函数值域的十种求法

合集下载

函数值域的十种求法

函数值域的十种求法

函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。

2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。

3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。

4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。

5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。

6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。

7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。

8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。

9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。

10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。

函数值域的13种求法

函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

数学-值域的10种求法(学生版)

数学-值域的10种求法(学生版)

函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。

求函数值域常用的十种方法

求函数值域常用的十种方法

值域是全体函数值所构成的集合,值域也是构成函数的三要素之一。

由于求函数值域所涉及到的知识面较宽,所用到的数学思想与数学方法也相应较多,因此、求函数的值域往往是数学考察的基本内容之一,本文将举例说明求函数值域常用的十种方法,仅供参考。

1、利用非负数的性质根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。

例1、(1)求函数216x y -=的值域。

(2)求函数1322+-=x x y 的值域。

解析:(1)161602≤-≤x , 41602≤-≤∴x故 所求函数的值域为 []40,∈y 。

(2)012>+x ,∴原函数可化为 3)1(22-=+x x y ,即 3)1(2+=-y y x , 当1≠y 时,y y x -+=132, 02≥x ,013≥-+∴yy ,解得13≤≤-y 又 1≠y , 所以 13<≤-y ,故 所求函数的值域为 ),13[-∈y 。

2、利用函数的图象对于含有绝对值(或分段)函数,若函数图象比较易作出,则利用函数图象能较快的求出其值域。

例2、求函数|1||2|+--=x x y 的值域。

解析:去掉绝对值符号得 :⎪⎩⎪⎨⎧-<=++-≤≤-+-=+-->=+--=)1(3)1(2)21(12)1(2)2(3)1(2x x x x x x x x x x y 。

画出函数的图象(如图):由函数的图象可得,原函数的值域为]33[,-∈y 。

3、利用二次函数的性质对于二次函数或与二次函数有关的函数,在求其值域时常用此法。

例3、(1)求函数]22[2,,-∈+-=x x x y 的值域。

(2)求函数]231[27,,∈-=x x x y的值域。

解析:(1)41)21(22+--=+-=x x x y ,]22[,-∈x ,416≤≤-∴y 故 所求函数的值域为 ]416[,-∈y (2)849)471(2722727222+--=+-=-=-=x xx x x x x y , ]231[,∈x ,4273≤≤∴y 解得:, 故 所求函数的值域为 ]4273[,∈y 。

函数求值域的15种方法

函数求值域的15种方法

函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。

它也可以用来判断函数是否具有极值以及极值在哪里。

求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。

1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。

2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。

3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。

4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。

5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。

6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。

7. 不等式法:分析函数的不等式,来求出函数的定义域。

8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。

9. 极值法:通过分析函数的极值,找出函数的值域。

10. 极限法:通过求解函数的极限,来确定函数的值域。

11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。

12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。

13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。

14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。

15. 图解法:通过对函数的图解,计算出函数所具有的定义域。

以上就是15种求解函数域的方法。

上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。

根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。

函数值域求法大全

函数值域求法大全

函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数x 1y =的值域。

解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞Y例2. 求函数x 3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

高中数学 函数值域求法十一种(详解)

高中数学  函数值域求法十一种(详解)

智愛高中數學 函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

1. 求函数x 1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞2. 求函数x 3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+- (1)当1y ≠时,Rx ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,215. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

求值域的十种方法

求值域的十种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。

例 1 .求函数的值域。

【解析】∵ ,∴ ,∴函数的值域为。

【练习】1 .求下列函数的值域:① ;② ;③ ;,。

【参考答案】① ;② ;③ ;。

二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。

形如的函数的值域问题,均可使用配方法。

例 2 .求函数()的值域。

【解析】。

∵ ,∴ ,∴ ,∴ ,∴ 。

∴函数()的值域为。

例 3 .求函数的值域。

【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。

说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。

例 4 .若,试求的最大值。

【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。

利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。

【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。

【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。

适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。

例 5 .求函数的值域。

分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。

反解得,故函数的值域为。

【练习】1 .求函数的值域。

2 .求函数,的值域。

【参考答案】 1 .;。

四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

例 6 :求函数的值域。

解:∵ ,∵ ,∴ ,∴函数的值域为。

适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。

例 7 :求函数的值域。

高中数学:求函数值域的10种常见方法

高中数学:求函数值域的10种常见方法

求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。

练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。

练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。

七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。

二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。

三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。

四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。

五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。

六、反函数法:
通过求函数的反函数,获得原函数的值域。

七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。

八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。

九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。

十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。

以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。

在实际应用中,经常需要综合运用多种方法来确定函数的值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

一、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例:求函数()x 323y -+=的值域。

点拨:根据算术平方根的性质,先求出()x 3-2的值域。

解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。

点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。

练习:求函数()5x 0x y ≤≤=的值域。

(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例:求函数2x 1x y ++=的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数x-x -xx 10101010y ++=的值域。

