高三数学第一轮复习:数列的知识点
高考一轮复习 等差数列 知识点+例题+练习
自主梳理1.等差数列的有关定义(1)一般地,如果一个数列从第一项起,每一项与它的前一项的—等于同一个常数,那么这个数列就叫做等差数列.符号表示为(n£N*,d为常数).(2)数列a,A,b成等差数列的充要条件是,其中A叫做a,b的2.等差数列的有关公式(1)通项公式:a n=,a n=a m+(m,n W N*).(2)前n项和公式:S n==.3.等差数列的前n项和公式与函数的关系S n=dn2+数列U{a n}是等差数列的充要条件是其前n项和公式S n=4.等差数列的性质(1)若m+n=p+q(m,n,p,q W N*),则有,特别地,当m+n=2p时,.(2)等差数列中,S m,S2m-S m,S3y m—S2m成等差数列.(3)等差数列的单调性:若公差d>0,则数列为;若d<0,则数列为;若d=0,则数列为.自我检测1.已知等差数列{a n}中,a5+a9—a7=10,记S n=a1+a2H\-a n,贝U S13的值为.2.等差数列U{a n}的前n项和为S n,且S3=6,a3=4,则公差d=.3.设等差数列U{a n}的前n项和为S n.若S9=72,则a2+a4+a9=.4.若等差数列U{a n}的前5项之和S5=25,且a2=3,则a7=.5.设是等差数列{4的前〃项和,若^=9,则19=.il 后练习区一逍题精,现"答尊探究点一等差数列的基本量运算例1等差数列{a }的前n 项和记为S .已知a 10=30,a 20=50,⑴求通项an ;nn (2)若S n =2彳2,求n .变式迁移1设等差数列U {a }的公差为d (d W 0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式an.探究点二等差数列的判定31一 例2已知数列{a n }中,a 1=5,a n =2-(n 三2,n —t(n £N *).(1)求证:数列出}是等差数列; (2)求数列{a /中的最大值和最小值,并说明理由. 变式迁移2已知数列{%}中,a 1=5且a n =2a n _^+2n —1(n 三2且n £*).(1)求a 2,a 3的值.(2)是否存在实数口,使得数列{吟}为等差数列?若存在,求出口的值;若不存在,说明理由.N *),数列U{b }满足b =一nn a 一1 n探究点三等差数列性质的应用例3若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3已知数列{a n}是等差数列.⑴前四项和为21,末四项和为67,且前n项和为286,求n;(2)若S=20,S2=38,求S3;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四等差数列的综合应用例4已知数列{%}满足2%+I=%+%+2(〃£N*),它的前〃项和为S”,且%=10,S6=72.若勾=2a n—30,求数歹U{勾}的前n项和的最小值.变式迁移4在等差数歹U{a}中,a16+a17+a18=a9=—36,其前n项和为S.⑴求S n的最小值,并求出S n取最小值时n的值."(2)求T n=1a j+l a2H——H a n if1.等差数列的判断方法有:(1)定义法:a n+1-a n=d(d是常数)。
数列的概念及简单表示法(高三一轮复习)
所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
高考数学一轮复习 第六章 数列6
高考数学一轮复习 第六章 数列6.2 等差数列考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知识梳理1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ≥2,n ∈N *). (2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+nn -12d 或S n =na 1+a n2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)等差数列{a n }的前n 项和为S n ,⎩⎨⎧⎭⎬⎫S n n 为等差数列.常用结论1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).这里公差d =2A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)等差数列{a n }的单调性是由公差d 决定的.( √ )(2)若一个数列每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (3)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(4)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ ) 教材改编题1.已知等差数列{a n }中,a 2=3,前5项和S 5=10,则数列{a n }的公差为( ) A .-1 B .-52C .-2D .-4答案 A解析 设等差数列{a n }的公差为d , ∵S 5=5a 3=10, ∴a 3=a 2+d =2, 又∵a 2=3,∴d =-1.2.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 5=________. 答案 903.已知{a n }是等差数列,其前n 项和为S n ,若a 3=2,且S 6=30,则S 9=________. 答案 126解析 由已知可得⎩⎪⎨⎪⎧a 1+2d =2,2a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-10,d =6.∴S 9=9a 1+9×82d =-90+36×6=126.题型一 等差数列基本量的运算例1 (1)(2022·包头模拟)已知等差数列{a n }中,S n 为其前n 项和,S 4=24,S 9=99,则a 7等于( )A .13B .14C .15D .16 答案 C解析 ∵⎩⎪⎨⎪⎧ S 4=24,S 9=99,∴⎩⎪⎨⎪⎧4a 1+6d =24,9a 1+36d =99,解得⎩⎪⎨⎪⎧a 1=3,d =2.则a 7=a 1+6d =15.(2)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则下列结论正确的有________.(填序号) ①a 2+a 3=0; ②a n =2n -5; ③S n =n (n -4); ④d =-2.答案 ①②③解析 S 4=4×a 1+a 42=0,∴a 1+a 4=a 2+a 3=0,①正确; a 5=a 1+4d =5, (*) a 1+a 4=a 1+a 1+3d =0,(**)联立(*)(**)得⎩⎪⎨⎪⎧d =2,a 1=-3,∴a n =-3+(n -1)×2=2n -5, ②正确,④错误;S n =-3n +n n -12×2=n 2-4n ,③正确.教师备选1.已知等差数列{a n }的前n 项和为S n ,若a 3=5,S 4=24,则a 9等于( ) A .-5 B .-7 C .-9 D .-11答案 B解析 ∵a 3=5,S 4=24, ∴a 1+2d =5,4a 1+6d =24, 解得a 1=9,d =-2, ∴a n =11-2n , ∴a 9=11-2×9=-7.2.已知{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+…+a 9a 10=________.答案278解析 ∵a 1+a 10=a 9,∴a 1+a 1+9d =a 1+8d ,即a 1=-d , ∴a 1+a 2+…+a 9=S 9=9a 1+9×82d =27d , a 10=a 1+9d =8d ,∴a 1+a 2+…+a 9a 10=278.思维升华 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .跟踪训练1 (1)记S n 为等差数列{a n }的前n 项和.若a 3+a 6=24,S 6=48,则下列选项正确的是( ) A .a 1=-2 B .a 1=2 C .d =3 D .d =-3答案 A解析 因为⎩⎪⎨⎪⎧a 3+a 6=2a 1+7d =24,S 6=6a 1+15d =48,所以⎩⎪⎨⎪⎧a 1=-2,d =4.(2)(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=______. 答案 25解析 设等差数列{a n }的公差为d , 则a 2+a 6=2a 1+6d =2. 因为a 1=-2,所以d =1. 所以S 10=10×(-2)+10×92×1=25.题型二 等差数列的判定与证明例2 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1. 注:若选择不同的组合分别解答,则按第一个解答计分. 解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1. 设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1, 所以S n =na 1+nn -12d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列. 设数列{a n }的公差为d , 则S n =na 1+nn -12d =12n 2d +⎝⎛⎭⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a 1-d2=0,即d =2a 1,所以a 2=a 1+d =3a 1. ②③⇒①.已知数列{S n }是等差数列,a 2=3a 1, 所以S 1=a 1,S 2=a 1+a 2=4a 1. 设数列{S n }的公差为d ,d >0,则S 2-S 1=4a 1-a 1=d ,得a 1=d 2, 所以S n =S 1+(n -1)d =nd , 所以S n =n 2d 2,所以a n =S n -S n -1=n 2d 2-(n -1)2d 2=2d 2n -d 2(n ≥2),是关于n 的一次函数,且a 1=d 2满足上式,所以数列{a n }是等差数列. 高考改编已知数列{a n }中,a 1=1,前n 项和为S n ,且满足nS n +1-(n +1)S n -32n 2-32n =0,证明:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,并求{a n }的通项公式.解 因为nS n +1-(n +1)S n -32n 2-32n =0,所以nS n +1-(n +1)S n =32n (n +1),所以S n +1n +1-S n n =32,S 11=a 1=1,所以数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,32为公差的等差数列,S n n =32n -12, 所以S n =32n 2-12n ,当n ≥2时, a n =S n -S n -1 =32n 2-12n -⎣⎡⎦⎤32n -12-12n -1 =3n -2,当n =1时,上式也成立, 所以a n =3n -2. 教师备选(2022·烟台模拟)已知在数列{a n }中,a 1=1,a n =2a n -1+1(n ≥2,n ∈N *),记b n =log 2(a n +1). (1)判断{b n }是否为等差数列,并说明理由; (2)求数列{a n }的通项公式. 解 (1){b n }是等差数列,理由如下: b 1=log 2(a 1+1)=log 22=1,当n ≥2时,b n -b n -1=log 2(a n +1)-log 2(a n -1+1) =log 2a n +1a n -1+1=log 22a n -1+2a n -1+1=1,∴{b n }是以1为首项,1为公差的等差数列. (2)由(1)知,b n =1+(n -1)×1=n ,∴a n +1=2n b=2n , ∴a n =2n -1.思维升华 判断数列{a n }是等差数列的常用方法 (1)定义法:对任意n ∈N *,a n +1-a n 是同一常数.(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. (3)通项公式法:对任意n ∈N *,都满足a n =pn +q (p ,q 为常数). (4)前n 项和公式法:对任意n ∈N *,都满足S n =An 2+Bn (A ,B 为常数). 