三阶曲线积分

合集下载

高数考研中有关曲线积分问题的求解方法

高数考研中有关曲线积分问题的求解方法
1第一型曲线积分的计算方法 (1)常规方法(转化为定积分)。
fx=烈f)
设有光滑曲线正{:三鬣2te[a.p】(1),
函数f(x,Y,z)为定义在L上的连续函数,
则£,(薯”)出= 侈(似f),以味烈o)√;万丽_歹琢孓万丽dt
例1(09年数1考研题)已知曲线
l珧=f2x雁丽=J?5,厕 l:y嚣X2(o≤x≤√2),贝0 I,嚣幽=——
彰+扰=一可阮力,
所以一,(‘y)一习::,(五y)+力:。
又署=√“"~《,善=,(毛y)+彬, 幻aP 所以素。一03,,由定理3可得对D内的任
意分段光滑的有向简单闭曲线L,都有:
},∥ky)出一xf(x,j,)ay=0。
例6(05年数l考研题)设函数妒(y)具有连 续导数,在围绕原点的任意分段光滑简单闭
JI 8




解:椭圆,的方舞可化为3p+4v2=12,
代入积分中得f.(2xy+3x2+4y2)凼=
}t(2xy+12)由2六2叼施+fjl胁
因为xy是x的奇函数,曲线l关于y轴对称, 由定理l可知●.母凼=0..
且I坤=a。
故f,(2xy+3x2+4y2)西=12a.
2第二型曲线积分题型的求解方法 2.I化为定积分的方法
五砂一2ydr。jrxdy一2ydx—J删+J∞
=l『c筹一善,蛐=g姗=挈
例4(03年数1考研题)已知平面区域 D={(墨y)10≤Xs以0sYs万},L为D的正 向边界。试证:
(1)f矿’妙一"_。dx=扣_7咖一ycm‘办,
(2)豇∞^7痧一y矿·。矗≥2霄2
解:(1)根据格林公式,得:
fJ矽‘7dy—yo-mXdx=ff(口。7+#+“。)西c砂

求曲线、曲面积分的方法与技巧

求曲线、曲面积分的方法与技巧

求曲线、曲面积分的方法与技巧一.曲线积分的计算方法与技巧计算曲线积分一般采用的方法有:利用变量参数化将曲线积分转化为求定积分、利用格林公式将曲线积分转化为二重积分、利用斯托克斯公式将空间曲线积分转化为曲面积分、利用积分与路径无关的条件通过改变积分路径进行计算、利用全微分公式通过求原函数进行计算等方法。

例一.计算曲线积分⎰+Lxdy ydx ,其中L 是圆)0(222>=+y x y x 上从原点)0,0(O 到)0,2(A 的一段弧。

本题以下采用多种方法进行计算。

解1:A O 的方程为⎪⎩⎪⎨⎧-==,2,2x x y x x L 由,A O →x 由,20→.212dx x x x dy --= ⎰+Lxdy ydx dx xx x x x x ⎰--+-=222]2)1(2[dx xx x x dx xx x x x x x ⎰⎰--+----=2220222)1(2)1(220.00442=--=分析:解1是利用变量参数化将所求曲线积分转化为求定积分进行计算的,选用的参变量为.x 因所求的积分为第二类曲线积分,曲线是有方向的,在这种解法中应注意参变量积分限的选定,应选用对应曲线起点的参数的起始值作为定积分的下限。

解2:在弧A O上取)1,1(B 点,B O 的方程为⎪⎩⎪⎨⎧--==,11,2y x y y L 由,B O →y 由,10→.12dy y y dx -= A B 的方程为⎪⎩⎪⎨⎧-+==,11,2y x y y L 由,A B →y 由,01→.12dy y y dx --= ⎰+Lxdy ydx dy y y y dy y y y ⎰⎰-++--+--+-=012221222)111()111(dy yy ⎰-=102212dy y ⎰--1212dy yy ⎰-=1221210212yy --dyyy ⎰--+102212.0)011(2=---=分析:解2是选用参变量为,y 利用变量参数化直接计算所求曲线积分的,在方法类型上与解1相同。

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)

第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。

物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。

定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。

物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。

二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。

格林公式

格林公式

y E
x 1 ( y)
D
x 2 ( y)
L Q ( x , y )dy
c o
C
x
同理可证
P dxdy L P ( x , y )dx D y
两式相加得
证明(2)
Q P ( x y )dxdy L Pdx Qdy D
L3 D3 D2 L2
格林公式的实质:
( L1, L2 , L3对D来说为正方向 )
沟通了沿闭曲线的积分与二重积分之间的联系。
特别地:若 P y, Q x,则由 Green 公式
Q P x y dxdy 2 dxdy D D
1 ydx xdy S L ydx xdy L 2
由(2)知
Q P ( x y )dxdy D
2 3
G
L3
E D
L2
B
A
L1
C F
{ AB L BA AFC CE L EC CGA } ( Pdx Qdy)
( L L L )( Pdx Qdy)
2 3 1
L Pdx Qdy
一. 区域连通性的分类
设D为平面区域, 如果D内任一闭曲线所围 成的部分都属于D, 则称D为平面单连通区域, 否则称为复连通区域.
D D
单连通区域
复连通区域
二. 格林(Green)公式
定理1
数, 则有 设闭区域 D 由分段光滑的曲线 L 围成, 函数 P ( x , y )及Q( x , y )在 D 上具有一阶连续偏导
1) D {( x, y ) | ( x 2)2 ( y 1)2 1},在 D 内 解

(完整版)曲线积分与曲面积分(解题方法归纳)

(完整版)曲线积分与曲面积分(解题方法归纳)

