高中数学竞赛辅导初等数论不定方程
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高二数学竞赛班二试数论讲义-不定方程
可得一组满足条件的正整数解(x, y).故 n2 的小于 n 的正约数恰好为 2010.
设n
p1 1
pk k
,其中
p1, ,
pk
是互不相同的素数,1, , k
是非负整数.故 n2
的小于 n
的正约数个数为
(21 1)(2 k 1) 1 , 2
故 (21 1)(2 k 1) 4021 .
易知 3 y 5 (当 y 6 时, z 7 ,上式不成立)。仅当 y 4 时, z 14 为整数,故仅有一组整数解 (2, 4,14)
(2)当 (x 1)( y 1)(z 1) 1 3 时,则 1 1 1 1 1 1 2
xyz
x y z xy yz zx
1
4.求方程 x3 y3 xy 61 的正整数解 5.求所有正整数 m, n ,使 2m 3n 为平方数。
高二数学竞赛班二试讲义
不定方程
例
1.
Hale Waihona Puke x 650 y 225
107t 37t
(t
Z
)
,先求
37
x
107
y
25
的一组特解。为此对
37,107
用辗转相除法。107
三、精选习题
1.求不定方程 23x 17 y 25 的整数解。
2.求所有的有理数 r ,使得方程 rx2 (r 1)x (r 1) 0 的所有解都是整数。
例 2.求出所有的正整数 n ,使得关于 x, y 的方程 1 1 1 恰有 2011 组满足 x y 的正整 xyn
综上所述,满足题意的正整数 (a, b, c) 为 (3,5,15), (2, 4,8)
竞赛数学(张同君陈传理)数论3(不定方程)
根据未知数的个数和方程的个数之间的关系,不定方程可分为一 元不定方程、二元不定方程等。
整数解与特解概念
整数解
满足不定方程的整数解称为该不 定方程的整数解。
特解
不定方程的一组特殊解,通常用 于求解其他解或证明解的存在性 。
线性不定方程性质
01
齐次线性不定方程
若线性不定方程的常数项为零,则称为齐次线性不定方程。齐次线性不
的解。
04
特殊类型不定方程处理方法
佩尔方程求解思路
佩尔方程形式
佩尔方程是一类形如x^2 - ny^2 = 1的不定方程, 其中n为正整数且不是完全平方数。
求解步骤
通过连分数、二次剩余等方法找到一组特解,然后 利用递推关系式求得所有解。
注意事项
在求解过程中需要注意n的取值范围以及特解的选择 ,避免陷入死循环或者得到无效解。
况下,可以通过消元法、代入法等方法求解。
02
线性不定方程求解方法
逐步满足法原理及步骤
原理:通过逐步满足方程中的条件,使问题不 断简化,最终得到方程的解。
01
观察方程特点,确定一个未知数的取值范 围;
03
02
步骤
04
在该范围内逐一尝试满足方程的整数解;
若找到一组解,则验证其正确性;
05
06
若无法找到解,则调整取值范围或尝试其 他方法。
其他特殊类型问题探讨
其他特殊类型问题
除了佩尔方程和高次幂和型不定方程外,还有一些其他特殊类型的不定方程问题,如费马 大定理相关的不定方程、涉及三角函数的不定方程等。
处理方法
针对不同类型的特殊问题,需要采用不同的处理方法。例如,费马大定理相关的不定方程 可以通过代数数论的方法进行研究;涉及三角函数的不定方程可以通过三角恒等式进行化 简和求解。
初等数论不定方程的解法
初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。
在初等数论中,不定方程是一个非常重要的研究对象。
不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。
本文将介绍不定方程的一般解法,并通过具体例子进行演示。
首先,我们来介绍一下一元一次不定方程的解法。
一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。
解决这个方程的关键是找到一组x、y的取值,使得方程成立。
我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。
我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。
我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。
2.如果方程有解,我们需要求出一个特解。
我们可以使用扩展欧几里得算法来求解特解。
扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。
我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。
3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。
这样,我们就可以通过改变k的值来得到方程的所有整数解。
接下来,我们来介绍一下二次不定方程的解法。
二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。
对于二次不定方程,我们可以通过一些特殊的方法来求解。
下面介绍两种常用的方法:1.利用配方法。
如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。
竞赛讲座 不定方程
竞不定方程不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.(1) 不定方程解的判定如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.例1 证明方程2x2-5y2=7无整数解.证明∵2x2=5y2+7,显然y为奇数.①若x为偶数,则∴∵方程两边对同一整数8的余数不等,∴x不能为偶数.②若x为奇数,则但5y2+7∴x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例2 (第14届美国数学邀请赛题)证明方程无整数解证明如果有整数x,y使方程①成立,则=知(2x+3y2)+5能被17整除.设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立.