几何画板教程——从入门到精通

合集下载

《几何画板》学习教程

《几何画板》学习教程

第一章认识《几何画板》本篇介绍《几何画板》的安装、运行、和工具的使用方法。

1.1《几何画板》的安装和运行。

1.安装环境与要求:几何画板要求486及其以上的计算机,在windows3.1、3.2或wondows95以上版本的windows环境下安装。

2.目前的4.0以上的版本,从网络上下载后,解压缩就可以,不需要安装,把几何画板的图标发送桌面快捷就可以了。

3.在桌面用鼠标双击几何画板图标,就可以启动《几何画板》。

图1-1-1启动后可以看到如图1-1-1所示的《几何画板》窗口。

它和windose其它应用程序一样,其窗口由“标题栏”、“功能菜单栏”、“工作区”、“工具箱”及“状态栏”五大部分组成。

下面我们将逐一介绍这五部分的作用和功能及使用方法。

1.2工具箱的使用工具箱是制作几何画板文件时使用最多而且必须的工具,按在工具箱的位置,从上到下它们的名称分别是:选择箭头工具、点工具、圆规工具、直线工具、文本工具、自定义工具。

为了大家好掌握,下面通过实例(比如画一个圆内接三角形。

如图1-2-1所示)逐一介绍工具箱中的各种工具的使用方法。

1.画圆。

用鼠标左键单击工具箱第三个按钮,按钮就下陷反白,说明已选中了“圆规工具”(其它工具一样,下面不再讲这一点),然后将鼠标移动到工作区,单击鼠标左键,就出现一个点,移动鼠标就发现一个圆随鼠标移动而变大变小,再单击鼠标左键,又出现一个点,圆就画好了。

2.画点。

用鼠标左键(以后不指明,均指左键)单击工具箱第二个按钮,将鼠标移动到工作区,鼠标前就带一个点,将鼠标前的点移动到圆上,当圆变色时,单击鼠标圆又变回原色,便在圆上出现了一个点,点就画好了。

同样可以画另外两个点。

3.标标签。

用鼠标单击工具箱第五个按钮,将鼠标移动到工作图1-2-1区,鼠标箭头就变成了一个小白手。

如果移动到刚才画好的点上,您会发现鼠标箭头变“小黑手”了。

单击鼠标,在点的旁边出现了一个字母“A”,再单击圆上另外两点,分别出现“B”、“C”。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通用几何画板做数理实验首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。

方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。

如图1-1.2。

图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。

图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。

说明:如果几何画板程序已经打开,只要由菜单“文件” “新绘图”,也可以新建一个绘图文件。

第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。

如图1-1.4。

注意:在几何画板中,点用一个空心的圈表示。

图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。

如图1-1.6B 图1-1.5图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A 重合,按左键拖动画出线段AC ;(2)画线段BC ,标出标签C ,如图1-1.7。

注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。

B图1-1.7第五步:(1) 用“选择”工具单击线段AB ,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图”→“中点”,画出线段AB 的中点,标上标签。

(完整版)几何画板教程

(完整版)几何画板教程

几何画板教程第一章用工具作图第一节几何画板的启动和绘图工具的介绍1、启动几何画板:单击桌面左下角的【开始】按钮,选择【所有程序】|【GSP4.05】应用程序后,启动几何画板。

如图1所示,是打开一个几何画板文件的截图。

菜单栏工具框工作区状态栏图1几何画板的窗口是不是和其他Windows应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。

画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺工具】、【文本工具】、【自定义画图工具】。

和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画板的主要用途之一是用来绘制几何图形。

而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。

因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。

这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。

从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。

因为这种把所有绘图建立在基本元素上的做法和数学作图思维中公里化思想是一脉相承的。

按住工具框的边缘,可随意拖动到画板窗口的任何位置,不同位置形状不同。

试一试,能否拖到某一个地方,工具框变成图2所示的形状?图2顾名思义,猜测一下它们都有何功能?:选择对象这是它的主要功能,当然还有其他:画点可以在画板绘图区任何空白的地方或“线”上画点。

“线”可以是线段、射线、圆、轨迹、函数图像:画圆只能画正圆不能画椭圆,是不是有点遗憾?(几何画板也能画椭圆,请看第二章):画线直尺工具当然用于画线段,还不仅仅如此!:加标注(即说明性的文字)或给对象标标签:自定义工具如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具选择某项绘图工具时,用鼠标单击一下该工具即可。

最全最好的几何画板教程

最全最好的几何画板教程

目录第一篇画板入门第一章用工具框作图 (3)第二章用构造菜单作图 (19)第三章用变换菜单作图 (33)第四章动作按钮的制作 (51)第五章智能化菜单详解 (58)第六章认识奇妙的参数 (64)第二篇范例赏析范例1 眩目的动画彩轮 (69)范例2 漂亮的勾股树 (70)范例3 一个梦幻万花筒 (72)范例4 闪烁效果的制作 (75)第三篇精选附录附录一迭代帮助文件 (79)附录二平面几何著名定理 (87)附录三圆锥曲线教材培训 (93)第一章:用工具框作图通过本章,你应1、 熟练使用绘图工具作“点”、“线”、“圆”2、 学会在几何对象上画“点”、“线”、“圆”3、 学会用绘图工具构造交点、等圆、直角等的构造技巧4、 学会“点”、“线”、“圆”的标签的显示和隐藏5、 理解用几何画板绘图应首先考虑对象间的几何关系第一节 几何画板的启动和绘图工具的介绍1、启动几何画板:单击Windows98桌面左下角的“开始”按钮,依次:选择“程序”→选择“几何画板4.03”,单击即可启动几何画板。

进入几何画板系统后的屏幕画面如下图所示几何画板的窗口是不是和其他Windows 应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。

画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺工具】、【文本工具】、【自定义画图工具】。

和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画板的主要用途之一是用来绘制几何图形。

而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。

因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。

这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通第二步,熟悉界面。

打开《几何画板》,你会看到一个黑色的画布和一些工具栏。

画布是你进行绘画的区域,工具栏包括了各种几何绘画工具和选项。

第三步,选择画布大小。

在工具栏上,你可以选择画布的大小。

根据你绘画的需求,选择适当的画布大小。

第四步,选择几何图形工具。

在工具栏上,有一些常见的几何图形工具,例如直线、矩形、圆等。

选择你要绘制的几何图形工具。

第五步,绘制几何图形。

在画布上点击并拖动,你可以用所选的几何图形工具绘制图形。

根据需要,你可以通过调整拖动的距离和方向来调整图形的大小和形状。

第六步,使用填充工具。

在工具栏上,有一个填充工具,用来给几何图形填充颜色。

选择填充工具,在画布上点击需要填充颜色的区域,选择你喜欢的颜色。

第八步,添加纹理和图案。

在工具栏上,有一些纹理和图案工具,可以用来给几何图形添加纹理或图案效果。

选择你喜欢的纹理或图案工具,然后在画布上使用。

第九步,保存和分享你的作品。

在菜单栏上,有一个保存按钮,点击它可以将你的作品保存到手机相册或者分享到社交媒体上,与朋友们分享你的创作。

通过以上九个步骤,你已经基本掌握了《几何画板》的使用方法。

接下来,我们将介绍一些高级功能,让你更加精通这款应用程序。

第十一步,使用渐变工具。

在工具栏上,有一个渐变工具,可以用来给几何图形添加渐变效果。

选择渐变工具,在画布上点击并拖动来创建渐变效果。

第十二步,使用滤镜和特效。

在菜单栏上,有一个滤镜和特效按钮,点击它可以给你的作品添加一些滤镜和特效效果,增加艺术感和创意。

第十三步,使用径向对称工具。

在工具栏上,有一个径向对称工具,可以用来创建径向对称的几何图形。

选择径向对称工具,在画布上点击并拖动,你会看到一个你选择的几何图形以同心圆的方式复制出来。

第十四步,参与社区和学习交流。

《几何画板》拥有一个非常活跃的用户社区,你可以在社区上学习和交流,了解其他用户的创作和技巧,提升自己的绘画水平。

几何画板系列微课几何画板从入门到精通

几何画板系列微课几何画板从入门到精通

几何画板系列微课几何画板从入门到精通一、教学内容1. 几何画板的基本界面和工具使用;2. 点的绘制和操作,如移动、复制、删除等;3. 线的绘制和操作,如直线、曲线、折线等;4. 圆的绘制和操作,如圆心、半径、直径等;5. 几何图形的绘制和操作,如三角形、矩形、正方形等;6. 坐标系的建立和运用,如直角坐标系、极坐标系等;7. 几何画板的动画功能,如动态演示、轨迹跟踪等;8. 几何画板在数学教学中的应用实例。