第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则1(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)L L Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则1(,)2(,)LL f y f x y ds f x y ds f y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则()()=⎰⎰LLf x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则[(,)(),()()βααβ=<⎰⎰Lf x y ds f x t y t若曲线弧:()()θαθβ=≤≤L r r (极坐标),则[(,)()cos ,()sin βαθθθθθ=⎰⎰Lf x y ds f r r若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则[(,,)(),(),()()βααβΓ=<⎰⎰f x y z ds f x t y t z t(5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则[(,,),,(,)xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则[(,,)(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则[(,,),(,),zxD f x y z dS f x y x z z ∑=⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域. (8)d d +⎰LP x Q y 与路径无关d d 0⇔+=⎰cP x Q y (c 为D 内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Qy x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰L D Q P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdy dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或(cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式dydz dzdx dxdy Pdx Qdy Rdz x y z PQRΓ∑∂∂∂++=∂∂∂⎰⎰⎰其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dyI x y x x x x 由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此220,011==++⎰⎰L L dxdyx x故 20+==++⎰Ldx dyI x y x『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用.事实上,本题还可应用格林公式计算.例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS 故 2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS b y dS c z dS n dS22222()∑∑=+++⎰⎰⎰⎰a b c x dS n dS22222222()43π∑++=+++⎰⎰a b c xy z dS R n22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些.若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰x y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰x y z dS axdS a x a dS a dS 222402248ππ∑=+==⎰⎰a dS a a a『方法技巧』 积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰x a dS例4 计算曲线积分2222-+⎰Lxy dy x ydxx y L 为圆周222(0)+=>x y a a 的逆时针方向.解法1 直接计算. 将积分曲线L 表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰Lxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d a d324332013118(sin sin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰ad a a解法2 利用格林公式2222222211()-=-=++⎰⎰⎰⎰LLDxy dy x ydxxy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故222232200112πθρρρπ-==+⎰⎰⎰a Lxy dy x ydxd d a a x y『方法技巧』 本题解法1用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰n n n n n n d n n n nn 为奇数为偶数解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰L x y dx x y dyx y,其中L 为沿cos π=y x 由点 (,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难.由于 2222,+-+==++x y x yP Q x y x y,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:cos 5:(:)44sin θππθθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得 222()()1()()2π'+--=+--+⎰⎰LL x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』 本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑1=的法向量与各坐标轴正向夹锐角的侧面.解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy面的区域{}(,)1=≤xy D x y ,故233(1∑∑∑++==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy dxdy21(1223(13(1==⎰⎰⎰⎰xyD dxdy dxdy 1401(12=⎰dx411(1)30--=⎰t t dt 『方法技巧』 由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy 1222()()()∑+∑=-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故222()()()∑-+-+-⎰⎰x y dydz y zdzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰h h h h d d h『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求.本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号.例8 计算曲线积分()()()-+-+-⎰Lz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰Ldydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量. (2) 曲线或曲面的质心(形心). (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论: (1)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体 (,,)ρ=⎰LM x y z ds曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰L L LLx x y ds y x y ds x y x y dsx y ds空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y LLI y x y ds I x x y ds空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y LLI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds曲面形物体的转动惯量:2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰z I x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度div A ∂∂∂=++∂∂∂P Q R x y z矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1. 曲线积分或曲面积分应用题的计算步骤:ij k(1)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分.例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功.(其中=r k解 积分曲线L 如图11.7所示. 场力所做的功为(,)(,)=+⎰AB W P x y dx Q x y dy 22=-⎰AB y x k dx dy r r 令22,==-y x P Q r r ,则22224()(∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y x W k dx dy k k r r 『方法技巧』 本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如AO OB ,但不可以选取此路径,因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线(12)0⎧⎪=≤≤⎨=⎪⎩y z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy2sin ∑=+⎰⎰xz dydz xdxdy1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy 122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分.。

格林公式高斯公式斯托克斯公式

格林公式高斯公式斯托克斯公式

格林公式高斯公式斯托克斯公式
格林公式、高斯公式和斯托克斯公式是微积分中的三个重要公式,用于计算曲线、曲面和体积上的积分。

1. 格林公式(Green's theorem):该公式用于计算平面上的曲线积分和二重积分之间的关系。

设曲线C是一个简单闭合曲线,方向为逆时针方向,曲线内部围成的区域为D,若函数
P(x, y)和Q(x, y)在区域D内有一阶连续偏导数,则有:
∮C Pdx + Qdy = ∬D (∂Q/∂x - ∂P/∂y) dA
2. 高斯公式(Gauss's theorem):该公式用于计算封闭曲面上的曲面积分和三重积分之间的关系。

设曲面S是一个封闭曲面,曲面内部的区域为V,若函数F(x, y, z)在区域V内有一阶连续偏导数,则有:
∮S F · dS = ∬∬S ∇·F dS = ∭V ∇·F dV
3. 斯托克斯公式(Stokes' theorem):该公式用于计算曲面边界上的曲线积分和曲面积分之间的关系。

设曲面S是一个有向曲面,曲面边界为曲线C,若函数F(x, y, z)在曲线C和曲面S内都有一阶连续偏导数,则有:
∮C F · dr = ∬S (∇×F) · dS
这三个公式为微积分中的基本定理,可以用于求解各种应用问题,如流体力学、电磁学等领域中的问题。

重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分

重积分、曲线积分、曲面积分一、曲线积分第一型曲线积分(对弧长)定义:设L 为平面上可求长度的曲线段,(,)f x y 为定义在L 上的函数。

对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段(1,2,,),i L i n = i L 的弧长记为,i s ∆ 分割T的细度为1max ,i i nT s ≤≤=∆ 在i L 上任取一点(,)(1,2,,).i i i n ξη= 若极限1lim(,)niiiT i f s ξη→=∆∑存在,则称此极限值为(,)f x y 在L 上的第一型曲线积分(对弧长的积分),记作(,)Lf x y ds ⎰。

若L 为空间可求长曲线段,(,,)f x y z 为定义在L 上的函数,则可类似定义(,,)f x y z 在空间曲线L 上的第一型曲线积分,并且记为(,,)Lf x y z ds ⎰。

性质: 1. 若(,)(1,2,,)i Lf x y ds i k =⎰存在,(1,2,,)i c i k =为常数,则1(,)ki i Li c f x y ds =∑⎰也存在,且11(,)(,).kki i i i LLi i c f x y ds c f x y ds ===∑∑⎰⎰2. 若曲线段L 由曲线12,,k L L L 首尾相接而成,且(,)(1,2,,)i Lf x y ds i k =⎰都存在,则(,)Lf x y ds ⎰也存在,且1(,)(,).ikLL i f x y ds f x y ds ==∑⎰⎰3. 若(,)Lf x y ds ⎰与(,)Lg x y ds ⎰都存在,且在L 上(,)(,),f x y g x y ≤ 则(,)(,).LL f x y ds g x y ds ≤⎰⎰4. 若(,)Lf x y ds ⎰存在,则|(,)|Lf x y ds ⎰也存在,且|(,)||(,)|LLf x y ds f x y ds ≤⎰⎰。

5. 若(,)Lf x y ds ⎰存在,L 的弧长为s ,则存在常数c ,使得(,)Lf x y ds ⎰=cs 。

高数下第十一章曲线积分与曲面积分

高数下第十一章曲线积分与曲面积分

L:yx2,x从 0变1,到
原式 1(2xx2x22x)dx 0
4 1 x3dx 1. 0
整理课件
y x2
B(1,1)
A(1,0)
23
(2) 化为y的 对积. 分 L:xy2,y从 0变1到 ,
原式 1(2y2y2yy4)dy 0 5 1 y4dx1. 0
( 3 ) 原式 OA2xydxx2dy AB2xydxx2dy
解 记 L所 围 成 的 闭 区 域 为 D,
令 Px2yy2, Qx2 xy2, 则 当 x2y20时 ,有 Q x(x y22 yx22)2 P y.
整理课件
37
y
(1) 当(0,0)D时,
L
xdy ydx
D
由格林公式知 L x2 y2 0 o
x
(2) 当 (0,0) D 时 ,
作 位 于 D 内 圆 周 l:x 2 y 2 r2 , y L
xydx xydx
L
AB
1 y2y(y2)dy 1
2 1 y4dy 4 .
1
5
整理课件
B(1,1)
y2 x
A(1,1)
20
例2 计算y2dx,其中 L为 L
(1)半径为 a、圆心为原点、针按方逆向时绕行 的上半圆 ; 周 (2)从点A(a,0)沿x轴到点 B(a,0)的直线. 段
解 (1) L: x y a ascions,
整理课件
28
练习题:
1、 xydx,其中L 为圆周( x a)2 y 2 a 2 (a 0)及 L x 轴所围成的在第一象限内的区域的整个边界(按
逆时针方向绕行);
2、
(x
L
y)dx ( x x2 y2

高数第十一章习题

高数第十一章习题

第十一章第一节曲线积分习题 一、填空题:1、已知曲线形构件L的线密度为),(y x ρ,则L的质量M=_______________;2、⎰Lds =_______________;3、对________的曲线积分与曲线的方向无关;4、⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求α________β。

