第四章 实数指数幂(1)精品教案
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/3d17030bd15abe23492f4d6e.png)
实数指数幂及运算法则一、教学目标知识目标:1、掌握实数指数幂的运算法则; 2、会用实数指数幂运算法则进行化简; 3、能运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算; 能力目标:1、培养学生的观察、分析、归纳等逻辑思维能力; 2、培养学生勇于发现、勇于探索、勇于创新的精神; 3、培养学生用事物之间普遍联系的观点看问题; 二、教学重点、难点1、重点 实数指数幂的运算法则及应用2、难点 运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算 三.学法与教具:1.学法:讲授法、讨论法. 2.教具:投影仪 四、教学过程 1、温知(1)0a =1(非零数的零次方等于1)1n na a -=(一个非零数的负指数幂等于它的正指数幂的倒数)(2m na (根式与分数指数幂的互化)练:将下列各根式写成分数指数幂的形式:(1(2将下列各分数指数幂写成根式的形式:(1)323; (2)258-2、新课•=3,即123•123=11223+;4=9,即142(3)=23=1423⨯;……猜想:有理数指数幂的运算法则与整数指数幂的运算法则完全相同. 可以证明对有理数指数幂,原整数指数幂的运算法则保持不变,即 (1)rsr sa a a +=(a>0,r,s ∈Q );同底数幂相乘,底数不变,指数相加. (2)()r srsa a =(a>0,r,s ∈Q ); 幂的乘方,底数不变,指数相乘. (3)()rr rab a b =(a>0,b>0,r ∈Q );积的乘方,等于把积的各个因式分别乘方.显然,整数指数幂的运算法则是有理数指数幂运算法则的特殊情况.3、知识巩固例1求下列各式的值:(1)238;(2)348116⎛⎫⎪⎝⎭;(3)3416-;(4)3•••解:分析先将根式转化为分数指数幂,在计算会更简便快捷.(1)238=233(2)=2332⨯=22=4;(2)348116⎛⎫⎪⎝⎭=34432⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=34432⨯⎛⎫⎪⎝⎭=332⎛⎫⎪⎝⎭=278;(3)3416-=344(2)-=34()42⨯-=32-=18;(4)3•••=(4)13•123•133•163=11112363+++=23=9.练一练求值:(1)120.01;(2)1232-;(3)1264121-⎛⎫⎪⎝⎭;(4)2327.解:(1)120.01=()1220.1⎡⎤⎣⎦=1220.1⨯=0.1;(2)1532-=155(2)-=15()52⨯-=12-=12;(3)1264121-⎛⎫⎪⎝⎭=122811-⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=12()2811⨯-⎛⎫⎪⎝⎭=1811-⎛⎫⎪⎝⎭=118;(4)2327=233(3)=2333⨯=23=9.例2计算下列各式(a>0,b>0):(1;(2)2133215(3)a b a b-÷.解:分析系数与系数做运算;同底的幂按法则进行运算;不同底的幂不进行运算.(1=213a a-=213a-=13a-;(2)2133215(3)a b a b-÷=12233153a ba b-=121(3)235a b---=1465a b-.练一练化简下列各式(a>0):(1•(2•解:(1•1134a a•=1134a+=712a;(2•2332a a•=2332a+=496a+=136a.实际上,当底数大于0时,我们可以将指数的取值范围由有理数推广到实数.有理数指数幂和无理数指数幂统称为实数指数幂.有理数指数幂的运算法则同样适用于无理数指数幂. 4、小结(1)实数指数幂的运算法则r s r sa a a+=(a>0,r,s∈Q);()r s rsa a=(a>0,r,s∈Q);()r r rab a b=(a>0,b>0,r∈Q);(2)化简要遵循运算顺序进行,一般“先括号里再括号外,先乘方再乘除,最后加减”;如果有根式,先把根式化成分数指数幂在进行化简;5、作业练习4.1.2 1、2。
高教版中职数学基础模块上册《实数指数幂》教案 (一)
![高教版中职数学基础模块上册《实数指数幂》教案 (一)](https://img.taocdn.com/s3/m/9259b6ac50e79b89680203d8ce2f0066f5336435.png)
高教版中职数学基础模块上册《实数指数幂》教案 (一)高教版中职数学基础模块上册《实数指数幂》教案一、教学目标1. 理解实数、指数和幂的基本概念及其性质。
2. 掌握实数的运算法则。
3. 熟练掌握指数和幂的运算法则。
4. 初步掌握实际问题中应用指数和幂的方法。
二、教学重难点1. 指数与幂的定义和性质。
2. 指数与幂的运算法则。
3. 实际问题的应用。
三、教学内容及步骤A. 呈现1. 引出实数的概念及表示法。
2. 引出指数与幂的概念及表示法。
B. 模拟与探究1. 通过教师提问和学生讨论,让学生深入理解指数和幂的定义和性质,并进行探究。
2. 教师引导学生进行实数的基本运算。
3. 教师组织学生练习指数和幂的运算法则。
C. 引申与拓展1. 教师引导学生从实际问题中得出指数和幂的应用方法。
2. 教师提供案例,让学生自己解决问题,并进行讨论和分享。
四、教学方法1. 教师引导学生参与讨论,深化对概念的理解。
2. 教师演示指数和幂的运算方法,引导学生模仿操作。
3. 多媒体课件展示案例,引导学生思考和解决问题。
4. 学生个人或小组探究问题,教师辅导和引导。
五、教学过程设计1. 引入部分学生根据教师提供的问题和资料,思考和分享实数、指数和幂的概念,并探究实数的运算规律。
2. 模拟与探究部分2.1 指数和幂的定义和性质:问题:什么是指数?什么是幂?它们有什么性质?探究:学生分组自主探究指数和幂的定义和性质,并通过PPT展示学习成果。
2.2 实数的基本运算:问题:实数的四则运算规则是什么?探究:教师演示实数的基本运算,然后引导学生独立解决一道题。