二、教学目标1. 让学生掌握几何画板的基本操作和功能应用;2. 培养学生运用几何画板解决数学问题的能力;3. 提高学生对数学几何图形的美感和创造力。

三、教学难点与重点重点:几何画板的基本操作和功能应用;难点:坐标系的建立和运用,以及几何画板的动画功能。

四、教具与学具准备1. 计算机及相关设备;2. 几何画板软件;3. 教学PPT;4. 练习题和答案。

五、教学过程1. 实践情景引入:展示一个利用几何画板制作的动态演示,引发学生兴趣;2. 基本操作讲解:讲解几何画板的基本界面和工具使用,如点的绘制、线的绘制等;3. 功能应用演示:展示几何画板在绘制和操作几何图形方面的功能,如圆的绘制、图形的变换等;4. 坐标系讲解:讲解坐标系的建立和运用,如直角坐标系、极坐标系等;5. 动画功能讲解:讲解几何画板的动画功能,如动态演示、轨迹跟踪等;6. 应用实例展示:展示几何画板在数学教学中的应用实例,如解析几何问题、制作数学教学动画等;7. 随堂练习:让学生利用几何画板软件进行实际操作,巩固所学知识;8. 作业布置:布置练习题,让学生课后巩固所学内容。

六、板书设计板书设计如下:1. 几何画板基本操作和功能点的绘制与操作线的绘制与操作圆的绘制与操作几何图形的绘制与操作坐标系的建立与运用动画功能2. 几何画板应用实例解析几何问题制作数学教学动画七、作业设计1. 作业题目:利用几何画板软件,绘制一个三角形,并标出其三边长度;2. 作业答案:根据学生实际操作,得到三角形的三边长度。

《几何画板》教程从入门到精通

《几何画板》教程从入门到精通

《几何画板》教程从入门到精通公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。

本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。

考虑到初三课程的实际情况,我们没有严格按照课时来安排内容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。

我们在顺德教育信息中心为初三信息技术的学习开辟了专门的网站:网络探索(WebQuest),域名是。

本课程的相关工具和范例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。

欢迎随时访问网络探究网站,了解网络学习的最新进展!上篇用几何画板做数理实验同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗有的。

我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。

这样的软件现在国内外有很多,比较着名的有国内的“数学实验室”和国外的“几何画板”。

鉴于初中的数学知识范围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。

说明:几何画板是一个着名的教学工具软件,网上可以下载其试用版本,国内已经有版的汉化版本。

本教材以版为例编写。

在我们的网络探索社区()的顺德信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。

同时,本课程的案例程序也可以在该栏目找到。

最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。

(安装过程请参考),在顺德市教育信息中心()的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。

几何画板精品教程

几何画板精品教程
1
在本节中,将介绍如何在几何画板中绘制简单几何图形,由于几何画板在操作时与其他的绘图软件有一定的差异,因此首先介绍几何画板的一些常用功能。
2
3.2.1 几何画板快速入门
几何画板可以运行在目前常用的Windows操作系统的几种版本中,本章将以4.0汉化版为例来介绍如何快速使用几何画板。
几何画板的运行窗口与其他Windows应用程序相似,如图3.1所示。
几何画板精品教程
3.2 利用几何画板绘制简单几何图形
几何画板快速入门
窗口菜单及操作
绘制点、线、圆
绘制多边形
绘制圆及其内接三角形
绘制长方体
修改目标符号
利用几何画板绘制简单几何图形
几何画板最大的特点是能动态地表达几何关系。几何关系是由一系列的几何图形反映出来的,所以绘制简单的几何图形是最基础的知识。
在图3.20中可以看到,绘制后的线段有红色的边框线,表示该线段处于选择状态,未被选择的线段没有红色的边框线。线段两端的小圆圈是该线段的控制点,当选择工具栏上的选择工具后,可以拖动这两个控制点来改变线段的倾斜角度,拖动线段的中间部分可以移动整个线段。
【构造】菜单中的其他内容在后面将详细介绍。
1
2
3
4
5
6
5.【变换】菜单 【变换】菜单的功能是对已有的几何元素进行平移、旋转、缩放及镜像等操作,并可以对距离、角度、比例和向量进行标识,如图3.10所示。 要对几何画板中的对象进行旋转或缩放变化时,必须要设置一个旋转或缩放中心,这个中心点要通过标识得到确认。确定中心点的步骤如下: (1) 选择要标识的中心点。 (2) 打开【变换】菜单,选择【标记中心】,此时所选择的点闪烁一下,表示该点被标识。 要构造已有对象的反射图形,必须要指定一个反射镜面,也就是对称轴线,反射镜面也需要通过标识确定。确定反射镜面的操作步骤如下: (1) 绘制一条线段或选择一条已有的线段(或射线、直线)作为反射镜面。 (2) 打开【变换】菜单,选择【标记镜面】,此时会看到被标识的镜面闪烁一下,表示该镜面被标识。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*《几何画板》教程——从入门到精通用几何画板做数理实验首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。

方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。

如图1-1.2。

图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。

图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。

说明:如果几何画板程序已经打开,只要由菜单“文件” “新绘图”,也可以新建一个绘图文件。

第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。

如图1-1.4。

注意:在几何画板中,点用一个空心的圈表示。

图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。

如图1-1.6B 图1-1.5图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A重合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如图1-1.7。

注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。

B图1-1.7第五步:(1) 用“选择”工具单击线段AB,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2) 由菜单“作图” “中点”,画出线段AB的中点,标上标签。

