小学毕业列方程解应用题讲解及训练
小学毕业列方程解应用题讲解及训练9
列方程解答应用题1.某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少?2 .某人装修房屋,原预算25000元。
装修时因材料费下降了20%,工资涨了10%,实际用去21500元。
求原来材料费及工资各是多少元?3、某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元 . 已知今年分得的现金,甲增加50%,乙增加30% . 两人今年分得的现金各是多少元?4..若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?5. .某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆?6、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。
求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?7.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?8、某厂买进甲、乙两种材料共56吨,用去9860元。
若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?9、有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?10、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
3种包装的饮料每瓶各多少元? 11、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。
已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。
完整版)小学解方程详解及练习题
完整版)小学解方程详解及练习题小学四年级解方程的方法详解方程是含有未知数的等式。
例如,4x-3=21,6x-2(2x-3)=20都是方程。
方程的解是使方程成立的未知数的值。
例如,上述方程解得x=6.解方程的过程叫做解方程。
解方程的依据是方程就像一架天平,等式两边是平衡的,一样重!解方程的步骤如下:1.去括号:运用乘法分配律;括号前边是“-”,去掉括号要变号;括号前边是“+”,去掉括号不变号。
2.移项:运用等式性质,两边同加或同减,同乘或同除;或者使用符号过墙魔法,越过“=”时,加减号互变,乘除号互变。
注意两点:总是移小的;带未知数的放一边,常数值放另一边。
3.合并同类项:未知数的系数合并;常数加减计算。
4.系数化为1:利用同乘或同除,使未知数的系数化为1.5.写出解:未知数放在“=”左边,数值(即解)放右边,例如x=6.6.验算:将原方程中的未知数换成数,检查等号两边是否相等。
注意:做题开始要写“解:”,上下“=”要始终对齐。
举例说明:例1:x-5=13,解为x=18.例2:3(x+5)-6=18,解为x=3.例3:3(x+5)-6=5(2x-7)+2,这道题存在格式错误和明显有问题的段落,无法解答。
1.去括号,移项,合并同类项,系数化为1,写出解,验算:4+x=7x+66-x=7x-46-4=7x-x10=6xx=-10/6=-5/3验算:4+(-5/3)=7(-5/3)+68/3=-35/3,不符合,原方程无解。
2.移项,合并同类项,系数化为1,写出解,验算:24-x=15+2x24-15=x+2x9=3xx=3验算:24-3=15+2(3)21=21,符合,解为x=3.3.去括号,移项,合并同类项,系数化为1,写出解,验算:3(x+6)=2+5x3x+18=2+5x18-2=5x-3x16=2xx=8验算:3(8+6)=2+5(8)42=42,符合,解为x=8.4.去括号,移项,合并同类项,系数化为1,写出解,验算:2(x+4)-3=2+5x2x+8-3=2+5x5x-2x=8-3-23x=3x=1验算:2(1+4)-3=2+5(1)7=7,符合,解为x=1.5.去括号,移项,合并同类项,系数化为1,写出解,验算:30-4(x-5)=2x-1630-4x+20=2x-1650-16=2x+4x34=6xx=17/3验算:30-4(17/3-5)=2(17/3)-1610/3=10/3,符合,解为x=17/3.6.去括号,移项,合并同类项,系数化为1,写出解,验算:36÷x=1836=18x36/18=xx=2验算:36÷2=18,符合,解为x=2.7.去括号,移项,合并同类项,系数化为1,写出解,验算:4y+2=64y=6-24y=4y=1验算:4(1)+2=6,符合,解为y=1.8.去括号,移项,合并同类项,系数化为1,写出解,验算:2(2x-1)=3x+104x-2=3x+104x-3x=10+2x=12验算:2(2(12)-1)=3(12)+1046=46,符合,解为x=12.9.去括号,移项,合并同类项,系数化为1,写出解,验算:100-3(2x-1)=3-4x100-6x+3=3-4x100-3=4x-6x97=-2xx=97/2验算:100-3(2(97/2)-1)=3-4(97/2)1=1,符合,解为x=97/2.10.去括号,移项,合并同类项,系数化为1,写出解,验算:9+3=17-x12=17-x12+ x =17x=5验算:9+3=17-5,符合,解为x=5.11.去括号,移项,合并同类项,系数化为1,写出解,验算:15=3xx=5验算:15=3(5),符合,解为x=5.12.去括号,移项,合并同类项,系数化为1,写出解,验算:2+5x=18+3x5x-3x=18-22x=16x=8验算:2+5(8)=18+3(8)42=42,符合,解为x=8.13.去括号,移项,合并同类项,系数化为1,写出解,验算:56-3x=20-x56-20=3x-x36=2xx=18验算:56-3(18)=20-182=2,符合,解为x=18.14.