跟踪训练2 已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.解 (1)由题意可得a 2-2a 1=4, 则a 2=2a 1+4, 又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2, 所以a 3=15.(2)由已知得na n +1-n +1a nn n +1=2,即a n +1n +1-a nn=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为d =2的等差数列,则a nn =1+2(n -1)=2n -1, 所以a n =2n 2-n . 题型三 等差数列的性质 命题点1 等差数列项的性质例3 (1)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 3+a 4等于( ) A .6 B .7 C .8 D .9答案 B解析 因为2a n =a n -1+a n +1, 所以{a n }是等差数列,由等差数列性质可得a 2+a 4+a 6=3a 4=12, a 1+a 3+a 5=3a 3=9, 所以a 3+a 4=3+4=7.(2)(2022·崇左模拟)已知等差数列{a n }的前n 项和为S n ,且a 3+a 4+a 5+a 6+a 7=150,则S 9等于( ) A .225 B .250 C .270 D .300 答案 C解析 等差数列{a n }的前n 项和为S n , 且a 3+a 4+a 5+a 6+a 7=150, ∴a 3+a 4+a 5+a 6+a 7=5a 5=150, 解得a 5=30,∴S 9=92(a 1+a 9)=9a 5=270.命题点2 等差数列前n 项和的性质例4 (1)已知等差数列{a n }的前n 项和为S n ,若S 10=10,S 20=60,则S 40等于( ) A .110 B .150 C .210 D .280答案 D解析 因为等差数列{a n }的前n 项和为S n ,所以S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等差数列. 故(S 30-S 20)+S 10=2(S 20-S 10), 所以S 30=150.又因为(S 20-S 10)+(S 40-S 30)=2(S 30-S 20), 所以S 40=280.(2)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -13n -2,则a 11b 6+b 10+a 5b 7+b 9的值为________. 答案2943解析a 11b 6+b 10+a 5b 7+b 9=a 11+a 52b 8=2a 82b 8=a 8b 8,∴a 8b 8=S 2×8-1T 2×8-1=S 15T 15=2×15-13×15-2=2943. 延伸探究 将本例(2)部分条件改为若a 2+a 8b 4+b 6=57,则S 9T 9=________.答案 57解析a 2+a 8b 4+b 6=2a 52b 5=a 5b 5=57, ∴S 9T 9=9a 1+a 929b 1+b 92=9a 59b 5=a 5b 5=57. 教师备选1.若等差数列{a n }的前15项和S 15=30,则2a 5-a 6-a 10+a 14等于( ) A .2 B .3 C .4 D .5解析 ∵S 15=30,∴152(a 1+a 15)=30,∴a 1+a 15=4, ∴2a 8=4,∴a 8=2.∴2a 5-a 6-a 10+a 14=a 4+a 6-a 6-a 10+a 14=a 4-a 10+a 14=a 10+a 8-a 10=a 8=2.2.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A .2 023B .-2 023C .4 046D .-4 046答案 C解析 ∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′,则S 2 0202 020-S 2 0142 014=6d ′=6,∴d ′=1, 首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2, ∴S 2 023=2 023×2=4 046.思维升华 (1)项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1). ②S 2n -1=(2n -1)a n .③依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.跟踪训练3 (1)(2021·北京){a n }和{b n }是两个等差数列,其中a k b k (1≤k ≤5)为常值,若a 1=288,a 5=96,b 1=192,则b 3等于( ) A .64 B .128 C .256 D .512解析 由已知条件可得a 1b 1=a 5b 5,则b 5=a 5b 1a 1=96×192288=64,因此,b 3=b 1+b 52=192+642=128.(2)(2022·吕梁模拟)已知S n 为等差数列{a n }的前n 项和,满足a 3=3a 1,a 2=3a 1-1,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为( ) A.552 B .55C.652 D .65答案 C解析 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+2d =3a 1,a 1+d =3a 1-1,所以a 1=1,d =1, 所以S n =n +n n -12=nn +12, 所以S n n =n +12,所以S n +1n +1-S n n=n +1+12-n +12=12,所以⎩⎨⎧⎭⎬⎫S n n 是以1为首项,12为公差的等差数列,数列⎩⎨⎧⎭⎬⎫S n n 的前10项和T 10=10+10×10-12×12=652.课时精练1.(2022·信阳模拟)在等差数列{a n }中,若a 3+a 9=30,a 4=11,则{a n }的公差为( ) A .-2 B .2 C .-3 D .3 答案 B解析 设公差为d ,因为a 3+a 9=2a 6=30, 所以a 6=15,从而d =a 6-a 46-4=2.2.(2022·莆田模拟)已知等差数列{a n }满足a 3+a 6+a 8+a 11=12,则2a 9-a 11的值为( ) A .-3 B .3 C .-12 D .12 答案 B解析 由等差中项的性质可得, a 3+a 6+a 8+a 11=4a 7=12, 解得a 7=3, ∵a 7+a 11=2a 9, ∴2a 9-a 11=a 7=3.3.(2022·铁岭模拟)中国古代数学名著《张邱建算经》中有如下问题:今有十等人,每等一人,宫赐金以等次差降之(等差数列),上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中间三人未到者,亦依等次更给.则第一等人(得金最多者)得金斤数是( ) A.3726 B.3727 C.5239 D.5639答案 A解析 由题设知在等差数列{a n }中, a 1+a 2+a 3=4,a 7+a 8+a 9+a 10=3. 所以3a 1+3d =4,4a 1+30d =3, 解得a 1=3726.4.(2022·山东省实验中学模拟)已知等差数列{a n }的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( ) A .28 B .29 C .30 D .31答案 B解析 设等差数列{a n }共有2n +1项, 则S 奇=a 1+a 3+a 5+…+a 2n +1, S 偶=a 2+a 4+a 6+…+a 2n , 该数列的中间项为a n +1,又S 奇-S 偶=a 1+(a 3-a 2)+(a 5-a 4)+…+(a 2n +1-a 2n )=a 1+d +d +…+d =a 1+nd =a n +1, 所以a n +1=S 奇-S 偶=319-290=29.5.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的是( ) A .a 11 B .a 12 C .S 15 D .S 16 答案 C解析 由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值, S 15=15()a 1+a 152=15a 8为定值,但S 16=16()a 1+a 162=8()a 8+a 9不是定值.6.在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n的最大值是( )A .15B .16C .17D .14 答案 C解析 ∵等差数列{a n }的前n 项和有最大值, ∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, 且a 9+a 10<0, 又S 18=18a 1+a 182=9(a 9+a 10)<0,S 17=17a 1+a 172=17a 9>0,∴使S n >0成立的正整数n 的最大值是17.7.(2019·北京)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________. 答案 0解析 设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧a 2=-3,S 5=-10, 即⎩⎪⎨⎪⎧a 1+d =-3,5a 1+10d =-10, ∴⎩⎪⎨⎪⎧a 1=-4,d =1,∴a 5=a 1+4d =0. 8.(2022·新乡模拟)一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为________.答案 51解析 设该数列为{a n },依题意可知,a 5,a 6,…成等差数列,且公差为2,a 5=5, 设塔群共有n 层,则1+3+3+5+5(n -4)+n -4n -52×2=108,解得n =12(n =-8舍去).故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.9.(2021·全国乙卷)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n =2.(1)证明:数列{b n }是等差数列; (2)求{a n }的通项公式.(1)证明 因为b n 是数列{S n }的前n 项积, 所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n +1b n =2,整理可得2b n -1+1=2b n , 即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1nn +1. 故a n=⎩⎨⎧32,n =1,-1nn +1,n ≥2.10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式;(2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 解 (1)∵a n +2-2a n +1+a n =0, ∴a n +2-a n +1=a n +1-a n ,∴数列{a n }是等差数列,设其公差为d , ∵a 1=8,a 4=2, ∴d =a 4-a 14-1=-2,∴a n =a 1+(n -1)d =10-2n ,n ∈N *.(2)设数列{a n }的前n 项和为S n ,则由(1)可得, S n =8n +nn -12×(-2)=9n -n 2,n ∈N *. 由(1)知a n =10-2n ,令a n =0,得n =5, ∴当n >5时,a n <0, 则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =S 5-(S n -S 5)=2S 5-S n=2×(9×5-25)-(9n -n 2)=n 2-9n +40; 当n ≤5时,a n ≥0, 则T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n -n 2,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.11.