(答案:{}1y 1-y |y 或)。

三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。

例:求函数()2x x-y 2++=的值域。

点拨:将被开方数配方成平方数,利用二次函数的值求。

解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。

此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛ ()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。

例1.求函数1y =的值域。

【解析】0≥11≥,∴函数1y =的值域为[1,)+∞。

【练习】1.求下列函数的值域:①32(11)y x x =+-≤≤; ②x x f -+=42)(;③1+=x xy ;○4()112--=x y ,{}2,1,0,1-∈x 。

【参考答案】①[1,5]-;②[2,)+∞;③(,1)(1,)-∞+∞;○4{1,0,3}-。

二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例2.求函数242y x x =-++([1,1]x ∈-)的值域。

【解析】2242(2)6y x x x =-++=--+。

∵11x -≤≤,∴321x -≤-≤-,∴21(2)9x ≤-≤,∴23(2)65x -≤--+≤,∴35y -≤≤。

∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

例3.求函数][)4,0(422∈+--=x x x y 的值域。

【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:)0)((4)(2≥+-=x f x x x f 配方得:][)4,0(4)2()(2∈+--=x x x f 利用二次函数的相关知识得][4,0)(∈x f ,从而得出:]0,2y ⎡∈⎣。

说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:0)(≥x f 。

例4.若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。

【分析与解】本题可看成第一象限内动点(,)P x y 在直线42=+y x 上滑动时函数xy y x lg lg lg =+的最大值。

利用两点(4,0),(0,2)确定一条直线,作出图象易得:2(0,4),(0,2),lg lg lg lg[(42)]lg[2(1)2]x y x y xy y y y ∈∈+==-=--+而,y=1时,y x lg lg +取最大值2lg 。

求函数值域的十种方法

求函数值域的十种方法

错 解一:y÷+ / 函 ‘= > . 数值域y [,∞ 。 . 2 ∈ 2+ )

剖析 : 由于 忽 略 了 “ 且 仅 当s c — 当 ie n + 一时 上 式 才 能 取 等
号 ” 但 因I nd l io≠— , , s e ≤ 故s t i n 因此 上 式 不 能 取 等 号 , 至少
sne i t
剖析 : =0 + ] , 当x ( , 时 结论 x [ ,o) 是 正 确 的 。 但 当 = 2 + 。才 X 0 1 , 个 结 论 就 不 可靠 了 。 ∈( , ) 这
错解 二 := ^+ 甘 x_ y + = v _ -2 x 4 0.

应 有v≠2x /2 。
3 y 其 中。 i0 一, 由s n 和c s= o0 — 确 定 。
解:函 定义域为 1 x1 又・V _ / , 30 ・ 数 . ・ 一≤ <, ./ > X <, ・ l 0- 、

V4 v +

4y +







y , 函数 值域 Y 一。0 。 ≤O 即 ∈( o,]
r — 一
3. 化 法 转 利 用 已 知值 域 的 函数 或 所 给 函数 的定 义域 , 为 “ 介 ” 作 媒 , 将 待求 值域 的 函数 式 变 形 。 过 适 当的 运 算 , 得 所 给 函 数 的 通 求 值 域 。 将所 求 函 数值 域 问题 转 化 为熟 知 的 基 本初 等 函 数 的 值 域 问题 , 能 化 难 为 易 。 常


. (, , 2 . 、 - / ( ,方 ( 的 能 0 ] ≥ y / 4 21 . 程 1 根只 ∈ 1y + > ). . )