去括号,移项,合并同类项,系数化为1,写出解,验算:3x-1=8-2x3x+2x=8+15x=9x=9/5验算:3(9/5)-1=8-2(9/5)15/5-1=40/5-18/52=2,符合,解为x=9/5.15.去括号,移项,合并同类项,系数化为1,写出解,验算:56x-50x=306x=30x=5验算:56(5)-50(5)=30,符合,解为x=5.16.去括号,移项,合并同类项,系数化为1,写出解,验算:32y-29y=33y=3y=1验算:32(1)-29(1)=3,符合,解为y=1.17.去括号,移项,合并同类项,系数化为1,写出解,验算:x÷6+3=9x÷6=6x=36验算:36÷6+3=9,符合,解为x=36.18.去括号,移项,合并同类项,系数化为1,写出解,验算:x+32=76x=76-32x=44验算:44+32=76,符合,解为x=44.19.去括号,移项,合并同类项,系数化为1,写出解,验算:2x-8=82x=8+82x=16x=8验算:2(8)-8=8,符合,解为x=8.20.去括号,移项,合并同类项,系数化为1,写出解,验算:x-6×5=42+2xx-30=42+2xx-2x=42+30x=72x=-72验算:-72-6×5=42+2(-72)102=102,不符合,原方程无解。
小学数学列方程解应用题(含答案).docx
小咛彩^眯jttA'F级专川笫一讲列方程解应用题这一讲学习列方程解应用题.例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45. 求甲、乙二数.分析被除数、除数、商和余数的关系:被除数=除数X商+余数.如果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x + 17.又根据乙数的10倍除以甲数商3余45得10x=3(2x + 17)+45,列岀方程.解:设乙数为x,则甲数为2x+17.10x=3(2x + 17)+4510x=6x+51+454x=96x = 242x+17=2X 24+17=65.答:甲数是65,乙数是24.例2电扇厂计划20天生产电扇1600台.生产5天后,由于改逬技术,效率提高25%,完成计划还要多少天?思路1:分析依题意,看到工效(每天生产的台数)和时间(完成任务需要的天数)是变量,而生产5天后剩下的台数是不变量〔剩余工作量)•原有的工效:1600十20=80 (台),提高后的工效:80X (1 + 25%) =100〔台).时间有原计划的天数,又有提高效率后的天数,因此列岀方程的等量关系是:提高后的工效x所需的天数二剩下台数.解:设完成计划还需x天.1600-20X (1+25%)X X=1600-1600-20X580X1.25x^1600-400100x^1200x=12.答:完成计划还需12天.思路2:分析“思路1 ”是从具体数量入手列出方程的.还可以从“率”入手列方程.己知“效率提高25% ”是指比原效率提高25%.把原来效率看成单位“1”,原计划20天完成,每天完成总数的霜,5天完成、剩下的台数则占总数的1-|=|.解:设完成计划还要x天.丄X (1 + 25%) Xx = l-丄X520 201 3——X =—16 4x = 12 ・答:完成计划还需12天.例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如杲这项工程由乙单独做,需几天完成?分析如杲把全部工程看作单位“1”,则甲每天完成右,丙每天完成若乙单独做完成这件工程用x天,则乙每天完成丄,甲、乙、丙合20 x作一天完成(4丄+加,他们合作5天完成这项工程的(寺+丄+12 x 20 12 X2)X5.于是我们找到等量关系(加丄+加X5=l,即工作总量=20 12 x 20工作总量.解:设乙单独做,需X天完成这项工程.(- + - + — ) X 5 = 112 x 2071111—"I ------ 1-―-——12 x 20 560 ,5+—+ 3=1260 ”—=4x= 15.答;刁单舱做汶项T稈需巧天完成一例4中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛•比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、门分.求男、女生至少各有多少人参赛?分析若把男、女生人数分别设为x 人和y 人.依题意全体学生的平均分为76分,男、女生平均分数分别为旳分、门分,可以确定等量关系:男生平均分 数X 男生人数+女生平均分数X 女生人数二(男生人数+女生人数)X 总平均分数.解方程后可以确定男、女生人数的比,再根据总人数的取值范围确定参加 比赛的最少人数,从而使问题得解.解:设参加数学邀请赛的男生有x 人,女生有y 人.79x+71y= (x+y ) X 76 79x+71y=76x+76y3x = 5y x : y=5: 3总份数:5 + 3=8.在380~450之间能被8整除的最小三位数是384,所以参力口邀请赛学生至少 有384人.男生:384X | = 240 (人)O 3女生:384X -=144 (人).O答:男生至少有240人参加,女生至少有144人参加.例5瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的A 、B 两种洒精,瓶子里的洒精浓度变为14%.己知A 种洒精的浓度是B 种洒精 的2倍,求A 种洒精的浓度.分析依题意,A 种酒精浓度是B 种洒精的2倍•设B 种洒精浓度为x%,则A种洒精浓度为2x%. A 种酒精溶液100克,因此100X2x%为100克酒精溶液中含 纯酒精的克数.B 种洒精溶液400克,因此4OOX X %为400克洒精溶液中含纯洒 精的克数.解:设B 种洒精浓度为x%,则A 种洒精的浓度为2x%.1000x15% +100 x2x% +400xx%1000 + 100+400150+6x = 14X15= 14%150 + 2x + 4x1500= 14%6x=602x% = 2X10% = 20%.