例3 (第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是(). (A)0 (B)1(C)2(D)无限个(E)上述结论都不对解由x2+y2=x3得y2=x2(x-1),所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x,y)有无限多个,应选(D).说明:可用写出方程的一组通解的方法,判定方程有无数个解.(2) 不定方程的解法不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.例4 求方程的整数解.解(配方法)原方程配方得(x-2y)2+y2=132.在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于132即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解解得例5 (原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.证明(因式分解法)∵a2+b2=c2,∴a2=(c-b)(c+b),又∵a为素数,∴c-b=1,且c+b=a2.于是得c=b+1及a2=b+c=2b+1<3b,即<.而a≥3,∴≤1,∴<1.∴a<b.例6(第35届美国中学数学竞赛题)满足联立方程的正整数(a,b,c)的组数是(A)0 (B)1 (C)2 (D)3 (E)4解(质因数分解法)由方程ac+bc=23得(a+b)c=23=1×23.∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2,1)和(1,22,1),应选(C).例7求不定方程2(x+y)=xy+7的整数解.解由(y-2)x=2y-7,得分离整数部分得由x为整数知y-2是3的因数,∴y-2=±1,±3,∴x=3,5,±1.∴方程整数解为例8 求方程x+y=x2-xy+y2的整数解.解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≥0,解得≤y≤.满足这个不等式的整数只有y=0,1,2.当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.所以方程有整数解最后我们来看两个分式和根式不定方程的例子.例9 求满足方程且使y是最大的正整数解(x,y).解将原方程变形得由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,12-x=1,x=11,这时y=132.故满足题设的方程的正整数解为(x,y)=(11,132).例9(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().(A)0 (B)1 (C)3 (D)4 (E)7解法1 根据题意知,0<x<1984,由得当且仅当1984x是完全平方数时,y是整数.而1984=26·31,故当且仅当x具有31t2形式时,1984x 是完全平方数.∵x<1984,∵1≤t≤7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1116)和(279,775).当t>3时y≤x不合题意,因此不同的整数对的个数是3,故应选(C).解法2 ∵1984=∴由此可知:x必须具有31t2形式,y必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.练习1.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足.2.求的整数解.3.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.4.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.练习1.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z都不能是整数.2.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得3.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).4.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
数论选讲
解: 又
(m + n)m ≥ mm + nm ⇒ mn ≤ 1413 。
44 = 256,53 = 3125 > 1413 ⇒ m ≤ 4 。 显然 m 为奇数。 当 m = 1时,对任何正整数 n ,不可能有 (m + n)m = n +1 = nm +1413 = n +1413 。
当 m = 3 时,由 (3 + n)3 = n3 +1413 可得 n2 + 3n −154 = 0 ,即
(1)必有自然数 k ,使得 Ak+1 = Ak 。 (2) 若 A = 1986 ,问上述的 Ak 等于多少?并说明理
由。
证明:(1)n = 0 时,对任意 k ,有 Ak = A 。当 n = 1 时,显然 A ≥ f ( A) 。 当 n ≥ 2 时,
f ( A) = 2n a0 + 2n−1 a1 +" + 2an−1 + an ≤ (2n + " + 2 + 1) ⋅ 9 = (2n+1 −1) ⋅ 9 , A ≥ 10n an ≥ 10n = 10 ⋅10n−1 > 9 ⋅10n−1 > 9 ⋅ 23 ⋅10n−2 ≥ 9 ⋅ 23 ⋅ 2n−2 = 9 ⋅ 2n+1 > 9(2n+1 −1) ≥ f ( A)
一、基本知识
(一)整除与同余
1. 设 n 为正整数,则任意 n 个连续整数中有且仅有一个是 n 的倍数。 2. 若 p 为素数, n 为任意正整数,且 p a1 a2 "an ,则至少存在一个 ai ,使得 p ai 。
3. 若 ai ≡ bi (mod n),i = 1,2,", m ,则对任意的整数 ci (i = 1, 2,", m) ,均有
赣县中学高中数学竞赛数论第9九讲不定方程(上)
第4页 共4页
第3页 共4页
赣县中学高中数学竞赛------数论
附加题: 1、若关于 x 的不等式 x 3 6 x k 有解,求实数 k 的最大值。
2、求函数 f ( x)
x 5 24 3x 的值域。
3.求函数 y
x 27 13 x x 的最大值和最小值.
