时频测量原理简述
时间与频率测量
4.2.1 时间与频率的原始标准
1)天文时标
◆原始标准应具有恒定不变性。 ◆频率和时间互为倒数,其标准具有一致性。 ◆宏观标准和微观标准 宏观标准:基于天文观测; 微观标准:基于量子电子学,更稳定更准确。 ◆世界时(UT,Universal Time):以地球自转周期(1天)确定的时 间,即1/(24×60×60)=1/86400为1秒。其误差约为10-7量级。
f x Nf s
◆拍频法:将标准频率与被测频率叠加,由指示器(耳
机或电压表)指示。适于音频测量。
◆外差法:将标准频率与被测频率混频,取出差频并测
量。可测量范围达几十MHz(外差式频率计)。
◆示波法:
李沙育图形法:将fx和fs分别接到示波器Y轴和X轴(X-Y 图示方式),当fx=fs时显示为斜线(椭圆或圆); 测周期法:直接根据显示波形由X通道扫描速率得到周 期,进而得到频率。
◆测量准确度高 时间频率基准具有最高准确度(可达1014),校准(比对)方便,因而数字化时频测 量可达到很高的准确度。因此,许多物理量的 测量都转换为时频测量。 ◆自动化程度高 ◆时频测量技术应用广泛 几乎所有的电子设备都离不开时钟 最有代表性的应用领域:导间与频率的原始标准 1)天文时标 2)原子时标
3)测量方法概述
频率的测量方法可以分为:
直读法 模拟法 电桥法 谐振法 拍频法 比较法 频率测量方法 示波法 电容充放电法 数字法 电子计数器法 测周期法 差频法 李沙育图形法
3. 时间和频率的测量原理
3.1 模拟测量原理 1)直接法 2)比较法
3.2 数字测量原理 1)门控计数法测量原理 2)通用计数器的基本组成
fx 1 2 RC
频率测量原理
fx ~ fs ~
v
耳机
示波器
7
有源测量方法
2、差频法:
利用非线性器件和标准信号对被测信号 进行差频变换来实现频率的测量。适用 于高频段的测量。
fx ~
混频
滤波放大器
V
fs ~
差频法测频原理
8
软件实现-FFT算法
FFT算法:
FFT算法即快速傅里叶算法,是傅里叶变换一种 高效的实现方法,它将时域的信号通过该算法得到频域
17
18
5
无源测量方法
3、频率—电压变换法:
频率—电压变换法测频就是先把频率信号变换为 电压或电流信号,然后用带有频率刻度的电压表或
电流表直接得出被测频率。
ux
Aபைடு நூலகம்
B
U0
脉冲形成
单稳态多谐振荡器
积分
6
有源测量方法
1、拍频法:
将被测信号与标准信号经线性元件直接进 行叠加来实现频率的测量。通常只用于音 频的测量。
M
fx ~
LC
v
谐振法测频原理
fx
c
4
无源测量方法
平衡条件与频率有关的电桥都可以用来测量
2、电桥法: 频率,电桥的频率特性应尽可能尖锐。常用的电
桥有:文氏电桥、谐振电桥、双T电桥。
fx ~
C1
R3
R1
R2 R4
C2
fx
R
C
取R1= R2=R,C1=C2=C,则由f= ω/2 π 得 fx=1/2πRC
数字计数器法
fs=1/Ts 晶振
倍频器(m)
Ts/m
闸门
计数显示
TX
放大整 TX 分频器 Kf TX
测频率的原理
测频率的原理测频率的原理基于物理学中的振动理论和波动理论,以下将从频率的定义、测量频率的方法、频率计的工作原理以及常见的测频仪器进行详细解析。
频率是指在单位时间内发生的振动、波动或周期性现象的次数。
频率的单位为赫兹(Hz),表示每秒的振动次数。
测量频率的方法有多种,常见的方法有计数法、差拍法、脉冲法和谐振法。
首先,计数法是指利用计数器或频率计对现象发生的次数进行计数,然后除以时间即可得到频率。
例如,我们可以使用计数器来记录特定事件的发生次数,然后通过除以测量时间来计算频率。
这种方法适用于频率较低的情况,但对于高频率的测量会有一定的误差。
其次,差拍法是通过比较两个不同频率信号之间的时间差来测量频率。
一般情况下,使用示波器来测量两个信号之间的相位差,通过相位差的变化来确定频率的变化。
这种方法适用于测量频率较高的情况,但需要较精确的仪器和较准确的时间基准。
第三,脉冲法是利用脉冲信号的宽度和周期来测量频率。
脉冲信号是具有很短时间宽度的信号,通过测量脉冲信号的宽度和周期来计算出频率。
这种方法适用于高频率的测量,但需要较高的时间分辨率和较高的测量精度。
最后,谐振法是通过将待测频率的信号与一个精确的参考频率进行比较,从而测量待测频率。