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S mm , 即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.12.(2022·济宁模拟)设等差数列{a n }的前n 项和是S n ,已知S 14>0,S 15<0,则下列选项不正确的是( ) A .a 1>0,d <0 B .a 7+a 8>0C .S 6与S 7均为S n 的最大值D .a 8<0 答案 C解析 因为S 14>0, 所以S 14=14×a 1+a 142=7(a 1+a 14)=7(a 7+a 8)>0, 即a 7+a 8>0, 因为S 15<0,所以S 15=15×a 1+a 152=15a 8<0,所以a 8<0,所以a 7>0,所以等差数列{a n }的前7项为正数,从第8项开始为负数, 则a 1>0,d <0,S 7为S n 的最大值.13.(2020·新高考全国Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 方法一 (观察归纳法)数列{2n -1}的各项为1,3,5,7,9,11,13,…; 数列{3n -2}的各项为1,4,7,10,13,….观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5. 故前n 项和为S n =na 1+a n 2=n1+6n -52=3n 2-2n .方法二 (引入参变量法)令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数. 令m =2t -1,则n =3t -2(t =1,2,3,…). a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5. 以下同方法一.14.(2022·东莞东方明珠学校模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是__________. 答案 ⎣⎡⎦⎤-17,-18 解析 根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立, 可知a 8≥0且a 9≤0, 所以1+7d ≥0且1+8d ≤0, 解得-17≤d ≤-18.15.定义向量列a 1,a 2,a 3,…,a n 从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即a n =a n -1+d (n ≥2,且n ∈N *),其中d 为常向量,则称这个向量列{a n }为等差向量列.这个常向量叫做等差向量列的公差向量,且向量列{a n }的前n 项和S n =a 1+a 2+…+a n .已知等差向量列{a n }满足a 1=(1,1),a 2+a 4=(6,10),则向量列{a n }的前n 项和S n =____________________. 答案⎝⎛⎭⎫n +n 22,n 2解析 因为向量线性运算的坐标运算,是向量的横坐标、纵坐标分别进行对应的线性运算,则等差数列的性质在等差向量列里面也适用,由等差数列的等差中项的性质知2a 3=a 2+a 4=(6,10),解得a 3=(3,5),则等差向量列{a n }的公差向量为d =a 3-a 12=3,5-1,12=3-1,5-12=2,42=(1,2), 由等差数列的通项公式可得等差向量列{a n }的通项公式为a n =a 1+(n -1)d =(1,1)+(n -1)(1,2)=(1,1)+(n -1,2n -2) =(1+n -1,1+2n -2)=(n ,2n -1),由等差数列的前n 项和公式,可得等差向量列{a n }的前n 项和S n =na 1+a n2=n [1,1+n ,2n -1]2=n1+n ,2n2=n +n 2,2n 22=⎝⎛⎭⎫n +n 22,n 2.16.在等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设{b n }=[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }的公差为d ,由题意得2a 1+5d =4,a 1+5d =3,解得a 1=1,d =25,所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎡⎦⎤2n +35,当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2<2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4<2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.。
2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解
专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。
高考一轮复习 数列概念 知识点+例题+练习
自主梳理1.数列的定义按____________着的一列数叫数列,数列中的________都叫这个数列的项;在函数意义下,数列是______________________的函数,数列的一般形式为:________________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的________与____之间的关系可以______________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:____________________、________、________.4.数列的分类:数列按项数来分,分为____________、____________;按项的增减规律分为____________、____________、____________和________.递增数列⇔a n +1____a n ;递减数列⇔a n +1____a n ;常数列⇔a n +1____a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2,.自我检测1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =______.2.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________.3.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是______________________________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容数列的概念与简单表示法 教学目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 重点数学归纳方法、递推法 难点 同上4.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是________.5.设a n =-n 2+10n +11,则数列{a n }从首项到第________项的和最大.探究点一 由数列前几项求数列通项例1 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099,… (2)12,-2,92,-8,252,…变式迁移1 写出下列数列的一个通项公式:(1)3,5,9,17,33,… (2)2,5,22,11,…(3)1,0,1,0,…探究点二 由递推公式求数列的通项例2 根据下列条件,写出该数列的通项公式.(1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =a n -1 (n ≥2).变式迁移2 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n +1=(n +1)a n ;(3)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n .探究点三 由a n 与S n 的关系求a n例3 已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.变式迁移3 (1)已知{a n }的前n 项和S n =3n +b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .1.数列的递推公式是研究的项与项之间的关系,而通项公式则是研究的项a n 与项数n 的关系.2.求数列的通项公式是本节的重点,主要掌握三种方法:(1)由数列的前几项归纳出一个通项公式,关键是善于观察;(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中;(3)由递推公式求通项公式,常用方法有累加、累乘.3.本节易错点是利用S n 求a n 时,忘记讨论n =1的情况.一、填空题1.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.2.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2 014=________.3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2=________.4.数列{a n }中,若a n +1=a n 2a n +1,a 1=1,则a 6=________.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________.6.数列{a n }满足a n +1=⎩⎨⎧2a n (0≤a n <12),2a n -1 (12≤a n <1),若a 1=67,则a 2 010的值为________.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________________.8.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15… … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是____________.二、解答题9.写出下列各数列的一个通项公式.(1)112,223,334,445,…(2)-1,32,-13,34,-15,36…10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2); (3)a 1=1,a n =2a n -1+1 (n ≥2).11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .。
高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1
第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。
中职对口升学-高三数学第一轮复习:数列的概念
第(2)问是判断一个数是否为数列中的项,把这个数代入通项公式解
关于n的方程即可,解出的n必须是正整数.
典例解析
例4
已知数列 an 满足a1=1,an=3n-1+an-1
(n≥2 ).
(1)求a2,a4.
(2)求数列an 的通项公式.
解析
(1)因为a1=1, 所以a2=3+a1=3+1=4.
第一轮
复习
第一节 数列的概念
知识梳理
知识点一 数列的概念
一般地,把按一定次序排成的一列数称为数列.数列中
的每一个数都是这个数列的项,各项依次称为这个数列
的第1项(首项),第2项,第3项,⋯⋯,第n项,⋯⋯.数
列的一般形式可以写成a1,a2,a3,⋯,简记作{an},其中an是
这个数列的第n项.
知识点二 数列的通项公式
解析
当n=1时,a1=S1=12+2×1=3
当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1
且当n=1时,2n+1=2×1+1=3,所以an=2n+1
技巧
点拨
由数列的前n项和表达式求通项公式时
但最终结果要根据具体情形一分为二,或合二为一.
典例解析
例3
已知数列{an}的通项公式为an=2n2+3
(1)试写出该数列的前3项
(2)试判断75是不是该数列的项,若是,是第几
项?
解析
技巧
点拨
(1)将n=1,2,3代入通项公式,
得a1=5,a2=11,a3=21.