5、计算下列求弧长的曲线积分:1、⎰+L y x ds e 22,其中L为圆周222a y x =+,直线y=x及x轴在第一象限内所围成的扇形的整个边界;2、⎰Γyzds x2,其中L为折线ABCD,这里A,B,C,D依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2);3、⎰+L ds y x )(22,其中L为曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x π20≤≤t ;4、计算⎰Lds y ,其中L为双纽线 )0()()(222222>-=+a y x a y x 。

三、设螺旋形弹簧一圈的方程为t a x cos =,t a y sin =,kt z =,其中π20≤≤t ,它的线密度222),,(z y x z y x ++=ρ,求:1、它关于Z 轴的转动惯量Z I ;2、它的重心 。

答案一、1、⎰Lds y x ),(ρ; 2、L 的弧长; 3、弧长; 4、〈. 二、1、2)42(-+a eaπ;2、9;3、)21(2232ππ+a ; 4、)22(22-a .三、)43(32222222k a k a a I z ππ++=;2222436k a ak x π+=; 2222436k a ak y ππ+-=; 22222243)2(3k a k a k z πππ++=。

第二节对坐标的曲线积分习题一、填空题:1、 对______________的曲线积分与曲线的方向有关;2、设0),(),(≠+⎰dy y x Q dx y x P L,则 =++⎰⎰-LL dy y x Q dx y x P dy y x Q dx y x P ),(),(),(),(____________; 3、在公式=+⎰dy y x Q dx y x P L),(),(⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限a 对应于L 的____点,上限β对应于L 的____点;4、两类曲线积分的联系是______________________________________________________。

曲线积分与曲面积分

曲线积分与曲面积分

第十一章曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.教学目标1.理解对弧长曲线积分和对坐标曲线积分的概念和性质;2.掌握对弧长曲线积分和对坐标曲线积分的计算方法;3.理解两类曲线积分之间的关系;4.掌握格林公式;5.会应用平面曲线积分与路径无关的条件;6.理解对弧长曲线面积分和对坐标曲面积分的概念和性质;7.掌握对弧长曲面积分和对坐标曲面积分的计算方法;8.理解两类曲面积分之间的关系。

教学要求1.掌握对弧长曲线积分和对坐标曲线积分的计算方法。

2.掌握格林公式。

3.应用平面曲线积分与路径无关的条件解决相关类型的问题。

4.掌握对弧长曲面积分和对坐标曲面积分的计算方法。

知识点、重点归纳1.分析实际问题,将其转化为相关的数学问题;2.应用曲线或者曲面积分的计算方法求解问题;3.理解格林公式的实质;4.应用平面曲线积分与路径无关的条件解决相关类型的问题。

第一节 对弧长的曲线积分一、对弧长曲线积分的概念与性质定义 L 为xoy 面内的一条光滑曲线弧,),(y x f 在L 上有界,用i M 将L 分成n 小段i S ∆,任取一点i i i S ∆∈),(ηξ()1,2,3...,i n =, 作和ini iiS f ∆∑=1),(ηξ,令},,,m ax {21n s s s ∆∆∆= λ,当λ0→时,01lim (,)ni i i i f S λξη→=∆∑存在,称此极限值为),(y x f 在L 上对弧长的曲线积分(第一类曲线积分)记为=⎰ds y x f L),(01lim (,)ni i ii f S λξη→=∆∑注意:(1)若曲线封闭,积分号⎰ds y x f ),((2)若),(y x f 连续,则ds y x f L⎰),(存在,其结果为一常数.(3)几何意义),(y x f =1,则ds y x f L⎰),(=L (L 为弧长)(4)物理意义 M =ds y x L⎰),(ρ(5)此定义可推广到空间曲线ds y z x f ⎰Γ),,(=01lim (,,)ni i i ii f S λξηζ→=∆∑(6)将平面薄片重心、转动惯量推广到曲线弧上重心:Mxdsx L⎰=ρ,Mydsy L⎰=ρ,Mzdsz L⎰=ρ。