《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通

《几何画板》教程 【2 】——从入门到精晓用几何画板做数理试验 起首请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功效如图所示:图1-0.1我们重要熟习一下对象箱和状况栏,其它的功效在往后的进修进程中将学会运用.案例一 四人分饼有一块厚度平均的三角形薄饼,如今要把它平均分给四小我,应当若何分?图1-1.1思绪:这个问题在数学上就是若何把一个三角形分成面积相等的四部分.计划一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等).如图1-1.2.图1-1.2计划二:四等分三角形的随意率性一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3.图1-1.3用几何画板验证:第一步:打开几何画板程序,这时消失一个新画图文件.解释:假如几何画板程序已经打开,只要由菜单“文件” “新画图”,也可以新建一个画图文件. 第二步:(1)在对象箱中拔取“画线段”对象; (2)在工作区中按住鼠标左键拖动,画出一条线段.如图1-1.4. 留意:在几何画板中,点用一个空心的圈表示.图1-1.4第三步:(1)拔取“文本”对象;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:留意:假如再点一次,又可以隐蔽标签,假如想改标签为其它字母,可以如许做: 用“文本”对象双击显示的标签,在弹出的对话框中进行修正,(本例中我们不做修正).如图1-1.6图1-1.6 在后面的操作中,请不雅察图形,依据须要标出点或线的标签,不再一一解释AB图1-1.5第四步:(1)再次拔取“画线段”对象,移动鼠标与点A 重合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如图1-1.7. 留意:在熟习后,可以先画好首尾相接的三条线段后再标上标签更便利.ABC图1-1.7第五步:(1)用“选择”对象单击线段AB,这时线段上消失两个正方形的黑块,表示线段处于被拔取状况;(2)由菜单“作图” “中点”,画出线段AB 的中点,标上标签.得如图1-1.8. 留意:假如被拔取的是点,点的外面会有一个粗黑圆圈.在几何画板中,拔取线段是不包括它的两个端点的,今后的问题都是如许,假如不当心多选了某个对象,可以按Shif t 键后用左键再次单击该对象撤消拔取.AB CD图1-1.8第六步:用同样的办法画出其它双方的中点.得如图1-1.9. 技能:最快的办法是:按住Shift 不放,用“选择”对象分离点击三条线段,可以同时拔取这三条线段,再由“作图” “画中点”(或按快捷键Ctrl+M),就可以同时画好三条边的中点.AB C D EF图1-1.9第七步:用“画线段”对象贯穿连接DE.EF.FD,得如图1-1.10: 技能:画线段的另一办法,在保证画线对象消失的是“画线段”按钮(不必拔取)的前提下.拔取两点后,由菜单“作图” “画线段”,(或按快捷键Ctrl+L),可以画出贯穿连接两点的线段.ABCDEF本例最快的做法:1.拔取“画点”对象,按住Shift 键不放在工作区中画三个点,这时三个极点都保持拔取状况2.按Ctrl+L,可以同时画出三条边并且三边同时被拔取;3.按Ctrl+M,可以同时画出三边中点且三中点同时被拔取;4.按Ctrl+L,可以同时画出小三角形三条边,标上标签即可. 图1-1.10第八步:(1) 按住Shift 键不放,用“选择“对象拔取点A.D.F;(2)由菜单“作图” “多边形内部”填充多边形内部;(3) 保持内部的拔取状况,由菜单“器量” “面积”,可以量出ADF 的面积,如图1-1.11.ADF面积 ADF = 0.77 cm 2图1-1.11第九步:(1) 用同样的办法,填充并器量三角形BDE.ECF.DEF;(2) 拔取DEF 的内部,由菜单“显示” “色彩”,选择其它色彩,如蓝色,得到如图1-1.12.ACD F面积 ADF = 0.77 cm 2面积 DBE = 0.77 cm 2面积 ECF = 0.77 cm 2面积 DEF = 0.77 cm 2图1-1.2 留意:在制造进程中,要经常保存文件,以免因不测原因造成文件丧掉,以下每一个例子都是如许,不再加以解释. 归纳结论:拖动极点A.B.C中的任一个,可以转变三角形的大小和外形,请不雅察不同情形下,四部分的面积是否老是相等?如许做可以完成分饼的义务吗?解释:这是经由过程试验来验证数学纪律,不能保证结论必定是准确,一般来说,有一些成果经由了人类的长期实践,大家都公认了它的准确性,这时会把这个结论作为正义直接运用;而大多半情形下,试验得到的成果仍然须要进行推理证实.那么,试验有什么用呢?试验可以关心我们熟习纪律,更轻易接收常识,并且常常可以让我们找到解决问题的偏向.若有问题,请到几何画板分版,下载案例一供参考. 演习:1.对于计划二,四等分面积的问题就转化为四等分线段的问题,四等分线段可以用哪些办法?2.为了便利在转变等分的份数(例如要分成五份)时办法仍然能用,这里介绍运用平行线等分线段的办法把一条线段四等分.第一步:(1) 拔取“画射线”对象;(2)移动鼠标到与点A 重合,按住左键拖动,画出一条以点A 为端点的射线AD,得如图1-1.13.ABCD图1-1.13第二步:(1) 拔取“画点”对象,移动鼠标到射线AD 上,在接近点A 处单击画出一个点E,得如图1-1.14;(2) 按住Shift 键不放,用“选择”对象,依次拔取点A.E,由菜单“变换” “标记向量A-E”.解释:标记了一个向量后,可以在后面的平移变换中按这个向量来平移,保证消失若干段相等的线段,标记向量时,必定要留意选选择点的先后次序.EABCD图1-1.14第三步:(1) 用“选择”对象拔取点E,由菜单“变换” “平移…”,在弹出的对话框中点“肯定”即可得一点E’;(2) 拔取E’,做同样的操作可以得E’’,……,如许做下去,直到得到你想要的若干段相等的线段,这里是四段,如图1-1.15.E'''E''DABCEE'图1-1.15第四步:(1)贯穿连接B E’’’;(2)同时拔取线段B E’’’.点E.E’.E’’,由菜单“作图” “平行线”,画出了一组平行线,如图1-1.16.ABCDEE'E''E'''图1-1.16第五步:(1) 用“选择”对象单击平行线和AB 订交处,得到三个四等分点; (2) 拔取所有平行线.射线AD 及AD 上的点(除A 外),由菜单“显示” “隐蔽 对象”,可以隐蔽制造进程中的关心线.得如图1-1.17. 以下只要贯穿连接点C 和三个四等分点就行了,…… 留意:在最后成果中不须要看到的对象,一般是把它隐蔽,假如你拔取后删去了它,你会发明你要的四等分点也会消掉,这是因为这些点是受关心线掌握的,隐蔽的对象只是看不到,但它仍然起感化.隐蔽和删除是不同的.若有问题,请到几何画板分版,下载案例一的演习供参考. ABC图1-1.17 3.本身比较一下这两种办法,在只须要四等分的情形下,哪种办法便利?,在须要其它等分的情形下,哪种办法更具有一般性?案例二 三角形的内角和现有一块三角形的木板,用来制造一个半圆形的木盖,请设计一个糟蹋比较小并且便于施工的计划.图1-2.1思绪:以三角形较短一边的一半为半径,以三个极点为圆心画弧,得到三个扇形后拼成半圆,如图1-2.2:图1-2.2那么,若何知道拼成的必定是一个半圆呢?下面用几何画板做一个试验来解释.计划:画一个三角形;量三个内角的度数;用几何画板的盘算功效盘算三个内角的和.假如对于随意率性的三角形,总有内角和是1800,那么解释拼成的必定是一个半圆形. 用几何画板验证:第一步:新建一个几何画板画图文件.画出三角形ABC第二步:(1) 拔取“选择”对象,按住Shift 不放,依次拔取点B.A.C;(2) 由菜单中的“器量” “角度”,量出∠BAC 的度数, 用同样的办法器量其它两个角.如图1-2.3 解释:因为每小我画的图不同,度数不必定和图1-2.3一样). 留意:选一个角的症结是角的极点要第二个选.ABCBAC = 45.0?ABC = 74.6?ACB = 60.4?图1-2.3第三步:由菜单“器量” “盘算”弹出一个盘算器,依次点击“∠BAC=…”.“+”.“∠ABC=…”“+”.“∠ACB=…”.“肯定”,如图1-2.4. 解释:“∠BAC=…”在本例中是“∠BAC=45.00”,这里用省略号表示,是因为每小我画的图不同,量出的度数有可能不同,今后相似的问题都如许来表示. 技能:弹出盘算器的办法有:(1) 由菜单“器量” “盘算”;(2) 双击工作区中的任一器量值,如“∠BAC=…”;(3) 在工作区中击鼠标右键,由“器量” “盘算”.ABBAC = 45.0?ABC = 74.6?ACB = 60.4?BAC + ABC + ACB = 180.0?