(请大家自学“柯西不等式” ,用它来求最大值,求最小值另想方法)
赣县中学高中数学竞赛---知识点介绍 1、不定方程定义:所谓的不定方程是指方程的未知数的个数多于方程的个数,其解受到 一定限制(如要求是整数、正整数)的一类方程或方程组。 2、二元一次不定方程 ①、整系数二元一次不定方程形式: ax by c(a 0, b 0), a, b, c Z ②、定理 1:二元一次不定方程 ax by c(a 0, b 0), a, b, c Z 有整数解 (a, b) c
例 2、 《张邱建算经》卷下最后一题通常称为“百鸡问题” : “今有鸡翁一,值钱五;鸡母 一,值钱三;鸡雏三,值钱一。凡百钱买鸡百只。问鸡翁、鸡母、鸡雏各几何?”
例 3 、求出不定方程 25x 13y 7 z 4 的全部解。
例 4、求方程 x y 2 x 3 y 7 0 的整数解。
②、 (1)式有整数解 (a1 , a2 , a3 ,an ) N 4、高次不定方程 解高次不定方程,难度很大,且无定法,但对某些特殊方程可通过特殊方法解决,下 面通过具体实例加以说明。
二、例题讲解
第1页 共4页
赣县中学高中数学竞赛------数论
例1、 解下列两个不定方程 (1) 、 15x 25y 98 ; (2) 、 15x 25y 100
(完整word版)《竞赛数学中的初等数论》
《竞赛数学中的初等数论》贾广素编著2006-8-21序 言数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。
数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。
可是这也说明了最难的数论问题,适合于任何人去研究。
初等数论最基础的理论在于整除,由它可以演化出许多数论定理。
做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。
这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈∃∈∀,,,,满足r bq a +=,其中b r <≤0。
除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。
相信通过对本书学习,您可以对数论有一个大致的了解。
希望我们共同学习,相互交流,在学习交流中,共同提高。
编者:贾广素2006-8-21于山东济宁第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m Λ--,则此数可以简记为:021a a a A m m Λ--=(其中01≠-m a )。
由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=----Λ,其中1,,2,1},9,,2,1,0{-=∈m i a i ΛΛ且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m Λ--=。
高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好
高中数学竞赛考试大纲及必备辅导书汇总,尖子生请收好!首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件:•高考数学可以轻松应对;•对数学竞赛有兴趣,自发选择学习数学竞赛;•具备自主学习能力;•高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。
数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。
当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。
为什么?因为学习数学竞赛的好处很多。
与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。
当然,对于大部分学生来说,高校的吸引力是最大的。
而2016年新发布的高校自主招生政策中,其中的变化值得深思:•取消“校荐”,考生需自己报名;•“年级排名”不再是报名条件;•门槛抬高,审核更为严格;•报考专业一定要与特长匹配;•试点高校自主招生考核统一安排在高考结束之后、高考成绩公布前进行。
我们最需要关注的点有三个:① 由于校荐被取消,年级排名也被废除,原本校内成绩突出的学生很难走自招,而自招的报名人数会上升,竞争更加激烈;② 据了解,985高校自招的初审底线是竞赛拿到省二以上,而北清更是要求拿到省一,门槛的提高导致了28万申请自招的学生只有4万余人通过初审,8千余人获得资格,初审和复审的通过率均低于20%;③ 现在的自招考试要求不超过两科,考试的科目和专业是相匹配的,而绝大多数专业的考试科目都有数学,因此数学竞赛的比重是很高的。
总的来说,新的政策直接导致的是各高中年级排名较高的学生更难上清北(难以进入博雅领军,难以获得自招资格,裸考进清北的人更少),而间接导致的是更多的学生走上了竞赛这条道路。