2.3 指数和幂的运算法则:问题:如何计算指数和幂的运算?探究:教师演示指数和幂的运算法则,让学生跟随操作并练习。
3. 引申与拓展部分3.1 指数和幂的应用:问题:指数和幂在实际问题中有哪些应用?引申:教师通过多媒体课件展示案例,引导学生思考和解决问题。
3.2 学生自主解决问题:问题:使用指数和幂解决一个实际问题。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/e397885beef9aef8941ea76e58fafab069dc44ac.png)
一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
第四章实数指数幂教案(共3课时)
![第四章实数指数幂教案(共3课时)](https://img.taocdn.com/s3/m/16aa470c6ad97f192279168884868762caaebbea.png)
天长市职教中心电子备课教案 机电类专业模块教案4.1根式及分数指数幂(第一课时)备课人:林友东 窦健教学目标:掌握根式的概念和性质,灵活应用。
教学难点:根式的概念.教学环节教学内容教师活动学生课题引入折纸:一张纸厚度为1,对折次数为1、2、3……x 则纸的厚度为y,用x 表示y ?面积s 用x 如何表示?这是函数吗?今天研究这样的函数板书课题生尝试求解并回答。
是函数,y=2^x y= =(1/2)^xx∈N +复习提问板书a n =生答:正整数指数幂即一个数a 的n 次幂等于n 个a 连乘积。
n 次方根定义引出1、4的平方根?-27的立方根?2、若X ^4=aX ^5=a X ^n=a (a>0)X ^2=a ,x 叫a 平方根。
X ^3=a ,x 叫a 立方根。
∵(±2)^2=4∴4的平方根±2∵(-3)^3=27∴27的立方根-3生归纳n 次方根定义一、n 次方根定义一般地,如果,那么叫a x n x 做的次方根,其a n 中>1,且n ∈*.n N 师板书定义用彩粉笔圈划名称小结:一个数有无次方根一定考虑被n 开方数是正数还是负数,还要分为奇数和偶数。
生认识式子叫做根式,n a 这里叫做根指数,n 叫做被开方数a 注解:1、为正数a (1) 当是奇数时,a 的次方根有一个,为n n n a (2) 当是偶数时,a 的次方根有两个,这两个数互为相反数,为±n n n a 2、为负数a (1)当是奇数时,a 的次方根有一个,为。
n n n a (2)当是偶数时,a 的次方根不存在。
n n天长市职教中心电子备课教案 机电类专业模块教案注解2:负数没有偶次方根;0的任何次方根都是0,记作00=n 教学环节教学内容教师活动学生二、n 次方根性质思考:(课本P 58探究问题)=一定成立吗?nn a a .结论:当是奇数时,n aa nn =当是偶数时,n ⎩⎨⎧<≥-==)0()0(||a a a a a a nn偶数时化简得到结果先取绝对值,再去掉绝对值这样避免出错。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/519bcd693868011ca300a6c30c2259010302f357.png)
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/28c46459bfd5b9f3f90f76c66137ee06eef94e66.png)
实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 掌握实数指数幂的运算法则,能够运用运算法则解决实际问题。
3. 培养学生的数学思维能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的运算性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法采用问题驱动法、案例分析法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生解决问题的能力。
四、教学准备1. 教师准备:实数指数幂的相关知识,运算法则的案例,教学PPT等。
2. 学生准备:预习实数指数幂的相关知识,准备好笔记本。
五、教学过程1. 导入新课教师通过复习实数的基本概念,引导学生进入实数指数幂的学习。
2. 知识讲解(1)实数指数幂的概念教师讲解实数指数幂的定义,引导学生理解指数幂的意义。
(2)有理数指数幂的运算性质教师讲解有理数指数幂的运算性质,引导学生掌握运算规律。
(3)实数指数幂的运算法则教师讲解实数指数幂的运算法则,引导学生掌握运算法则。
3. 案例分析教师展示实数指数幂的运算案例,引导学生运用运算法则解决问题。
4. 课堂练习教师布置课堂练习题,学生独立完成,教师进行讲解和辅导。
5. 总结与拓展教师对本节课的知识进行总结,引导学生思考实数指数幂在实际问题中的应用。
6. 课后作业教师布置课后作业,巩固所学知识。
六、教学反思教师在课后对教学情况进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
七、教学评价通过课堂表现、课后作业和课堂练习,评价学生对实数指数幂及运算法则的掌握程度。
八、教学时间本节课计划用2课时完成。
九、教学资源1. 教学PPT2. 实数指数幂的案例分析资料3. 课堂练习题十、教学拓展引导学生学习实数指数幂在实际问题中的应用,如科学计算、经济学等领域。
六、教学活动设计1. 导入新课:通过复习实数的乘方概念,引导学生自然过渡到实数指数幂的学习。
《实数指数幂及其运算》教学设计
![《实数指数幂及其运算》教学设计](https://img.taocdn.com/s3/m/d9541ff85acfa1c7aa00cca7.png)
实数指数幂及其运算(Ⅰ)教学设计课程名称:3.1.1实数指数幂及其运算(第一节) 教材分析:1. 数系的扩充众所周知,人类对于数的认识经历了漫长的过程,从Z 到Q ,从Q 到R ,从R 到C ,乃至扩充到四元数等等。
虽然每一次数的范围的扩大往往伴随着质疑,但随着时间的发展,人们逐渐能够接受越来越多的数,而且寻找到了许多新的数背后所蕴含的实际意义。