图1-2.4归纳结论:请按请求操作后填写下表: 序号 操作现象 三个角的和等于1 不雅察∠BAC=______ ∠ABC=______ ∠ACB=______ 2 用鼠标拖动个中一个极点转变三角形变成钝角三角形 ∠BAC=______ ∠ABC=______ ∠ACB=______ 3用鼠标拖动个中一个极点转变三角形变成直角三角形∠BAC=______ ∠ABC=______∠ACB=______4 用鼠标拖动个中一个极点随意率性转变三角形的外形 三个内角的和老是结论 三角形的内角和老是________若有问题,请到几何画板分版,下载案例二供参考.演习:1.本身画一个凸四边形,器量它的内角,盘算内角和,验证凸四边形的内角和是3600.若有问题,请到几何画板分版,下载案例二演习1供参考.2.用“选择”对象同时拔取点A.B,由菜单“器量” “距离”,可以器量出线段AB的长度,请你用上面所学的常识验证“三角形的双方之和大于第三边,三角形的双方之差小于第三边”.若有问题,请到几何画板分版,下载案例二演习2供参考.案例三 最佳行走路线如图1-3.1:你身在草原上,如今要走到公路边去等车,请设计一个最佳行走路线.图1-3.1思绪:把人所处地位看作一个点,公路看作一条直线,行走的路线看作线段,由垂线段最短可以找到最佳行走路线.计划:画一条直线,过直线外一点引直线的垂线段和斜线段,器量线段的长,动态验证垂线段最短.用几何画板验证:第一步:新建一个几何画板画图文件.第二步:(1)C按住对象箱中的画线对象不放,在弹出的对象条中拔取“画直线”对象,按住鼠标左键拖动画出一条直线;(2) 用“画点”对象在直线外画一点,如图1-3.2.A B图1-3.2第三步:(1) 按Shift键,用鼠标拔取点C和直线AB,(不要拔取点A和B);(2)C由菜单“作图” “垂线”,画出了过点C垂直于AB的直线,如图1-3.3解释:固然点A.B在直线AB上,但拔取直线时并没有拔取直线上的点,在后面的进修中,假如请求拔取直线.线段.圆等对象,这时不要把对象上的点也拔取,除非特别指明要拔取这些点. A B图1-3.3第四步:(1) 用“选择”对象单击垂足处,界说出垂足,标上标签D; (2)拔取垂线CD(不要拔取点C.D).点A.B,由“显示” “隐蔽”,把拔取的对象隐蔽,用“文本”对象在直线上点一下,标出直线的标签j;(3) 选“画线段”对象,贯穿连接线段CD,如图1-3.4. 解释:点A.B 是掌握直线AB 的点,经由过程拖动这两点,可以转变直线的偏向和地位,一般情形下,假如不想再转变直线的地位,或不再画其它线经由这两个点,可以在制造完成后把它隐蔽.jCD1-3.4第五步:(1) 拔取“画线段”对象;(2) 移动鼠标到点C 处,按下左键拖动,当鼠标位于直线j 上时松开,如图1-3.5. 技能:CE 是直线j的斜线段,所以要保证一个端点是C,另一个端点E 只能在直线j上移动,如何才能保证呢?,在画图的进程中,移动鼠标到点C 时,留意不雅察状况栏中有“从点C ”,这时按下左键可以保证一个端点为C,移动鼠标到直线j 时,状况栏中有“到点位于直线j ”时松开,如许点E 必定在直线上,不能拖到直线外.在几何画板中,状况栏的感化异常重要.jCDE图1-3.5第六步:同时拔取点C.D,由“器量” “距离”,量出CD,同理量出CE,如图1-3.6.jCDCD = 1.68 cm CE = 2.16 cm图1-3.6归纳结论:拖动点E在直线j 上移动,不雅察CD 与CE 的大小,什么时刻CE=CD ?,除了这个地位外的其它地位CD 与CE 哪一个比较大?以上操作解释:从直线处一点引直线的所有线段中,_________最短,因而最佳行走路线是走点到直线的垂线段. 若有问题,请到几何画板分版,下载实例三供参考. 演习:1.在图1-3.6的基本上,增长一个点F,经由过程器量∠CDF.∠CEF,如图1-3.7,拖动点E,不雅察什么情形下两个角相等,除了CD 外,CE在其它地位能和直线j 垂直吗?j CDEFCD = 1.68 cm CE = 2.16 cmCDF = 90?CEF = 51?图1-3.7若有问题,请到几何画板分版,下载案例三演习供参考.案例四 横梁有多长如图1-4.1,一个三角形屋架,屋面的宽度是13米,立柱长5米,那么横梁有多长?图1-4.1思绪:这是直角三角形中运用勾股定理的问题,那么,是不是随意率性的直角三角形三边都有这种关系? 计划:大家都已经证实过勾股定理,但如今我们用不同的办法来从新熟习一下这个老同伙.用几何画板画一个直角三角形,器量三条边,盘算两直角边的平方和,盘算斜边的平方,不断转变图形的大小外形(但保持直角不变),验证定理是否老是成立.用几何画板验证:第一步:新建一个几何画板画图文件.第二步:在工作区中画一条线段AB,如图1-4.2.BA图1-4.2第三步:(1) 按住Shift,用“选择”对象拔取点A 和线段AB;(2) 由菜单“作图” “垂线”,作出点A 垂直于线段AB 的直线.如图1-4.3留意:不要选别的一个端点B,那样过B 点也会有一条直线与AB 垂直,本例中我们不须要同时画两条垂线.技能:只有如许画的图才能在你拖动点转变图形的大小和外形时老是保持垂直的关系,假如只是画出一条本身看上去“垂直”的直线,就不能在转变外形时保持垂直关系.BA图1-4.3第三步:(1) 选“画点”对象;(2) 移动鼠标到垂线上单击,如图图1-4.4 留意:不雅察状况栏中消失“点位于直线上”时单击,如许画的点永久位于直线上,不会拖到外面.ABC图1-4.4第三步:(1) 拔取垂线CD,由“显示” “隐蔽直线”,把垂线隐蔽; (2) 用画线段对象画出线段AC.线段BC,如图1-4.5. 技能:最后的图中应当是线段,但为了保证变化进程中保持垂直关系,必须先画关心垂线,最后在不须要时把它隐蔽.A BC图1-4.5第四步:用“文本”对象单击三角形的三边,得到如图1-4.6所示,jm nABC图1-4.6第五步:用“文本”对象双击标签n,在弹出的对话框中作如下修正:如图1-4.7.图1-4.7 用同样的办法改j 为c,改m 为b,如图1-4.8. 解释:如许做是为了照料我们的数进修惯,或者是标题本身的请求,这种改点或线的标签的办法,在操作进程中会经常用到.cbaABC图1-4.8第七步:同时拔取线段a.b.c,由菜单“器量” “长度”,可以同时量出三条边的长度,如图1-4.9cbaABCc = 2.70 cm a = 3.03 cb = 1.39 cm图1-4.9第八步:弹出盘算器,依次点击“b=…”.“^”.“2”.“+”.“c=…”.“^”.“2”,然后按“肯定”,可以盘算出b 2+c 2的值;同样可以算出a 2的值, 得到如图1-4.10,解释:这里“^”表示乘方运算.cbaABC c = 2.70 cm a = 3.03 cmb = 1.39 cmb 2 + c2 = 9.20 cm 2a 2 = 9图1-4.10归纳结论: 序号操作现象 b 2+c 2与a 2相等吗? 1 不雅察 b 2+c 2=____a 2=_____2 用鼠标拖动点B 到另一地位. b 2+c 2=____a 2=_____3 用鼠标拖动点B 到另一地位. b 2+c 2=____a 2=_____4 随意率性拖动三角形极点转变直角三角形的外形, 结论 b 2+c 2____a 2 可以看到,老是有两直角边的平方和等于斜边的平方,本例中的横梁用勾股定理算得一半为12米,全长为24米.若有问题,请到几何画板分版,下载实例四供参考. 演习:1.量出直角三角形的两锐角的度数,验证直角三角形的两锐角互余. 若有问题,请到几何画板分版,下载案例四演习1供参考.2.学画一个矩形,先完成本例到第三步得图1-4.11,这里只是把本来的点C 改成了D.A BD图1-4.11(1)拔取点D 和线段AB,由“作图” “平行线”,画出过D 平行AB 的直线;(2)拔取点B 和直线AD,同样画出过点B 平行于AD 的直线;(3)用“选择”对象界说出第四个极点,标记标签为C;如图1-4.12A BDC图1-4.12(4)隐蔽三条直线,画出线段AD.DC.CB,即得矩形ABCD,如图1-4.13. 解释:拖动点A.B 可以转变矩形的大小和地位并可以扭转必定的角度;拖动点D 只能转变矩形在纵向上的大小,拖动点C 不会转变矩形的大小,但可以转变矩形的地位,但无论若何转变,这个图形必定是矩形,你可以经由过程器量角和边来证实这一点.A D图1-4-133.先画出如图1-4-14的图形,然后用相似于第2题的办法画一个平行四边形,ABC图1-4-14案例五 三角形的高三角形的高可能出如今哪些地位?思绪:应当对于直角.锐角.钝角三种不同类形的三角作不同的答复.计划:假如用笔在纸上画图,只能三种类型中各画一个图来解释,如今借助几何画板,我们可以动态地转变三角形的外形,使不同类形的三角形的高可以动态转变.