空间曲线积分与曲面积分的计算方法

空间曲线积分与曲面积分的计算方法

空间曲线积分与曲面积分的计算方法空间曲线积分与曲面积分是《数学分析》中的重要内容之一,但由于它计算的复杂性及灵活多变性,使我们在学习时感到很难掌握,缺乏必要而行之有效的方法,因此,本文将给出空间曲线积分与曲面积分的一些典型计算方法,为这部分的学习提供参考.1 空间曲线积分与曲面积分的定义及性质定义1.1[]()1981P 设L 为空间可求长度的曲线段,(),,f x y z 为定义在L 上的函数,对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段i L ()1,2,,i n =,i L 的弧长记为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,在i L 上任取一点()(),,1,2,,i i i i n ξης=,若有极限()01lim ,,ni i i i T i f s J ξης→=∆=∑ 且J 的值与分割T 与点(),,i i i ξης的取法无关,则称此极限为(),,f x y z 在L 上的第一型曲线积分,记作()⎰Lds z y x f ,,.第一型曲线积分具有和定积分类似的性质,略.定义1.2[]()2031P 设函数()()(),,,,,,,,P x y z Q x y z R x y z 为定义在空间有向可求长度曲线L :弧AB 上.对L 的任一分割T ,它把L 分成n 个小曲线段弧i i M M 1-()1,2,,i n =,其中0,n M A M B ==,记各小曲线段弧i i M M 1-的弧长为i s ∆,分割T 的细度为1max i i nT s ≤≤=∆,又设T的分点i M 的坐标为(),,i i i x y z ,并记111,,i i i i i i i i i x x x y y y z z z ---∆=-∆=-∆=-()1,2,,i n =.在每个小曲线段弧i i M M 1-上任取一点(),,i i i ξης()1,2,,i n =,若极限()()()0111lim ,,lim ,,lim ,,nnni i i i i i i i i i i i T T T i i i P x Q y R z ξηςξηςξης→→→===∆+∆+∆∑∑∑存在且与分割T 与点(),,i i i ξης的取法无关,则称此极限为函数()()(),,,,,,,,P x y z Q x y z R x y z 沿有向曲线L 上的第二型曲线积分,记为()()(),,,,,,LP x y z dx Q x y z dy R x y z dz ++⎰或 ()()(),,,,,,ABP x y z dx Q x y z dy R x y z dz ++⎰.常简写成LPdx Qdy Rdz ++⎰或⎰++ABRdz Qdy Pdx .第二型曲线积分具有线性性质和积分区域的可加性.定义1.3[]()2801P 设S 是空间中可求面积的曲面,(),,f x y z 为定义在S 上的函数,对曲面S 作分割T ,它把S 分成n 个小曲面块i S ()1,2,,i n =,以i S ∆记小曲面块i S 的面积,分割T 的细度为{}的直径i ni S T ≤≤=1max ,在i S 上任取一点(),,i i i ξης()1,2,,i n =,若极限()01lim ,,ni i i i T i f s ξης→=∆∑存在,且与分割T 与(),,i i i ξης()1,2,,i n =的取法无关,则称此极限为(),,f x y z 在S 上的第一型曲面积分,记作(),,Sf x y z ds ⎰⎰.第一型曲面积分具有和定积分类似的性质,略.定义1.4[]()2841P 设,,P Q R 为定义在双侧曲面S 上的函数,在S 所指定的一侧作分割T ,它把S 分成n 个小曲面块12,,,n S S S ,分割T 的细度为{}的直径i ni S T ≤≤=1max ,以,,yz zx xy i i i S S S ∆∆∆分别表示i S 在三个坐标面上的投影区域上的面积,它们的符号由i S 的方向来确定,若i S 的法线正向与z 轴正向成锐角时,i S 在xy 平面的投影区域面积xyi S ∆为正,反之,若i S 的法线正向与z 轴正向成钝角时,它在xy 平面的投影区域面积xy i S ∆为负.在各个小曲面块i S 上任取一点()(),,1,2,,i i i i n ξης=,若()()(),0111lim ,lim ,,lim ,,yz zx xy nnni i i i i i i i i i i i T T T i i i P S Q S R S ξηςξηςξης→→→===∆+∆+∆∑∑∑存在,且与曲面S 的分割T 和(),,i i i ξης在i S 上的取法无关,则称此极限为函数,,P Q R 在曲面S 所指定一侧上的第二型曲面积分,记作()()(),,,,,,SP x y z dydz Q x y z dzdx R x y z dxdy ++⎰⎰.第二型曲面积分具有线性性质和区域可加性.2 三个重要定理定理2.1(Green 公式)[]()2241P 若函数()()y x Q y x P ,,, 在闭区域D 上连续,且有连续的一阶偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫⎝⎛∂∂-∂∂D L Qdy Pdx d y P x Q σ,这里L 为区域D 的边界曲线,并取正方向.定理 2.2(Gauss 公式)[]()2901P 设空间区域V 由分片光滑的双侧封闭曲面S 围成.若函数R Q P ,,在V 上连续,且有一阶连续偏导数,则⎰⎰⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂V SRdxdy Qdzdx Pdydz dxdydz z R y Q x P ,其中S 取外侧.定理2.3(Stokes 公式)[]()2921P 设光滑曲面S 的边界L 是按段光滑的连续曲线,若函数P 、Q 、R 在S ()L 连同上连续,且有一阶连续偏导数,则⎰⎰⎰++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S L Rdz Qdy Pdx dxdy y P x Q dzdx x R z P dydz z Q y R , 其中S 的侧与L 的方向按右手法则确定.定理3.2'(Stokes 公式)[]()9922P (1)设S 是3R 中的分片光滑曲面,(2)设S 的边界是有限条封闭光滑曲线L ,(3)设函数P 、Q 、R 是在曲面S 及其附近有定义,在S 直到L 上有连续的偏导数,则⎰⎰⎰++∂∂∂∂∂∂=++LS dS R Q P z y x Rdz Qdy Pdx γβαcos cos cos⎰⎰∂∂∂∂∂∂=sRQPz y x dxdy dzdx dydz, 其中+S 与+L 呈右手关系(即站在+S 的法线上看,+L 为逆时针方向),αcos ,βcos ,γcos 为+S 的法线方向余弦.3 空间曲线积分的计算方法3.1 对称法对称方法是数学中的一种重要方法,在曲线积分的计算(证明)中注意到被积式与积分区域的对称性,运用对称性质计算,能够起到化繁为简的作用.例1 设L 为对称于坐标轴的光滑闭曲线,证明()()⎰=-+++Ly y dy y xe xy dx e y x0233.证明 设L 为正向闭曲线,其包围的区域为D ,由Green 公式得()()⎰-+++Ly y dy y xe xy dx e y x233=()33Dy x dxdy -⎰⎰=33DDy dxdy x dxdy -⎰⎰⎰⎰因为L 是对称于坐标轴的光滑曲线,所以区域D 关于坐标轴对称.因为3y 是变量y 的奇函数,从而30Dy dxdy =⎰⎰,同理30Dx dxdy =⎰⎰,所以33D Dy dxdy x dxdy -⎰⎰⎰⎰0=. 故()()⎰=-+++Ly y dy y xe xy dx e y x0233.除了上述对称性之外,还可利用轮换对称性. 例2 计算积分2Lx ds ⎰,其中02222=++=++z y x a z y x L 与为的交线.解 积分曲线L 关于,,x y z 有轮换对称性,因此2Lx ds ⎰=2Ly ds ⎰=2Lz ds ⎰=()22213Lx y z ds ++⎰ 22133L L a a ds ds ==⎰⎰232233a a a ππ==. 3.2 参数法根据积分路径或被积函数的特点选用适当的参数表示,化第二型曲线积分为定积分,有时多采用极坐标,或广义极坐标. 例3 计算()⎰++L ds z y x222,其中L 是球面29222=++z y x 与平面1=+z x 的交线. 解 将L 的两个方程式联立,得⎪⎩⎪⎨⎧=+=++129222z x z y x ,消去z ,得141212122=+⎪⎭⎫ ⎝⎛-y x .令θρθρsin 2,cos 221==-y x ,代入可知1=ρ, 从而L 的参数方程为().πθθθθ20cos 221,sin 2,cos 221≤≤-==+=z y x ()()()θθθθθd d ds 2sin 2cos 2sin 2222=++-=所以()πθπ1822920222=⋅=++⎰⎰d ds z y xL.例4[]()9252P 计算曲线积分Lydx zdy xdz ++⎰.其中L 是曲线0,0,0,1,1222222≥≥≥=+=++z y x c z a x c z b y a x (1)(0,0,0>>>c b a 为常数)从点)0,0,(a 到),0,0(c .解 方法一 如图1所示(利用坐标面上的投影椭圆)在式(1)中消去z ,得2222212a x y a ⎛⎫- ⎪⎝⎭+=⎛⎫ ⎪⎝⎭ 这是xy 平面上,以,02a ⎛⎫⎪⎝⎭为中心,以2a 为半轴的椭圆,从而可改写成参数方程cos ,22a a x y θθ=+=,代入1x z a c +=,得cos 22c cz θ=-. 因0x y z θπ≥≤≤、、,故0.则Lydx zdy xdz ++⎰θθθθθθθπd ca abc c a b ⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+-=sin 2cos 22cos 2cos 22sin 2sin 2 ⎰⎰⎰+--=20202022sin 2cos 2sin 2πππθθθθθθd ac d bcd ab()c a bac +-=242π.图1方法二 (在截平面上引用极坐标)令,,x ax y by z cz ===, 则L 变成2221,1x y z x z ++=+=, 作旋转变换,令,,22x z x zu y v ω+-===, 这时L 变成2221,u v v ω++==,在v =L 是圆周222112u ω+=-=,引用极坐标,u ωθθ==, 于是可得L 的参数方程()()()1cos 2221cos 22v ax ax aby bybu c cz czv ωθθωθ+===+=====-=-其余同方法一.方法三(因为曲线上,y z 都可写成x 的函数)令x at=,则()1,z c t y =-=点1t =,终点0t =.