数系扩充的动力主要包括两个方面: (1)生产生活的推动就本节课所涉及内容而言,指数模型是一种重要的数学模型,能较好的刻画许多自然现象(如放射性元素的衰变),在模型中变量t 显然是连续的,因此要求我们将指数推广到实数范围内。
(2)数学本身的推动许多数的出现都与方程有关(如负数,分数,复数等),根式也不例外。
当我们将数系扩充后,我们任然希望新的数系能较好的继承原有数系的一些性质。
事实上,如果我们假定指数运算拓展到实数范围内后,仍然继承下述性质:(1)m n m n a a a +=⋅(0a >,,m n ∈R )(2)当1a >时,若m n >,则m n a a >(0a >,,m n ∈R )当1a =时,若m n >,则m n a a =(0a >,,m n ∈R ) 当1a <时,若m n >,则m n a a <(0a >,,m n ∈R )则指数n a 的定义是唯一的2. Cauchy 法从Z 到Q 是非常重要的一步,这一步将一个疏集上定义的函数延拓到了一个稠密集上的函数,依靠的是,,<+⋅>Q 是,,<+⋅>Z 的分式环;从Q 到R 也是非常重要的一步,这一步将一个稠密集上的函数延拓到了一个连续集上的函数,依靠的是逼近的想法。
这种方法即为Cauchy 法.事实上,如果附加上连续性条件,我们可以得到许多函数的“特征性质”如: (1)()f x 是正比例函数或零函数()()(),,f m n f m f n m n ⇔+=⋅∀∈R (2)()f x 是指数函数或零函数()()(),,f m n f m f n m n ⇔+=⋅∀∈R (3)()f x 是对数函数或零函数()()(),,0f m n f m f n m n ⇔⋅=+∀> (4)()f x 是幂函数或零函数()()(),,0f m n f m f n m n ⇔⋅=⋅∀>3. 指数运算和加法运算,乘法运算的区别乘法运算是连加法运算的推广,指数运算是连乘法运算的推广。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/d370e966b80d6c85ec3a87c24028915f804d84e8.png)
实数指数幂及运算法则教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过实例引入实数指数幂的概念;(2)引导学生发现并归纳实数指数幂的运算法则;(3)运用运算法则进行变形和求解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生主动探索、合作学习的意识;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 实数指数幂的概念:(1)引入平方根、立方根的概念;(2)引导学生理解实数指数幂的概念,即a^n 表示n 个a 相乘。
2. 实数指数幂的运算法则:(1)同底数幂的乘法:a^m a^n = a^(m+n);(2)同底数幂的除法:a^m / a^n = a^(m-n);(3)幂的乘方:a^m^n = a^(mn);(4)积的乘方:(ab)^n = a^n b^n;(5)零指数幂:a^0 = 1(a ≠0);(6)负指数幂:a^-n = 1 / a^n(a ≠0)。
三、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则。
2. 教学难点:(1)实数指数幂的运算法则的应用;(2)解决实际问题中指数幂的运用。
四、教学方法1. 实例引入:通过实际问题引入实数指数幂的概念;2. 引导发现:引导学生发现并归纳实数指数幂的运算法则;3. 练习巩固:运用运算法则进行变形和求解;4. 实际应用:解决实际问题,巩固知识。
五、教学步骤1. 导入新课:通过实际问题引入实数指数幂的概念;2. 讲解与演示:讲解实数指数幂的概念,演示运算法则的运用;3. 练习与讨论:学生独立练习,小组讨论,共同解决问题;4. 总结与拓展:总结实数指数幂的运算法则,拓展相关知识;5. 作业布置:布置练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问了解学生对实数指数幂概念和运算法则的理解程度;2. 练习题:布置课堂练习题,检查学生掌握运算法则的情况;3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力;4. 课后作业:检查课后作业的完成质量,了解学生对知识的掌握和运用能力。
高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案
![高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案](https://img.taocdn.com/s3/m/06fd2522caaedd3383c4d3b9.png)
18 苏州园林知识与能力1.积累“轩榭、败笔、丘壑、嶙峋、镂空”等词语,掌握其音义,并用词造句。
2.整体感知内容,概括苏州园林的特征,分析本文的结构特点。
3.掌握本文运用的说明方法,品味说明语言的多样性。
过程与方法运用多种媒体,创设丰富情境,引导学生感知园林的画意美,感受园林文化的艺术美。
情感态度与价值观1.领略中国园林的建筑美,逐步培养学生的艺术鉴赏力。
2.了解我国园林建筑的成就,激发热爱祖国的思想。
3.感受写作大师的语言美,增强热爱母语的感情。
教学重点作者是如何抓住苏州园林的特征,并突出这个特征的。
教学难点理解绘画与园林建筑的联系。
2课时第一课时一、新课导入《中国石拱桥》让我们领略到了我国桥梁事业的伟大成就,今天,我们从桥上走下来,进入另一种建筑物——园林。
在我国的园林中,苏州园林具有独一无二的特征和地位,它是中国各地园林的标本。
现在,让我们去苏州园林游览一番,看看那儿的园林建筑。
二、自主预习1.作者介绍叶圣陶(1894—1984),原名叶绍钧,现代著名作家、教育家,有“优秀的语言艺术家”之称,代表作是长篇小说《倪焕之》。
他曾在小学、中学、大学教过书,对语文教学的改革和教材的建设有重大贡献。
20年代和30年代是他创作道路上的重要阶段。
这个时期他的作品很多,最有名的有长篇小说《倪焕之》,童话集《稻草人》《古代英雄的石像》。