这种方法利用谐振现象,通过在待测频率和参考频率之间建立稳定的振荡器,然后通过调节参考频率的源来使其与待测频率相同,在共振点上检测信号强度的变化,从而确定待测频率。
这种方法适用于高精度、高频率测量。
除了以上介绍的测频方法,还有一些常见的测频仪器,如频率计、示波器和频谱分析仪。
频率计是一种专门用于测量频率的仪器,可以根据输入信号的频率显示出其准确的数值。
频率计一般通过频率对电路将输入信号转换成可以测量的电压或电流信号,然后再经过一定的放大、滤波和计数等处理,最终显示出待测频率的数值。
示波器是一种用于观察电信号波形的仪器,它可以通过垂直和水平的时间基准来显示信号的振幅、频率和相位等特性。
第4章-时间与频率测量-习题-答案
电子测量技术第四章(一)填空1、电子计数器的测周原理与测频相反,即由被测信号控制主门开通,而用晶振脉冲进行计数。
2、电子计数器测频的基本原理刚好与测周相反,即由___ _晶振 _____控制主门开门,而用被测信号进行计数。
3、测量频率时,通用计数器采用的闸门时间越____大____,测量准确度越高。
4、测量周期时,通用计数器采用的闸门时间越____大____,测量准确度越高。
5、通用计数器测量周期时,被测信号周期越大,量化误差对测周精确度的影响越小。
6、通用计数器测量频率时,被测信号周期越小,量化误差对测周精确度的影响越小。
7、在用通用计数器测量低频信号的频率时,为了减小测量误差,应采用测周法。
8、电子计数器测周时,选用的时标越小,则显示的位数越多,量化误差的影响就越大。
9、电子计数器的测量误差来源主要有触发误差、闸门时间误差和标准频率误差三种。
10、电子计数器的误差来源有___量化误差___、__标准频率误差__和___触发误差___;其中量化误差是主要来源,其绝对值恒为定值。
11、用电子计数器测量频率比时,周期小的信号应加到输入通道 A 。
用电子计数器测量频率,如闸门时间不变,频率越高,则测量误差越小;测量周期时,如时标(计数脉冲周期)不变,被测信号频率越高,则测量误差越大。
7、计数器测周的基本原理刚好与测频相反,即由_被测周期控制主门开门,而用_标准频率_进行计数。
(二)选择题1、通用计数器测量周期时由石英振荡器引起的主要是( C )误差。
A.随机B.量化C.变值系统D.引用2、下列选项中通用计数器不能测量的量是( D )A.频率B.相位C.周期D.电压3、在通用计数器测量低频信号的频率时,采用倒数计数器是为了( D )A.测量低频周期B.克服转换误差C.测量低频失真D.减小测频时的量化误差影响4、在电子计数法测量频率时,测量误差通常有两部分组成,分别是( A )误差和( C )误差。
A、量化B、触发C、标准频率5、通用计数器在测量频率时,当闸门时间选定后,被测信号频率越低,则( C )误差越大。
电子测量技术频率(时间)与相位测量
电子测量原理
转变为自然基准。
需要指出的是,在电子仪器中常采用石英频率标准。
其原因在于:其一,石英晶体的机械稳定性和热稳定性很 高,它的振荡频率受外界因数的影响较小,因而比较稳定 ;其二,石英频率标准发展快,六十年来将准确度和稳定 度提高了4个数量级;其三,石英晶体振荡器结构简单, 制造、维护、使用均方便,而且准确度能满足大多数测量 的需要。因此,石英频率作为一种次级标准,已成为最常 用的频率标准。 最后还要指出,时间标准就是频率标准,这是因为频 率与时间互为倒数。
第3页
电子测量原理
6.1.2 频率或时间标准
人们早期根据在地球上看到太阳的“运动”较为均匀 这
一现象建立了计时标准,把太阳出现于天顶的平均周期(
即平均太阳日)的86400分之一定为一秒,称零类世界时
(记作UTo),其准确度在10-6量级。考虑到地球受极运 动(即极移引起的经度变化)的影响,可加以修正,修正 后称为第一世界时(记作UT1)。此外,地球的自转不稳 定,进行季节性、年度性变化校正,引出第二世界时(记 作UT2),其稳定度在3×10-8。而公转周期却相当稳定, 于是人们以1900回归年的31556925.9747分之一作为历书时 的秒(记作ET),其标准度可达±1×10-9。
第1页
电子测量原理
所以,频率、时间、相位三个量可归结为一个量的 测量问题。在电子技术领域内,频率是最基本的参数之一 ,它指单位时间内周期变化或振荡的次数,许多电参数的 测量方案及结果都与之密切相关。因此,频率的测量是十 分重要的,而且到目前为止频率的测量在电测量中精确度 是最高的。
第2页
电子测量原理
第11页
电子测量原理