用几何画板验证:第一步:(1) 拔取“画点”对象画三个点;(2)拔取“画直线”对象后,什么都不用做;(3) 拔取“选择”对象,在屏幕上拉一个虚线框框住画好的三点;(4) 由菜单“作图” “画直线” (快捷键是Ctrl+L) ,可以画出过这三点的三条直线,标上标签,如图1-5.1. 技能:(1) 假如要拔取的对象比较多,可以用“选择”对象在工作区中拉一个虚线框框住这些对象,这时可能会多选了一些你并不想选的,可以按Shift 键后,单击该对象撤消选择状况;(2) 上面第二步选“画直线”对象的操作会影响菜单中会不会出出“画直线”的选项,假如你没有做这一步,菜单中平日消失“画线段”,也就是说,几何画板中的有些菜单敕令和按钮的显示状况是相干的.ABC1-5.1第二步:过点A 作直线BC 的垂线,并单击垂足,界说出垂足D,用同样的办法作出垂线BE 和CF,如图1-5.2,A BCDEF图1-5.2第三步:按住Shift 键,用“选择”对象拔取所有的直线,留意不要选到点;由菜单“显示” “隐蔽直线”,可以隐蔽所有直线,得到如图1-5.3BCD EFA图1-5.3第四步:(1) 同时拔取点A.B,(2) 拔取“画线段”对象,然后按Ctrl+L,画出线段AB;(3)用同样的办法画出线段BC.AC.AD.BE.CF,得到如图1-5.4. 技能:上面说Ctrl+L 是画直线,但当你先画了“画线段”的对象后,它的功效会主动变边画线段.留意:为什么不一开端就画三条线段构成三角形呢?这是本例的要点,因为假如一开端画的是线段,点D.E.F 被界说为垂线和线段的交点,假如你拖动三角形变为钝角三角形,垂线和线段没有交点,如许会导致有两条高消掉.如今的点D.E.F 分离是垂线和直线的交点,再拉动三角形成钝角三角形时,高不会消掉.A B CDE F图1-5.4第五步:(1) 拖动点A,使∠ACB变成钝角,(如图1-5.5);(2) 拔取点C和D,按Ctrl+L,画出线段CD;(3)保持线段CD的拔取状况,由菜单“显示” “线型” “虚线”,改CD为虚线,相符平日的习惯,用同样的办法画线虚线段CE,B FAB C DEF图1-5.5第六步:拖动点A使使∠ABC变成钝角后用同样的办法作出虚线段BF.最后完成图1-5.6AB CDEF图1-5.6 归纳结论;序号 操作三角形三条高的地位三条高(或高的延伸线)交于一点吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条高或高的延伸线___________.若有问题,请到几何画板分版,下载案例五供参考.演习:不雅察三角形的三条中线,三条角等分线的地位关系.个中画中点的办法:拔取线段,由菜单“作图” “中点”(或按Ctrl+M)可以作出线段的中点,接着就可以画中线了;画角等分线的办法:如按Shift,依次点选点B.A.C,可以作出∠BAC的等分线,肯定角等分线和对边的交点后,隐蔽角等分线,再连出线段就行了.1.请本身画一个三角形作出它的三条中线,然后按请求填写试验报告.序号 操作三角形三条中线的地位三条中线交于一点吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条中线___________.若有问题,请到几何画板分版,下载案例五演习1供参考.2.请本身画一个三角形,作出它的三条角等分线,然后按请求填写试验报告.序操作 三角形三条角等分线的三条角等分线交于一点号 地位 吗?1 不雅察2 用鼠标拖动点C到另一地位.使△ABC仍为锐角三角形,再不雅察,3 用鼠标拖动点A到另一地位.使△ABC变为直角三角形,再不雅察,4 用鼠标拖动点A到另一地位.使∠ABC为钝角,再不雅察结论三角形的三条角等分线___________.若有问题,请到几何画板分版,下载案例五演习2供参考.案例六 挂画的学问要把一幅画挂在墙上,画的高低边框要和横梁平行,阁下与立柱的距离相等,应当若何钉上挂钉?图1-6.1思绪: 这个问题可以转化为和线段的垂直等分线有关的问题.计划:挂绳拉紧后,挂点到像框边框两头的距离应当相等,斟酌到平行和等距的前提,只要横梁的中垂线与边框中垂线二线合一就行了,所以只要画横梁的中垂线,把挂绳的中点定位在横梁中垂线上即可.下面验证“线段垂直等分线上的点,到线段两头的距离相等”.用几何画板验证:第一步:画一条线段AB.如图1-6.2 A B图1-6.2第二步:(1) 用选择对象拔取线段AB,(2) 由菜单“作图” “中点”(快捷键是Ctrl+M),画出线段AB的中点C,如图1-6.3留意:不要多选其他对象,假如你多选了其他对象,“中点”这个选项是灰色的不可用,一般来说,只要选择的对象不相符请求的前提,就不可能运用响应的菜单项. A BC如图1-6.3第三步:(1) 用“选择”对象按住左键拉一个框经由点C 和线段AB (但不要框住A.B 两点),如许可以同时拔取点C 和线段AB,(2) 由菜单“作图” “垂线”,画出过点C 垂直于线段AB 的垂线,等于线段AB 的垂直等分线.如图1-6.4留意:假如你画的图不是如许,过点A 或B 也有了垂线,那是因为你多选了点A 或点B.ABC图1-6.4第四步:拔取“画点”对象,在中垂线上画一点,标记为P,如图1-6.5ABCP图1-6.5第五步:(1) 画出线段PA.PB;(2) 拔取点P.A,由菜单“器量” “距离”,量得PA,同样量出PB. 第六步:(1) 同时拔取点P和中垂线;(2) 由菜单“编辑” “操作类按钮” “动画”,在弹出的对话框中,设置如图1-6.6图1-6.6 如许在屏幕上会出出一个“动画”按钮,当双击这个按钮时,点P会在直线上双向地移动.便于我们动态地不雅察. 最后成果如图1-6.7.留意:不要多选其它对象,这里只须要点P 在中垂线上活动.ABCPPA = 2.59 cm PB = 2.59 cm动画图1-6.7归纳结论:序号 操作现象 结论(是否相等)1 拖动点P 到另一地位, 这时PA=____PB=____ PA____PB2 拖动点P 到第二个地位 这时PA=____PB=____ PA____PB3 拖动点P 到第三个地位 这时PA=____PB=____PA____PB4 双击“动画”按钮, 点P在AB 的中垂线上不停的活动,PA____PB结论 只要点P在线段AB 的中垂线上,试验进程中PA______PB. 若有问题,请到几何画板分版,下载案例六供参考. 演习:1.我们将在前面作图的基本上,进一步验证等腰三角形.等边三角形的一些性质. 第七步:(1) 拔取垂直等分线,将它隐蔽;(2) 画出线段PC.得到如图1-6.8.ABCPPA = 2.59 cm PB = 2.59 cm动画图1-6.8第八步:用量距离的办法量AC.BC,量∠PAB.∠PBA.∠APB.∠PCB.∠A PC.∠BPC 的度数,得到如图1-6.9.ABCPPA = 3.17 cm PB = 3.17 cm 动画AC = 1.47 cmBC = 1.47 cm PAB = 62.47?PBA = 62.47?PCB = 90.00?APC = 27.53?BPC = 27.53?BPA = 55.06?图1-6.9归纳结论: 序号 操作现象结论1 用鼠标拖动(或双击动画按钮)不断地转变点P地位. PA 和PB 老是相等吗? ____________________ △PAB 是______三角形. 2∠PAB 和∠PBA 老是相等吗等腰三角形的两底角__________3 ∠PCB 老是等于90度吗?______________PC 是等腰三角底边上的________4 AC 和CB 的长老是相等吗?______PC 是等腰三角形底边上的_________.5∠APC 和∠BPC 老是相等吗__________PC是等腰三角形顶角的_______________.结论等腰三角形的两底角_______,底边上的高.底边上的中线.顶角等分线三线__________. 也可以拖动使∠APB=600,再不雅察边角的变化. 若有问题,请到几何画板分版,下载案例六演习1供参考.2.学画一个菱形,接第1题,先画出如图1-6.10的图形,因为点P在线段AB 的垂直等分线上,所以PA=PB.BACP图1-6.10(1)选择线段AB,由“变换” “标记镜面…”,标记AB 为镜面,线段上消失闪耀后消掉的两个方框.解释:标记镜面后,一个对象假如关于这个镜面反射,这时就仿佛人照镜子一样,人离镜面近,人像离镜面也近,用数学的说法,镜面就是对称轴,反射可以得到对称点或对称图形.技能:标记镜面的另两种办法:(1)直接双击直线(线段.射线);(2)拔取直线(线段.射线)后用快捷键Ctrl+G.(2)同时拔取点P.线段PA.PC.PB;(3)由“变换” “反射”,得到如图1-6.11. (4)用“文本”对象改各点标签为你想要的,例如得图1-6.12. 解释:在几何画板中,画特别四边形的办法不只一种,但不管用哪种办法,都要相符图形的几何干系,也就是当转变大小了地位时,矩形仍是矩形,菱形仍是菱形.BACPCAODB。