于是 原积分=1112t t act dt ⎡⎤--⎢⎥⎣⎦⎰⎪⎭⎫ ⎝⎛=2cos 2θt 令=2220cos cos cos sin 2222ac d πθθθθθθθ⎛⎫+ ⎪⎝⎭⎰ ()224ac c a b++-=π.3.3 Stokes 公式法在空间曲线积分的参数方程不易求得时,用Stokes 公式将第二型曲线积分化为曲面积分,常可使计算简单.例5 求曲线积分⎰-+-+-=Ldz y x dy x z dx z y I )()()(222222,其中L 为球面在第一卦限部分的边界线,从球的外侧看去L 的方向为逆时针方向.解 如图2所示 不妨设球面在第一卦限部分为S ,其边界为L , 根据右手法则,S 取外法向,由Stokes 公式得⎰⎰+-+-+-=Sdxdy y x dzdx x z dydz z y I )(2)(2)(2.设S 三个坐标平面上的投影区分别为,,yz zx xy D D D ,则()()()222yzzxxyD D D I y z dydz z x dzdx x y =-+-+-+⎰⎰⎰⎰⎰⎰由坐标的轮换对称性,得41212)(62101-=-=-=+-=⎰⎰⎰⎰⎰⎰-x D D xdy dx xdxdy dxdy y x I xyxy. 图2例6 求⎰++=Lxdz zdy ydx I ,其中L 为圆周2222x y z a x y z ⎧++=⎨++=⎩,且从z 轴正向看去圆周L的方向为逆时针方向.解 不妨设S 为平面0x y z ++=上以L 为边界的部分,其法向量为{}11,1,13n =. 根据Stokes 公式得{}{}dSdxdy dzdx dydz I SS1,1,1311,1,1⎰⎰⎰⎰⋅---=---=233a dS Sπ-=-=⎰⎰.3.4 曲线积分与路径无关法当曲线积分与路径无关时,选择特殊的路径,例如选平行于坐标轴的直线段或折线段来计算曲线积分,会使计算变得容易.例7 求⎰-+-+-=Ldz xy z dy xz y dx yz xI )()()(222,其中L 是沿螺旋线,cos θa x =()πθπθθ202,sin ≤≤==h z a y 从点(),0,0A a 到(),0,B a h 的有向曲线. 解 这里()()()222,,,,,,,,P x y z x yz Q x y z y xz R x y z z xy =-=-=-. 因为,,R Q P R Q P x y z y z z x x y∂∂∂∂∂∂==-==-==-∂∂∂∂∂∂, 所以曲线积分与积分路径无关.分路径为有向线段AB :()h t t z y a x ≤≤===0,0,,则⎰-+-+-=Ldz xy z dy xz y dx yz x I )()()(222⎰-+⋅-+⋅-=ABdt t a )0(0)00(0)0(2230231h dt t h ==⎰. 例8 验证:()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分,并求它的一个原函数. 解 这里()()()2,,2,,,cos ,,,sin y y P x y z xe Q x y z x e z R x y z y z --==-+=-,则sin ,0,2y R Q P R Q Pz xe y z z x x y-∂∂∂∂∂∂==-====-∂∂∂∂∂∂, 所以()()22cos sin y y xe dx x e z dy y z dz --+-++-是全微分.设所求的原函数为()z y x I ,,,点()()()12,0,0,,,0,,,,M x M x y M x y z 取积分路径为折线段12OM M M 得()z y x I ,,()()()()⎰-++-+=--z y x y y dz z y dy z e x dx xe ..0,0,02sin cos 2()()dz z y dy z e x dx xe y y MM M M OM sin cos 2)(22211-++-+++=--⎰⎰⎰()⎰⎰⎰-++-+=-zyvxwdw y dv ex udu 020sin 12z y e x ycos 2+=-.4 曲面积分的计算方法4.1 对称法 例9 计算()⎰⎰+Sdydz z yx 22,其中S 为2222R z y x =++的外侧.解 设V 为球:2222R z y x ≤++,则由Gauss 公式及对称性,得()⎰⎰+Sdydz z y x 22()⎰⎰⎰+=Vdxdydz z y 22⎰⎰⎰=Vdxdydz z 22()⎰⎰⎰++=Vdxdydz z y x 22232 523983432R R R ππ=⋅⋅=. 例10 设()f z 为奇函数,试求积分()()()22;;SSSI f z dS J f z dS K yf z dS ===⎰⎰⎰⎰⎰⎰,其中S 为锥面22z xy =位于球面2222x y z a ++=内的部分.解 如图3所示 22z xy =是以原点为顶点的双叶锥面,对称轴是xy 平面上1、3象限的分角线. S 关于xy 平面上、下对称,在对称点上()f z 的大小相等,符号相反,因此积分()0sI f z dS ==⎰⎰.又由于S 在1、3卦限内的部分与它在7、5卦限内的部分关于原点对称,在对称点上()2yf z 的大小相等,符号相反,所以积分()20SK yf z dS ==⎰⎰. 除了上、下对称,原点对称之外,S 还关于y x =平面(前后)对称.在对称点上()z f 2大小相等符号相同,因此()128S J f z dS =⎰⎰,其中1S 表示S 位于第一卦限内夹于0y y x ==与之间的部分.图34.2 直接使用公式法可以选择适当的坐标平面,利用直角坐标方程求解曲面积分,也可利用参数方程把曲面积分化为二重积分求解曲面积分.例11 计算曲面积分⎰⎰+++=Sa z y x dS I 222)(,其中S 为以原点为中心,()0a a >为半径的上半球面.解 上半球面ϕθϕθϕcos ,sin sin ,cos cos :a z a y a x S === ,0,022πϕθπ⎛⎫≤≤≤≤ ⎪⎝⎭因此⎰⎰++++=Saaz z y x dSI 2222220202πϕθπ≤≤≤≤=⎰⎰202aππϕ=⎰22ππ=-(22a π=.例12 计算积分()⎰⎰+=Szds y xI 22,S 是上半球面()02222≥=++z R z y x ,含在柱面Rx y x =+22的内部.解 S :222y x R z --=在xy 平面上的投影D :Rx y x ≤+22,222221yx R R y z x z --=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+()⎰⎰--⋅--⋅+=Ddxdy yx R R y x R y x I 22222222()⎰⎰+=Ddxdy y xR22(令θcos r x =,θsin r y =)52244cos 0322323cos 41R d R R dr r d RR πθθθππθππ===⎰⎰⎰--. 4.3 Gauss 公式法利用Gauss 公式将曲面积分化为三重积分,使被积函数简化,从而使计算简单化. 例13 试证:若S 为封闭的光滑曲面,l 为任意固定的已知方向,则()⎰⎰=SdS l n 0,cos ,式中n为曲面的外法线向量.证明 设),,(1c b a l = 为l 方向的单位向量,1n 是外法线的单位向量:()γβαcos ,cos ,cos 1=n, 则()γβαcos cos cos ,cos 11c b a n l l n ++=⋅=.应用Gauss 公式()()⎰⎰⎰⎰++=SsdS c b a dS l n γβαcos cos cos ,cos ⎰⎰++=Scdxdy bdzdx adydz00V Va b c dxdydz dv x y z ⎛⎫∂∂∂=++== ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰. 例14 记()ϕθ,r r =为分片光滑封闭曲面S 的球面坐标方程.试证明S 所围的有界区域V 的体积⎰⎰=SdS r V φcos 31,其中φ为曲面S 在动点的外法线方向与向径所成的夹角.证明 ()z y x r ,,=表示动点的径向量,则模222z y x r ++=,()γβαcos ,cos ,cos =n表示S 的外法线单位向量,则γβαφcos cos cos cos rzr y r x n r r ++=⋅=因此()⎰⎰⎰⎰++=S S dS z y x dS r γβαφcos cos cos 31cos 31⎰⎰++=Szdxdy ydzdx xdydz 31 V dxdydz V==⎰⎰⎰所以原题得证.5 空间曲线积分与曲面积分之间的关系Stokes 公式建立了沿空间双侧曲面S 的积分与沿S 的边界曲线L 的积分之间的联系.例15 试计算积分()⎰+-+-+-=L dz x y dy z x dx y z I )()(,其中L +是从(),0,0A a 经 ()0,,0B a 到()0,0,C a 回到(),0,0A a 的三角形.解 方法一 如图4所示+S 表示ABC ∆所围平面块之上侧,则⎰⎰+---∂∂∂∂∂∂=S xy zx yz z y x dxdydzdx dydz I ⎰⎰+++=S dxdy dzdx dydz 2 轮换对称⎰⎰∆=⋅ABCa dxdy 3332.图4方法二 ()().1,1,1,,,0:='''=-++≡z y x F F F a z y x F S , 因此法线方向余弦()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 23323323cos cos cos a S dS dS xy zx yz z y x I ABC S S=⋅=⋅=---∂∂∂∂∂∂=∆⎰⎰⎰⎰γβα. 例16 计算积分⎰+++=L xdz zdy ydx I ,其中+L为圆周0,0,2222=++>=++z y x a a z y x从z 轴正方向看为逆时针方向.解 方法一 如图5所示(用Stokes 公式化为第一型曲面积分)+S 表示L 所围成的平面圆块(上侧),())1,1,1(,,,0:='''=++≡+z y x F F F z y x F S ,()⎪⎪⎭⎫⎝⎛=31,31,31cos ,cos ,cos γβα, 故dS xzyz y x I S ⎰⎰+∂∂∂∂∂∂=313131()⎰⎰+⋅-⋅=S dS 3113 233a dS S π-=-=⎰⎰+.图5方法二 (用Stokes 公式化为第二型曲面积分) +S 表示L 所围成的平面圆块(上侧),⎰⎰+∂∂∂∂∂∂=S xzy z y x dxdy dzdx dydz I ⎰⎰+---=S dxdy dzdx dydz轮换对称性⎰⎰⎰⎰∆-=-+dxdy dxdy S 33,其中∆是+S 在xy 平面的投影区域:2222a xy y x ≤++.令2,2ηξηξ+=-=y x ,则121212121=-=J ,(){}2223:,a ≤+=∆'ηξηξ , 故 ππ2233133a a S I -=⋅-=⋅-=∆'.通过上面讨论,总结归纳了一些空间曲线积分与曲面积分的典型计算方法,希望本文对学习《数学分析》的同学提供参考和帮助.。