答:A种洒精的浓度为20%.例6有人用车把米从甲地运到乙地,装米的重车日行50里,空车日行® 里,5日往返三次.问两地相距多少里?(选自《九章算术》)分析当你用算术法解这道题时会感到比较困难•但用方程解这一算术“难题”就容易多了.列方程解应用题的关键在于确定等量关系,确立等量关系还有一种常用的方法叫译式法,即把日常用语译成代数语言,通过列表可以看岀列方程的过程.解:设两地相距x里.50 7021x + 15x=175036x = 1750答:甲乙两地相距48磐里.1O例7设六位数labcde乘以3以后变成abcdel,求六位数1 abcde. 分析与解答设五位数abcde为x,则labcde = 100000-Fx abcdel = 1 Ox + 1依题意列方程:3X (100000+x) =10x + l300000+3x=10x+l7x=299999x = 42857labcde= 142857.例8兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍.问,3年后兄弟二人各几岁?.分析设3年后哥哥年龄为x岁,弟弟年龄为(26-x)岁.则今年哥哥年龄为(x-3)多,弟粢年齬为(26-X-3)少,兄亲二人的牟齡圭是(x-3)-(26- x-3)岁.列方程的等量关系是:弟弟今年的年龄二兄弟二人年龄差的2倍.解:设3年后哥哥x岁,则弟弟3年后的年龄是(26r)岁.[(x-3)-(26-x-3)] X2=26-X-3[2x-26] X2=23-x4x~52=23—x5x = 75x= 1526-x = 26-15= 11答:3年后哥哥年龄是15岁,弟弟11岁.五年级专题:列方程解应用题4、6、8、有43位同学,他们身上带的钱从8分到5角,钱数都各不相同.每个同学都把身上带的全部钱各自买了画片.画片只有两种:3分一张和5分一张.每11人都尽量多买5分一张的画片•问他们所买的3分画片的总数是多少张?\ ________________________________________________________________________________________9,解答1、解答:这道题属于盈亏问题,盈亏问题用方程解决很容易。
列方程解应用题100道附详解
列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。
小学列方程解应用题(讲解)
板块一、直接设未知数【例 1】 长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米? 【解析】 解:设长方形的宽是x 厘米,则长方形的长3x +()厘米 [3]266366233323015x x x x x x x x ++⨯=++=÷++===()() 15318+=(厘米)答:长方形的长18厘米,长方形的宽是15厘米.【巩固】 一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米? 【解析】 解:设三角形的高是x 厘米,则有92189364x x x ⨯÷=⨯== 答:三角形的高是4厘米.【巩固】 (全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是 .(精确到0.01,π 3.14=)【解析】 设半圆的半径为r ,则21π2π2r r r =+,即 π2π2r =+,所以,半圆的半径42 3.27πr =+≈.【例 2】 用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【解析】 设这个足球上共有x 块白色皮块,则共有3x 条边是黑白皮块共有的.另一方面,黑色皮块有32x -()块,共有532x -()条边是黑白皮块共有的(如图).由于在这个足球上黑白皮块共有的边是个定值,列得方程:3532x x =-(),解得20x =.即这个足球上共有20块白色皮块.【例 3】 (2003年全国小学数学奥林匹克)某八位数形如2abcdefg ,它与3的乘积形如4abcdefg ,则七位数abcdefg 应是 . 【解析】 设x abcdefg =,则列方程解应用题——教师版(20000000)3104x x +⨯=+,759999996x =, 8571428x =,即七位数应是8571428【巩固】 有一个六位数1abcde 乘以3后变成1abcde ,求这个六位数.【解析】 解:设x abcde =,则有六位数1x 和1x ,有1000003101x x +⨯=+(),解得42857x =,所以原六位数是142857.[点评] 本题的巧妙之处在于abcde 始终没有分开,所以我们把它看作一个整体.【巩固】 (第六届“迎春杯”刊赛试题)有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是 . 【解析】 设五位数是x ,那么第一个六位数是107x +,第二个六位数是700000x +.依题意列方程7000005107x x +=+(),解得1425x =.【例 4】 有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数. 【解析】 设最小的那个数为x ,那么中间的数和最大的数分别为1x +和2x +.则2(1)3(2)68x x x ++++=6868x += 660x = 10x =.所以这三个连续整数依次为10、11、12.【巩固】 已知三个连续奇数之和为75,求这三个数。
六年级--列方程解应用题(一)
列方程解应用题【知识点拨】列方程解应用题,一般有如下步骤:1、审:分析题意,弄清题目中的数量关系。
2、找:相等关系。
3、设:用x 表示题目中的一个未知数。
4、列:对照这个相等关系方程。
5、解:解所列出的方程,求出未知数的值。
6、答:检验并写出答案。