输入信号显示时的位置,则显示第二个输入信号时就可距离,
第五章频率及时间测量
的相对误差。
25
第五章 时间、频率和相位的测量
将式
N 1 1 、 T fc 代入式
N
N
f xT T
fc
f x N T
fx
N
T
得
f x 1 fc
fx
f xT fc
(5.2-11)
若考虑极限情况,测量频率的最大相对误差应写为
f x fx
1 f xT
fc fc
(5.2-12)
由上式可看出:提高频率测量的准确度措施是:
2
第五章 时间、频率和相位的测量
时间的定义: 2)、原子时(AT): 秒定义为:“秒是铯133原子(Cs133)基态的两个超
精细能级之间跃迁所对应的辐射的9 192 631 770个周 期所持续的时间。” 误差:10-14 3)、协调世界时 (UTC):
采用原子时的速率(对秒的定义)通过闰秒方法使原 子时和世界时接近的时间尺度。是一种折衷的产物。
28
第五章 时间、频率和相位的测量
本例如选T=10 s,则仪器显示为0 000.000 0 kHz, 把最高位丢了。造成虚假现象。原因是由于实际的仪 器显示的数字都是有限的,而产生了溢出造成的。
所以,选择闸门时间的原则是: 在不使计数器产生溢出现象的前提下,应取闸门 时间尽量大一些,减少量化误差的影响,使测量的准 确度最高。
T Tx
△t1
△t2
图5.2-2 脉冲计数误差示意图
19
第五章 时间、频率和相位的测量
下图T为计数器的主门开启时间,Tx为被测信号周期, Δt1为主门开启时刻至第一个计数脉冲前沿的时间(假设 计数脉冲前沿使计数器翻转计数),Δt2为闸门关闭时刻 至下一个计数脉冲前沿的时间。设计数值为N(处在T区
第4章 时间与频率的测量
4.4 通用计数器 4.4.1 通用电子计数器的基本组成 4.4.2 电子计数器的使用 4.4.3 通用电子计数器的测量功能 4.5 其他测量频率的方法 4.5.1 电桥法测频 4.5.2 谐振法测频 4.5.3 频率-电压转换法测量频率 4.5.4 拍频法测频 4.5.5 差频法测频 4.5.6 用示波器测量频率
=
±⎜⎜⎝⎛
1 10n Tx
fc
+
1
2 ×10n π
× Vn Vm
+
Δf c fc
⎟⎟⎠⎞
(4-16)
(2)采用多周期测量可提高测量准确度;
(3)提高标准频率,可以提高测周分辨力;
(4)触发转换误差与被测信号的信噪比有关,信噪比越 高,触发转换误差越小。测量过程中尽可能提高信噪 比 Vm /Vn 。
整形
送主门的一
0
t
个输入端。
微分
0
t
图4-6 输入电路工作波形图
3)计数显示电路
这部分电路的作用,简单地说,就是 计数被测周期信号重复的次数,显示 被测信号的频率。它一般由计数电路、 逻辑控制电路、译码器和显示器组成。
4)控制电路
控制电路的作用是产生各种控制信号, 去控制各电路单元的工作,使整机按 一定的工作程序完成自动测量的任务。 在控制电路的统一指挥下,电子计数 器的工作按照“复零一测量—显示”的 程序自动地进行,其工作流程如图4.6 所示。
在测频时,主门的开启时刻与计数脉冲之间的时间关系是不相 关的,即是说它们在时间轴上的相对位置是随机的。这样,既 便在相同的主门开启时间T,计数器所计得的数却不一定相同。 可能多1个或少1个的±1误差,这是频率量化时带来的误差故 称量化误差,又称脉冲计数误差或±1误差。
时间与频率的测量
➢ 输入通道:通常有A、B、C多个通道,以实现不同的 测量功能。输入通道电路对输入信号进行放大、整形 等(但保持频率不变),得到适合计数的脉冲信号。
通过预定标器还可扩展频率测量范围。
➢ 主门电路:完成计数的闸门控制作用。
➢ 计数与显示电路:计数电路是通用计数器的核心电路, 完成脉冲计数;显示电路将计数结果(反映测量结果) 以数字方式显示出来。
A
与
TB
B
门
C
TB
上图为由“与”逻辑门作为闸门,其门控信号为‘1’时闸门开启(允 许计数),为‘0’时闸门关闭(停止计数)。
◆测频时,闸门开启时间(称为“闸门时间”)即为采样时间。
测时间(间隔)时,闸门开启时间即为被测时间。
2)通用计数器的基本组成
通用电子计数器的组成框图如下图所示:
2)通用计数器的基本组成
2)原子时标
原子钟
➢ 原子时标的实物仪器,可用于时间、频率标准的发布和比对。
铯原子钟
➢ 准确度:10-13~10-14。 ➢ 大铯钟,专用实验室高稳定度频率基准;小铯钟,频率工作基准。
铷原子钟