从入门到精通《几何画板课件制作教程(第三版)

从入门到精通《几何画板课件制作教程(第三版)

02
几何画板课件制作基础知识
几何画板的基本操作
启动与退出
介绍如何正确启动和退 出几何画板软件。
界面介绍
详细讲解几何画板的界 面布局,包括菜单栏、
工具栏、绘图区等。
基本绘图工具
介绍直线、圆、多边形 等基本绘图工具的使用
方法。
选择与移动
讲解如何选择对象、移 动对象和调整对象大小
等基本操作。
课件制作中的常用功能
设置动画参数
调整动画速度、方向等参数,实现 不同的动画效果。
应用动画效果
将动画效果应用于课件中,增强视 觉效果和趣味性。
案例三:复杂交互功能课件制作
1 2
制作按钮和菜单
利用交互功能,制作可点击的按钮和菜单。
实现交互效果
通过编程或脚本语言,实现课件中的复杂交互功 能。
3
调试和优化交互效果
对交互功能进行调试和优化,提高课件的易用性 和稳定性。
06
案例分析与实战演练
案例一:基础图形课件制作
绘制基本图形
如点、线、圆等,掌握几何画板的基 础绘图工具。
组合与变换图形
通过平移、旋转、缩放等操作,实现 图形的组合和变换。
编辑图形属性
设置颜色、线型、粗细等属性,使图 形更加美观和易区分。
案例二:动画效果课件制作
创建动画点
利用动画功能,制作动态变化的 点或图形。
课件的优化与调整
优化课件结构
通过合理调整课件的布局、层次和导 航,使课件结构更加清晰、易于理解 。
精炼内容
去除冗余信息,突出重点,使课件内 容更加简洁明了。
丰富表现形式
运用图表、动画、视频等多媒体元素 ,增强课件的视觉效果和吸引力。

(完整版)几何画板教程

(完整版)几何画板教程

几何画板教程第一章用工具作图第一节几何画板的启动和绘图工具的介绍1、启动几何画板:单击桌面左下角的【开始】按钮,选择【所有程序】|【GSP4.05】应用程序后,启动几何画板。

如图1所示,是打开一个几何画板文件的截图。

菜单栏工具框工作区状态栏图1几何画板的窗口是不是和其他Windows应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。

画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺工具】、【文本工具】、【自定义画图工具】。

和一般的绘图软件相比,你会不会感觉它的工具是不是少了点?几何画板的主要用途之一是用来绘制几何图形。

而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。

因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。

这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。

从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。

因为这种把所有绘图建立在基本元素上的做法和数学作图思维中公里化思想是一脉相承的。

按住工具框的边缘,可随意拖动到画板窗口的任何位置,不同位置形状不同。

试一试,能否拖到某一个地方,工具框变成图2所示的形状?图2顾名思义,猜测一下它们都有何功能?:选择对象这是它的主要功能,当然还有其他:画点可以在画板绘图区任何空白的地方或“线”上画点。

“线”可以是线段、射线、圆、轨迹、函数图像:画圆只能画正圆不能画椭圆,是不是有点遗憾?(几何画板也能画椭圆,请看第二章):画线直尺工具当然用于画线段,还不仅仅如此!:加标注(即说明性的文字)或给对象标标签:自定义工具如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具选择某项绘图工具时,用鼠标单击一下该工具即可。

《几何画板》教程从入门到精通(终审稿)

《几何画板》教程从入门到精通(终审稿)

《几何画板》教程从入门到精通公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。

本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。

考虑到初三课程的实际情况,我们没有严格按照课时来安排内容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。

我们在顺德教育信息中心为初三信息技术的学习开辟了专门的网站:网络探索(WebQuest),域名是。

本课程的相关工具和范例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。

欢迎随时访问网络探究网站,了解网络学习的最新进展!上篇用几何画板做数理实验同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗有的。

