_ \)。
答案:42. 不等式 \( |x + 1| \geq 3 \) 的解集为 \( x \leq -4 \) 或\( x \geq 2 \),那么 \( |x + 1| < 3 \) 的解集为 \( x \in\_\_\_\_\_ \)。
解不等式组计算专项练习60题(有答案)
解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
不等式经典题型专题练习含答案
不等式经典题型专题练习(含答案)姓名: ___________ 班级: _________________________________一、解答题1 -3x 2x 11 {2 5 1.解不等式组: 2x3 _^x,并在数轴上表示不等式组的解集. 3.已知关于x , y 的方程组 的解为非负数,求整数 m 的值. x 2y =14•由方程组 x-2y=a 得到的%、y 的值都不大于1,求a 的取值范围.2 •若不等式组2x - a :: 1 {x-2b 3的解集为-1<x<1,求(a+1)(b-1)的值.5 •解不等式组: 并写出它的所有的整数解.5x 2y = 11a 18x 、y 的方程组.2x -3y =12a -8的解满足x >0, y > 0,求实数a 的取x -20 卜 +1 3x-3 6 .求不等式组 2的最小整数解. 7 .求适合不等式-11 v- 2a - 5<3的a 的整数解.8 .已知关于x 的不等式组x-a > 03-2x>-1的整数解共有5个,求a 的取值范围.6 .已知关于值范围.x -2y = k { °—9•若二元一次方程组 x • 2y =4的解x y ,求k 的取值范围10 •解不等式组 并求它的整数解的和.2x 5 乞 3(x 2)不等式组的非负整数集2x y =m 214 .若方程组x - y = 2m - 5的解是一对正数,则:(1) 求m 的取值范围11.已知x , y 均为负数且满足: 2x y = m- 3 ①x-y =2m ② 求m 的取值范围.2x - 1 3x ::112 .解不等式组 ,把不等式组的解集在数轴上表示出来,并写出(2)化简:1m -4 -|m 2|15 •我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房•如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?16 •某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人•如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?17 • 3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。
不等式题目及答案
不等式题目及答案【篇一:基本不等式练习题及答案】教a版教材习题改编)函数y=x+xx>0)的值域为( ).a.(-∞,-2]∪[2,+∞)c.[2,+∞)b.(0,+∞) d.(2,+∞)a+b12.下列不等式:①a2+1>2a;②2;③x2+≥1,其中正确的个数是 x+1ab( ).a.0b.1c.2d.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为( ).1a.2b.1 c.2 d.4a.1+2b.1+3c.3d.4t2-4t+15.已知t>0,则函数y=的最小值为________. t考向一利用基本不等式求最值11【例1】?(1)已知x>0,y>0,且2x+y=1,则x+y的最小值为________;(2)当x>0时,则f(x)=2x________. x+1【训练1】 (1)已知x>1,则f(x)=x+1的最小值为________. x-12(2)已知0<x<5y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.考向二利用基本不等式证明不等式bccaab【例2】?已知a>0,b>0,c>0,求证:abca+b+c..【训练2】已知a>0,b>0,c>0,且a+b+c=1.111求证:a+b+c≥9.考向三利用基本不等式解决恒成立问题________.考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(1)求出f(n)的表达式;(2)求从今年算起第几年利润最高?最高利润为多少万元?双基自测d.(2,+∞)答案 c2.解析①②不正确,③正确,x2+112(x+1)+1≥2-1=1.答案 b x+1x+11的最小值是( ). a?a-b?13.解析∵a>0,b>0,a+2b=2,∴a+2b=2≥2ab,即ab≤2答案 a4.解析当x>2时,x-2>0,f(x)=(x-2)+=3,即a=3.答案 ct2-4t+115.解析∵t>0,∴y==t+tt-4≥2-4=-2,当且仅当t=1时取等号.答案-2【例1】解析 (1)∵x>0,y>0,且2x+y=1,112x+y2x+yy2xy2x∴x+y=x+y=3+x+y3+22.当且仅当xy 时,取等号.(2)∵x>0,∴f(x)=2x221=1≤2=1,当且仅当x=x,即x=1时取等号.答x+1x+x案 (1)3+22 (2)1【训练1】.解析 (1)∵x>1,∴f(x)=(x-1)+1+1≥2+1=3 当且仅当xx-11?5x+2-5x?2=1,∴y≤,当且仅当5x=2-5x,-5x>0,∴5x(2-5x)≤?52??1128即x=5时,ymax=5.(3)由2x+8y-xy =0,得2x+8y=xy,∴y+x=1,4yx当且仅当xyx=2y时取等号,又2x+8y-xy=0,∴x=12,y =6,∴当x=12,y=6时,x+y取最小值18.1答案 (1)3 (2)5(3)18bcca【例2】证明∵a>0,b>0,c>0,∴a+b≥2bcabcaab=2b;acb+c≥2 bccabcab=2c;aba+c≥2caab?bccaab?