➢ 准确度: 10-11,体积小、重量轻,便于携带,可作为工作基准。
氢原子钟
➢ 短期稳定度高:10-14~10-15,但准确度较低(10-12)。
1)天文时标
◆为世界时确定时间观测的参考点,得到
➢ 平太阳时:由于地球自转周期存在不均匀性,以假想 的平太阳作为基本参考点。
➢ 零类世界时(UT0 ):以平太阳的子夜0时为参考。 ➢ 第一类世界时(UT1):对地球自转的极移效应(自转
轴微小位移)作修正得到。
➢ 第二类世界时(UT2):对地球自转的季节性变化(影 响自转速率)作修正得到。准确度为3×10-8 。
频率时间间隔测量原理
频率时间间隔测量原理
频率时间间隔测量原理是通过测量事件发生的时间间隔来计算出事件的频率。
该原理适用于各种领域,如物理学、电子学、计算机科学等。
在物理学中,频率是指单位时间内事件发生的次数。
通过测量事件的时间间隔,我们可以计算出事件的频率。
例如,假设我们想测量一个摆动钟的频率,我们可以开始计时,然后记录摆钟完成一次摆动所经过的时间。
通过将这个时间除以一秒,我们就可以得到摆钟的频率。
在电子学中,频率是指电信号的周期性变化。
通过测量电信号的时间间隔,我们可以计算出电信号的频率。
例如,在无线电中,我们可以通过测量电磁波的周期性变化来计算出无线电波的频率。
在计算机科学中,频率是指计算机处理指令的速度。
通过测量计算机执行指令的时间间隔,我们可以计算出计算机的时钟频率。
例如,我们可以通过测量计算机执行一条指令所需的时间来计算出计算机的时钟频率。
频率时间间隔测量原理是基于时间的。
通过测量一系列事件的时间间隔,我们可以计算出事件的频率。
这个原理在许多领域都有广泛的应用,可以帮助我们了解事物的运动规律、电信号的变化规律以及计算机的性能等。
频率测量原理
频率测量原理频率是描述周期性事件发生次数的物理量,是指在单位时间内,某一事件重复出现的次数。
频率测量是电子技术中的一个重要内容,涉及到许多领域,如通信、测控、医疗等。
频率测量的原理和方法对于保证系统的稳定性和精度至关重要。
本文将介绍频率测量的原理及其应用。
频率测量的原理主要包括计数法、相位比较法和周期计数法。
计数法是通过计算单位时间内事件发生的次数来获得频率值,常用于低频信号的测量。
相位比较法是通过比较输入信号与参考信号的相位差来得到频率值,适用于中频信号的测量。
周期计数法是通过测量输入信号的周期来获得频率值,适用于高频信号的测量。
这三种原理各有特点,可以根据具体的应用场景选择合适的方法进行频率测量。
在实际应用中,频率测量的精度和稳定性是至关重要的。
为了提高测量的精度,通常会采用数字频率计来进行测量。
数字频率计可以通过计数、比较和时间测量等方法来获得频率值,具有测量范围广、精度高、稳定性好的特点。
此外,为了提高系统的稳定性,还可以采用锁相环技术来消除测量中的噪声和干扰,从而提高测量的精度和稳定性。
频率测量在各个领域都有着广泛的应用。
在通信领域,频率测量是保证通信系统正常运行的重要手段,可以用于测量信号的频率偏移、频率漂移等参数,保证通信系统的稳定性和可靠性。
在测控领域,频率测量可以用于测量传感器输出信号的频率,从而获得被测量物理量的数值,实现对被测量物理量的监测和控制。
在医疗领域,频率测量可以用于测量心脏跳动的频率,监测患者的健康状况,为医生提供诊断依据。
总之,频率测量是电子技术中的一个重要内容,涉及到许多领域,具有广泛的应用前景。
通过本文对频率测量原理的介绍,相信读者对频率测量有了更深入的了解,对于实际应用中的频率测量会有更好的把握。
希望本文能够为读者提供一些帮助,谢谢阅读!。
频率计的工作原理
频率计的工作原理
频率计是一种用于测量信号频率的仪器。
它的工作原理基于信号周期的测量。
当信号源输入到频率计中时,经过放大、滤波等处理,信号会被转换成一个方波信号。
频率计通过计时器来测量方波信号的周期,并根据周期的倒数来计算信号的频率。
具体来说,频率计的计时器会根据方波信号的上升沿和下降沿的变化来计算方波信号的周期。
计时器在每个周期开始时开始计时,在周期结束时停止计时。
通过测量多个周期的时间,计时器可以计算出平均周期,然后根据平均周期的倒数即可得到信号的频率。
为了提高频率计的精度和稳定性,通常会采用一些增强技术,如自动增益控制、数字滤波等。
自动增益控制可以根据输入信号的幅度变化来调整放大倍数,以保证测量的准确性。
数字滤波则可以通过滤除噪声和杂散信号,使测量结果更加稳定和可靠。
