参数检验和非参数检验

合集下载

参数检验和非参数检验

参数检验和非参数检验

统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测,特点是:由样本推断总体,统计推断是数理统计的核心部分,统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

其中假设检验方法可以分为参数检验和非参数检验两大部分。

1.参数检验:
是在给定或假定总体分布形式的基础上,对总体的未知参数进行估计或检验。

它一方面以明确的总体分布为前提,另一方面需要满足某些总体参数的假定条件
2.非参数检验:
对总体分布不做严格假定,统计过程不涉及总体参数,完全依靠样本数据的顺序、秩等信息进行分析,通常在不符合参数检验的条件下使用。

参数检验的优点是针对性较强,每种方法都有其特定的使用环境,并且利用数据信息充分,一旦符合使用条件,得出的结论会非常准确。

缺点是,对总体的分布要求较高,实际工作中有时无法满足使用条件。

非参数检验的优点是对总体分布没有严格要求,对样本数据类型也没有过多要求,非正态、方差不齐等都能做,适应性较强,计算方法也比较简单。

缺点是对数据信息利用不充分,会降低功效。

由于检验的功效是我们选择分析方法的首要因素,因此在实际工作中,我们还是优先使用参数检验,只有在数据特征不符合参数检验要求时,才考虑使用非参数检验。

spss分析

spss分析

spss分析SPSS (Statistical Package for the Social Sciences) 是一种常用的统计软件,可以进行各种数据分析。

SPSS分析方法如下:1. 描述性统计分析:对数据进行描述性统计,包括平均数、中位数、众数、标准差、方差等。

2. 参数检验:通过参数检验可以判断总体参数是否符合预期,常见的参数检验方法有t检验、方差分析(ANOVA)、卡方检验等。

3. 非参数检验:非参数检验方法用于处理数据样本不满足正态分布或方差齐性的情况,常见的非参数检验方法有Wilcoxon秩和检验、Kruskal-Wallis检验等。

4. 相关分析:用于分析两个或多个变量之间的关系,常见的相关分析方法有Pearson相关系数、Spearman秩相关系数等。

5. 回归分析:通过建立回归方程来研究自变量与因变量之间的关系,常见的回归分析方法有线性回归、多元回归等。

6. 方差分析:用于比较不同因素对结果的影响,常见的方差分析方法有单因素方差分析、多因素方差分析等。

7. 聚类分析:将数据集中的个体划分为不同的类别,常见的聚类分析方法有K均值聚类、层次聚类等。

8. 判别分析:用于确定将个体划分到已知类别中的判别准则,常见的判别分析方法有线性判别分析、逻辑回归等。

9. 生存分析:用于分析个体在某个时间段内生存的概率,常见的生存分析方法有Kaplan-Meier生存曲线、Cox比例风险模型等。

10. 因子分析:用于确定影响多个变量的共同因素,常见的因子分析方法有主成分分析、因子旋转等。

以上只是SPSS分析的一部分,还有很多其他的分析方法可以在SPSS中实现。

具体选择哪种分析方法取决于研究目的和数据特点。

【统计分析】非参数检验

【统计分析】非参数检验
α=0.05 2. 计算统计量: T+=62.5,T-=3.5
3. 查表与结论 查T界值表,T0.05(11)=10~56,T=3.5,在界 值范围外,P<0.05,拒绝H0。
符号检验(Sign test)
z n n 1 n
二、两样本比较的秩和检验 (Wilcoxon法)
适用条件:完全随机设计的两个样本比较,若不满足参数 检验的应用条件,则用本法;两个等级资料比较。
-0.45
-1
13
15.20
5.50
9.70
11
14
16.50
9.00
7.50
8.5
步骤
1. 建立假设:H0:差值的总体中位数=0, H1:差值的总体中位数0;
=0.05 2. 计算统计量
计算差值d,由小到大的顺序编秩次,并冠以原d 的正负号,然后分别求正负秩和,得到T+=73, T-=5,取秩和较小者作为检验统计量T=5 3. 查表及结论
1.0
2.5
4
17.00
6.50
10.50
12
5
13.00
5.50
7.50
8.5
6
18.00
13.50
4.50
5
7
17.50
10.00
7.50
8.5
8
10.20
10.20
0.00
-
9
10.00
10.00
0.00
-
10
10.50
9.50
1.00
2.5
11
13.80
6.80
7.00
6
12
3.03
3.48