他原籍江苏苏州吴县,所以对苏州园林很熟悉,又有深刻的研究。
2.背景资料叶圣陶先生自小生长在苏州,他对苏州的一草一木充满了深厚的感情,特别是与驰名中外的苏州园林结下了不解之缘。
1979年初,香港一家出版社邀请叶圣陶为其出版的《苏州园林》图册作序,叶圣陶欣然允诺。
序文即此篇(略有删节)。
后来图册因故未能出版,序文被《百科知识》所用,原题为《拙政诸园寄深眷——谈苏州园林》。
3.知识链接中国四大古典名园:颐和园、避暑山庄、拙政园、留园苏州四大古典名园:沧浪亭、狮子林、拙政园、留园 4.检查预习 (1)订正字音 轩榭..(xu ānxi è) 池沼.(zh ǎo) 丘壑.(h è) 嶙峋..(l ínx ún) 蔷薇..(qi ángw ēi) 镂.空(l òu) 斟酌..(zh ēnzhu ó) 重峦叠嶂.(zh àng) 屈曲..(q ūq ū) 鉴.赏(ji àn) 栏.杆(l án) 相间.(ji àn) 依傍.(b àng) 单调.(di ào) 蔓⎩⎪⎨⎪⎧m àn 蔓延w àn 藤蔓m án蔓菁模⎩⎪⎨⎪⎧m ó模范m ú模样(2)词语释义因地制宜:根据不同地区的具体情况规定适宜的方法。
高中数学实数指数幂教案
![高中数学实数指数幂教案](https://img.taocdn.com/s3/m/ccda97ee294ac850ad02de80d4d8d15abe23003d.png)
高中数学实数指数幂教案
授课对象:高中学生
教学目标:通过本堂课的学习,学生将能够掌握实数指数幂的基本概念、性质和运算法则,以及能够灵活运用到实际问题中。
教学准备:
1. 教材《高中数学》相关章节
2. 教学投影仪
3. 教学板书
4. 教学示范题目
教学步骤:
一、引入(5分钟)
教师通过提问或者引用例题,引导学生回顾实数指数幂的基本概念和运算法则。
二、概念讲解(15分钟)
1. 实数指数幂的定义;
2. 正整数指数幂的运算法则;
3. 零指数幂的特殊性;
4. 负整数指数幂的运算法则;
5. 实数指数幂的性质及计算方法。
三、例题讲解(20分钟)
教师在投影仪上展示一些实际问题,带领学生分析问题、列方程、并运用实数指数幂的运
算法则解答。
四、练习与讨论(15分钟)
学生在课堂中进行相关练习,教师巡视指导,并将学生常犯的错误或者疑惑进行讨论和解答。
五、总结(5分钟)
教师对本节课的重点内容进行总结,并强调学生在日常学习中要多加练习和巩固,以便更
好地掌握实数指数幂的概念和运算法则。
课后作业:
1. 完成课后作业册相关题目;
2. 总结复习本课所学内容。
教学反思:
本节课主要围绕实数指数幂的基本概念、性质和运算法则展开,通过例题讲解和练习讨论,激发学生学习兴趣,提高学生的实际运用能力。
在教学过程中,教师要注重引导学生提出
问题,激发学生思维,帮助学生形成严密的逻辑思维,提高解题能力。
中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计
![中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计](https://img.taocdn.com/s3/m/41174f62f524ccbff12184d6.png)
中职数学(基础模块)上册第四章《指数函数与对数函数》教学设计4.1实数指数幂(1)教学目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.教学过程:120.、且∈Nn+这样就将整数指数幂推广到有理数指数幂.44.1实数指数幂(2)教学目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点. 教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.5教学过程:0.将下列各根式写成分数指数幂:;20将下列各分数指数幂写成根式:79过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结这些点,分别得到函数y =x 3和函数21xy =的图像,如下图所示.总结:这两个函数的定义域不同,在定义域内它们都是增函数.两个函数的图像都经过坐标原点和点(1,1). 例7 指出幂函数2y x -=的定义域,并作出函数图像.分析 考虑到221x x-=,因此定义域为00-∞+∞(,)(,),由于2211()x x =-,故函数为偶函数.其图像关于y 轴对称,可以先作出区间(0,)+∞内的图像,然后再利用对称性作出函数在区间(,0)-∞内的图像.解 2y x -=的定义域为00-∞+∞(,)(,).由分析过程知道函数为偶函数.在区间(0,)+∞内,设值列表如下:x 0 41 1 4 9 … y =21x21123…x…121 2 …y… 4 114… 讲解 引领 归纳质疑分析强调 讲解领会 了解 观察 体会 思考 理解 主动 求解特点 引导 学生 掌握 描点 作图 的方 法 突出 数形 结合 的数 学思 想 注意 是否 理解 知识 点 可以 适当10过 程活动 活动 意图以表中的每组,x y 的值为坐标,描出相应的点),(y x ,再用光滑的曲线依次联结各点,得到函数在区间(0,)+∞内的图像.再作出图像关于y 轴对称图形,从而得到函数2-=x y 的图像,如下图所示.总结:这个函数在(0,)+∞内是减函数;函数的图像不经过坐标原点,但是经过点(1,1). 引领 归纳领会 观察 体会交给 学生 自我 探究 引导 学生 总结 函数 图像 的特点*理论升华 整体建构一般地,幂函数y x α=具有如下特征:(1) 随着指数α取不同值,函数y x α=的定义域、单调性和奇偶性会发生变化;(2) 当α>0时,函数图像经过原点(0,0)与点(1,1);当α<0时,函数图像不经过原点(0,0),但经过(1,1)点.引领 总结 强调 领会 理解 记忆 及时 总结 例题 中的 规律*运用知识 强化练习 教材练习4.1.31.用描点法作出幂函数4y x =的图像并指出图像具有怎样的对称性?2.用描点法作出幂函数3y x =的图像并指出图像具有怎样的对称性?提问 巡视 指导 动手 求解 交流了解 学生 知识 掌握 情况*归纳小结 强化思想 本次课学了哪些内容? 重点和难点各是什么?