总之,频率计是通过测量信号的周期并计算频率来实现对信号频率的测量。
它利用计时器来测量信号周期,并通过增强技术提高测量的准确性和稳定性。
第四章:时间和频率测量技术
(一)时间、频率和周期的基本概念
时间是国际单位制中7个基本物理量之一。它的基本 单位是秒。“时间”有两个含义,一是指“时刻”, 指某事件发生的瞬间。二是指“间隔”,即两个时刻 之间的间隔,表示该事件持续了多久。
频率定义:为相同的现象在单位时间内重复出现的次 数。
f 1/ T 周期:则是指出现相同现象的最小时间间隔。
4.2.1 电子计数器主要电路技术
(一)电路组成及各部分作用: 电子计数器由输入电路、计数显示电路、标准 时间产生电路、逻辑控制电路构成。 1、输入电路:又称为输入通道。其作用是接 受被测信号,并对它进行放大和整形然后送入 主门(闸门)。一般设置2个或3个输入通道, 记作A、B、C。A通道用于测频、自校;B通 道用于测周;B、C通道合起来测时间间隔;A、 B通道合起来测频率比。
秒是 C s 原子基态的两个超精细结构能级 [ F 4, mF 0 ]和[ F 3, mF 0 ]之间跃迁频 率相应的射线束持续9192631770个周期的时间”。 以此为标准定义出的时间标准称为原子时秒。
133
3、协调世界时(UTC)秒: 协调世界时“秒”是原子时和世界时折 中的产物,即用闰秒的方法来对天文时进 行修正。这样,国际上则可采用协调世界 时来发送时间标准,既摆脱了天文定义, 又使准确度提高4—5个数量级。现在,各 国标准时号发播台所发送的就是世界协调 时,我国的中国计量科学院、陕西天文台、 上海天文台都建立了地方原子时,参加了 国际原子时(ATI),与全世界200多台原 子钟连网进行加权修正,作为我国时间标 准由中央人民广播电台发布。
现在已明确:时间标准和频率标准具有同一 性,可以用时间标准导出频率标准,也可 由频率标准导出时间标准,故通常统称为 时频标准。
时间频率的高精度测量技术
它 是 国际 单 位 制 中七 个 基本量 之 一 。 在 计 量 学和计 量测 试 中 ,时 间
频率是带头学科 ,是先导 。当代 量子频标 的出现和电子技术 的进 步 , 极大地提高了时间频率计量测试的稳定度和准确度, 其测量精度和测 量技术遥遥领先于其它量子的计量测试水平.因而,下面就 目前时间
此 我 们 已建 立 了频 差 倍 增 测 量 系 统 来 对 时 间 频 率 进 行 高精 度 的 测 量 。根据这种原理制作 的装 置通 常称 为频 差倍增 器 ( 也称 比较器 、比 对 器 、测频器等 ),它是频 率测量 的基 本 组成 部分 , 目前 。频 差倍
司!
增器的倍增次数一般最高为 1 0 0 至 1 0 5 ,它可使频率测量系统的测量 精度达到 1 0 - 1 “ 至1 0 - 1 3 ( 闸门时间为 l o o s 时 )量级。 所谓频差倍增法, 就是将被测频率 f . 与参考频标 f , 之间的差值
为
A f l f 二 2 . 3 x 1 0 - 1 4
根据这一基本原理,我们利用 1 2 0 5 数字 比相仪、艳束原子频标
和微型计算机组建了时 频坷准相 . 位比 较侧f系 ; 统・ 若 将5 M H : 的 频标
术 ,其线路结构简单,测t分辨率高 .它主要适用于长时间指标 的测 量, 尤其适用于两个相同频 标长稳指标 的昼夜 比较测量而无须人员看 守 。这一 系统的建立 ,它 能够完成 目前 高精度 时频标准 中的精确测
代 产 品大 为增 加 。
2 .测量技术与方法
2 . 1频差倍增法
在进行时间频率的高精度测 量时,不仅要选择高精密度 的时间
第四章:时间与频率测量技术
4.2.1 电子计数器主要电路技术
(一)电路组成及各部分作用: 电子计数器由输入电路、计数显示电路、标准 时间产生电路、逻辑控制电路构成。 1、输入电路:又称为输入通道。其作用是接 受被测信号,并对它进行放大和整形然后送入 主门(闸门)。一般设置2个或3个输入通道, 记作A、B、C。A通道用于测频、自校;B通 道用于测周;B、C通道合起来测时间间隔;A、 B通道合起来测频率比。
S S
x
f
x
N
T f
S
X
在测频时,由于闸门开启时间和被计数脉冲周期不成整数 倍,在开始和结束时产生零头时间 如图:
据图分析:
