八年级上册全等三角形复习教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习
一、全等三角形
全等三角形的概念及其性质
1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2、全等三角形性质:
(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“SSS”)
边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)
二、角的平分线:熟悉基本图形
1、(性质)角的平分线上的点到角的两边的距离相等.
2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
【习题讲练】
例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,
对应角:______与_______,______与_______,______与_______.
例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3) 例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,
105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.
2.全等三角形的判定方法
1)、三边对应相等的两个三角形全等 ( SSS )
例1.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
例2.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.
例3. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 。
求证:MB=MC
2)两边和夹角对应相等的两个三角形全等( SAS )
例4.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠
3)、两角和夹边对应相等的两个三角形全等 ( ASA )
例5.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F 求证:ABE ∆≌FCE ∆
4)、两角和夹边对应相等的两个三角形全等 ( AAS )
例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。且B ADE ∠=∠,AD=DE 求证:ADB ∆≌DEC ∆.
5)、一条直角边和斜边对应相等的两个直角三角形全等 ( H L ) 例7.如图,在ABC ∆中, 90=∠C ,沿过点B 的一条直线BE 折叠ABC ∆,使点C 恰好落在AB 变的中点D 处,则∠A 的度 数= 。
3.角平分线
1)。角平分线性质定理:角平分线上的点到这个角两边的距离相等。
逆定理: 到一个叫两边的距离相等的点在这个角的平分线上。
例8.如图,在ABC △中,90C ∠=,
AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点
到直线AB 的距离是 cm .
例9.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .
(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由
; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BP A 的度数.
B
P
A
B
C D