(2)由75=2n2+3得n=6或n=-6(舍去),所以75是该数
高三一轮复习-数列(带答案)
个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容数列一、数列的概念及其表示【重点知识梳理】 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类分类原则类型 满足条件 按项数分类有穷数列项数有限无穷数列项数无限 按项与项间 的大小关系分类 递增数列 a n +1>a n其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).法四 同法二得d =-18a 1<0,又S 5=S 12,得a 6+a 7+a 8+a 9+a 10+a 11+a 12=0, ∴7a 9=0,∴a 9=0,∴当n =8或9时,S n 有最大值.(2)设数列{}n a 的前n 项和2n S n =,则______10=a规律方法 求等差数列前n 项和的最值,常用的方法: (1)利用等差数列的单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作二次函数,根据二次函数的性质求最值. 【变式探究】 (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( )A .5B .6C .7D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( ) A .5 B .6 C .5或6 D .11 3.等差数列的判定方法(1)定义法:若d a a d a a n n n n =-=-+-11或(常数+∈N n )⇔{}n a 是等差数列 (2)等差中项法:数列{}n a 是等差数列⇔)2(211>+=+-n a a a n n n ⇔212+++=n n n a a a (3)数列{}n a 是等差数列⇔b kn a n +=(其中k,b 是常数) (4)数列{}n a 是等差数列⇔Bn An S n +=2(其中A,B 是常数) 4.等差数列的证明方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项法:),2(211++-∈≥+=N n n a a a n n n例题:【例2】若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.5.等比数列及其前n 项和性质(1)当1≠q 时,①等比数列通项公式n nn n B A q qa q a a ⋅===-111(0≠⋅B A )是关于n 的带有系数的类指数函数,底数为公比q .②前n 项和()''1111111A B A B A A q qaq a q q a S n n n n n -=⋅-=---=--=,系数和常数项是互为相反数的类指数函数,公比为q .(2)对任何+∈N n m ,,在等比数列中有m n m n q a a -=.注:当q=1时就得到了等比数列的通项公式,因此这个公式更具有一般性.(3)若q p n m +=+()+∈N q p n m ,,,,则q p n m a a a a ⋅=⋅.特别地,当p n m 2=+时,得2q n m a a a =⋅.注:1121a a a a a a n n n ⋅==⋅=⋅- (4)数列{}{}n n b a ,为等比数列,则数列{}{}{}⎭⎬⎫⎩⎨⎧⋅⋅⋅⎭⎬⎫⎩⎨⎧n n n n n n n b a b a k a a k a k ,,,,2(k 为非零常数)均为等比数列. (5)数列{}n a 为等比数列,每个k (+∈N k )项取出一项( k m k m k m m a a a a 32,,,+++)仍为等比数列. (6)如果{}n a 是各项均为正的等比数列,则数列{}n a a log 是等差数列.【例题】 (1)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6 D .7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.【解析】(1)法一 由等比中项的性质得a 3a 11=a 27=16,又数列{a n }各项为正,所以a 7=4.所以a 10=a 7×q 3=32.所以log 2a 10=5.规律方法 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【变式探究】 (1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3(2)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ) A .5 2 B .7 C .6 D .4 2(7)若{}n a 为等比数列,则数列 ,,,232m m m m m S S S S S --成等比数列.(8)若{}n a 为等比数列,则数列n a a a ⋅⋅⋅ 21,n n n a a a 221⋅⋅⋅++ ,n n n a a a 32212⋅⋅⋅++ 成等比数列. (9)①当q>1时,{}{}为递减数列则为递增数列则n n a a a a ,0;,011<>. ② 当0<q<1时,{}{}为递增数列则为递减数列则n n a a a a ,0;,011<>. ③当q=1时,该数列为常数列(此时数列也为等差数列) ④当q<0时,该数列为摆动数列.(10)在等比数列{}n a 中,当项数为2n (+∈N n )时,qS S 1=偶奇,其中pqt -=1,再利用换元法转化为等比数列求解。
高三第一轮复习等比数列的定义、通项及前n项和
等比数列的概念等比数列的定义、通项及前n 项和【提纲挈领】 主干知识归纳1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫作等比数列.(2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫作a 与b 的等比中项. 2.等比数列的有关公式(1)通项公式:设等比数列{a n }的首项为a 1,公比为q ,则它的通项公式为a n =a 1·qn -1.(2)前n 项和公式:等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,则当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q.方法规律总结1.判断数列{a n }是否为等比数列,通常有两种方法:①定义法,a n +1a n=q (q 为非零常数,n ∈N *);②等比中项法,a n +12=a n ·a n +2(a n ≠0,n ∈N *).2.求等比数列的基本量时也常运用方程的思想方法.从方程的观点看等比数列的通项公式和求和公式,共有五个量a 1,n ,q ,a n ,S n ,知道其中的三个通过构造方程(组)可求出另外两个.3.应用等比数列的前n 项和公式时,必须注意对公比q =1与q ≠1的情况进行分类讨论.【指点迷津】【类型一】等比数列的判定与证明【例1】:设数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *). (1)求证:数列{S n -3n}是等比数列; (2)若{a n }为递增数列,求a 1的取值范围.[解析] : (1)证明:∵a n +1=S n +3n(n ∈N *),∴S n +1=2S n +3n,∴S n +1-3n +1=2(S n -3n).又∵a 1≠3,∴数列{S n -3n}是公比为2,首项为a 1-3的等比数列.(2)由(1)得,S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n.当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1. ∵{a n }为递增数列,∴当n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴2n -212×32n -2+a 1-3>0,∴a 1>-9.∵a 2=a 1+3>a 1,∴a 1的取值范围是a 1>-9. 【例2】:已知数列{a n }中,a 1=1,a n +1=a na n +3(n ∈N *). (1)求证:数列⎩⎨⎧⎭⎬⎫1a n +12是等比数列,并求数列{a n }的通项公式;(2)若数列{b n }满足b n =2a n,求数列{b n }的前n 项和T n .【解析】:(1)证明:由数列{a n }中,a 1=1,a n +1=a n a n +3(n ∈N *),可得1a n +1=a n +3a n =1+3a n, ∴1a n +1+12=31a n +12,∴数列⎩⎨⎧⎭⎬⎫1a n +12是首项为32,公比为3的等比数列, ∴1a n +12=32×3n -1,化简得a n =23n -1.(2)∵数列{b n }满足b n =2a n=3n-1,∴数列{b n }的前n 项和T n =3+32+ (3)-n =3(3n -1)2-n =3n +1-32-n .【例3】:定义在(-∞,0)∪(0,+∞)上的函数f (x ),若对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的函数如下:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 其中是“保等比数列函数”的是( ) A .①② B .③④C .①③ D .②④【解析】:设数列{a n }的公比为q .对于①,f (a n +1)f (a n )=a n +12a n2=q 2,是常数,故①符合条件;对于②,f (a n +1)f (a n )=2a n +12a n =2a n +1-a n ,不是常数,故②不符合条件;对于③,f (a n +1)f (a n )=|a n +1||a n |==|q |,是常数,故③符合条件;对于④,f (a n +1)f (a n )=ln|a n +1|ln|a n |,不是常数,故④不符合条件.答案:C【类型二】等比数列的基本运算【例1】:(1) 设正项等比数列{a n }的公比q 为2,若a 2a 10=16,则a 9的值是( ) A .8 B .16 C .32 D .64(2)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.【解析】: (1)因为a 2a 10=16,且等比数列{a n }的各项均为正,所以a 6=4,故a 9=a 6q 3=4×8=32.答案:C(2)设数列{a n }的公比为q ,由a 2a 3=a 1a 4=8,a 1+a 4=9知a 1,a 4是一元二次方程x 2-9x +8=0的两根,解此方程得x =1或x =8.又数列{a n }递增,因此a 1=1,a 4=a 1q 3=8,解得q =2,故数列{a n }的前n 项和S n=1×(1-2n)1-2=2n -1.答案:2n-1【例2】:设{a n }是等差数列,{b n }是各项都为正整数的等比数列,且a 1=b 1=1,a 13b 2=50,a 8+b 2=a 3+a 4+5.(1)求数列{a n },{b n }的通项公式;(2)若数列{d n }满足d n d n +1=12-8+log 2b n +1(n ∈N *),且d 1=16,试求数列{d n }的通项公式及其前2n 项和S 2n .【解析】:(1)设数列{a n }的公差为d ,数列{b n }的公比为q ,则依题意有q >0,且⎩⎨⎧(1+12d )q =50,(1+7d )+q =(1+2d )+(1+3d )+5,即⎩⎨⎧(1+12d )q =50,2d +q =6,解得⎩⎨⎧d =2,q =2或⎩⎨⎧d =1112,q =256.由于{b n }是各项都为正整数的等比数列,∴⎩⎨⎧d =2,q =2,从而a n =1+(n -1)d =2n -1,b n =q n -1=2n -1.(2)∵b n =2n -1,∴log 2b n +1=n ,∴d n d n +1=12-8+n ,∴d n +1d n +2=12-7+n,两式相除,得d n +2d n =12.由d 1=16,d 1d 2=12-8+1=128,可得d 2=8,∴d 1,d 3,d 5,…是以d 1=16为首项,以12为公比的等比数列;d 2,d 4,d 6,…是以d 2=8为首项,以12为公比的等比数列.∴当n 为偶数时,d n =812n 2-1=1622n,当n 为奇数时,d n =16×12n +12-1=16222n综上,d n=⎩⎨⎧1622n,n 为偶数,16222n,n 为奇数.∴S 2n =(d 1+d 3+…+d 2n -1)+(d 2+d 4+…+d 2n )= 16×1-12n 1-12+8×1-12n 1-12=321-12n +161-12n =48-4812n. 【同步训练】【一级目标】基础巩固组 一、选择题1.已知等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16 D .32【解析】:易知a 2·a 6=a 24=16. 答案:C.2.