曲线积分与曲面积分重点总结+例题

曲线积分与曲面积分重点总结+例题

第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。

【教学重点】1。

两类曲线积分的计算方法;2。

格林公式及其应用;3。

第一类曲面积分的计算方法;【教学难点】1。

两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。

应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。

[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。

《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。

求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。

定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。

,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。

曲线积分和格林公式

曲线积分和格林公式

什么是曲线积分??1. 设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插入一点列M1,M2,M3…,Mn 把L 分成n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。

2.曲线积分的类别:曲线积分分为:对弧长的曲线积分(第一类曲线积分)对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。

对坐标轴的曲线积分的积分元素是坐标元素dx 或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。

但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号33。

3.两种曲线积分的联系:对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;)在推广之后都是以曲线积分的形式出现()。

曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出4.格林公式【定理】设闭区域由分段光滑的曲线围成,函数及在上具有一阶连续偏导数,则有(1) ∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy其中是的取正向的边界曲线.公式(1)叫做格林(green)公式.【证明】先证假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.另一方面,据对坐标的曲线积分性质与计算法有因此再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证综合有当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴 )的任何直线的交点至多是两点时,我们有5.,若曲线积分在开区域内与路径无关,那它仅与曲线的起点与终点的坐标有关.假设曲线的起点为,终点为,可用记号或来表示,而不需要明确地写出积分路径.显然,这一积分形式与定积分非常相似, 事实上,我们有下列重要定理【定理一】设是一个单连通的开区域,函数,在内具有一阶连续偏导数,且【证明】依条件知,对内任意一条以点为起点,点为终点的曲线,曲线积分与路径无关,仅与的起点和终点的坐标有关,亦即, 确为点的单值函数.下面证明由于可以认为是从点沿内任何路径到点的曲线积分,取如下路径,有类似地可证明因此【定理二】设是单连通的开区域,,在上具有一阶连续偏导数,则在内为某一函数全微分的充要条件是在内恒成立.【证明】显然,充分性就是定理一下面证明必要性若存在使得 ,则由于 ,在内连续, 则二阶混合偏导数适合等式从而【定理三】设是一个单连通的开区域, 函数,在内具有一阶连续偏导数, 若存在二元函数使得则其中,是内的任意两点.【证明】由定理1知,函数适合于是或因此 (是某一常数 )即而这是因为由点沿任意内的路径回到点构成一条封闭曲线,故因此□【确定的全微分函数的方法】因为,而右端的曲线积分与路径无关,为了计算简便,可取平行于坐标轴的直线段所连成的折线作为积分路径(当然折线应完全属于单连通区域).------------------------------------------------------- 【证明】先证假定区域的形状如下(用平行于轴的直线穿过区域,与区域边界曲线的交点至多两点)易见,图二所表示的区域是图一所表示的区域的一种特殊情况,我们仅对图一所表示的区域给予证明即可.另一方面,据对坐标的曲线积分性质与计算法有因此再假定穿过区域内部且平行于轴的直线与的的边界曲线的交点至多是两点,用类似的方法可证综合有当区域的边界曲线与穿过内部且平行于坐标轴( 轴或轴 )的任何直线的交点至多是两点时,我们有,同时成立.将两式合并之后即得格林公式注:若区域不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立.6. 牛顿—莱布尼兹公式⎰-=b a a F b F dx x F )()()('表示:)('x F 在区间[]b a ,上的定积分可以通过它的原函数)(x F 在这个区间端点的值来表达.而格林公式表示:在平面区域D 上的二重积分可以通过沿闭区域D 的边界曲线L 的曲线积分来表达.这样,牛顿——莱布尼兹公式成为格林公式的特殊情形.平面单连通域的概念.设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.例如:平面上的圆形区域(){}1|,22<+y x y x ,上半平面(){}0|,>y y x 都是单连通区域,圆环形区域(){}(){}10|,,41|,2222<+<<+<y x y x y xy x 都是复连通区域. 对平面区域D 的边界曲线L ,规定L 的正向如下:当观察者沿L 的方向行走时,D 总在他的左边.例如D 是边界曲线L 及l 所围成的复连通域(图8),作为D 的正向边界,L 的正向是逆时针方向,而l 的正向是顺时针方向.定理 1 设闭区域D 由分段光滑的曲线L 围成,函数),(y x P 及),(y x Q 在D 上具有一阶连续偏导数,则有⎰⎰⎰+=∂∂-∂∂L D Qdy Pdx dxdy y P x Q )(, (1)其中L 是D 的取正向的边界曲线.公式(1)叫做格林公式.证 先假设区域D 既是X 型又是Y 型的情形,即穿过区域D 且平行坐标轴的直线与D 的边界曲线L 的交点恰好为两点(图9)设(){}b x a x y x y x D ≤≤≤≤=),()(|,21ϕϕ,因为yP∂∂连续,所以{}⎰⎰⎰⎰⎰-=⎭⎬⎫⎩⎨⎧∂∂=∂∂b a b a x x Ddx x x P x x P dx dy y y x P dxdy y P ))(,())(,(),(12)()(21ϕϕϕϕ. 另一方面,对坐标的曲线积分{}⎰⎰⎰⎰⎰⎰-=+=+=L L L b a a b ba dx x x P x x P dx x x P dx x x P Pdx Pdx Pdx 12))(,())(,())(,())(,(2121ϕϕϕϕ.因此得 ⎰⎰⎰=∂∂-L D Pdx dxdy y P . (2) 类似地,设(){}d y c y x y y x D ≤≤≤≤=),()(|,21ϕϕ,则可证⎰⎰⎰=∂∂L D Qdy dxdy x Q . (3)由于D 既是X 型又是Y 型的区域,(2)(3)同时成立,二式合并即得公式(1)区域D 既是X 型又是Y 型这样的要求是相当严格的,但是对于一般情形,即区域D不满足这个条件时,我们可在D 内引进辅助线把D 分成有限个部分闭区域,使得每个部分闭区域都满足这个条件,如图10,应用公式(1)于每个部分区域,即可得证.因此,一般地对于由分段光滑曲线围成的闭区域公式(1)都成立.证毕.注 (1) 格林公式中左端二重积分的被积函数是y P x Q ∂∂-∂∂,而且在D 内偏导连续.这是初学者容易记错或者忽略的地方.右端曲线积分中曲线L 对区域D 来说都是正向,这也是需要注意的.(2) 对于复连通区域D ,格林公式右端应包括沿区域D 的全部边界的曲线积分.例如对图8的复连通域1D (阴影部分)格林公式应为⎰⎰⎰⎰+++++=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂L l D Qdy Pdx Qdy Pdx dxdy y P x Q 1.其中+L 、+l 是D 的取正向的闭曲线.(3) 格林公式揭示出二重积分与平面曲线积分之间的联系,同时也给出了通过二重积分计算曲线积分的一个重要公式.许多情况,曲线积分化为二重积分计算往往是方便的.当然有些二重积分也可以化为曲线积分来计算,但是在化为曲线积分时,被积表达式并不是唯一的.例如,⎰⎰D xdxdy 化为曲线积分时,即可以是dy x L ⎰221,也可以是()dx xy ⎰-或者是xydx dy x L -⎰22121,等等.格林公式的一个简单应用,在公式(1)中取y P -=,x Q =,即得⎰⎰⎰-=L D ydxxdy dxdy 2,上式左端为闭区域D 的面积A 的两倍,因此区域D 的面积A 可以用下面的曲线积分计算。