引导回忆培养 学生 总结114.2指数函数教学目标:⑴ 理解指数函数的图像及性质; ⑵ 了解指数模型,了解指数函数的应用.教学重点:⑴指数函数的概念、图像和性质; ⑵ 指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.教学过程:13过 程活动 活动 意图归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x 2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势.推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数. 归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点*巩固知识 典型例题例1 判断下列函数在(),-∞+∞内的单调性: (1) 4xy =; (2)3xy -=; (3)32xy =. 说明观察通过 例题 进一 步理14x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).164.3 对数教学目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.教学重点:指数式与对数式的关系.教学难点:17对数的概念.课时安排:2课时.教学过程:19204.4 对数函数教学目标:(1)了解对数函数的图像及性质特征;(2)了解对数函数的实际应用.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.教学过程:2224过 程活动 活动 意图(,)x y ,用光滑曲线依次联结各点,得到函数12log y x =的图像,如下图所示:观察函数图像发现:1.函数2log y x =和12log y x =的图像都在x 轴的右边;2.图像都经过点()1,0;3.函数2log y x =的图像自左至右呈上升趋势;函数12log y x =的图像自左至右呈下降趋势.展示 分析观察 体会引导 学生 细观 函数 象的 特点*动脑思考 探索新知一般地,对数函数log a y x =( a >0且a ≠1)具有下列性质:(1)函数的定义域是(0,)+∞,值域为R ;(2)当1x =时,函数值0y =;(3)当a >1时,函数在(0,)+∞内是增函数;当0<a <1时,函数在(0,)+∞内是减函数. 引导 总结 强调体会 理解 记忆结合 图形 自我 归纳*运用知识 强化练习 例1 求下列函数的定义域:(1)2log (4)y x =+; (2)ln y x =. 分析 要依据“对数的真数大于零”求函数的定义域. 解 (1)由x +4>0得4x >-,所以函数2log (4)y x =+的定义域为(4,)-+∞;说明 强调 引领观察 思考 主动通过 例题 进一 步理 解对 数函0, 0. >得1,0.xx⎧⎨>⎩,ln x的定义域为[1,强化练习252627。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/5efd7fb1541810a6f524ccbff121dd36a22dc41f.png)
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念及性质。
2. 掌握实数指数幂的运算法则。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点:重点:实数指数幂的概念、性质及运算法则。
难点:实数指数幂在实际问题中的应用。
三、教学准备:1. 教学课件或黑板。
2. 教学素材(例如:数学题、实际问题等)。
四、教学过程:1. 引入:通过生活中的实际例子(如电话号码、楼层等)引出实数指数幂的概念。
2. 讲解:讲解实数指数幂的定义、性质及运算法则。
3. 练习:让学生通过练习题巩固所学知识。
4. 应用:结合实际问题,让学生运用实数指数幂及运算法则解决问题。
五、课后作业:1. 完成练习册相关题目。
2. 举出生活中的实际例子,运用实数指数幂及运算法则进行解释。
六、教学评价:1. 课堂讲解:评价学生对实数指数幂概念、性质及运算法则的理解程度。
2. 课后作业:评价学生运用实数指数幂及运算法则解决实际问题的能力。
3. 单元测试:评价学生对实数指数幂及运算法则的掌握程度。
七、教学反思:在教学过程中,要注重让学生理解实数指数幂的概念,引导学生掌握运算法则,并通过实际问题激发学生的学习兴趣。
在课后,要关注学生的学习情况,及时解答学生的疑问,提高学生运用知识解决实际问题的能力。
八、教学拓展:1. 研究其他数的指数幂及其运算法则。
2. 探索实数指数幂在科学、工程等领域的应用。
九、教学时间安排:1. 课时:本节课计划用2课时完成。
2. 教学进程:第一课时讲解实数指数幂的概念、性质及运算法则;第二课时进行练习、应用及课后作业布置。
十、教学素材来源:1. 人教版《数学》教材。
2. 网络资源。
3. 教师自编练习题。
六、教学活动设计:1. 导入:通过回顾上一节课的内容,引导学生进入本节课的学习。
2. 新课导入:讲解实数指数幂的运算法则,包括同底数幂的乘法、除法、幂的乘方与积的乘方等。
3. 案例分析:分析实际问题,运用实数指数幂的运算法则进行解答。
教学设计1: 实数指数幂及其运算(一)
![教学设计1: 实数指数幂及其运算(一)](https://img.taocdn.com/s3/m/a62199bd0342a8956bec0975f46527d3240ca600.png)