列方程解应用题的关键是:找出题中数量间的相等关系,列出方程。
1、一个数的4倍加上3乘以0.7的积,和是216,则这个数是多少?2、有一个两位数,个位上的数字是十位上数字的2倍,如果把个位与十位上的数字对换,所得的新数比原数大36,求原数。
例1 仓库共有大米和面粉84吨,运出大米的58与面粉的34后,仓库存里大米和面粉共剩26吨,仓库里原来有大米、面粉各多少吨?【思路点拨 将大米或面粉的质量用未知数x 表示出来后,根据共剩下26吨列出方程求解。
】例2 分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是15,原来的分数是几分之几?【思路点拨 将分母用一个未知数x 表示出来后,根据题中的叙述列出方程解答。
】例3 某校有学生465人,女生的32比男生的54少20人。
该校有男生多少人?【思路点拨 直接设所求为x 个,根据题中清晰的等量关系列方程解答。
】例4 有两条纸带,一条长2.1米,一条长1.3米,把两条纸带都剪下来同样长的一段以后,发现短纸带剩下的长度是长纸带剩下长度的715。
问剪下的一段有多长?【思路点拨 因为长纸带和短纸剪去的部分同样长,所以可以设剪下的一段长度为x 。
再根据两条纸带剩下的长度的关系列方程并求解。
】【巩固练习】1、一根钢管,第一次截去3米,第二次截去余下的31,这时还剩12米,钢管原长多少米?(用方程解题)2、甲>乙,甲乙两数的差为10,甲数的71比乙数的92少20,求甲数?3、有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是79,这个分数是多少?4、一个分数,分子与分母的和是37,如果把这个分数的分子加上2,分母不变,那么它约分后得310,求原来的分数。
小学数学六年级下册列方程解应用题精选例题及答案解析
列方程解应用题(一)同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。
用算术方法解答比较困难,如果用方程解就简便得多。
它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“ X”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。
114倍少8棵,五年例1.金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树总数的级植树多少棵?b5E2RGbCAP11倍少8棵,就是六年级的4倍的数少8,等于六年级植树思路分析:六年级比五年级植树总数的11的总数。
等量关系是:五年级的4倍一8 =六年级的植树总数。
plEanqFDPw解:设五年级植树X棵,根据题意列方程,得11—x -8 =252411—x =252 8411 —x =260 41x = 260 - 1 一4x =208验算:把x = 208代入原方程1=1— 208 -8 =252左边4右边=252左边=右边x =208是原方程的解。
答:五年级植树208棵。
例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的水、2倍,这瓶农药里, 硫磺粉和石灰粉各多少克?DXDiTa9E3d思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克。
水的重量是硫磺的6倍还多25克,也就是(6x+ 25)克,石灰的重量就是1x硫磺粉的重量除以2,也就是2 克。
等量关系式表示为:RTCrpUDGiT水+硫磺粉+石灰=农药重量1X解:设硫磺粉的重量是X克,那么,水的重量是(6x 25 )克,石灰重量是2克。
根据题意列方程,解。
16x 25 x x = 700217 x = 700 - 25275x =675x = 90验算:把x = 90代入原方程1=6 90 25 90 —90 = 700左边2右边=700左边=右边x =90是原方程的解。
小学毕业列方程解应用题讲解及训练
资料一:典型应用题精练(列方程解应用题)列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:列方程解应用题列方程解应用题的步骤。
1弄清题意找出未知数并用x表示2找出应用题中数量之间的相等关系列方程3解方程4检验写出答案。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
小学解方程详解及练习题
小学解方程详解及练习题解方程是数学中的基本概念之一,也是我们解决实际问题时常遇到的数学工具。
在小学阶段,解一元一次方程是最基础的内容之一。
本文将详细介绍小学解方程的方法,并提供一些练习题供读者巩固练习。
一、解一元一次方程的方法解一元一次方程主要通过逆运算的方法,将含有未知数的方程转化为已知数的方程,从而求出未知数的值。
下面介绍两种常见的解方程方法。
1.1 相等法相等法是一种直观且易于理解的解方程方法。
以一个例子来说明相等法的使用:【例1】小明今年8岁,几年后他的年龄会是12岁?请用方程表示该问题并求解。
解:设几年后的年龄为x年,则题目中的问题就是:8 + x = 12。
通过逆运算,将方程转化为已知数的方程,即:x = 12 - 8,x = 4。
所以,几年后小明的年龄是12岁。
相等法的基本思想是,在方程的两边添加相同的数,使左边的未知数和右边的已知数相等,从而解方程。
1.2 消元法消元法是另一种常用的解方程方法,适用于某一方程中含有相同未知数的两项,可以通过消去这些相同未知数的方法,简化方程并求解。
以一个例子来说明消元法的使用:【例2】某糖果店有红色糖果和蓝色糖果,其中红色糖果的数量是蓝色糖果的2倍,共有30颗糖果,求红色糖果的数量和蓝色糖果的数量各是多少?解:设蓝色糖果的数量为x,则红色糖果的数量为2x。
根据题目中给出的信息,可得方程:x + 2x = 30。
将同类项进行合并得到简化方程:3x = 30。