已知数列{a n }满足a 2=1,3a n +1+a n =0(n ∈N *),则数列{a n }的前10项和S 10为( ) A.94(310-1) B.94(310+1) C.94(3-10+1) D.94(3-10-1) 【解析】:由3a n +1+a n =0,得a n +1a n =-13,则数列{a n }为等比数列,公比q =-13,所以a 1=a 2-13=-3,所以S 10=a 1(1-q n)1-q =94(3-10-1).答案:D3.等比数列{a n }的公比为q ,则“q >1”是“对于任意正整数n ,都有a n +1>a n ”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解析】:当a 1<0时,条件与结论均不能由一方推出另一方. 答案:D4.在等比数列{a n }中,若a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3【解析】:因为a 4=2,a 5=5,所以a 4·a 5=10,所以lg a 1+lg a 2+…+lg a 7+lg a 8=lg(a 1a 2·…·a 8)=lg(a 1a 8)4=lg(a 4a 5)4=4lg 10=4. 答案:C5.已知等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .-1或-12D .1或-12【解析】:由题意可计算得S 3=18.若q =1,则S 3=3a 3=18,满足题意;若q ≠1,则S 3=18=a 1(1-q 3)1-q=6q2(1-q 3)1-q,即2q 2-q -1=0,∴q =-12.故选D.答案:D 二、填空题6.已知等比数列{a n }的前n 项和为S n ,且a 1+a 2=34,a 4+a 5=6,则S 6=________.【解析】:由a 1+a 2=34,a 4+a 5=6,解得a 1=14,公比q =2,所以S 6=a 1(1-q 6)1-q =14×(1-64)1-2=634.答案:6347.若S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104,则a 5与a 7的等比中项为________. 【解析】:∵S n 为等差数列{a n }的前n 项和,S 9=-36,S 13=-104,∴9a 5=-36,13a 7=-104,解得a 5=-4,a 7=-8, 则a 5与a 7的等比中项为±a 5·a 7=±4 2. 答案:±4 28.等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4= . 【解析】:∵{a n }是等比数列,∴a n +2+a n +1=6a n 可化为a 1q n +1+a 1q n =6a 1q n -1,∴q 2+q -6=0.∵q >0,∴q =2.a 2=a 1q =1,∴a 1=12.∴S 4=14(1)1a q q--=12(1-24)1-2=152.答案:152三、解答题9.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.【解析】: (1)∵a 3·a 4=a 1·a 6=329,由条件知:a 1,a 6是方程x 2-11x +329=0的两根,解得x =13或x =323.又0<q <1,∴a 1=323,a 6=13,∴q 5=a 6a 1=132,q =12,从而a n =a 6·q n -6=13·⎝⎛⎭⎫12n -6.(2)令323⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=21,得⎝⎛⎭⎫12n =164,∴n =6.10.设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.【解析】: (1)当n =2时,4S 4+5S 2=8S 3+S 1,即4×1+32+54+a 4+5×1+32=8×1+32+54+1,解得a 4=78.(2)证明:因为4S n +2+5S n =8S n +1+S n -1(n ≥2),所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n+2+a n =4a n +1(n ≥2).又因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列.【二级目标】能力提升题组一、选择题1.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】:若a n ,a n +1,a n +2(n ∈N *)成等比数列,则a 2n +1=a n a n +2成立;当a n =a n +1=0时,满足a 2n +1=a n a n +2,但a n ,a n +1,a n +2(n ∈N *)不成等比数列.故“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的充分不必要条件. 答案:A2.一个等比数列前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列有( )A.13项B.12项C.11项D.10项【解析】:设前三项分别为a 1,a 1q ,a 1q 2,后三项分别为a 1q n -3,a 1q n -2,a 1q n -1.所以前三项之积a 31q 3=2,后三项之积a 31q3n -6=4 .所以两式相乘,得a 61q3(n -1)=8,即a 21qn -1=2.又a 1·a 1q ·a 1q 2·…·a 1qn -1=64,a n1qn (n -1)2=64,即(a 21qn -1)n=642,即2n =642.所以n =12.答案:B 二、填空题3.三个数c b a ,,成等比数列,且)0(>=++m m c b a ,则b 的取值范围是.【解析】:设bq c q ba ==,,则有. bm q q =++∴11 当0>q 时,311≥++=q q b m ,而0>b , 30mb ≤<∴; 当0<q 时,111-≤++=q q b m ,即1-≤bm ,而0m >,0<∴b ,则0m b -≤<, 故]3,0()0,[mm b -∈. 答案:]3,0()0,[mm b -∈三、解答题4.在数列{a n }中,a 1=a ,且a n +1=2S n -2n -n 2(n ∈N *) (1)若a 1,a 2,a 3-5成等比数列,求a 的值; (2)求通项公式a n .【解析】:(1)a 1=a ,a 2=2S 1-21-12=2a -3,a 3-5=2(a 1+a 2)-22-22-5=6a -19,∵a 1,a 2,a 3-5成等比数列,∴(2a -3)2=a (6a -19),解得a =-1或a =92.(2)∵a n +1=2S n -2n-n 2(n ∈N *),① ∴a n =2S n -1-2n -1-(n -1)2(n ≥2,n ∈N *),②∴当n ≥2时,①-②得a n +1-a n =2a n -2n -1-2n +1,即a n +1=3a n -2n -1-2n +1.设a n +1+p 2n +1+q (n +1)=3(a n +p 2n+qn ),由-4p +6p =-1,得p =-12,由3qn -q (n +1)=-2n +1,得q =-1. 故n ≥2时,数列{a n -2n -1-n }是以3为公比的等比数列.∴21(1).(27)32()n n n a n a a n --=⎧=⎨-+⎩≥2【高考链接】1.(2013年新课标全国卷Ⅱ) 等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19 D .-19[解析]:S 3=a 2+10a 1⇒a 1+a 2+a 3=a 2+10a 1⇒a 3=9a 1⇒q 2=9,a 5=9⇒a 3q 2=9⇒a 3=1⇒a 1=a 3q 2=19.[答案]:C2.(2015年高考湖南卷)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[解析]:设等比数列{a n }的公比为q .由3S 1,2S 2,S 3成等差数列,得4S 2=3S 1+S 3,即3S 2-3S 1=S 3-S 2,所以3a 2=a 3,得公比q =3,所以a n =a 1q n -1=3n -1.[答案]:3n -13.(2011年新课标全国卷Ⅰ)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.[解析]: (1)设数列{a n }的公比为q ,由a 32=9a 2a 6得a 32=9a 42,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2⎝⎛⎭⎫1n -1n +1,1b 1+1b 2+…+1b n =-2⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=-2nn +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2n n +1.。
2023年高考数学一轮复习讲义——数列的概念
§6.1数列的概念考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1<a n常数列a n+1=a n摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的通项公式如果数列{a n}的第n项a n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.4.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.常用结论1.已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2,n ∈N *);若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2,n ∈N *). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × ) (2)1,1,1,1,…,不能构成一个数列.( × )(3)任何一个数列不是递增数列,就是递减数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ ) 教材改编题1.若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2 023的值为( )A .2B .-3C .-12 D.13答案 C解析 因为a 1=2,a n +1=1+a n1-a n ,所以a 2=1+a 11-a 1=-3,同理可得a 3=-12,a 4=13,a 5=2,…,可得a n +4=a n ,则a 2 023=a 505×4+3=a 3=-12.2.数列13,18,115,124,135,…的通项公式是a n =________.答案1n (n +2),n ∈N *解析 ∵a 1=11×(1+2)=13,a 2=12×(2+2)=18,a 3=13×(3+2)=115,a 4=14×(4+2)=124,a 5=15×(5+2)=135,∴通过观察,我们可以得到如上的规律, 则a n =1n (n +2),n ∈N *.3.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. 答案 4n -5解析 a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1 =(2n 2-3n )-[2(n -1)2-3(n -1)] =4n -5,因为a 1也适合上式,所以a n =4n -5.题型一 由a n 与S n 的关系求通项公式例1 (1)设S n 为数列{a n }的前n 项和,若2S n =3a n -3,则a 4等于( ) A .27 B .81 C .93 D .243答案 B解析 根据2S n =3a n -3, 可得2S n +1=3a n +1-3, 两式相减得2a n +1=3a n +1-3a n , 即a n +1=3a n ,当n =1时,2S 1=3a 1-3,解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列, 所以a 4=a 1q 3=34=81.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =________. 答案 ⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2解析 当n =1时,a 1=21=2. ∵a 1+3a 2+…+(2n -1)a n =2n ,①∴a 1+3a 2+…+(2n -3)a n -1=2n -1(n ≥2),② 由①-②得,(2n -1)·a n =2n -2n -1=2n -1, ∴a n =2n -12n -1(n ≥2).显然n =1时不满足上式,∴a n=⎩⎪⎨⎪⎧2,n =1,2n -12n -1,n ≥2.教师备选1.已知数列{a n }的前n 项和S n =n 2+2n ,则a n =________. 