假设检验——非参数检验

假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。

上一节我们所介绍的Z 检验、t 检验,都是参数检验。

它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。

参数检验就是要通过样本统计量去推断或估计总体参数。

然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。

这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。

非参数检验是通过检验总体分布情况来实现对总体参数的推断。

非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。

非参数检验的方法很多,分别适用于各种特点的资料。

本节将介绍几种常用的非参数检验方法。

一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。

22检验的方法主要包括适合性检验和独立性检验。

(一)2检验概述2是实得数据与理论数据偏离程度的指标。

其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。

分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。

观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。

当 f 0 与 f e 完全相同时,2值为零。

际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。

本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。

一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。

它通常要求总体分布服从特定的概率分布,如正态分布。

参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。

2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。

4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。

参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。

但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。

二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。

非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。

2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。

3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。

非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。

它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。

三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。

2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。

参数检验与非参数检验的区别及优缺点.(课堂PPT)

参数检验与非参数检验的区别及优缺点.(课堂PPT)

别 对总体参数进行区间 和检验分布(如位置)是否
估计或假设检验
相同
优 符合条件时,检验效 应用范围广、简便、易掌握 点 能高
对资料要求严格

若对符合参数检验条件的资 料用非参数检验,则检验效 能低于参数检验
点 要求资料分布型已知
资料总体方差相等
2
如H0成立,非参数检验与参数检
验效果一样好;如H0不成立,则
n(n 1)(2n 1) / 24
如果有相同秩次,应用下面的校正公式:
T n(n 1) / 4 0.5
u
n(n
1)(2n 24
1)
1 48
(t
3 j
tj)
连续性校 正数
式中 tj 为第 j 个相同秩次的个数。如有相同秩次:3.5,3.5,6,6,6, 则∑(t3j-tj)=(23-2)+(33-3)
11
22
3
n1=6ቤተ መጻሕፍቲ ባይዱ
T1=40.5
乙种香烟
尼古丁含量
秩次
28
9.5
31
13
30
12
32
14
21
2
27
8
24
5
20
1
n2=8
T2=64.5
2

14
1.建立假设,确立检验水准: H0:两总体分布相同 H1:两总体分布不同 =0.05
2.计算检验统计量T值
(1)编秩 先将两组数据由小到大分别排队,再将 两组数据从小到大统一编秩,如遇相同数据在同 一组内,按位置顺序编;如相同数据不在同一 组内,应取平均秩次 。
2

12
二 成组设计两样本比较的秩和检验 (Wilcoxon两样本比较法)

常用非参数检验方法

常用非参数检验方法
(3)显著性水平为0.1,由于是双侧检验,每侧
为0.05,n+=15, n-=3, n=n++n-=18, 查二项分 布临界值表,当n=18时,临界值为14。
(4)检验判断。由于正号个数15大于14,落入 拒绝域,所以拒绝原假设,接受备择假设,即 认为新兵总体身高中位数不等于165公分。
2. 配对样本的符号检验
给定显著水平0.1,用符号检验判定新兵总体 的身高中位数是否与165公分有显著差异。
解:(1)设立假设
H0:Me=165公分;H1: Me≠165公分
(2)将样本各个数据减去原假设成立时的假定 中位数165公分,并把正负号记录下来。其中相 减等于0就略去不计。这样我们就有:
+++++--+++-+++++++
假定n1 , n2是两个选自不同总体,样本 容量大小相同的随机样本,将两个样本的 数值一一配对,得到系列配对值。然后将 两个配对组相减并记录下其差数符号,计 算正号的个数总数n+和负号的个数总数n-。 如果两个样本所选自的总体在位置差异方 面不存在显著差别,则n+和n-出现的概率 应该一致各为0.5,反之则认为两个总体存 在本质差别。
解:假设H0:F(x)为均匀分布 H1:F(x)不是均匀分布
则统计量:
2 4 ( fi ei )2 (20 25)2
(35 25)2
10
i1
ei
25
25
查 2分布表得临界值
2 0.05
(3)
7.815
检验统计量10>7.815, 所以拒绝原假设。
说明顾客对四种品牌的空调偏好有差异。
统计学
二、符号检验
1. 单样本位置的符号检验
一个随机样本,有 n 个数据 x1,x2,…,xn,