再通过逆运算,求得x的值:x = 30 ÷ 3,x = 10。
所以,红色糖果的数量是2x,即20颗;蓝色糖果的数量是x,即10颗。
消元法的基本思想是,通过变形和合并同类项的方法,逐步简化方程,最终求得未知数的值。
二、练习题为了帮助读者巩固解方程的方法,下面提供一些练习题。
请根据所学的解方程方法,解答以下问题:1. 某书店新购进图书10本,若每本20元,则新购图书的总价是多少?2. 一辆公交车上有男性乘客x人,女性乘客是男性乘客人数的2倍,总共有45人乘坐,请问男性乘客的人数和女性乘客的人数各是多少?3. 某数与它的4倍之和等于100,求该数。
(完整)六年级列方程解应用题
(完整)六年级列方程解应用题名优教育教育成就梦想,名优引领飞翔!列方程解应用题1列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。
2列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。
3列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4列方程解使用题的范围a一般应用题;b和倍、差倍问题;c几何形体的周长、面积、体积计算;d分数、百分数使用题;e比和比例应用题。
5、知识回顾我们在小学阶段研究过许多数量关系:(1)行程问题中路程、速度、时间之间的关系:相遇问题、追及问题、水流问题、过桥问题等;(2)溶液中浓度、溶液、溶质的关系;工程题目中工程量、工作效率、工作工夫之间的关系;(3)年龄、数字题目(4)其它6、方法总结.列方程解应用题的步骤是:(1)审题:弄清题意,肯定已知量、未知量及它们的关系;(2)设元:选择适当未知数,用字母表示;(3)列代数式:根据条件,用含所设未知数的代数式表示其他未知量;(4)列方程:利用列代数式时未用过的等量关系,列出方程;(5)解方程:正确运用等式的性质,求出方程的解;(6)检验并答题。
一、“鸡兔同笼题目”例1、苹果和梨共14筐,总重520千克,个中苹果每筐重35千克,梨每筐重40千克,问梨和苹果各几筐?练:1、鸡兔共36个头,118只脚,问鸡兔各多少只?名优教育教育成绩梦想,名优引领翱翔!2、某人给农作物除草,下雨天每天除草12亩,晴天每天除20亩,他连续除草8天,平均每天除草14亩,那么这几天中,晴天有几天?3、工人搬运100只玻璃杯,搬运一只得3角,破坏一只赔5角,搬运完共获得26元。
(word版)六年级列方程解应用题
列方程解应用题专题简析1、方法总结.列方程解应用题的步骤是:1〕审题:弄清题意,确定量、未知量及它们的关系;2〕设元:选择适当未知数,用字母表示;3〕列代数式:根据条件,用含所设未知数的代数式表示其他未知量;4〕列方程:利用列代数式时未用过的等量关系,列出方程;5〕解方程:正确运用等式的性质,求出方程的解;6〕检验并答题。
2、列方程解应用题的方法1〕综合法:先把应用题中数〔量〕和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从局部到整体的一种思维过程,其思考方向是从到未知。
2〕分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中数〔量〕和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到局部的一种思维过程,其思考方向是从未知到。
例题精讲例1:红星小学六〔1〕班组织全体同学分成两个小组开展学雷锋活动.甲组的同学到敬老院慰问老人,乙组的同学到校外清扫垃圾.甲组的人数比乙组人数多1,后来从甲组抽调9人到乙组,此时乙组人数比甲组人数多4。
问六〔1〕班35共有学生多少名?1例2:有甲乙两个粮仓甲粮仓的3与乙的2相等又知甲仓粮食的1比乙仓的8 5 41多4吨,求两粮仓各多少粮食?5例3:一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍还多24.求这个两位数。
例4:某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间是第一车间人数的一半少1人,求三个车间各有多少人?例5:甲、乙两班图书角的课外书数量之比是3:4,后来甲班借给乙班40本。
这时甲班图书角的课外书数是乙班的1,问甲、乙两班图书角原来各有多少本课外2书?例6:清晨,哥哥和弟弟两人一起去上学,哥哥每分钟走95米,弟弟每分钟走275米。
哥哥到校门时,发现忘带作业,立即回家取,往回走了200米和弟弟相遇。
问他们家到学校有多远?例7:甲、乙两种酒精浓度分别为70%和55%,现要配制浓度为65%的酒精3000克,应从这两种酒精中各取多少克?例8:甲、乙两人去书店买书,共带去54元,甲用去自己钱的75%,乙用去自己钱的4,两人剩下的钱数正好相等。
六年级【小升初】小学数学专题课程《列方程解应用题》(含答案)
21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。
二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。
2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。
3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。
列方程解应用题,关键是寻找题中的等量关系。
方法:(1)直接设未知数;(2)间接设未知数。
途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。
考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去49,乙用去27后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x 元,则乙原有(100-x )。