答案 2n +1解析 当n =1时,a 1=S 1=3.当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1.由于a 1=3适合上式,∴a n =2n +1.2.已知数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________. 答案 -2n -1解析 当n =1时,a 1=S 1=2a 1+1, ∴a 1=-1.当n ≥2时,S n =2a n +1,① S n -1=2a n -1+1.②①-②得S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1, 即a n =2a n -1(n ≥2),∴{a n }是首项为a 1=-1,公比为q =2的等比数列. ∴a n =a 1·q n -1=-2n -1.思维升华 (1)已知S n 求a n 的常用方法是利用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2转化为关于a n 的关系式,再求通项公式.(2)S n 与a n 关系问题的求解思路方向1:利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. 方向2:利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.跟踪训练1 (1)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n +1,n ∈N *,则a n =________.答案 ⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2解析 根据题意,可得S n -1=2(n -1)2+(n -1)+1. 由通项公式与求和公式的关系, 可得a n =S n -S n -1, 代入化简得a n =2n 2+n +1-2(n -1)2-(n -1)-1=4n -1. 经检验,当n =1时,S 1=4,a 1=3, 所以S 1≠a 1,所以a n =⎩⎪⎨⎪⎧4,n =1,4n -1,n ≥2.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则a n =________. 答案 ⎩⎪⎨⎪⎧-1,n =1,1n (n -1),n ≥2解析 由已知得a n +1=S n +1-S n =S n +1S n , 两边同时除以S n +1S n , 得1S n +1-1S n =-1. 故数列⎩⎨⎧⎭⎬⎫1S n 是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n . 所以S n =-1n .当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),故a n=⎩⎨⎧-1,n =1,1n (n -1),n ≥2.题型二 由数列的递推关系求通项公式 命题点1 累加法例2 在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2, a 4-a 3=ln 4-ln 3, ……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1, 则a n =2+ln n (n ≥2),且a 1=2也适合, 因此a n =2+ln n (n ∈N *). 命题点2 累乘法例3 若数列{a n }满足a 1=1,na n -1=(n +1)·a n (n ≥2),则a n =________. 答案2n +1解析 由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1×n -1n ×n -2n -1×…×34×23×1=2n +1,又a 1=1满足上式,所以a n =2n +1. 教师备选1.在数列{a n }中,a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.答案 4-1n解析 ∵a n +1-a n =1n (n +1)=1n -1n +1,∴当n ≥2时,a n -a n -1=1n -1-1n ,a n -1-a n -2=1n -2-1n -1,……a 2-a 1=1-12,∴以上各式相加得,a n -a 1=1-1n ,∴a n =4-1n ,a 1=3适合上式,∴a n =4-1n.2.若{a n }满足2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0,且a n >0,a 1=1,则a n =________.答案 n ·2n -1解析 由2(n +1)·a 2n +(n +2)·a n ·a n +1-n ·a 2n +1=0得 n (2a 2n +a n ·a n +1-a 2n +1)+2a n (a n +a n +1)=0,∴n (a n +a n +1)(2a n -a n +1)+2a n (a n +a n +1)=0, (a n +a n +1)[(2a n -a n +1)·n +2a n ]=0, 又a n >0,∴2n ·a n +2a n -n ·a n +1=0,∴a n +1a n =2(n +1)n , 又a 1=1, ∴当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=2n n -1×2(n -1)n -2×2(n -2)n -3×…×2×32×2×21×1=2n -1·n .又n =1时,a 1=1适合上式, ∴a n =n ·2n -1.思维升华 (1)形如a n +1-a n =f (n )的数列,利用累加法,即利用公式a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1(n ≥2),即可求数列{a n }的通项公式.(2)形如a n +1a n =f (n )的数列,常令n 分别为1,2,3,…,n -1,代入a n +1a n =f (n ),再把所得的(n -1)个等式相乘,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1(n ≥2)即可求数列{a n }的通项公式.跟踪训练2 (1)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. 答案 2n -1+n解析 ∵a n +1=a n +2n -1+1, ∴a n +1-a n =2n -1+1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -2+2n -3+…+2+1+a 1+n -1=1-2n -11-2+2+n -1=2n -1+n .又∵a 1=2满足上式, ∴a n =2n -1+n .(2)(2022·莆田模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案 a n =2n (n +1)解析 由S n =n 2a n ,可得当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1, 即(n 2-1)a n =(n -1)2a n -1, 易知a n ≠0,故a n a n -1=n -1n +1(n ≥2).所以当n ≥2时,a n =a na n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n +1×n -2n ×n -3n -1×…×24×13×1=2n (n +1).当n =1时,a 1=1满足a n =2n (n +1).故数列{a n }的通项公式为a n =2n (n +1).题型三 数列的性质 命题点1 数列的单调性例4 已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若数列{a n }为递增数列, 则有a n +1-a n >0,∴(n +1)2-2λ(n +1)-n 2+2λn =2n +1-2λ>0,即2n +1>2λ对任意的n ∈N *都成立,于是有λ<⎝⎛⎭⎪⎫2n +12min =32, ∵由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件. 命题点2 数列的周期性例5 (2022·广州四校联考)数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2 023等于( ) A .-2 B .-1 C .2 D.12答案 C解析 ∵数列{a n }满足a 1=2, a n +1=11-a n(n ∈N *), ∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3, 即a n +3=a n ,则a 2 023=a 1=2. 命题点3 数列的最值例6 已知数列{a n }的通项公式a n =(n +1)·⎝⎛⎭⎫1011n ,则数列{a n }的最大项为( ) A .a 8或a 9 B .a 9或a 10 C .a 10或a 11 D .a 11或a 12答案 B解析 结合f (x )=(x +1)⎝⎛⎭⎫1011x的单调性, 设数列{a n }的最大项为a n ,所以⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1,所以⎩⎨⎧(n +1)·⎝⎛⎭⎫1011n ≥(n +2)·⎝⎛⎭⎫1011n +1,(n +1)·⎝⎛⎭⎫1011n≥n ·⎝⎛⎭⎫1011n -1,解不等式组可得9≤n ≤10.所以数列{a n }的最大项为a 9或a 10. 教师备选1.已知数列{a n }的通项公式为a n =3n +k2n ,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)答案 D解析 因为a n +1-a n =3n +3+k 2n +1-3n +k2n=3-3n -k2n +1,由数列{a n }为递减数列知, 对任意n ∈N *,an +1-a n =3-3n -k2n +1<0, 所以k >3-3n 对任意n ∈N *恒成立, 所以k ∈(0,+∞).2.在数列{a n }中,a 1=1,a n a n +3=1,则log 5a 1+log 5a 2+…+log 5a 2 023等于( ) A .-1 B .0 C .log 53 D .4答案 B解析 因为a n a n +3=1,所以a n +3a n +6=1,所以a n +6=a n ,所以{a n }是周期为6的周期数列, 所以log 5a 1+log 5a 2+…+log 5a 2 023 =log 5(a 1a 2…a 2 023)=log 5[(a 1a 2…a 6)337·a 1], 又因为a 1a 4=a 2a 5=a 3a 6=1, 所以a 1a 2…a 6=1,所以原式=log 5(1337×1)=log 51=0. 思维升华 (1)解决数列的单调性问题的方法用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)求数列的最大项与最小项的常用方法 ①函数法,利用函数的单调性求最值.②利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1(n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1(n ≥2)确定最小项.跟踪训练3 (1)在数列{a n }中,a n +1=⎩⎨⎧2a n ,a n <12,2a n-1,a n≥12,若a 1=45,则a 2 023的值为( )A.35B.45C.25D.15答案 D 解析 a 1=45>12,∴a 2=2a 1-1=35>12,∴a 3=2a 2-1=15<12,∴a 4=2a 3=25<12,∴a 5=2a 4=45,……可以看出四个循环一次,故a 2 023=a 4×505+3=a 3=15.(2)(2022·沧州七校联考)已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项. 答案 5解析 a n =n +13n -16=13⎝⎛⎭⎪⎫1+193n -16, 当n >5时,a n >0,且单调递减; 当n ≤5时,a n <0,且单调递减, ∴当n =5时,a n 最小.课时精练1.数列{a n }的前几项为12,3,112,8,212,…,则此数列的通项公式可能是( )A .a n =5n -42B .a n =3n -22C .a n =6n -52D .a n =10n -92答案 A解析 数列为12,62,112,162,212,…,其分母为2,分子是以首项为1,公差为5的等差数列,故数列{a n }的通项公式为a n =5n -42.2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.已知数列{a n }的前n 项积为T n ,且满足a n +1=1+a n 1-a n (n ∈N *),若a 1=14,则T 2 023为( )A .-4B .-35C .