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。

参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。

而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。

参数检验主要有t检验、方差分析和回归分析等。

其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。

方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。

回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。

非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。

Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。

在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。

2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。

3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。

4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。

5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。

无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。

同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。

在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。

参数检验和非参数检验

参数检验和非参数检验

一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。

在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。

二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

它与Z检验、卡方检验并列。

t检验t检验分为单总体检验和双总体检验。

单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。

当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。

单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。

双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。

独立样本t检验统计量为:S1 和S2 为两样本方差;n1 和n2 为两样本容量。

(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。

t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35,X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ≠μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。

第十讲 非参数检验

第十讲 非参数检验

分析完全随机设计的多样本计量资料时,若多样本观察指标不满足正态性和方差齐性, 不能进行方差分析, 以及多样本观察指标为等级 (有序分类) 资料, 宜采用 Kruskal-Wallis H 秩和检验。
14
第二节秩和检验 —完全随机设计多样本的秩和检验
【例11-4】某医生在研究再生障碍性贫血时, 测得不同程度再生障碍性贫血患者血清中可溶 性CD8抗原水平(U/ml),结果见表11-5,问不 同程度再生障碍性贫血患者血清中可溶性CD8抗 原水平有无差别?
通常规定,当 n1 n2 时,取较小样本的秩和作为检验统计量 T ;当 n1 n2 时,取秩和 较小者作为检验统计量 T 。
9
第二节秩和检验 —成组设计资料的秩和检验

【例11-2】某医院某医生对28例糖尿病早期微血管病 变的患者,按年龄、性别、病程、中医证候评分、生存 质量量表评分、饮食控制等情况,随机分为两组,试验 组采用西药加中药联合治疗方法,对照组采用西药加安 慰剂治疗方法,治疗4周,测定24小时尿蛋白改变量, 结果见表11-3,问该中药对糖尿病患者早期微血管病变 有无疗效?
16
第二节秩和检验 —完全随机设计多样本的秩和检验
【例11-5】探讨中药联合NB-UVB治疗寻常性银 屑病的临床疗效。95例患者分为3组,治疗组35 例给予NB-UVB照射,同时中药浴疗;对照1组33 例予NB-UVB照射,对照2组30例给予中药浴疗。 结果见表11-6,试比较三组疗效是否有差异?
4
第一节 非参数检验简述
表 11-1 参数检验与非参数检验的区别 非参数检验 推断总体分布,如中位数是否相等,是 否符合某种分布 参数检验 推断总体的参数,如算数均数、方 差、率是否相等 已知总体分布:如正态分布、二项 分布、poission 分布

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

实验二 SPSS的参数检验和非参数检验(验证性实验 4学时)1、目的要求:熟练掌握t检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。

2、实验内容:使用指定的数据按实验教材完成相关的操作。

3、主要仪器设备:计算机。

练习:1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:鼠体内钙的留存量有显著不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天并说明分析结论。

1 参数检验概述假设检验的基本思想.事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立;.采用逻辑上的反证法,依据统计上的小概率原理。

2 单样本的T检验2.1检验目的:•检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。

如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。

•要求样本来自的总体服从或近似服从正态分布。

2.2 单样本T检验的实现思路•提出原假设:•计算检验统计量和概率P值●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。

2.3 单样本t检验的基本操作步骤1、选择选项Analyze-Compare means-One-Samples T test,出现窗口:2、在Test Value框中输入检验值。

3、单击Option按钮定义其他选项。

Option选项用来指定缺失值的处理方法。

其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。

可见,较第二种方式,第一种处理方式较充分地利用了样本数据。

在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

实验报告 SPSS的参数检验和非参数检验学期:_2013__至2013_ 第_1_学期课程名称:_数学建模专业:数学实验项目__SPSS的参数检验和非参数检验实验成绩:_____一、实验目的及要求熟练掌握t检验及其结果分析。

熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。

二、实验内容使用指定的数据按实验教材完成相关的操作。

1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:方式1:同一鼠喂不同的饲料所测得的体内钙留存量数据如下:方式2:甲组有12只喂饲料1,乙组有9只喂饲料2,所测得的钙留存量数据如下:请选用恰当方法对上述两种方式所获得的数据进行分析,研究不同饲料是否使幼鼠体内钙的留存量有显着不同。

2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天三种品牌牛奶的日销售额数据,如下表所示:请选用恰当的非参数检验方法,以恰当形式组织上述数据进行分析,并说明分析结论。