甲剩下的钱可以用x×(1-49)元表示,乙剩下的钱可以用(100-x)×(1-27)元表示,然后根据两人一共剩下60元列出方程。
【答案】设甲原有x 元,则乙原有(100-x )。
x ×(1-49)+(100-x)×(1-27)=605x +(100−x )×(1−2)=60 x =60答:甲原来有72元钱。
【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。
考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。
体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。
【答案】设借球的班级数为x个。
5x×3=6x+729x=72x=8篮球:5×8=40个足球:40×3=120个答:体育室里原有足球120个,篮球40个。
小升初数学毕业专题总复习第6讲-----列方程解应用题
列方程及实际应用题知识点梳理1.列方程解应用题的一般步骤(1)审题,分析题目中的数量关系,通常也需要找出单位“1”。
(2)设未知数,通常会以单位“1”设为未知数,也要根据题目的数量关系设定。
(3)找出等量关系,列出方程。
(4)解出方程,检验,作答。
2.常用解法:(1)以总量为等量关系建立方程。
(2)以相差量为等量关系建立方程。
(3)以题中的部分量、剩余量为等量关系建立方程。
3.常见题型:分数应用题、百分数应用题、行程问题、工程问题、比例问题等。
精讲点拨例1两地相距249千米,一列火车从甲地开往乙地,每小时行55.5千米,行了多少小时还离乙地有27千米?举一反三:1.某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作 5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?2.甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?例2 化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?举一反三: 1.师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?例3 有两桶油,甲桶油重量是乙桶油的2倍,现在从甲桶中取出25.8千克,从乙桶中取出剩下的两桶油重量相等,两桶油原来各有多少千克?举一反三:1.一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?例4 甲、乙两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣组,问甲、乙两班原来各有多少人?举一反三:1.菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克? 2.某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?例5 小明家买了一袋大米,第一周吃去9千克,第二把周吃去了40%,还剩下6千克。
【小升初】小学数学列方程解应用题专项训练及答案解析
【小升初】小学数学列方程解应用题专项训练及答案解析小升初数学专项复小学数学小升初列方程解应用题轻松闯关1.甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?2.甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米。
甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离。
3.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?6.某商店原来将一批苹果按100%的利润(即利润是本钱的100%)定价出售,由于定价过高,无人采办,厥后不能不按38%的利润重新定价,这样售出了个中的40%。
此时,因畏惧剩余水果腐烂蜕变,不能不再次降价,售出了剩余的全部水果。
结果,实践获得的总利润是原定利润的30.2%。
那么,第二次降价后的价格是原定价的百分之几何?7.黉舍清晨6:00开校门,晚上6:40关校门。
下战书有一同砚问老师目前的时间,老师说:从开校门到目前时间的13加上现在到关校小升初数学专项温门时间的,就是目前的时间。
那么目前的时间是下战书几点?8.甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米。
一艘船沿乙河顺水飞行6小时,行了84千米到达甲河,在甲河还要顺水飞行133千米。
求这艘船一共飞行几何小时?9.某校100名学生在一次语、数、外三科竞赛中,参加语文竞赛的有39人,参加数学竞赛的有49人,参加外语竞赛的有41人,既参加语文竞赛又参加数学竞赛的有14人,既参加数学竞赛又参加外语竞赛的有13人,既参加语文竞赛又参加外语竞赛的有9人,有1人三项都没有参加,问三项都参加的有几何人?14小升初数学专项复参考答案1.61吨【剖析】先找相等的关系。
乙船抽出一局部油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解。
(完整版)小学六年级列方程解应用题练习(附答案)
小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。