f 式中: s 闸门时间; x 被测频率;根据上面分析可知,不管 T 计数值N为多少,其最大计数误差不超过 1个计数单位, 故又称为“ 误差”。当 f x一定时,增大闸门时间 T s 1 可减小 1 误差对测频误差的影响。 2)闸门时间误差(标准时间误差)也称标准频率误差: 影响频率测量误差的另一因素,是闸门开启时间的相对误 差 T S / T S 它决定于晶振的频率稳定度、准确度、分频 电路和闸门开关速度及其稳定性等因素。 闸门信号 T是由晶振信号分频而得的,设晶振频率为 f (周期为 T )分频系数为m,所以有: m T m 1 T
N T /T T f
s x s
x
(式4-1)
2.测频方法的误差分析
测频方法的误差主要有三类: (1)量化误差:将模拟量转化为数字量所产生的 误差叫量化误差。是由于用于计数的时标脉冲与 控制主门的被测周期不同步而引起的。 (2)触发误差:测量周期时,被测信号经放大、 整形、转换为门控信号,转换过程中存在着各种 干扰和噪声影响,利用施密特电路进行转换时, 触发电平本身也可能产生抖动,从而引入触发误 差。所以这也称为转换误差。(一般不考虑) (3)标准频率误差:电子计数器在测量时,都是 以晶振产生的各种时基和时标信号作为基准的, 晶体振荡器不稳定将引起误差。
频率计原理
频率计原理
频率计是一种用来测量信号频率的仪器,它根据电磁感应原理工作。
频率的定义是指在单位时间内某个事件或者信号的周期性重复次数。
在频率计中,典型的实现方式是使用计时器和一个稳定的参考信号源。
具体实现时,频率计会将待测信号输入到一个计数器中,并开始计时。
当计数器计满一定的计数值之后,计数器会停止计时,并将结果存储在寄存器中。
同时,参考信号源本身也会启动计时器,并用相同的方式测量时间。
随后,通过比较待测信号和参考信号源的计时结果,频率计可以计算出待测信号的频率。
由于参考信号源是一个稳定的频率源,所以将待测信号与参考信号源的频率进行比较,就可以得到待测信号的频率。
需要注意的是,频率计常常使用数字技术,如微处理器或者FPGA来实现计数器和计时器的功能。
这样可以提高精度和准
确性,并且可以通过数字处理进行更多的信号分析和处理。
同时,为了提高测量精度,频率计通常会对信号进行采样,并采用适当的滤波和处理技术来降低噪声和干扰。
总结起来,频率计利用计数器和参考信号源来测量待测信号的周期性重复次数,并通过计时结果的比较来计算出待测信号的频率。
通过数字技术的应用和适当的信号处理,可以实现高精度和高准确性的频率测量。
时频电磁法文献综述
(1)数据录入和数据格式转换;
(2)剖面数据的形成及浏览;
(3)时域电磁野外数据的分析;
(4)时域信号的滤波和叠加;
(5)发射信号及系统响应反褶积;
(6)加载测量信息形成剖面数据库;
(7)频率域和时间信号按剖面形成数据库文件;
(8)把时间域数据转换成地电剖面的总参数;
3)电阻率和极化率的变化频率相关性 :
对极化特性反应最敏感是双频相位参数。因此在实际工作中常常研究剖面的双频相位异常。在实际工作中,我们将电阻率 、纵向电导S和极化率 和双频相位△ 作为研究的主要参数。
五、野外观测技术实例
由于不同的工区其干扰情况,地质条件,目的层埋深和地点条件不同,采用的施工参数也不同,开工前首先要开展施工参数室内模拟,同时根据室内模拟结果进行施工参数实验,目的是确定工区的最佳的施工参数,尤其是收发距、发射源的长度、激发周期等参数极为重要,应严格认真进行试验。
1)电阻率 :
在砂岩储层中油藏表现为高阻。因为原油比地层水高一个数量级,如果在储集层孔隙中充满油气,则其电阻率比围岩高一个数量级,甚至更高。测井发现:油藏上方400—600m的地层,其 比没有油藏时高20%一30%。这种变化纵向电导S资料反映更明显。
2)极化率 :
大量研究和实践结果表明,油气藏上方存在明显的极化异常,它主要由以下四个方面的因素引起:
一、前言
近年来,利用物探手段进行油气检测方法已取得了很大进步,其中除地震方法外,时频电磁勘探法最受青睐。时频电磁勘探方法主要根据在油气藏上方可以产生极化(IP)和电阻率(R)两种异常,利用两者综合的IPR异常即可预测出含油气有利目标。与其它勘探方式不同,电磁勘探并非探测油气中的烃类成分,而是直接探测油气藏本身,在强大电流激发下通过探测油气藏的电性、电化学性的异常来确定含油气状况。时频电磁法的特点在于激发场源强,易形成对油气藏强而有效的激发,因此时频电磁法是地面油气检测技术中最有潜力的方法之一。
频率时间测量
N 1 Tc Tc 1
N
N
NTc Tx
fcTx
第五章 频率时间测量
测量周期误差
Tx
Tx
fc
fc