因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。
数学奥赛辅导丛书:不定方程
数学奥赛辅导丛书:不定方程近几年来,学生参加数学奥赛的人数不断增加,学习数学奥赛需要深入掌握不定方程知识。
不定方程是数学学习的重要知识点之一,它有着复杂的概念,非常考验学生的记忆力和解题思路。
首先,让我们来了解什么是不定方程。
不定方程是一类特定的数学问题,用于查找未知变量的可能值。
从形式上看,它是一个形式为ax+b=c(其中a、b和c是常数),a不等于0的不定方程。
不同于定向方程,不定方程没有明确的解法,只有解不定方程的方法。
其次,学习不定方程时,重要的是对其特殊的解法有所了解。
根据不定方程的形式,一般使用两类不同的解法,一种是把不定方程分解为两个定向方程,另一种是利用系数的特性,改变a的值使其符合定向方程的格式。
除此之外,在学习不定方程时,还要多做练习。
学习任何知识点都要以大量的练习为基础,同样,不定方程也需要多做练习。
不定方程问题通常有着复杂的条件,练习时应该重点关注不同类型的不定方程,更好地提高解题能力。
此外,学习不定方程的过程中,还要非常注意工具的使用。
数学知识的学习不仅仅是理论上的学习,也要做相应的实践。
以不定方程为例,可以使用计算器和电子计算器来帮助解决不定方程问题,进一步提高解题效率。
最后,在学习不定方程时,还要仔细思考不同类型问题的解法。
不定方程涉及到多种问题类型,比如一元不定方程,二元不定方程等,各种不同类型的不定方程都有其解法,要想掌握不定方程,必须要深入了解各种不定方程问题的解法才行。
总之,学习不定方程既非常重要又十分有趣。
不定方程的概念复杂,但只要掌握其特殊的解法,多做练习,熟练运用相关工具,深入研究各种不定方程问题的解法,不定方程将不再难以突破。
只要通过努力,任何人都可以熟练掌握不定方程,为数学奥赛取得好成绩做准备。
赣县中学高中数学竞赛数论第11十一讲不定方程(三
第二十一讲 不定方程(三):求不定方程的一些方法1、 公式法解不定方程:例如,二元一次不定方程、勾股方程、佩尔方程。
2、 同余分析法解不定方程在方程两边取适当的模后,往往能找到方程的解应满足的某些必要条件,甚至推出方程有无整数解。
例1、证明:不定方程68322=-+z y x 没有整数解。
3、 不等式估计法不等式估计法是指通过对所考察的量的放缩得到未知数取值条件的不等式,解这些不等式就得到未知数取值的范围,从而达到求解目的的方法。
例2、求方程6133+=-xy y x 的正整数解。
例3、求出所有满足方程xyz zx yz xy 4)(5=++的正整数z y x ,,。
4、 代数恒等变形解不定方程:例如,因式分解、配方、换元等。
①、 因式分解法:将方程的一边化为常数,作质因数分解,另一边含未知数的代数式也作因式分解,考查各个因式的取值情况,再配对求解。
例4、求方程073222=--+y x y x 的整数解。
例5、求不定方程24222222222444+++=++x z z y y x z y x 的全部解.②、 配方法例6、已知实数y x ,满足,43)123)(32(22=++++y y x x 求y x +。
③、 换元法:若能判明不定方程的未知数之间有倍数关系,则常使用换元法消去未知数或倍数,使方程简化。
例7、试求出所有的正整数c b a ,,,其中c b a <<<1,且使得)1)(1)(1(---c b a 是1-abc 的约数。
第二十一讲 不定方程(三)练习1、 若8)(422-+=+b a b a ,则=a ____=b ____.2、 已知一件工程某队干了一天后,另一队接着又干了一天,共完成工程量的74,问各队干几天才能完成整个工程?3、 证明:方程75222=-y x 无整数解.4、 求满足方程xy y x y x ++=+)(222的所有正整数y x ,.5、 若三个棱长为整数(单位:cm )的正方体的表面积之和为564cm 2 ,则这个正方体的体积之和为多少?附加题:1、证明以下命题:(1)对任一正整数a ,都存在正整数,()b c b c <,使得222,,a b c 成等差数列;(2)存在无穷多个互不相似的三角形n ∆,其边长,,n n n a b c 为正整数且222,,n n na b c 成等差数列.。
初等数论:不定方程与高斯函数[整理版]
初等数论:不定方程与高斯函数一、不定方程不定方程也称丢番图方程,是指未知数的个数多于方程个数,且未知数受到某些要求(如是有理数、整数或正整数等等)的方程或方程组。
不定方程是数论的重要分支学科,它的内容十分丰富,与代数数论、几何数论、集合数论等都有较为密切的联系。
其重要性在数学竞赛中也得到了充分的体现,是培养思维能力的好材料,它不仅要求对初等数论的一般理论、方法有一定了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个求解定理:(一)二元一次不定方程(组)定义.形如ax+by=c(a,b,c∈Z,a,b不同时为零)的方程称为二元一次不定方程定理1.方程ax+by=c有解的充要条件是(a,b)|c;定理2.若(a,b)=1,且x0,y0为ax+by=c的一个解,则方程全部解可以表示成(t为任意整数)。