解:设乙有书x本,则甲有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X-60=X+603、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:设乙缸有X条,则甲缸有1/2X条X-9=1/2X+94、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:设计划时间为X小时60×(X-1)=40×(X+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)-X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×(X+6)=60×(X-4)7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?解:设X天后,乙仓存粮是甲仓的2倍(32+4X)×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9—X)=99、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/(50-40)=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克(X+2.2)元2.5×(X+2.2)+2X=13.612、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)10×2X+X=(10X+2X)+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为X,则十位数字为(X-1)X+(X-1)=[X+10×(X-1)] ×0.215、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x个(x—2)+ (x+2)+ (x÷2)+ 2x=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为X(25-1)÷2X=317、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.解:设甲车速度为X小时/小时(X-48)×1.5=1818、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为X千米(X-30×2)/30=X/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工X个零件6X=12×(3+6)20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.解:设甲桶原来有X升油,则乙桶原来有(X-15)升油X+15+145=3X21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解:设细木工每人得X元(200×6+X)/(6+1)=X-30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料一:典型应用题精练(列方程解应用题)列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:列方程解应用题列方程解应用题的步骤。
1弄清题意找出未知数并用x表示2找出应用题中数量之间的相等关系列方程3解方程4检验写出答案。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系: ①顺风速度=无风速度+风速 ②逆风速度=无风速度-风速 行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
(6)溶液配制问题。
其基本数量关系是:溶质=溶液×浓度(浓度溶质溶液,溶液溶质浓度==),溶液=溶质+溶剂。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(7)利润率问题。
其数量关系是:商品的利润率=商品利润商品进价,商品利润=商品售价-商品进价。
注意打几折销售就是按原价的十分之几出售。
(8)银行储蓄问题。
其数量关系是:利息=本金×利率×存期;本息=本金+利息,利息税=利息×利息税率。
注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
(9)数字问题。
要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。
列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。
若一个三位数,百位数字为a ,十位数字为b ,个位数字为c ,则这三位数为:10010a bc ++。
(10)年龄问题其基本数量关系: 大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。
(11)比例类应用题:若甲、乙的比为2:3,可设甲为2x ,乙为3x 。
( 12 ) 鸡兔同笼类。
例如:一笼内有鸡和兔,共有头70个,有腿280条,问有鸡和兔各多少?某地发行了甲乙两种彩票共100万张,甲每张2元,乙每张3元,发行金额160万,求甲乙各多少张?这类问题特点是:两处总量都和包含的个体有关系。
因此两处总量就是两个等量关系,可以设其中一个个体为X ,利用等量关系列方程。
( 13 ) 探寻规律类 这类方程的特点是,从给出的材料中找出规律,并利用这一规律找出解决问题的相等关系,列出方程。
例如:数字排列规律。
2、4、6、8…。
-1、2、-3、4、-5…。
还有日历中的规律、年龄的规律、数字表示规律等。
1、10名同学参加数学竞赛,前4名同学平均得分150分,后6名同学平均得分比10人的平均分少20分,这10名同学的平均分是________分.2、某商店想进饼干和巧克力共444千克,后又调整了进货量,使饼干增加了20千克,巧克力减少5%,结果总数增加了7千克。
那么实际进饼干多少千克?3、某文具店用16000元购进4种练习本共6400本。
每本的单价是:甲种4元,乙种3元,丙种2元,丁种1.4元。
如果甲、丙两种本数相同,乙、丁两种本数也相同,那么丁种练习本共买了_________本。