我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。

这样的软件现在国内外有很多,比较着名的有国内的“数学实验室”和国外的“几何画板”。

鉴于初中的数学知识范围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。

说明:几何画板是一个着名的教学工具软件,网上可以下载其试用版本,国内已经有版的汉化版本。

本教材以版为例编写。

在我们的网络探索社区()的顺德信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。

同时,本课程的案例程序也可以在该栏目找到。

最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。

(安装过程请参考),在顺德市教育信息中心()的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。

《几何画板》教程——从入门到精通[1]

《几何画板》教程——从入门到精通[1]

写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。

本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。

考虑到初三课程的实际情况,我们没有严格按照课时来安排内容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。

我们在顺德教育信息中心为初三信息技术的学习开辟了专门的网站:网络探索(WebQuest),域名是。

本课程的相关工具和范例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。

欢迎随时访问网络探究网站,了解网络学习的最新进展!上篇用几何画板做数理实验同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗?有的。

我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。

这样的软件现在国内外有很多,比较著名的有国内的“数学实验室”和国外的“几何画板”。

鉴于初中的数学知识范围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。

说明:几何画板是一个著名的教学工具软件,网上可以下载其试用版本,国内已经有3.05版的汉化版本。

本教材以3.0版为例编写。

在我们的网络探索社区()的顺德信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。

同时,本课程的案例程序也可以在该栏目找到。

最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。

(安装过程请参考/Jc/Jhhb.htm),在顺德市教育信息中心()的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。

除了用几何画板进行大量的数学探索实验之外,与数学紧密相连的物理同样可以在几何画板上完成很多实验。

几何画板教程

几何画板教程

几何画板教程-CAL-FENGHAI.-(YICAI)-Company One1几何画板教程第一章用工具作图第一节几何画板的启动和绘图工具的介绍1、启动几何画板:单击桌面左下角的【开始】按钮,选择【所有程序】|【】应用程序后,启动几何画板。

如图1所示,是打开一个几何画板文件的截图。

菜单栏工具框工作区状态栏图1几何画板的窗口是不是和其他Windows应用程序窗口十分类似有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。

画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么它们分别是【选择箭头工具】、【点工具】、【圆规工具】、【直尺工具】、【文本工具】、【自定义画图工具】。

和一般的绘图软件相比,你会不会感觉它的工具是不是少了点几何画板的主要用途之一是用来绘制几何图形。

而几何图形的绘制,我们通常是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。

因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。

这种公里化作图思想因为“三大作图难题”曾经吸引无数数学爱好者的极大兴趣从而在数学历史上影响重大,源远流长。

从某种意义上讲几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。

因为这种把所有绘图建立在基本元素上的做法和数学作图思维中公里化思想是一脉相承的。

按住工具框的边缘,可随意拖动到画板窗口的任何位置,不同位置形状不同。

试一试,能否拖到某一个地方,工具框变成图2所示的形状图2顾名思义,猜测一下它们都有何功能:选择对象这是它的主要功能,当然还有其他:画点可以在画板绘图区任何空白的地方或“线”上画点。

“线”可以是线段、射线、圆、轨迹、函数图像:画圆只能画正圆不能画椭圆,是不是有点遗憾(几何画板也能画椭圆,请看第二章):画线直尺工具当然用于画线段,还不仅仅如此!:加标注(即说明性的文字)或给对象标标签:自定义工具如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具选择某项绘图工具时,用鼠标单击一下该工具即可。

几何画板培训教程(精简版)

几何画板培训教程(精简版)

目录第一篇画板入门第一章用工具框作图 (3)第二篇范例赏析范例1 漂亮的勾股树 (17)1工具绘图区状态几何画板的窗口是不是和其他Windows 应用程序窗口十分类似?有控制菜单、最大/最小化以及标题栏,画板窗口的左侧是画板工具栏,画板的右边和下边可以有滚动条可以使小画板处理更大的图形。

画板的左侧是画板工具箱,把光标移动到工具的上面,一会儿就会显示工具的名称,看看它们分别是什么?它们分别是【选择箭、【自:选择对象 这是它的主要功能,当然还有其他:画点 可以在画板绘图区任何空白的地方或“线”上画点。

“线”可以是线段、射线、圆、轨迹、函数图像:画圆 只能画正圆不能画椭圆,是不是有点遗憾?(几何画板也能画椭圆,请看第二章):画线 直尺工具当然用于画线段,还不仅仅如此!:加标注(即说明性的文字)或给对象标标签:自定义工具 如果你觉得上述工具不够(如:不能直接画正方形),你可以定义新的工具选择某项绘图工具时,用鼠标单击一下该工具即可。

点(确拖动 ,状态栏显示的是“点击构造交点”示: 交点只能由线段(包括直线、射线)间、圆间、线段((包括直线、射线))与圆之间点击构造。

绘图工具的使用是不是比操作直尺和圆规更容易? 如果你细心的话,你会发现【选择箭头工具】,和【直尺工具】的右下角都有一个小三角,用鼠标按住它约一秒,看看会发生什么?【选择箭头工具】展开,有三个工具,分别是:“移动”,“旋转”,“缩放”,其用途键下一节。

【直尺工具】展开,也有三个工具,分别是:“线段”“射线”“和直线”。

线段的画法,我们知道了,如何用它来画射线直线呢?画射线:移动光标到【直尺工具】上,按住鼠标不放,待【直尺工具】展开后,不要松开鼠标,继续移动光标到射线工具上,松开鼠标,直尺工具变为((工具】(提示:圆是由两个点来决定的,鼠标按下去的点即为圆心,松开鼠标的点即为圆上的一点。

改变这两个点中的任意一点都可以改变圆。

分别拖动圆心和圆周上的点,可改变圆的大小,拖动圆周,可移动圆。

(2021年整理)《几何画板》教程——从入门到精通

(2021年整理)《几何画板》教程——从入门到精通

《几何画板》教程——从入门到精通(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《几何画板》教程——从入门到精通(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《几何画板》教程——从入门到精通(推荐完整)的全部内容。

《几何画板》教程—-从入门到精通(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望《几何画板》教程——从入门到精通(推荐完整) 这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈《几何画板》教程——从入门到精通(推荐完整)〉这篇文档的全部内容。

写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。

本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用.考虑到初三课程的实际情况,我们没有严格按照课时来安排内容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。

我们在顺德教育信息中心为初三信息技术的学习开辟了专门的网站:网络探索(WebQuest),域名是http://wq。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。

本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。

考虑到初三课程的实际情况,我们没有严格按照课时来安排容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。

我们在教育信息中心为初三信息技术的学习开辟了专门的:网络探索(WebQuest),域名是。

本课程的相关工具和例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。

欢迎随时访问网络探究,了解网络学习的最新进展!上篇用几何画板做数理实验同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗?有的。

我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。

这样的软件现在国外有很多,比较著名的有国的“数学实验室”和国外的“几何画板”。

鉴于初中的数学知识围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。

说明:几何画板是一个著名的教学工具软件,网上可以下载其试用版本,国已经有3.05版的汉化版本。

本教材以3.0版为例编写。

在我们的网络探索社区()的信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。

同时,本课程的案例程序也可以在该栏目找到。

最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。

(安装过程请参考yzy68.home.sohu./Jc/Jhhb.htm),在市教育信息中心()的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。