1 N
fc
fc
Tc Tx
例如,某计数式频率计 fc / fc 2 107 ,在测量周期时,取 Tc=1us,则当被测信号周期Tx=1s时测量误差为
频率是单位时间内周期性过程重复、循环或振动的次 数,记为f。 f与T之间有下述重要关系,即 f 1
T
周期T的单位是秒,频率的单位是1/秒,即赫兹(Hz)
频率标准简称频标,有石英钟频标、原子频标和天 文频标,原子频标的准确度可达10-13。
第五章 频率时间测量
3、频率(时间)测量的特点:
① 测量精度高。由于有时频标准源,并可方便采用无 线电波进行远距离迅速传递,频率(时间)测量所能达 到的分辨率和准确度最高。
微分得 dTx TcdN NdTc
dTx dN dTc NTc N Tc
或 dTx dN dTc Tx N Tc
用增量符号表示
Tx N Tc
Tx N Tc
因 Tc
1 fc ,Tc上升时, fc下降,所以有
Tc fc
Tc
fc
△N为计数误差,在极限情况下,量化误差 N 1 ,所以
第五章 频率时间测量
电子计数器的测频原 理实质是以比较法为 基础。它将被测信号 频率fx和已知的时基 信号频率fc相比,将 相比的结果以数字的 形式显示出来。
第五章 频率时间测量
二、误差分析计算
1、量化误差—±1误差
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时频测量原理简述
目录
1 调制域测量
1)什么是调制域测量
2)为什么要进行调制域测量
2 时频测量原理—如何实现调制域测量
1)瞬时频率测量原理
2)无间隔计数器的实现
3)提高测量速度与分辨力的方法
4)调制域分析的应用
5)发展动态
正文内容
1)什么是调制域测量?
电信号的完整关系:可采用三个量以及之间的关系来描述。
这三个量就是时间、频率和幅度,其中:幅度-时间关系:示波器;
幅度-频率关系:频谱仪
频率-时间关系:调制域分析仪
下图描述了同一信号在时域(V-T)、频域(V-F)、调制域(F-T)的特性。
调制域分析仪:能够完成时间与频率关系测量的仪器。
调制域即由频率轴(F)和时间轴(T)共同构成的平面域。
调制域测量技术是对时域和频域测量技术的补充和完善。
◆时域与频域分析的局限性
一个实际的信号可以从时域和频域进行描述和分析,时域分析可以了解信号波形(幅值)随时间的直观变化;频域分析则可以了解信号中所含频谱分量,但是,却不能把握各频谱分量在何时浮现。
◆调制域概念
在通信等领域中,各种复杂的调制信号越来越多地被人们使用,于是,往往需要了解信号频率随时间的变化,以便对调制信号等进行有效分析——即调制域分析。
调制域即指由频率轴(F)和时间轴(T)共同构成的平面域。
1 调制域测量
2)为什么要进行调制域测量?
在通信等领域中,各种复杂的调制信号越来越多地被人们使用,于是,往往需要了解信号频率随时间的变化,以便对调制信号等进行有效分析——即调制域分析。
方便地表达出频域和时域中难以描述的信号参数和信号特性。
为人们对复杂信号的测试和分析提供了方便直观的方法,解决了一些难以用传统方法或者不可能用传统方法解决的难题。
4.9.2 时频测量原理
1) 瞬时频率测量原理
◆瞬时频率的概念
信号频率随时间的变化,可将频率量视为时间 t 的连续函数,用 f(t)表示。
f(t)也代表了时间t 时的瞬时频 率。
◆平均频率
实际上,由于测量上的艰难,瞬时频率只是一种理论上的概念。
因为所有测量都需要一定的采样时间(闸 门时间),测量结果则为该采样时间内的平均频率。
◆用平均频率逼近瞬时频率
在时间轴上以某个时刻 t0 为起始点,连续地对被测信号进行采样,则:
各采样计数值 Mi 与相应时间点 ti 相对应。
则可得到采样时间内的平均频率值。
当时间趋于无限小时即可 得到各时间点的瞬时频率值。
如下图所示,采样点 A 作为时间起始点t0,则:
在采样点 B 得到事件周期值 M1 和时间标记: t =N T +t (T0 为时标)
在采样点 C 得到事件周期值 M2 和时间标记: t =N T +t
于是, B 点的频率为: f =M /(N T )=(M /M )*F 同理, C 点的频率为
f = (M /N )*F
如此连续不断地测量下去就得到了时频曲线。
2)无间隙计数器的实现
◆无间隙计数器
通用计数器的频率测量,其先后两次闸门之间必然存在一段间隙时间(显示、存储、 下一次测量准备),
1 1 1 0 1