4、六年级某班学生中有161的学生年龄为13岁,有43的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是_________岁。
5、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是__________。
6、大小酒桶共80个,每个大桶可装酒25千克,每个小桶可装酒15千克,大桶比小桶共多装600千克,则大酒桶有__________个。
7、某自来水公司水费计算办法如下:若每户每月用水不超过5立方米,则每立方米收费1.5元,若每户每月用水超过5立方米,则超出部分每立方米收取较高的定额费用,1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费27.5元,超出5立方米的部分每立方米收费多少元?8、某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种零件3个。
但加工3个甲种零件,1个乙种零件和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?典型应用题精练(列方程解应用题)参考答案1、【解】:设10人的平均分为a 分,这样后6名同学的平均分为a-20分,所以列方程:[ 10a-6×(a-20)]÷4=150解得:a=120。
2、【解】:设饼干为a ,则巧克力为444-a ,列方程:a+20+(444-a )×(1+5%)-444=7解得:a=184。
3、【解】:设甲、丙数目各为a ,那么乙、丁数目为226400a -,所以列方程 4a+3×226400a -+2a+1.4×226400a -=16000 解得:a=1200。
4、【解】:因为是填空题,所以我们直接设这个班有16人,计算比较快。
所以题目变成了:1个学生年龄为13岁,有12个学生年龄为12岁,3个学生学生年龄为11岁,求平均年龄?(13×1+12×12+11×3)÷16=11.875,即平均年龄为11.875岁。
如果是需要写过程的解答题,则可以设这个班的人数为a ,则平均年龄为:aa a a 11431611124313161⨯⨯⎪⎭⎫ ⎝⎛--+⨯⨯+⨯⨯=11.875。
5、【解】:设这个五位数为x ,则由条件(x+200000)×3=10x+2,解得x =85714。
6、解:方法一:设有大桶x 个,于是25x -15(80-x)=600,解得x =45个。
方法二:鸡兔同笼,假设全是大桶,这样就是0个小桶,这样大桶比小桶多装80×25=2000千克,而现在只有多装了600千克,所以多2000-600=1400千克,每个大桶变成小桶大桶比小桶多装的就减少25+15=40千克,所以有1400÷40=35个小桶,所以大桶的数目为45个。
7、【解】:设出5立方米的部分每立方米收费X ,(17.5-5×1.5)÷X+5=[(27.5-5×1.5)÷X+5]×(2/3)解得:X=2。
8、分析如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦。
如果仔细分析题意,会发现除了上面提到的加工甲、乙、丙三种零件的人数这三个未知数外,还有甲、乙、丙三种零件的各自的总件数.而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用.所以如用间接未知数,设乙种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数÷工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数=总人数,列出方程。
解:设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
重难点:小学毕业列方程解应用题练习40道1.某家庭前年结余5000元,去年结余9500元,已知去年的收入比前年增加了15%,而支出比前年减少了10%,这个家庭去年的收入和支出各是多少?2 .某人装修房屋,原预算25000元。
装修时因材料费下降了20%,工资涨了10%,实际用去21500元。
求原来材料费及工资各是多少元?3、某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元 . 已知今年分得的现金,甲增加50%,乙增加30% . 两人今年分得的现金各是多少元?4..若干学生住宿,若每间住4人则余20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?5. .某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6 辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大、小货车各多少辆?6、通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。
求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?7.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?8、某厂买进甲、乙两种材料共56吨,用去9860元。
若甲种材料每吨190元,乙种材料每吨160元,则两种材料各买多少吨?9、有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?10、一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
3种包装的饮料每瓶各多少元?11、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。
已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。