《高等数学》第十章曲线积分与曲面积分 第五节

《高等数学》第十章曲线积分与曲面积分 第五节
A( x0 , y0 )
G
B( x , y )
C ( x , y0 )
o
u( x , y ) x P ( x , y0 )dx y Q( x , y )dy
0 0
x
x
y
AC CB
或 u( x , y ) y Q( x0 , y )dy x P ( x , y )dx
一重积分中,牛顿—莱布尼茨公式
f(x)积分区间[a , b]
y
y f x

b
a
f ( x )dx F (b) F (a )
二重积分中, 格林公式
o a
y
b x
D
f(x, y)积分区域D
x y dxdy L Pdx Qdy . D P Q
o
三重积分中, 高斯公式和斯托克斯公式
2
设 P ( x , y ) x 2 2 xy , Q( x , y ) x 2 y 4 .
则 P,Q 在全平面上有连续的 一阶偏导数,且
1
y
B
1
P 2 x , y
Q 2 x. x
o
x
Q P 即 . 全平面是单连通域。 y x
因此,积分与路径无关。
10
P 2 x , y
( x, y)
D
0 , y0 )
P ( x , y )dx Q( x , y )dy
0
x
当起点A( x , y )固定时,
0
O
积分的值取决于终点 B( x , y ), 因此,它是 x , y的函数,
定义 u( x , y )

( x, y)
( x0 , y0 )

关于复变函数求积分的方法总结

关于复变函数求积分的方法总结

关于复变函数求积分的⽅法总结1. 利⽤参数化求解考虑实变函数积分中的第⼀型曲线积分——,选择合适的参数化表示曲线——,进⽽进⾏计算。

在计算积分的时候,注意在换元的时候不要漏了中对u、v的求导。

适⽤情况:积分函数⽆奇点,参数化便于寻找,⼀般为圆或者椭圆。

2. 利⽤柯⻄积分定理计算若是闭环积分,对于环内⽆奇点时,可以利⽤柯⻄积分定理,进⾏计算。

适⽤情况:闭环积分,环内⽆奇点。

3. 利⽤柯⻄积分公式/留数定理进⾏计算前两种情况适⽤范围较⼩,条件较严格。

⼤多数复变函数可能都含有奇点,或是不容易寻找合适的参数化。

⾯对有奇点的函数,我们可以应⽤柯⻄积分公式/留数定理进⾏计算。

由于留数定理的本质就是柯⻄积分公式,并且其⽤更统⼀的形式表述了柯⻄积分公式的结论,所以以下的讨论均使⽤留数定理进⾏说明。

留数定理——关键:留数的计算判断是否为孤⽴奇点只有孤⽴奇点才有留数,没有定义的点不⼀定为孤⽴奇点,如。

极点粗略估算极点的阶:在分⺟零点次数总和 - 分⼦零点次数总和。

关于零点次数,可以通过“求⼏次导不为0”判断。

需要注意的是,极点的阶数可能受到分⺟其他项与分⼦的影响,以及函数本身性质影响,如中,z = 0是的2次零点,是分⺟的4次零点,但也是分⼦的3次零点,所以z = 0是该级数的1阶零点。

确定极点的阶,使⽤公式,当为⾮零且有限值时,极点的阶为n。

本性奇点此时只能将函数展开为洛朗级数,获得。

类型⼀:从0到的三⻆积分将、进⾏换元,与。

适⽤范围:积分区间为0到。

类型⼆:从0到的三⻆积分将换成,将换成。

适⽤范围:积分区间为0到,且除了三⻆函数的部分应该为偶函数或者奇函数。

与类型⼀区别:当z趋近于时,、不⼀定有界,⽆法满⾜类型⼀的条件。

类型三:从到的积分寻找上半平⾯与实轴上奇点上半平面奇点实轴上奇点适⽤范围:普适性最强,所有积分区间为到的积分最后都可以⽤该公式解决。

华中科技大学微积分下复习笔记—曲线积分与曲面积分

华中科技大学微积分下复习笔记—曲线积分与曲面积分

文档说明:本文档为作者自己整理的微积分(下)有关曲线积分与曲面积分的复习笔记,包含两部分——基本公式(基于华中科技大学微积分课本)和题型汇总(基于华中科技大学微积分学习辅导),请勿用作商用,若文中有打错的字还请多多包涵。

基本公式1.第一型曲线积分(对弧长的曲线积分)或者1)物理意义:a. 曲线的质量,重心坐标b. 曲线弧长s=!可以用于简化计算2)性质:线性性、可加性、中值公式:s是L的弧长,L上有一点P,3)计算a.参数方程版:三元:,注意这个公式必须满足①L是空间光滑曲线;②α和β必须满足α<β二元:同理b.坐标代换版:三元柱面坐标:二元极坐标:c.普通曲线版对于y=f(x),2.第二型曲线积分(对坐标的曲线积分,矢量场在有向线段上的积分),L是分段光滑有限长的有向线段,F={P,Q,R}分段连续1)物理意义:质点沿有向曲线L从起点运动到终点时,变力F={P,QR}所做的功2)基本概念:a.①其中P,Q,R是被积函数,L是积分弧段或者积分路径②r是L上动点的矢径(位置矢量),质点的坐标可以表示成(x,y,z),也可以r=x i+y j+z k③τ是L的单位切矢量, α β 是τ的方向余弦。