3.1.1 实数指数幂及其运算(一)一.教学目标:1.知识与技能:理解n 次方根和根式的概念;2.过程与方法:(1)通过与初中所学的知识进行类比,掌握n 次方根及根式的概念.(2)正确运用根式运算性质进行运算,体验分类讨论思想的应用.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)根式概念的理解;(2)掌握根式的运算性质;2.教学难点:根式概念的理解三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体教学过程一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,表示,如果是负数,用叫做根式.n 为奇数时,a 的nn 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?,,:,,n a n a n a n ⎧⎪⎨±⎪⎩为奇数 的次方根有一个为正数为偶数 的次方根有两个为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.例1 求下列各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a >b ).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a -b (a >b ).点评:不注意n 的奇偶性对式子n na 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a ≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a ≤1)=3a -3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a 点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.例2 223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考:上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x =223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x =22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练a -1,求a 的取值范围.解:a -12)1(-a =|a -1|=a -1,即a -1≥0,所以a ≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是( )A.正数的n 次方根是一个正数B.负数的n 次方根是一个负数C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *).答案:C2.化简下列各式:(1)664;(2)42)3(-;(3)48x ;(4)636y x 答案:(1)2;(2)9;(3)x 2;(4)|x |y ;(5)|x -y |.3.计算407407-++=__________. 解:407407-++=2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++ =5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x =n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5. ②n n a =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a 当n 为奇数时,a ∈R ,n na =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a ≥0,那么n n a =a .例如443=3, 40=0;如果a <0,那么n n a =|a |=-a ,如2(-3)=23=3. 即(n a )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时 四.作业:P 69习题2.1 A 组 第1题。
4.1.1实数指数幂(第一课时)
![4.1.1实数指数幂(第一课时)](https://img.taocdn.com/s3/m/b79a0dce6f1aff00bed51e98.png)
读书之法,在循序而渐进,熟读而精思。
(一)、知识目标:1、理解n 次方根的含义;2、理解n 次算术根的含义。
(二)能力目标:1.会求n 次方根。
2.会求n 次算术根。
(三)、情感目标:1、通过平方根、立方根、n次方根的学习培养学生分析、总结的数学思想。
2、通过小组合作培养学生的合作探究习惯。
一、导入:1. 什么叫平方根?立方根?2.什么是二次根式、三次根式? 。
3.二次根式有什么性质?4. =(a 其中 0); 2= (a 其中 0) 5.= (a 其中 ); 3= (a 其中 ); 二、自学:阅读教材64页,完成:1.什么叫n 次方根:2.当n 为偶数时,正数a 的n 次方根有 个,分别用 和 表示, 其中 叫做a 的n 次算术根;负数当n 为奇数时,实数a 的n 次方根有 个,记作零的n 次方根是3.什么叫n 次方根:,其中 叫做根指数, 叫做被开方数。
三、讨论:1、已知n是自然书,a 是实数且()nnn na a =成立。
试讨论n及a 的取值范围。
四、展示: 五、点评: 六、检测:1. 16的平方根是的算术平方根是,8的立方根是 。
2.= ,=()338=读书之法,在循序而渐进,熟读而精思。
3=3=4)=4.= ()a b ≥ = 。
5.1)2a ≤=七、反思八、运用:1、 判断下列说法是否正确⑴5是25的算术平方根 ( ) ⑵56是2536的一个平方根 ( ) ⑶()24-的平方根是-4( ) ⑷ 0的平方根与算术平方根都是0 () 2.以下说法中正确的有( )A .16的平方根是4 B .64的立方根是4 C .27的立方根是3 D.81的平方根是93.下列说法正确的是()A 一个数的立方根有两个,且他们互为相反数 B.任何一在个数必有立方根与平方根C. 一个数的立方根必与这个数同号D.负数没有立方根 4____,=⑵____,=⑶____,=⑷____=57=,则_____x =,x 的平方根是_____ 6 ) A. 94± B. 94 C. 32± D. 327、给出下列各数:49, 22,3⎛⎫- ⎪⎝⎭0, 4,- 3,-- ()3,-- ()45--,其中有平方根的数共有( )A. 3个B. 4个C. 5个D. 6个8、若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,试求a b +的平方根。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/74ca461268eae009581b6bd97f1922791788be4d.png)