+c≥2(abc=2a.以上三式相加得:2?ab?bccaab+b+c),即abca+b+c.【训练2】111a+b+ca+b+c证明∵a>0,b>0,c>0,且a+b+c=1,∴a+b+c=aba+b+cbcacab?ba?ca?cb?a+b+?ac+?bc 3+3+caabbcc??????1≥3+2+2+2=9,当且仅当a=b=c=3时,取等号.xx解析若对任意x>0≤a恒成立,只需求得y=的最大值即x+3x +1x+3x+1可,因为x>0,所以y=x=x+3x+1111x=1时115x+x32 xx ?1??1?取等号,所以a的取值范围是?5,+∞?答案 ?5? ????【训练3】解析由x>0,y>0,xy=x+2y≥2 2xy,得xy≥8,于是由m-2≤xy恒成立,得m-2≤8,m≤10,故m的最大值为10.答案 1016当且仅当x=x,即x=4时取等号.故当侧面的长度为4米时,总造价最低.【训练3】解 (1)第n次投入后,产量为(10+n)万件,销售价格为100元,固定成本为80元,科技成本投入为100n万元.所以,年利润为f(n)=(10+n+180?80??*100-100-?-100n(n∈n).(2)由(1)知f(n)=(10+n)?-100n n)?n+1?n+1???9?9n+1+≤520(万元).当且仅当n+1==1 000-80?, n+1??n +1即n=8时,利润最高,最高利润为520万元.所以,从今年算起第8年利润最高,最高利润为520万元.【示例】.正解∵a>0,b>0,且a+b=1,12?12b2a∴a+b=?a+b(a+b)=1+2+ab3+2 ??b2aab3+22. a+b=1,??当且仅当?b2a??ab ?a=2-1,12即?时,ab3+22. ?b=2-22 11112【试一试】尝试解答] a+ab=a-ab+ab+ab+a(a-b)+a?a-b?a?a-b?11+ab+ab≥2 1a?a-b?2 1abab2+2=4.当且仅当a(a-a?a-b?a?a-b?b)=1a?a-b?且ab=1aba=2b时,等号成立.答案d【篇二:初中数学不等式试题及答案】t>a卷2?x7x??1的解集为_____________。
高考数学《基本不等式》真题练习含答案
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
不等式练习题及答案解析
基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。
不等式练习题及答案
不等式练习题(一)1、若a>b,下列不等式中一定成立的是( )1 1- b 1 C、2a2ba b a2、若-1<a<b<1,则下列不等式中成立的是( )A、-2<a-b<0B、-2<a-b<-1C、-1<a-b<0一十施亠2x 33、与不等式x1同解的不等式是( )A、x 1 OB、4•已知二次不等式A. a 1,b3x 22 0 C、lg ( x 3xlg(a b)-1<a-b<1>0 D、x3 x2 x 12ax bxB.a1 0的解集为x2,b 1 C.a,则a,b的值为5.方程mx2(2m 1)x mA m 1 B.m 0 C.6.若f (x) 3x2x 1,g(x)A. f (x) g(x)7、不等式(〔产38•若0x1,9•已知不等式x210、已知1 x11. (1 )已知函数D.a 1,b 0有两个不相等的实数解,则m的取值范围是2x2B.f(x) g(x) ax m 0或m 0 D. m2x的解集是2,则z x x 1,则f(x), g(x)的大小关系是( C.f(x) g(x) D.随x的值变化而变化4y的最小值为,最大值为4 0的解集为空集,贝U a的取值范围是4且2 x y 3,贝U z 2x 3y的取值范围是2f (x) log3(ax ax 1)的定义域为R,求实数a的取值范围;(2)已知函数f (x) log3(ax2 ax 1)的值域为R,求实数a的取值范围;5x b 0解集是x 3 x 2,求不等式bx 2 5x a 0的解集 22)x 2(a 2)x2的图象在x 轴下方,求实数a 的取值范围14•解关于X 的不等式 2 ax 2 2x ax 12、已知不等式ax 2 13.已知函数y (a不等式练习题一参考答案4 8.-4,9 1-6 C A D C C A 7. x 2 x9. a 4 a 4 10. (3,8)11. (1)0 a 4 (2)a 412. xx 2 或x 12 313. (学案62 页11 题)a 0 a 214. a 0 时,x x 1a 0 时,x x 1 或x —a2 a 0 时,x - x 1aa 2 时,x x 1a 2 时,x 1 x -a。
基本不等式练习题(带答案)
基本不等式1. 若a ∈R ,下列不等式恒成立的是 ( )A .21a a +>B .2111a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( )A.12B.22a b + C.2ab D.a3. 设x >0,则133y x x=--的最大值为 ( ) A.3 B.332- C.3-23 D.-14. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( )A. 10B. 63C. 46D. 183 5. 若x , y 是正数,且141x y+=,则xy 有 ( ) A.最大值16 B.最小值116 C.最小值16 D.最大值1166. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( )A .2222a b c ++≥B .2()3a b c ++≥C .11123a b c++≥ D .3a b c ++≤7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( )A .114x y ≤+ B .111x y +≥ C .2xy ≥ D .11xy ≥ 8. a ,b 是正数,则2,,2a babab a b++三个数的大小顺序是 ( ) A.22a b ab ab a b +≤≤+ B.22a b abab a b+≤≤+ C.22ab a b ab a b +≤≤+ D.22ab a bab a b +≤≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( )A.2p q x += B.2p q x +< C.2p q x +≤ D.2p qx +≥ 10. 下列函数中,最小值为4的是 ( )A.4y x x=+B.4sin sin y x x =+ (0)x π<<C.e 4e x x y -=+ D.3log 4log 3x y x =+11. 函数21y x x =-的最大值为 .12. 建造一个容积为18m 3, 深为2m 的长方形无盖水池,如果池底和池壁每m 2 的造价为200元和150元,那么池的最低造价为 元.13. 若直角三角形斜边长是1,则其内切圆半径的最大值是 .14. 若x , y 为非零实数,代数式22228()15x y x yy x y x+-++的值恒为正,对吗?答 .三、解答题, 本大题共4小题,每小题12分,共48分,解答应写出必要的文字说明、证明过程和演算步骤.15. 已知:2222,(,0)x y a m n b a b +=+=>, 求mx +ny 的最大值.16. 设a , b , c (0,),∈+∞且a +b +c =1,求证:111(1)(1)(1)8.a b c ---≥17. 已知正数a , b 满足a +b =1(1)求ab 的取值范围;(2)求1ab ab+的最小值.18. 是否存在常数c ,使得不等式2222x y x yc x y x y x y x y+≤≤+++++对任意正数x , y 恒成立?试证明你的结论.《基本不等式》综合检测一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCABCCC二.填空题 11.12 12.3600 13. 212- 14.对 三、解答题15.ab 16. 略 17. (1)10,4⎛⎤⎥⎝⎦(2)174 18.存在,23c =。
基本不等式练习题及答案
基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。
因为x>0,所以函数的值域为(0,+∞)。
2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。
3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。
因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。
房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。
求侧面的长度为多少时,总造价最低。
去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。
今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。
每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式练习题及答案
一、单项选择题
1. 若 x > -3,下列不等式成立的是:
A) x > 2 B) x < -2 C) x < 3 D) x > -1
答案:D) x > -1
2. 若 2x + 5 < 13,下列不等式成立的是:
A) x < 4 B) x < 3 C) x < 6 D) x < -4
答案:C) x < 6
3. 若 -2x + 3 > -7,下列不等式成立的是:
A) x > 2 B) x < -2 C) x > 5 D) x < -3
答案:A) x > 2
二、填空题
1. 若 -4x + 5 < -3,解得 x > ______。
答案:-2/3
2. 若 2x - 7 > 13,解得 x > _______。
答案:10
3. 若 3x + 2 < -4,解得 x < _______。
答案:-2
三、证明题
证明:对于任意实数 x,都成立 x + 7 > x + 3。
解答:假设 x 为任意实数。
我们需要证明当 x + 7 > x + 3。
首先,将 x + 7 和 x + 3 分别展开,得到:
x + 7 > x + 3
由于两边都有 x,我们可以将其消去,得到:
7 > 3
由于 7 大于 3,所以原不等式成立。
证毕。
四、应用题
若某数与它的倒数的和大于5/2,求这个数的取值范围。
解答:假设该数为 x。
根据题意,我们有不等式:
x + 1/x > 5/2
为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0
化简后得到:
2x^2 - 5x + 2 > 0
为了求解该二次不等式,我们需要找到其根的位置。
通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。
通过构建数线图或利用导数的方法,我们可以判断出不等式 2x^2 - 5x + 2 > 0 的解集为:
x ∈ (-∞, 1/2) ∪ (2, +∞)
因此,该不等式的解集可以表示为:x ∈ (-∞, 1/2) ∪ (2, +∞)。
即该数的取值范围为负无穷到 1/2 与 2 到正无穷之间。