2 0 2 2 0 1 1 1 0 0 2 2 2 0
使实用信息被丢失,导致时间轴上的不连续性。
为此,就要使用无间隙计数器方案。
◆实现原理
使用两组计数器交替工作,每一组都包括时间计数器(对时标T0)和事件计数器。
当一组计数器工作时,另一组计数器进行数据的显示等工作。
如此往复交替,完成时间轴上无间隙的测量。
工作波形图
原理框图
3)提高测量速度与分辨力的方法
◆采用同步和内插技术提高分辨力
两组基本计数器均采用双计数器(事件计数器和时间计数器)且闸门由输入信号同步,同时采用内插技术进一步提高分辨力。
◆最小采样时间
两组计数器交替计数,即当一组计数器在采样计数时,另一组基本计数器正在进行内插、读数、清零等操作,因此最小采样时间满足下式:
T min =T
内插
+T
计数器稳定
+T
数据存储
+T
计数器清零
该式中,后3 项取决于器件速度(普通选用高速器件) , 因此应设法减小内插时间以提高测量速度。
◆内插时间
在使用摹拟内插法时,设开门和关门脉冲的最大宽度为Tm(两个零头时间),放大倍数为K,则内插时间为:KTm。
为减小内插时间,可提高时基频率(如采用更高频率的晶振)以减小Tm 的值。
但时基频率的提高将给器件的选择和电路设计带来艰难。
减小内插时间还可减小内插系数K,但K 值太小测时分辨力降低,为适应某些高测时分辨力要求,必须协调好采样速度和高测时分辨力的矛盾。
普通时间间隔测量的局限性:
为减小量化误差,需减小时标以增大计数值,但时标的减小受时基电路和计数器最高工作频率限制,而计数器也有最大计数容量的限制 (最大计数值)。
内插法对已存在的量化误差,测量出量化单位以下的尾数(零头时间)。
如下图所示,
为实现 T1-T2 的测量,有摹拟和数字两种方法。
1)摹拟内插法原理
由于 T1 和 T2 均很小(小于时标),采用普通的“时标计数法”难以实现(需要非常小的时标)。
其实现的 基本思路是:对 T1 和 T2 作时间扩展(放大)后测量。
三次测量
若 T1 、T2 均扩展 k 倍,采用同一个时标(设为τ0 )分别测量 T0 、kT1 、kT2,设计数值分别为: N0 、N1、
N2,
则:
TX=T0+T1-T2=(N0+(N1-N2)/k ) τ0
意义:上式由于 T0=N0τ0 不存在量化误差,总量化误差由(N1-N2)引起,降低了k 倍。
相当于用τ0/k 时标的 普通时间测量。
2)时间扩展电路
◆时间扩展电路
如下图所示:
则准确的 Tx 为: Tx=T0+T1-T2
◆工作原理
以恒流源对电容
器 C 充电,设充电时
间为 T1,而以(k-1)T1
(可近似为 kT1)时间缓慢放电,当放电到原电平时,所经历的时间为: T1’=T1+(k -1)T1=kT1,即得到 T1 的 k 倍时间扩展。
在 kT1 时间内对时标计数。
4.6.2 摹拟内插法
◆例如,扩展器控制的开门时间为 T1 的 1000 倍(k 取 999),
即: T’1=T1+999T1=1000T1
在 T’1 时间内对时标 τ0 计数得 N1,则 T1=N 1τ0/1000
类似地: T’2=T2+999T2=1000T2
在 T’2 时间内对时标 τ0 计数得 N2,则 T2=N 2τ0/1000
于是:
Tx=(N+(N1-N2)/1000) τ0
内插后测量分辨力提高了 1000 倍。
◆校准技术
内插扩展技术可大大提高测时分辨力,但测量前需进行校准。
◆采用流水作业法提高测量速度
流水作业法:即用几套相同的硬件顺序、联贯地工作,从而提高整体的采样速率。
工作时序如下图所示:
图中,T 为一套硬件的最小采样时间,当采用4 套硬件时,整机工作速度将提高4 倍。
但是,其速度的提高以硬件的复杂性和成本的提高为代价。
4)调制域分析的应用
◆典型应用——调制参数的测试:
频率调制是通信系统所用的不少调制电路的基础。
通过调制域分析,可即将显示调制波形,提供载波频率、峰-峰值频偏、调制率等关键参数。
如下图
5)发展动态
随着通信技术的不断发展,调制域分析技术和仪器产品在高新技术领域得到广泛应用并发挥重要作用。
国外从80 年代起开始调制域分析仪研制(如HP5371A、5373A)。
目前已有HP5372A、HP5373A、HP53310A 及VXI 模块HP E1740A、HP E1725A 等。
国际先进水平的调制域分析仪达到的主要技术指标为:
直接测量频率:10Hz~500MHz;
测时分辨率:200ps;
连续采样速率:10MHz。