实数指数幂及运算法则教案第一章:实数指数幂的概念与性质1.1 实数指数幂的定义解释实数指数幂的概念,如a^n 表示a 乘以自身n 次。
强调正实数指数幂表示正数的乘方,负实数指数幂表示分数的概念。
1.2 实数指数幂的性质介绍实数指数幂的基本性质,如a^n a^m = a^(n+m),(a^n)^m = a^(nm),以及a^n / a^m = a^(n-m)。
解释零指数幂和无穷大指数幂的性质,如a^0 = 1 和a^∞= ∞。
第二章:实数指数幂的运算规则2.1 同底数幂的乘法讲解同底数幂相乘的规则,即a^n a^m = a^(n+m)。
提供多个例子进行解释和练习。
2.2 同底数幂的除法解释同底数幂相除的规则,即a^n / a^m = a^(n-m)。
提供多个例子进行解释和练习。
第三章:幂的乘方与积的乘方3.1 幂的乘方介绍幂的乘方规则,即(a^n)^m = a^(nm)。
提供多个例子进行解释和练习。
3.2 积的乘方解释积的乘方规则,即(ab)^n = a^n b^n。
第四章:实数指数幂的指数函数4.1 指数函数的定义解释指数函数的概念,如f(x) = a^x,其中a 是底数,x 是指数。
强调指数函数的图像和性质,如当a > 1 时,函数是增函数;当0 < a < 1 时,函数是减函数。
4.2 指数函数的性质介绍指数函数的性质,如f(x) = a^x 的导数为f'(x) = a^x ln(a)。
提供多个例子进行解释和练习。
第五章:实数指数幂的应用5.1 指数幂在科学计算中的应用解释指数幂在科学计算中的应用,如放射性衰变、人口增长等。
提供实际例子进行解释和练习。
5.2 指数幂在代数表达式求值中的应用讲解如何使用指数幂的性质和运算法则来求解代数表达式。
提供多个例子进行解释和练习。
第六章:对数与指数幂的关系6.1 对数与指数幂的定义解释对数的概念,如log_a(b) 表示以a 为底数,b 的对数。
实数指数幂及运算法则教案
![实数指数幂及运算法则教案](https://img.taocdn.com/s3/m/a33f7331cbaedd3383c4bb4cf7ec4afe05a1b15c.png)
实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
2. 利用案例分析法,分析实数指数幂在实际问题中的应用。
3. 组织学生进行小组讨论,分享学习心得。
五、教学步骤:1. 引入实数指数幂的概念,讲解实数指数幂的定义与性质。
2. 讲解有理数指数幂的运算性质,引导学生进行实际例子的计算。
3. 分析实数指数幂在实际问题中的应用,引导学生运用所学知识解决实际问题。
5. 对本节课的内容进行复习,布置作业,巩固所学知识。
六、教学评价:1. 课堂讲解的准确性,学生的理解程度。
2. 学生作业的完成情况,对实数指数幂及运算法则的掌握程度。
3. 学生小组讨论的活跃程度,对实际问题分析的能力。
七、教学资源:1. 教材《数学》2. 教案3. PPT4. 习题八、教学时间:1课时(45分钟)九、课后作业:1. 复习实数指数幂及运算法则,整理课堂笔记。
2. 完成课后习题,巩固所学知识。
3. 思考实数指数幂在实际问题中的应用,准备课堂分享。
十、板书设计:实数指数幂及运算法则教案一、教学目标:1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 能够运用实数指数幂及运算法则解决实际问题。
3. 培养学生的逻辑思维能力,提高学生对数学知识的运用能力。
二、教学内容:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用三、教学重点与难点:1. 实数指数幂的定义与性质2. 有理数指数幂的运算性质3. 实数指数幂在实际问题中的应用四、教学方法:1. 采用讲授法,讲解实数指数幂的定义与性质,有理数指数幂的运算性质。
1实数指数幂说课稿1
![1实数指数幂说课稿1](https://img.taocdn.com/s3/m/f92c10e94afe04a1b071de63.png)
§4.1.1实数指数幂(说课稿)新课标的理念和现代建构主义理论告诉我们,学生的学习是在三维目标指导下,建立在已有的经验的基础之上的主动建构过程。
在这一过程中,教师的作用是设计者、组织者、评估者、指导者,学生是学习活动的主体,只有充分发挥学生的积极性、主动性,才能提高建构的质量,我尝试利用这一理论来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教学目标分析、教法学法分析、教学过程分析和教学评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析:1.教材的地位与作用:本节内容安排在江苏省职业学校文化课教材数学基础模块上册的第4.1.1节,它是继初中平方根和立方根的拓展和延续,为以后学习幂函数、指数函数打基础、做铺垫。
2.学情分析:(1)学生已基本掌握平方根与立方根概念。
(2)数学基础知识偏弱,学习缺少自信心,自学能力和自控能力都停留在较低层次上。
(3)学生学习兴趣不够浓,动力不强,学习效率较低,对数学问题的合作探究欲望不高。
(4)学生层次参次不齐,个体差异比较明显。
3.教学重点与难点:本节教学重点:n次方根以及分数指数幂的概念及性质。
本节教学难点:根式与分数指数幂的互化。
解决措施....:从学生熟悉的平方根与立方根入手,使用“任务单”让学生亲身参与,由此来引导学生对问题的思考,体验概念、公式形成过程,并逐步掌握问题的关键。
(根据教材重、难点,我制定如下教学目标)二、教学目标分析:新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程为主,同时成为学会学习和正确认识价值观为目的。