实验报告附页三、实验步骤(一)方式1:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze-Compare means-Paired-Samples T Test,出现窗口;3、把检验变量饲料1,饲料2 选择到Paired Variables框,单击OK。

方式2:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze-Compare means-Independent-Samples T Test,出现窗口3、选择检验变量饲料到Test Variable(s)框中。

4、选择总体标志变量组号到Grouping Variables框中。

5、单击Define Groups按钮定义两总体的标志值1、2,单击OK。

(二)1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze->Nonparametric->k Independent sample3、选择待检验的若干变量入包装1,包装2,包装3到Test Variable(s)框中;4、选择推广的平均秩检验(Friedman检验),单击OK。

SPSS统计分析2:参数检验与非参数检验

SPSS统计分析2:参数检验与非参数检验

参数检验与非参数检验一、参数检验与非参数检验的区别(1)参数检验:一般是数据的总体分布已知的情况下,对数据分布的参数是否落在相应范围内进行检验。

是对参数平均值、方差进行的统计检验,是推断统计的重要组成部分。

适用条件:当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。

此时,总体的分布形式是给定的或是假定的,只是其中一些参数的取值或范围未知,分析的主要目的是估计参数的取值,或对其进行某种统计检验。

这类问题往往用参数检验来进行统计推断。

它不仅仅能够对总体的特征参数进行推断,还能够实现两个或多个总体的参数进行比较。

(2)非参数检验:一般是在不知道数据总体分布的前提下,检验数据的分布情况。

适用条件:在数据分析过程中,由于种种原因,往往无法对总体分布形态作简单假定,此时参数检验不再适用。

非参数检验正是基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。

二、参数检验方法及适用条件三、非参数检验方法及适用条件四、使用方法当分析某个因素对变量的影响差异时,即检验该因素分类的若干个样本差异:(1)如果因素为两个,使用独立样本T-检验,来分析两个总体平均数相等的显著性;结果判定:先看方差齐性F检验结果,再看均值相等性的t检验结果,即a.如果方差齐性显著性>0.05,则表明方差齐性显著,再看第一行的检验统计值t及显著性p(p<0.05表示差异明显);b.如果方差齐性显著性<=0.05,则表明方差显著不齐,再看第二行的检验统计值t及显著性p(p<0.05表示差异明显);(2)如果因素为多个,使用单因素方差检验(即F检验),来分析该因素的影响差异。

结果判定:方差齐性显著则看ANOVA的检验统计值F及其显著性p。

16种常用数据分析方法

16种常用数据分析方法

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。

常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析检査测量的可信度,例如调查问卷的真实性。

分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析用于分析离散变量或定型变量之间是否存在相关。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数检验和非参数检验
参数检验和非参数检验是统计学中两种常用的假设检验方法。

参数检
验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概
率分布进行特定的假设。

本文将分析和比较这两种假设检验方法,并讨论
它们的优缺点和适用范围。

参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分
布族,例如正态分布或泊松分布。

然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。

常见的参数检验方法有t检验、F检验和
卡方检验等。

以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的
情况。

假设我们有两组样本数据,分别服从正态分布。

可以使用t检验来
计算两组样本均值的差异是否显著。

t检验基于样本均值和标准差来估计
总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。

参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相
对简单,适用于数据符合特定分布的情况。

此外,参数检验通常具有较好
的效率和统计性质。

然而,参数检验也有一些限制和缺点。

首先,参数检验通常对数据的
分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。

另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的
检验结果。

此外,参数检验对异常值和离群值比较敏感,这可能会导致统
计结论的错误。

与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做
出特定的假设。

它适用于更广泛的数据类型和样本分布。

常见的非参数检
验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis
检验等。

以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。

这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来
判断差异是否显著。

非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定
假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。

此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下
获得可靠的结果。

然而,非参数检验也有一些限制。

首先,与参数检验相比,非参数检
验的统计效率较低,需要更多的样本才能达到相同的统计功效。

此外,非
参数检验通常无法提供关于总体参数的精确估计。

综上所述,参数检验和非参数检验是两种常用的假设检验方法。

参数
检验适用于数据符合特定分布的情况,具有较好的效率和统计性质,但对
分布假设和样本大小要求较高。

非参数检验适用范围更广,对数据分布和
样本大小的要求较低,对异常值和离群值的鲁棒性较好,但计算效率较低。

选择适当的假设检验方法应根据数据类型、分布特征和分析目的来综合考虑。

相关文档
最新文档