-53D.14答案 C解析 由a n +1=1+a n 1-a n,a 1=14,得a 2=53,a 3=-4,a 4=-35,a 5=14,…,所以数列{a n }具有周期性,周期为4, 因为T 4=a 1·a 2·a 3·a 4=1,2 023=4×505+3, 所以T 2 023=(a 1a 2a 3a 4)…(a 2 021a 2 022a 2 023) =14×53×(-4)=-53. 4.若数列{a n }的前n 项和S n =2a n -1(n ∈N *),则a 5等于( ) A .8 B .16 C .32 D .64 答案 B解析 数列{a n }的前n 项和S n =2a n -1(n ∈N *), 则S n -1=2a n -1-1(n ≥2), 两式相减得a n =2a n -1(n ≥2), 由此可得,数列{a n }是等比数列, 又S 1=2a 1-1=a 1,所以a 1=1, 故数列{a n }的通项公式为a n =2n -1, 令n =5,得a 5=16.5.(多选)已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *),则下列结论正确的是( ) A .这个数列的第10项为2731B.97100是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内D .数列{a n }是单调递减数列 答案 BC解析 a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1) =3n -23n +1, 令n =10得a 10=2831,故A 错误;令3n -23n +1=97100得n =33∈N *, 故97100是数列中的项,故B 正确; 因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N *.所以数列{a n }是单调递增数列, 所以14≤a n <1,故C 正确,D 不正确.6.(多选)若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =lnn n +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故A 错误;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1, 所以{a n +1-a n }为递增数列,故B 错误; 对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故C 正确; 对于D ,若a n =ln nn +1,则a n +1-a n =ln n +1n +2-ln nn +1=ln ⎝⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝ ⎛⎭⎪⎫1+1n 2+2n , 由函数y =ln ⎝ ⎛⎭⎪⎫1+1x 2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确.7.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则a n =________.答案 ⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2解析 ∵a n +1=3S n (n ∈N *), ∴当n =1时,a 2=3; 当n ≥2时,a n =3S n -1, ∴a n +1-a n =3a n , 得a n +1=4a n ,∴数列{a n }从第二项起为等比数列, 当n ≥2时,a n =3·4n -2,故a n =⎩⎪⎨⎪⎧1,n =1,3·4n -2,n ≥2.8.(2022·临沂模拟)已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n , 即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ∈N *,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 9.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3,由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知当n =1时,a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1,于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n -1个等式中等号两端分别相乘,整理得a n =n (n +1)2. 当n =1时,a 1=1满足a n =n (n +1)2. 综上可知,{a n }的通项公式为a n =n (n +1)2.10.求下列数列{a n }的通项公式. (1)a 1=1,a n +1=a n +3n ; (2)a 1=1,a n +1=2n a n .解 (1)由a n +1=a n +3n 得a n +1-a n =3n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=1+31+32+33+…+3n -1 =1×(1-3n )1-3=3n -12,当n =1时,a 1=1=31-12,满足上式,∴a n =3n -12(n ∈N *).(2)由a n +1=2n a n 得a n +1a n=2n ,当n ≥2时,a n =a 1×a 2a 1×a 3a 2×a 4a 3×…×a na n -1=1×2×22×23×…×2n -1 =21+2+3+…+(n -1)=()122n n -.当n =1时,a 1=1满足上式, ∴a n =()122n n -(n ∈N *).11.已知数列{a n }满足a n =⎩⎪⎨⎪⎧(3-a )n -2,n ≤6,a n -5,n >6,且{a n }是递增数列,则实数a 的取值范围是( ) A.⎝⎛⎭⎫167,3 B.⎣⎡⎭⎫167,3 C .(1,3) D .(2,3)答案 D解析 若{a n}是递增数列,则⎩⎪⎨⎪⎧3-a >0,a >1,a 7>a 6,即⎩⎪⎨⎪⎧a <3,a >1,a 2>6(3-a )-2,解得2<a <3,即实数a 的取值范围是(2,3).12.(多选)(2022·江苏盐城中学模拟)对于数列{a n },若存在数列{b n }满足b n =a n -1a n (n ∈N *),则称数列{b n }是{a n }的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{a n }是单增数列,则其“倒差数列”不一定是单增数列 B .若a n =3n -1,则其“倒差数列”有最大值 C .若a n =3n -1,则其“倒差数列”有最小值 D .若a n =1-⎝⎛⎭⎫-12n ,则其“倒差数列”有最大值 答案 ACD解析 若数列{a n }是单增数列,则b n -b n -1=a n -1a n -a n -1+1a n -1=(a n -a n -1)⎝ ⎛⎭⎪⎫1+1a n a n -1,虽然有a n >a n -1,但当1+1a n a n -1<0时,b n <b n -1,因此{b n }不一定是单增数列,A 正确; a n =3n -1,则b n =3n -1-13n -1,易知{b n }是递增数列,无最大值,B 错误;C 正确,最小值为b 1.若a n =1-⎝⎛⎭⎫-12n , 则b n =1-⎝⎛⎭⎫-12n -11-⎝⎛⎭⎫-12n ,∵函数y =x -1x 在(0,+∞)上单调递增,∴当n 为偶数时,a n =1-⎝⎛⎭⎫12n∈(0,1), ∴b n =a n -1a n<0,当n 为奇数时,a n =1+⎝⎛⎭⎫12n>1,显然a n 是单调递减的, 因此b n =a n -1a n 也是单调递减的,即b 1>b 3>b 5>…,∴{b n }的奇数项中有最大值为b 1=32-23=56>0,∴b 1=56是数列{b n }(n ∈N *)中的最大值,D 正确.13.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________. 答案 5解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.14.(2022·武汉模拟)已知数列{a n }中,a 1=1,1a n +1-1a n =n +1,则其前n 项和S n =________.答案2n n +1解析 ∵1a 2-1a 1=2,1a 3-1a 2=3,1a 4-1a 3=4,…,1a n -1a n -1=n , 累加得1a n -1a 1=2+3+4+…+n ,得1a n =1+2+3+4+…+n =n (n +1)2, ∴a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴S n =2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=2nn +1.15.(多选)若数列{a n }满足a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),记数列{a n }的前n 项积为T n ,则下列说法正确的有( ) A .T n 无最大值 B .a n 有最大值 C .T 2 023=1 D .a 2 023=1答案 BCD解析 因为a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),所以a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,… 因此数列{a n }为周期数列,a n +6=a n ,a n 有最大值3,a 2 023=a 1=1,因为T 1=1,T 2=3,T 3=9,T 4=9,T 5=3,T 6=1,T 7=1,T 8=3,…, 所以{T n }为周期数列,T n +6=T n ,T n 有最大值9, T 2 023=T 1=1.16.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a的取值范围是(-10,-8).。
高三数学第一轮总复习讲义数列
高中数学总复习讲义(培优版)供理科生使用数列四讲第一讲 数列的概念及简单表示教学目标了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 教学重难点1.本部分主要考查数列的基本概念及表示方法、通项公式的求法以及数列的性质.2.题型多以选择、填空题为主,有时也作为解答题的一问,难度不大. 教材知识再现一.基础知识1.数列的概念:按一定 排列的一列数叫做数列。
数列中的每一个数都叫做数列的 。
从函数的角度看:数列可以看作是一个定义域为 或它的有限子集,当自变量从小到大依次取值时对应的一列 。
2.数列的表示方法:(1)列表法;(2)图示法:数列的图像是离散的点,而不是曲线; (3)通项公式法:用含)(n f a a n n n =,即的式子表示(4)递推公式法: 3.数列的分类:(1)按项数的多少可分为 和 ;(2)按数列中相邻两项的大小关系可分为 、 、 和 。