这要求我们在教学中以知识技能的培养为主线,渗透情感态度与价值观,并把这两者充分体现在教学过程中,新课标和现代建构主义指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据实数指数幂在教材内容中的地位与作用,结合学情分析,我设计如下教学目标:1.知识技能目标:⑴识记n次方根的概念,能区分奇次方根、偶次方根和n次算术根。
《实数指数幂》教案正式版
![《实数指数幂》教案正式版](https://img.taocdn.com/s3/m/e9cb8499011ca300a7c390ee.png)
《实数指数幂》教案教学目标:使学生理解分数指数幂的概念,了解实数指数幂的概念,掌握实数指数幂的运算法则,掌握根式与分数指数幂的相互转化,理解对立、统一的辨证关系。
教学重点:掌握根式与分数指数幂的相互转化,实数指数幂的运算法则.教学难点:对分数指数幂概念的理解及根式与分数指数幂的互化。
教学过程:一、复习1。
零指数、负整数指数的概念,以及它们之间的关系。
2.浓缩后的3条法则是什么?怎样浓缩好?二、新课引入与讲解在初中已学过,若是大于1的整数,是的整数倍,那么若不是的整数倍,那么上式中右端的就是一个分数了(引入自然,合理)例如,当=2,=3时,,显然不能用正整数指数幂来解释,所以必须对的分数指数幂重新定义,为此规定,在不是的整数倍时也适用,自然应把看成是根式的另一种记法,对于底为什么要使,须回忆应分几种情况:1.零指数与负整数的底均不能为零。
2。
正分数指数幂,当指数的分子,分母互质时,分母为奇数,底数可以为任意实数;分母为偶数时底数为非负实数.3。
负分数指数幂,当指数的分子与分母互质时,分母为奇数、底数不能为零,分母为偶数,底数为正实数.总之,当正实数为底时,指数可为任意实数.以上这几点均可举例说明.关于运算法则仍然成立,可以通过特殊值加以验证,克服心理障碍。
假如,设=,=验证第一条∵ ,∴ 成立.它不仅让学生从心理上承认在指数概念推广后,运算法则仍然有效,同时也能启发学生在解繁杂根式运算时,用幂的运算法则更为简便.当时,(、∈,且为既约分数);(、∈且为既约分数).这样当指数推广到分数指数幂以后当,为有理数时,表示一个确定的实数。
当,为无理数时,是否还表示一个确定的实数?答案是肯定的,它是在的以值不足近似值为指数的所有幂与以的以的过剩近似值为指数的所有的幂中间的一个实数,这样就使中的可取一切实数了.为学习指数函数做好了必要准备。
由此得可以验证与证明;;,其中,,、为任意实数.三、课堂练习(1)(2)(3)(4)(5)(6)(7)(8)利用计算器计算(精确到0.001)①;②;③.(请同学按课本上的方式按键计算,如学生手中的计算器按键方式不同,教师需给予辅导)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.将下列各根式写成分数指数幂的形式:
(1) ;(2) ;(3) ;(4) .
2.将下列各分数指数幂写成根式的形式:
(1) ;(2) ;(3) ;(4) .
板书设计
第四章实数指数幂
概念:
一般地,如果 > ,那么 叫做 的 次方根.
说明:
(1)当n为偶数时,正数 的n次方根有两个,分别表示为 和 ,其中 叫做 的 次算数根;零的n次方根是零;负数的n次方根没有意义.
《数学》课程教案
课题
第四章
实数指数幂(1)
教学目标
(1)复习整数指数幂的知识;
(2)了解n次根式的概念;
(3)理解分数指数幂的定义。
课型
理论课
课时
2
教学重点
分数指数幂的定义;
教学难点
根式和分数指数幂的互化;
教学方法
传统式
教学过程
备注
第一课时
第四章实数指数幂
引入新授:
问题:
如果 ,则x=;x叫做9的;
解(1) , ,故 ;
(2) , ,故 ;
(3) , ,故 .
例2将下列各根式写成分数指数幂的形式:
(1) ;(2) ;(3) .
分析要把握好形式互化过程中字母位置的对应关系,按照规定逆向进行形式的转化.
解(1) , ,故 ;
(2) , ,故 ;
(3) , ,故 .
说明:将根式写成分数指数幂的形式或将分数指数幂写成根式的形式时,要注意规定中的m、n的对应位置关系,分数指数的分母为根式的根指数,分子为根式中被开方数的指数.
并且规定当 时, =; =.
将整数指数幂的概念进行推广: =.
概念:
规定: ,其中 >1.当 为奇数时, ;当 为幂推广到有理数指数幂.
例1将下列各分数指数幂写成根式的形式:
(1) ;(2) ;(3) .
分析要把握好形式互化过程中字母的位置对应关系,按照规定,先正确找出公式中的m与n,再进行形式的转化.
(2)当n为奇数时,实数 的n次方根只有一个,记作 .
形如 ( )的式子叫做 的 次根式,其中 叫做根指数, 叫做被开方数.
概念:
规定: ,其中 >1.当 为奇数时, ;当 为偶数时, .
当 有意义,且 , >1时,规定:
这样就将整数指数幂推广到有理数指数幂.
课后反思
本节课我们学习了n次根式和分数指数幂的定义。主要练习了根式和指数幂的相互转换,课堂学习氛围较为活跃。
如果 ,则x=;x叫做3的;
如果 ,则x=;x叫做8的;
如果 ,则x=;x叫做-8的.
解决:
如果 ,那么 叫做 的平方根(二次方根),其中 叫做 的算术平方根;如果 ,那么 叫做 的立方根(三次方根).
概念:
一般地,如果 > ,那么 叫做 的 次方根.
说明:
(1)当n为偶数时,正数 的n次方根有两个,分别表示为 和 ,其中 叫做 的 次算数根;零的n次方根是零;负数的n次方根没有意义.
2.填空:
(1)25的3次方根可以表示为,其中根指数为,被开方数为;
(2)12的4次算术根可以表示为,其中根指数为,被开方数为;
(3)-7的5次方根可以表示为,其中根指数为,被开方数为;
(4)8的平方根可以表示为,其中根指数为,被开方数为.
第二课时
引入:
=; =; =;
=; =.
整数指数幂,当 时, =;
例如,81的4次方根有两个,它们分别是3和−3,其中3叫做81的4次算术根,即 .
(2)当n为奇数时,实数 的n次方根只有一个,记作 .
例如, 的5次方根仅有一个是−2,即 .
概念:
形如 ( )的式子叫做 的 次根式,其中 叫做根指数, 叫做被开方数.
习题:
1.读出下列各根式,并计算出结果:
(1) ;(2) ;(3) ;(4) .