除了用几何画板进行大量的数学探索实验之外,与数学紧密相连的物理同样可以在几何画板上完成很多实验。

我们将选取大家在初中数学和物理中遇到的一些典型问题为例子,利用几何画板来完成一些数学和物理实验。

学完这些例子,相信同学们会熟练地应用几何画板,并且对学习过的或将要学的数学知识、物理知识有更进一步的认识。

好啦,让我们开始吧。

首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。

案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。

方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。

如图1-1.2。

图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。

图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。

说明:如果几何画板程序已经打开,只要由菜单“文件”“新绘图”,也可以新建一个绘图文件。

第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。

如图1-1.4。

注意:在几何画板中,点用一个空心的圈表示。

图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。

如图1-1.6图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明图1-1.5第四步:(1)再次选取“画线段”工具,移动鼠标与点A重合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如图1-1.7。

注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。

图1-1.7第五步:(1) 用“选择”工具单击线段AB,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2)由菜单“作图”“中点”,画出线段AB的中点,标上图1-1.8标签。

得如图1-1.8。

注意:如果被选取的是点,点的外面会有一个粗黑圆圈。

在几何画板中,选取线段是不包括它的两个端点的,以后的问题都是这样,如果不小心多选了某个对象,可以按Shift键后用左键再次单击该对象取消选取。

第六步:用同样的方法画出其它两边的中点。

得如图图1-1.91-1.9。

技巧:最快的方法是:按住Shift不放,用“选择”工具分别点击三条线段,可以同时选取这三条线段,再由“作图”“画中点”(或按快捷键Ctrl+M),就可以同时画好三条边的中点。

第七步:用“画线段”工具连结DE、EF、FD,得如图图1-1.101-1.10:技巧:画线段的另一方法,在保证画线工具出现的是“画线段”按钮(不必选取)的前提下。

选取两点后,由菜单“作图”“画线段”,(或按快捷键Ctrl+L),可以画出连结两点的线段。

本例最快的做法:1、选取“画点”工具,按住Shift键不放在工作区中画三个点,这时三个顶点都保持选取状态2、按Ctrl+L,可以同时画出三条边并且三边同时被选取;3、按Ctrl+M,可以同时画出三边中点且三中点同时被选取;4、按Ctrl+L,可以同时画出小三角形三条边,标上标签即可。

第八步:(1) 按住Shift键不放,用“选择“工具选取点A、图1-1.11D、F;(2) 由菜单“作图”“多边形部”填充多边形部;(3) 保持部的选取状态,由菜单“度量”“面积”,可以量出ADF的面积,如图1-1.11。

第九步:(1) 用同样的方法,填充并度量三角形图1-1.2BDE、ECF、DEF;(2) 选取DEF的部,由菜单“显示”“颜色”,选择其它颜色,如蓝色,得到如图1-1.12。

注意:在制作过程中,要经常保存文件,以免因意外原因造成文件丢失,以下每一个例子都是这样,不再加以说明。

归纳结论:拖动顶点A、B、C中的任一个,可以改变三角形的大小和形状,请观察不同情况下,四部分的面积是否总是相等?这样做可以完成分饼的任务吗?说明:这是通过实验来验证数学规律,不能保证结论一定是正确,一般来说,有一些结果经过了人类的长期实践,大家都公认了它的正确性,这时会把这个结论作为公理直接使用;而大多数情况下,实验得到的结果仍然需要进行推理证明。

那么,实验有什么用呢?实验可以帮助我们认识规律,更容易接受知识,并且常常可以让我们找到解决问题的方向。

如有问题,请到几何画板分版,下载案例一供参考。

练习:1、对于方案二,四等分面积的问题就转化为四等分线段的问题,四等分线段可以用哪些方法?2、为了方便在改变等分的份数(例如要分成五份)时方法仍然能用,这里介绍利用平行线等分线段的方法把一条线段四等分。

第一步:(1) 选取“画射线”工具;(2)移动鼠标到与点A重合,按住左键拖动,画出一条以点A为端点的射线AD,得如图1-1.13。

A图1-1.13第二步:(1) 选取“画点”工具,移动鼠标到射线AD上,在靠近点A处单击画出一个点E,得如图1-1.14;(2) 按住Shift键不放,用“选择”工具,依次选取点A、E,由菜单“变换”“标记向量A-E”。

说明:标记了一个向量后,可以在后面的平移变换中按这个向量来平移,保证出现若干段相等的线段,标记向量时,一定要注意选选择点的先后顺序。

A图1-1.14第三步:(1) 用“选择”工具选取点E,由菜单“变换”“平移…”,在弹出的对话框中点“确定”即可得一点E’;(2) 选取E’,做同样的操作可以得E’’,……,这样做下去,直到得到你想要的若干段相等的线段,这里是四段,如图1-1.15。

A图1-1.15E’’’、点E、E’、E’’,由菜单“作图”“平行线”,画出了一组平行线,如图1-1.16。

第五步:(1) 用“选择”工具单击平行线和AB相交处,得到三个四等分点;图1-1.17(2) 选取所有平行线、射线AD及AD上的点(除A外),由菜单“显示”“隐藏对象”,可以隐藏制作过程中的辅助线。

得如图1-1.17。

以下只要连结点C和三个四等分点就行了,……注意:在最后结果中不需要看到的对象,一般是把它隐藏,如果你选取后删去了它,你会发现你要的四等分点也会消失,这是因为这些点是受辅助线控制的,隐藏的对象只是看不到,但它仍然起作用。

隐藏和删除是不同的。

如有问题,请到几何画板分版,下载案例一的练习供参考。

3、自己比较一下这两种方法,在只需要四等分的情况下,哪种方法方便?,在需要其它等分的情况下,哪种方法更具有一般性?案例二三角形的角和现有一块三角形的木板,用来制作一个半圆形的木盖,请设计一个浪费比较小并且便于施工的方案。

图1-2.1得到三个扇形后拼成半圆,如图1-2.2:思路:以三角形较短一边的一半为半径,以三个顶点为圆心画弧,图1-2.2那么,如何知道拼成的一定是一个半圆呢?下面用几何画板做一个实验来说明。

方案:画一个三角形;量三个角的度数;用几何画板的计算功能计算三个角的和。

如果对于任意的三角形,总有角和是1800,那么说明拼成的一定是一个半圆形。

用几何画板验证:第一步:新建一个几何画板绘图文件。

画出三角形ABC第二步:(1) 选取“选择”工具,按住Shift不放,依次选取点B、A、C;(2) 由菜单中的“度量”“角度”,量出∠BAC的度数,用同样的方法度量其它两个角。

如图1-2.3说明:由于每个人画的图不同,度数不一定和图1-2.3一样)。

注意:选一个角的关键是角的顶点要第二个选。

图1-2.3第三步:由菜单“度量”“计算”弹出一个计算器,依次点击“∠BAC=…”、“+”、“∠ABC=…”“+”、“∠ACB=…”、“确定”,如图1-2.4。

说明:“∠BAC=…”在本例中是“∠BAC=45.00”,这里用省略号表示,是因为每个人画的图不同,量出的度数有可能不同,以后类似的问题都这样来表示。

技巧:弹出计算器的方法有:(1) 由菜单“度量”“计算”;(2) 双击工作区中的任一度量值,如“∠BAC=…”;(3) 在工作区中击鼠标右键,由“度量”“计算”。

图1-2.4归纳结论:请按要求操作后填写下表:序号操作现象三个角的和等于1 观察∠BAC=______ ∠ABC=______ ∠ACB=______2 用鼠标拖动其中一个顶点改变三角形变成钝角三角形∠BAC=______∠ABC=______∠ACB=______3 用鼠标拖动其中一个顶点改变三角形变成直角三角形∠BAC=______∠ABC=______∠ACB=______4 用鼠标拖动其中一个顶点任意改变三角形的形状三个角的和总是结论三角形的角和总是________练习:1、自己画一个凸四边形,度量它的角,计算角和,验证凸四边形的角和是3600。

相关文档
最新文档