十种求初等函数值域的方法

十种求初等函数值域的方法

十种求初等函数值域的方法函数的值域是函数的三要素之一, 掌握好求函数值域的方法, 对理解函数的概念意义重大, 而函数概念是贯穿于整个高中课程的, 因此, 掌握求函数值域的方法对整个高中数学课程而言, 具有至关重要的意义. 而整个高中课程所讨论的函数几乎全部是初等函数, 所以本文试图对常见的求初等函数值域的方法作一简要总结.一 观察法观察法是最简单的求函数值域的方法, 此法适用于那些形式比较简单的函数, 例如对于函数23+=x y , 显然其值域为),0()0,(+∞⋃-∞∈y .此法虽然简单, 而且对于形式稍显复杂的函数, 此法常难奏效, 但是此法却是求函数值域最基本的方法, 对于其他形式稍繁的函数, 也是通过施加变换, 最终化成形式简单的函数, 从而应用此法求得.二 分离常数法此法常适用于那些分式形式且分子与分母同为一次多项式的函数, 或能够化成上述形式的函数, 即形如dcx b ax y ++=形式的函数. 解决的办法是通过添项或减项, 在分子中分解出与分母相同的式子, 约分后应用观察法即可得函数的值域.例如对于函数231--=x x y , 利用恒等变形, 得到:)23(31312331)23(31--=---=x x x y ,容易观察得出此函数的值域为),(),(3131+∞⋃-∞∈y . 三 配方法对于二次函数, 可利用配方法求解其值域, 对于与二次函数复合而成的函数, 可尝试对二次函数进行配方, 进而利用与其复合的函数的性质求其值域.例1 求函数342-+-=x x ey 的值域.解答: 此题可以看作是u e y =和342-+-=x x u 两个函数复合而成的函数, 对u 配方可得: 1)2(2+--=x u , 得到函数u 的最大值1=u , 再根据u e y =得到y 为增函数且0>y , 故函数342-+-=x xey 的值域为: ],0(e y ∈.四 判别式法此法适用于二次分式形式的函数, 尤其适用于分母为二次多项式的函数, 解决的办法是先将函数化成方程, 即隐函数0),(=y x f 的形式, 再利用一元二次方程的理论求解问题.例2 求函数2212+++=x x x y 的值域.解答: 先将此函数化成隐函数的形式得:012)12(2=-+-+y x y yx, (1)这是一个关于x 的一元二次方程, 原函数有定义, 等价于此方程有解, 即方程(1)的判别式0)12(4)12(2≥---=∆y y y ,解得: 2121≤≤-y .故原函数的值域为: ],[2121-∈y . 五 基本不等式法利用基本不等式ab b a 222≥+和)0,(2>≥+b a ab b a 是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取""=成立的条件.例3 求函数12++=x x y 的值域.解答: 211112≥++==+++x x x x y , 当且仅当1=x 时""=成立. 故函数的值域为),2[+∞∈y .此法可以灵活运用, 对于分母为一次多项式的二次分式, 当然可以运用判别式法求得其值域, 但是若能变通地运用此法, 可以省去判别式法中介二次不等式的过程.例4 求函数1222+++=x x x y 的值域.解答: 此题可以利用判别式法求解, 这里考虑运用基本不等式法求解此题, 此时关键是在分子中分解出)"1("+x 项来, 可以一般的运用待定系数法完成这一工作, 办法是设:22))(1(2++=+++x x c b x x , (2)将上面等式的左边展开, 有:)()1(2c b x b x ++++,故而21=+b , 2=+c b . 解得1=b , 1=c . 从而原函数1111)1)(1()1(+++++++==x x x x x y ;ⅰ)当1->x 时, 01>+x ,011>+x , 此时2≥y , 等号成立, 当且仅当0=x .ⅱ)当1-<x 时, 0)1(>+-x , 011>-+x , 此时有211)1(11)1(11)1)(1(-≤⎥⎦⎤⎢⎣⎡+-+--=+++=++++=x x x x x x x y , 等号成立, 当且仅当2-=x .综上, 原函数的值域为: ),2[]2,(+∞⋃--∞∈y . 六 换元法利用换元改变了原函数表达式的”面貌”, 使原来性质不明显的函数变得清晰, 从而易于求得原函数的值域. 运用换元法时应注意所引进的参数变量的取值范围.例5 求函数x x y 21-+=的值域. 分析: 若设x t 21-=, 则)1(212t x -=(其中),0[+∞∈t ). 原函数变为1)1(21)1(2122+--=+-=t t t y .由于),0[+∞∈t , 故]1,(-∞∈y . 七 反函数法对于存在反函数且易于求得其反函数的函数, 可以利用”原函数的定义域和值域分别为其反函数的值域和定义域”这一性质, 先求出其反函数, 进而通过求其反函数的定义域的方法求原函数的值域.例 6 求函数11+-=x xe e y 的值域.解答: 对于此题来说,我们尝试用反函数方法求解此题. 先证明11xx e e y -+=有反函数, 为此, 设21x x <且R x x ∈21,,0)1)(1(211112121221121<++-=+--+-=-x x x x x x x x e eee ee ee y y .所以y 为减函数, 存在反函数. 可以求得其反函数为:xx y -+-=111ln. 此函数的定义域为)1,1(-∈x , 故原函数的值域为)1,1(-∈y .其实, 此题也可以用分离常数法来解, 这里就不再冗述了. 八 图像法对于一些能够准确画出函数图像的函数来说, 可以先画出其函数图像, 然后利用函数图像求其值域.例 7 求函数13y x x =-+-的值域.分析: 此题首先是如何去掉绝对值,将其做成一个分段函数. 24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内, 画出此函数的图像, 如图1所示, 易得出函数的值域为),2[+∞.九 利用函数的单调性当函数f 在),(b a 上单调, 譬如f 在),(b a 上递增时, 自然有函数f 在),(b a 上的值域为))0(),0((-+b f a f (其中图1y=-2x+4y=2x-4YX4O231)(lim )0(),(lim )0(x f b f x f a f bx ax -+→→=-=+,当+→a x 时,±∞→)(x f 也称其存在,记为)0(+a f ); 若f 在),(b a 上递减, 函数f 在),(b a 上的值域为))0(),0((+-a f b f . 在闭区间],[b a 上也有相应的结论.例 8 求函数x x y --+=863 的值域.分析: 此题可以看作v u y +=和63+=x u ,x v --=8的复合函数, 显然函数63+=x u 为单调递增函数, 易验证x v --=8亦是单调递增函数, 故函数x x y --+=863也是单调递增函数. 而此函数的定义域为]8,2[-.当2-=x 时, y 取得最小值10-.当8=x 时, y 取得最大值30. 故而原函数的值域为]30,10[-.十 利用导数求函数的值域若函数f 在),(b a 内可导, 可以利用导数求得f 在),(b a 内的极值, 然后再计算f 在a ,b 点的极限值. 从而求得f 的值域.例 9 求函数x x x f 3)(3-=在)1,5(-内的值域.分析:显然f 在)3,5(-可导,且33)(2-='x x f . 由0)(='x f 得f 的极值点为1,1-==x x .,2)1(=-f 2)01(-=-f . 140)05(=+-f .所以, 函数f 的值域为)140,2(-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数值域的十种求法
函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。