4.(1)数列{}n a 的前n 项和:n n a a a a S ++++= 321(2)的关系与n n S a : ⎩⎨⎧≥-==-.2111n S S n S a n nn ,,,基本方法 用函数的思想方法处理数列问题(数列的本质是函数) (1)如何理解数列是函数? (2)如何求数列的通项公式?(3)如何判断数列的单调性及求数列中的最大(小)项? (4)如何求数列的前n 项和公式?经典习题奠基1.数列⋅⋅⋅,95,74,53,32,1的一个通项公式是2.已知数列{a n }的通项公式为a n =n +1,则这个数列是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列 3.在数列{a n }中,a n +1=a n +2+an ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 4,已知数列{}n a 的通项公式⎩⎨⎧-⋅=-52321n a n n122+==k n kn )(N k ∈,则=⋅34a a 5. 已知数列{}n a 的通项公式为n q pn a n +=,且23,2342==a a ,则=8a 关键要点点拨1.求通项公式的技巧根据数列的前几项写出数列的通项公式时,常用到“观察、归纳、猜想、验证”的数学思想方法,即先找出各项相同的部分(不变量),再找出不同的部分(可变量)与序号之间的关系,并用n 表示出来.不是所有的数列都有通项公式,一个数列的通项公式在形式上可以不唯一 2.数列中最大项与最小项的求法考点一 由数列的前几项求数列的通项公式[例1] 下列可作为数列{}⋅⋅⋅,2,1,2,1,2,1:n a 的通项公式的是( )A.1=n aB.21)1(+-=n n aC. 2sin 2πn - D. 23)1(1+-=-n n a1.已知数列⋅⋅⋅,13,10,7,2则72是该数列的( ) A.第7项 B.第8项 C.第9项 D.第10项2.写出下列各数列的一个通项公式 (1)3,5,7,9,…(2)⋅⋅⋅,3231,1615,87,43,21 (3)⋅⋅⋅---,63,51,43,31,23,11.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可使用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n +1来调整.3.观察、分析问题的特点是最重要的,观察要有目的,观察出项与n 之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)建立合理的联想、转换而使问题得到解决.考点二 由n a 和n S 的关系求通项[例2]数列{}n a 的前n 项和为n S ,若)1(3,111≥==+n S a a n n ,则=6a 3. 数列{}n a 的前n 项和为n S ,且1+=n n S n ,则=51a 4. 数列{}n a 的前n 项和为n S ,求{}n a 的通项公式 (1)Sn =2n 2-3n ; (2)Sn =4n +b .n a 和n S 的关系通常用)2(1≥-=-n S S a n n n ,注意验证1=n考点三 由数列的递推关系求通项公式[例3] 数列{}n a 满足2,3311=-=+n a a a n n ,求nan 的最小值为( ) A.9.5 B.10.6 C.10.5 D.9.6变式:若本例条件变为:数列{a n }满足下列条件:a 1=1,且对于任意的正整数n (n ≥2,n ∈N*),有2a n =2n a n -1,则a 100的值为________.5. 已知数列{}n a 中,)2()1(1,111≥--==-n n n a a a n n ,则=16a6.分别求满足下列条件的数列的通项公式(1))12(,011-+==+n a a a n n (2))2(1,111≥-==-n a n na a n n 由a 1和递推关系求通项公式,可观察其特点,一般常利用“化归法”、“累加法”、“累乘法”等.1.对于形如“a n +1=a n +f (n )”型的递推关系式求通项公式,只要f (n )可求和,便可利用累加的方法. 2.对于形如)"("1n g a a nn =+型的递推关系式来求通项公式,只要)(n g 可求积,便可以利用累积或迭代的方法。
高三数学总复习讲义——数列概念
高三数学总复习讲义——数列概念 知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
例如,数列①的通项公式是n a = n (n ≤7,n N +∈),数列②的通项公式是n a = 1n(n N +∈)。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;② 同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k -=-⎧∈⎨+=⎩; ③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
高三数学数列第一轮复习资料
(一) 数列的基础知识一、复习要点1、 数列的定义:2、 数列的前n 项和=n S ;11a S ==-1n S ;=+1n S ;n a = ;=+1n a ;3、 已知数列{}n a 的前n 项和n S ,求n a :二、练习1、 已知数列1,4,7,10,……3m+7,求其通项公式n a 及该数列的项数。
2、 已知数列{}n a 的前n 项和n S ;求n a(1)n S =3n n -2 (2)232+-=n n S n (3)121-=+n n S3、 已知数列2,10,4……)13(2-n ,……,那么8是第 项。
4、 已知数列{}n a 中,221+=+n n n a a a 且1a =1,求432,,a a a 及n a 5、 数列通项9,11=++=n n S nn a ,求n 6、 数列{}n a 中,n S =522++n n ,求876a a a ++的值7、 数列{}n a 中,1a =1,2321n a a a a n =⋅⋅ ,求53a a +8、 写出通项公式(1)3,5,9,17,……n a =(2)n a ,1615,87,43,21= (3)42,30,20,12,6,2---……n a =等差数列1、 定义:2、 通项公式 ,则+=m n a a d若q p n m +=+,则 ,若k n m 2=+,则=k a ,A 是b a ,的等差中项,则A=3、 前n 项和n S =(1)0,01<>d a 时{}n a 是 数列,n S 有 值,满足条件⎩⎨⎧<≥+001n n a a(2)0,01><d a 时{}n a 是 数列,n S 有 值,满足条件(3)K K K K k S S S S S 232,,--仍是 数列4、 特殊数列求和:1+2+3+……+n = ;1+3+5+7+……+()12-n = 练习:1、已知等差数列{}n a 中,255=a ,,10010=S 求3015,S S2、在等差数列{}n a 中,若8124=+a a ,求15S 及8a3、等差数列{}n a 中,12010=S ,求92a a +4、等差数列{}n a 中,公差2-=d ,5097741=++++a a a a ,求=++++99963a a a a5、等差数列{}n a 和{}n b 中前n 项和分别为n n T S ,,若132+=n n T S n n ,求99b a 6、等差数列{}n a 中,82=a ,01210=+a a ,求n S d a 及,1,并求n S 的最大值。
名师手拉手高三一轮复习---数列的极限讲义
高三第一轮复习数学---数列的极限一、教学目标:理解数列极限的概念,会判断一些简单数列的极限,掌握极限的四则运算法则,会求某些数列的极限。
二、教学重点:1、按定义直观地感受一个数列是否有极限以及极限常数是什么,这是本节重点之一。
2、掌握三个常用极限是本节重点之二。
3、利用定义证明一个数列的极限,需要写成ε—N 语言的形式,这是本节难点。
三、教学过程:(一)主要知识: 1、 数列极限定义(1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim∞→n a n =a 。
对前任何有限项情况无关。
*(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε<a n <a+ε,即a n ∈(a-ε,a+ε);因此,借助数轴可以直观地理解数列极限定义:不论a 点的ε邻域怎么小,数列{a n }从某一项以后的所有项都要进入这个邻域中,也可以说点a 的任意小的ε邻域(a-ε,a+ε)中含有无穷数列{a n }的几乎所有的项,而在这个邻域之外至多存在有限个项,由此可以想像无穷数列{a n }的项是多么稠密地分布在点a 的附近。
2、应该牢固掌握的常用极限①lim ∞→n C=C (常数列的极限就是这个常数) ②设a>0,则特别地 01lim=∞→nn ③设q ∈(-1,1),则lim∞→n q n =0;;1lim ,1==∞→nn q q ,1-=q 或nn q q ∞→>lim ,1不存在。
若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:qa s s n n -==∞→1lim 13、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B(3)lim∞→n n n b a =BA(B ≠0) 极限不存在的情况是1、±∞=∞→n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1….4、一个重要的极限:ennn=⎪⎭⎫⎝⎛++∞→11lim思维方法:直接从常用的重要极限出发,运用数列极限的运算法则解题。
高三数学一轮复习 第六章《数列》63精品课件
二、分类讨论思想 当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an} a11-qn a1-anq 的前 n 项和 Sn= = .等比数列的前 n 项和公式 1-q 1-q 涉及对公比 q 的分类讨论,此处是常考易错点.
三、解题技巧 1.等比数列的设项技巧 a a (1)对于连续奇数项的等比数列,通常可设为…,q2,q, a,aq,aq2,…; (2)对于连续偶数项且公比为正的等比数列,通常可设 a a 为…,q3,q,aq,aq3,….
an (2){an}{bn}均为等比数列⇒{an· bn}、b 是等比数列. n
am m-n (3){an}为等比数列,则 a = q n
.
(4)若 m、 n、 p、 q∈N*且 m+n=p+q, 则 am· an=ap· aq. 特别地,a1an=a2an-1=a3an-2=…
(5)等间隔的 k 项和(或积)仍成等比数列. 例如:{an}是等比数列,则 ①a1, a3, a5, …, a2n-1; ②a1+a2, a2+a3, a3+a4, …; ③a1a2,a2a3,a3a4,…;④a1+a2,a3+a4,a5+a6……均 成等比数列. (6)an2=an-k· an+k (1≤k<n,n、k∈N*).
1 1 3 解析:a4=a1 2 = a1, 8
15 S4 S4= = a1,∴ =15. 1 8 a4 1-2 答案:15
1 a11-24
• (理)(09·全国Ⅱ)设等比数列{an}的前n项和为Sn.若a1=1, S6=4S3,则a4=________.
解析:设等比数列的公比为 q. 当 q=1 时,由 S6=4S3 得,6a1=4×3a1⇒a1=0(舍). a11-q6 a11-q3 当 q≠1 时,由 S6=4S3⇒ =4· ⇒ 1-q 1-q • 答案: 3 3 1+q =4⇒q3=3⇒a4=a1q3=3.
高三数学第一轮复习——数列(知识点很全)
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
高三第一轮复习数列的概念与简单表示法课件
1 ∴ Sn = . 2n
∴当 n ≥ 2, n ∈ N* 时, an = −2 Sn Sn −1 1 1 1 = −2 ⋅ ⋅ =− , 2n 2(n − 1) 2n(n − 1) 1 (n = 1) 2 ∴ an = . 1 − (n ≥ 2, n ∈ N* ) 2n(n − 1)
⋯⋯ a3 = 3, a2 a2 = 2, a1 a1 = 1.
累乘可个 ,
an = n × (n − 1) × (n − 2) × ⋯ × 3 × 2 × 1 = n! . . 故 an = n!
1 (3) ∵ an+1 = an + ln(1 + ), n 1 n +1 . ∴ an+1 − an = ln(1 + ) = ln n n n ∴ an − an−1 = ln , n −1 n −1 an−1 − an−2 = ln , n−2 ⋯⋯ 2 a2 − a1 = ln , 1 ∴ an − a1 = ln n n −1 2 + ln + ⋯ + ln = ln n. n −1 1 n−2 又 a1 = 2,∴ an = ln n + 2.
此题也可用排除法求解,只需验证当n=1时,A 3 3 1 选项为 ,B选项为 ,C选项为 ,均不为1,故 2 4 3 排除A 排除A、B、C,从而选D. 从而选D
在数列{ 3.在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*), 则a100等于 A.1 解析 B.B.-1 方法一 C.5 ( B ) D.D.-5 由a1=1,a2=5,an+2=an+1-an
题型二
由数列的递推公式求通项a 由数列的递推公式求通项an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第一轮复习:数列的知识点
高三数学第一轮复习:数列的知识点
导语:数列是以正整数集为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项,排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。
下面是小编为大家整理的,数学知识,更多相关信息请关注CNFLA相关栏目!
1.数列概念
①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。
图像法;c.解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
2.等差数列
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示,前n项和用Sn表示。
an=kn+b(k,b为常数)
由三个数a,A,b组成的.等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项。
3.等比数列
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列的公比,公比通常用字母q表示。
an=Sn-S(n-1) (n≥2)
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G²=ab是a,G,b三数成等比数列的必要不充分条件。