④d r和τ同向,dx,dy,dz是d r分别在x轴,y轴,z轴上的投影,投影可正可负,依赖于L的方向。

⑤矢量函数F是数量函数F τ的第一型曲线积分。

b.性质:反向性、线性性、曲线可加性(方向不变)可拆分性:(空间一个力做的功等于三个分力做的功之合)垂直:若,则(垂直与物体运动方向的力不做功)3)计算a.化为定积分:需注意:①t的取值,即从α到β一定要反应L的方向;②这种化为定积分的计算方式中是不出现弧微分的;③P,Q,R都是用t表示的;④参数化方程时,如y=y(x)的,可以b.化为二重积分:格林公式c.二元函数的全微分求积找到原函数v使得,则其中,P,Q在D上有连续的一阶连续偏导,且在D内Q x=P y4)格林公式a.普通版公式①成立条件:D由xy平面上的简单闭曲线L(分段光滑且自身不相交)围成,函数P,Q,R(包括边界!)有连续的一阶偏导数。

高数积分公式

高数积分公式

高数积分公式高数积分公式是数学中最基础和重要的概念之一,它被广泛用于科学、工程、技术等方面的计算中。

归纳整理后,把积分的概念分为四类,即向量积分、曲线积分、曲面积分和曲面积分。

积分的概念本身是一种把复杂空间分量转换为低维度空间的方法,可以用来表达复杂的概念或计算复杂的数学模型。

首先,我们来讲解向量积分的概念。

它是把封闭曲线上的一阶微分形式(速度)转换成曲线上的累积量(路程)。

也就是说,向量积分可以把封闭曲线上的低维度封闭曲线转换成高维度封闭曲线。

例如,不等式(y2-2x≥0)的解是x2+y2≥2,我们需要将不等式转换为曲线,然后用向量积分来求解。

向量积分的公式是∫Fdx+∫Fdy,其中F是曲线上的低维度速度。

接下来,我们来讨论曲线积分的概念。

曲线积分是把二阶微分形式(加速度)转换成曲线上的累积量(位移)。

也就是说,曲线积分可以把封闭曲线上的低维度封闭曲线转换成高维度封闭曲线。

例如,函数y=sin2x的解是x2+sin2x,我们需要把y=sin2x转换成曲线,然后用曲线积分来求解。

曲线积分的公式是∫Fd2x+∫Fd2y,其中F是曲线上的二阶微分形式。

再来看曲面积分,它是一种把三阶微分形式(加加速度)转换成曲面上的累积量(位移)的方法。

曲面积分可以把封闭曲面上的低维度封闭曲面转换成高维度封闭曲面。

例如,函数y=sin2xz的解是x2+sin2x+z2,我们需要把y=sin2xz转换成曲面,然后用曲面积分来求解。

曲面积分的公式是∫Fd3x+∫Fd3y+∫Fd3z,其中F是曲面上的三阶微分形式。

最后,我们讨论曲面积分,它是一种把四阶微分形式(加加加速度)转换成曲面上的累积量(位移)的方法。

曲面积分可以把封闭曲面上的低维度封闭曲面转换成高维度封闭曲面。

例如,函数y=sin2xz2的解是x2+sin2x+z3,我们需要把y=sin2xz2转换成曲面,然后用曲面积分来求解。

曲面积分的公式是∫Fd4x+∫Fd4y+∫Fd4z,其中F是曲面上的四阶微分形式。

三阶贝塞尔曲线 斜率

三阶贝塞尔曲线 斜率

三阶贝塞尔曲线斜率
三阶贝塞尔曲线的斜率可以通过计算其导数来求得。

贝塞尔曲线是由一系列控制点决定的曲线,其中三阶贝塞尔曲线由四个控制点确定。

我们可以使用贝塞尔曲线的参数方程来计算其导数。

假设有四个控制点P0,P1,P2和P3,那么三阶贝塞尔曲线的参数方程为:
B(t) = (1-t)^3 * P0 + 3 * (1-t)^2 * t * P1 + 3 * (1-t) * t^2 * P2 + t^3 * P3
其中,t是参数,范围在0到1之间。

为了求取该曲线的斜率,我们需要对参数方程进行求导。

对上述参数方程关于t求导,得到:
dB(t)/dt = -3 * (1-t)^2 * P0 + 3 * (1-t)^2 * P1 - 6 * (1-t) * t * P1 + 6 * (1-t) * t * P2 + 3 * t^2 * P2 - 3 * t^2 * P3
这个导数表达式表示了三阶贝塞尔曲线在任意一个参数值t 处的斜率向量。

注意,以上导数表达式仅给出了一个参数值t处的斜率向量,如果想要得到整条曲线的斜率,需要在整个参数范围内进行求解,即在t=0到1之间计算dB(t)/dt。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三阶曲线积分
一、三重积分的性质与计算方法
1.性质的话主要是对称性,其中又包括一般对称性与轮换对称性。

2.计算方法:直角坐标法、柱坐标法与球坐标法。

(1)直角坐标法要掌握垂直投影法与切片法,其实就是分别将积分区域投影到xoy平面、z轴上的两种累次积分。

(2)柱坐标法我更愿意把它理解为垂直投影法的另一种方法。

(3)球坐标法。

这个是要重点掌握的,对于积分区域是球体(或者半球体)或者积分式子中含有x、y、z三项的平方和的被积函数都可以用。

二、曲线积分
曲线积分包括第一类曲线积分与第二类曲线积分。

第一类曲线积分
1.性质:对称性与轮换对称性、代入性质。

2.计算方法:特殊代替法、定积分法
第二类曲线积分
性质:对同一段曲线进行积分,方向相反,积分结果相反。

计算方法
1.定积分法
2.二重积分法
对于平面曲线,可以用格林公式将其转化为对曲线所围区域的二重积分。

运用格林公式的时候要注意:
(1)曲线是否封闭,如果不封闭,可以一段曲线使其封闭,但是补了之后要记得减去相应的曲线积分。

(2)曲线方向是否为逆时针,如果不是逆时针要在前面加负号。

(3)曲线所围的区域内,P,Q是否是连续可偏导,如果不是连续可偏导(针对于分母为0的情况),可以挖一个区域。

3.曲线积分与路径无关的条件
三、曲面积分
曲线积分也包括第一类曲面积分和第二类曲面积分。

第一类曲面积分
性质:对称性、代入性质。

计算方法—二重积分法。

将曲面向xoy(或者yoz,xoz)投影,在投影所得的积分区域中进行二重积分,积分元ds换成对应的积分元。

在第二型曲面积分比较难算的时候,往往会转化为第一型曲面积分进行计算。

第二型曲面积分是对有向曲面的积分,要注意正负号。

计算方法
1.二重积分法
2.高斯公式转化为三重积分
具体的操作也比较简单,也是把需要注意的点列出来就可以了。

(1)曲面是否取的是围成封闭区域,不是封闭区域要补齐平面,补了之后还要减。

(2)曲面是否为外面,不是外面的话,要加上负号。

相关文档
最新文档