求函数值域的方法有多种,每种方法都有不同的优劣。

本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。

一、定义法
定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。

定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。

但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。

二、图像法
图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。

图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。

但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。

三、五行式
五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。

五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。

但是,五行式也
存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。

四、三角形法
三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。

三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。

但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。

五、基于函数本质的求法
基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。

基于函数本质的求法最大的优势在于可以精确求出函数值域,而且不受函数参数数量的限制,可以处理函数参数较多的情况。

但是,基于函数本质的求法也存在一定的缺点,即求解过程较为复杂,耗时比较久。

六、延拓法
延拓法是一种尝试性的求值域的方法,它的思路是将原始的函数参数空间进行“延拓”,逐步获取更多的函数值,从而求出函数值域。

延拓法的优势在于求解时间短,只需要对函数参数进行迭代计算即可,无需耗费大量的运算时间。

但是,延拓法本身也存在一定的局限性,如果函数参数过多,那么求出的函数值域可能不太准确,可能会漏掉
一些函数特征。

七、极限法
极限法是一种常见的求函数值域的方法,它将函数的参数值取至极限,并观察函数的变化规律,从而推断出函数值域的范围。

极限法的优势在于可以于理解,只需要将函数参数取至某一特定的极限,就可以求得函数值域,不需要耗费大量的计算时间。

但是,极限法同样也存在一定的缺点,即极限求解中可能会受到微小变化的影响,从而导致得到的函数值域不太准确。

八、倒插法
倒插法是一种概念性的求值域的方法,它的思路是将函数值反过来求,从而推断出函数值域的范围。

倒插法的最大优势就在于可以有效地处理复杂函数,因为不管函数本身有多复杂,都可以从另一个角度来理解其本质。

但是,倒插法也有一定的缺点,即求解处于循环中的函数值域往往不够准确,无法精确推断出函数值域的范围。

九、矩阵法
矩阵法是一种高效的求函数值域的方法,它将函数参数和函数值域抽象成矩阵,然后进行矩阵计算,从而求出函数值域。

矩阵法的最大优势在于可以大大提高求解的效率,矩阵计算可以减少计算量,极大提高求解的速度。

但是,矩阵法也并不能精确求得函数值域的范围,它仅能够提供近似的解决方案。

十、对比法
对比法是一种综合性的求值域的方法,它的思路是通过对比类似
函数的值域,从而推断出原函数的值域。

对比法最大的优势在于可以更好地掌握函数的特性,将已知的函数和未知的函数进行比较,从而更深入地理解函数。

但是,对比法本身也存在一定的局限性,即只有在两个函数有共同的参数时,才能进行对比,否则就无法求出函数值域。

相关文档
最新文档