定理2’..元一次不定方程a1x1+ a2x2+ …a n x n=c(a1,a2, …a n,c∈N)有解的充要条件是(a1,…,a n )|c.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求ax+by=0一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程a1x1+ a2x2+ …a n x n=c时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:00t , y=y tx x b a=+-求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
高一联赛班春季班第13讲初等数论——不定方程
第 13 讲初等数论不定方程13.1 不定方程不定方程是指求含有多个未知数的方程的整数解的问题. 这类问题,常常需要进行较高技巧的代数变形,同时亲密注意方程中隐含的各样数论性质,综合性很强,是数论命题中一个重要部分.本讲研究一些较为基础的不定方程,这些方程的求解过程中代数方法( 代数变形、因式分解或许不等式控制等 ) 所占比率较大,只用到较为浅易的数论知识.【例 1】求全部正整数n ,使得 n318n2115n391 为正立方数.【例 2】求方程的全部整解:y2 2 y x420x3104x240x2015 .【例 3】设 n 是一个三位数(100 n 999).求全部的n,使得n2的末三位数等于n .【例 4】求全部的三元整数组(x, y, z) ,使得 x3y3z3 3 xyz2015 .【例 5】设p是质数,整数x, y, z 知足0 x y z p . 若 x3 , y3 , z3除以p的余数相等,证明:x y z | x2y2z2 .【例 6】已知 34! 295 232 799 039 604 cd0 847 618 609 643 5ab 000 000 .求 abcd【例 7】求全部质数p ,使得p x y31建立,此中x, y 为正整数.【例 8】方程x y201500 有多少对整数解(x, y) ?【例 9】求出全部的奇质数p ,使得p |1p 1 2 p 1...2015 p 1 .实战操练【操练 1】设 P x46x311x23x 31 ,求使P为完整平方数的整数x 的值.【操练 2】求方程的全部整数解:(m2n)( m n2 ) (m n)3【操练 3】求全部的两位正整数a, b ,使得 100a b,201a b 均为四位数,且均是平方数【操练 4】求有多少个正整数对(m, n) ,使得 7m 3n102004,且 m | n .【操练 5】求全部这样的 2 的幂,将其(十进制表示中的)首位删去后,剩下的数还是一个 2 的幂.【操练 6】求方程y2 1 x x2x3x4的全部整数解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1.几类不定方程 (1)一次不定方程在不定方程和不定方程组中,最简单的不定方程是整系数方程)0,0(,0≠>=++b a c by ax 通常称之为二元一次不定方程.一次不定方程解的情况有如下定理.定理一:二元一次不定方程c b a c by ax ,,,=+为整数.有整数解的充分必要条件是c b a |),(. 定理二:若00,,1),(y x b a 且=为①之一解,则方程①全部解为at y y bt x x -=+=00,. (t 为整数)。
(2)沛尔)(pell 方程形如122=-dy x (*d N ∈,d 不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设),(11y x 为该方程的正整数解),(y x 中使d y x +最小的解,则其的全部正整数解由111111111[()()]2)()]n nn n n n x x x y x x ⎧=+-⎪⎪⎨⎪=-⎪⎩(1,2,3,n =)给出.①只要有解),(11y x ,就可以由通解公式给出方程的无穷多组解. ②n n y x ,满足的关系:1(nn x y x y +=+;11211222n n n nn n x x x x y x y y ----=-⎧⎨=-⎩ , (3)勾股方程222z y x =+这里只讨论勾股方程的正整数解,只需讨论满足1),(=y x 的解,此时易知z y x ,,实际上两两互素. 这种z y x ,,两两互素的正整数解),,(z y x 称为方程的本原解,也称为本原的勾股数。
容易看出y x ,一奇一偶,无妨设y 为偶数,下面的结果勾股方程的全部本原解通解公式。
定理三:方程222z y x =+满足1),(=y x ,2|y 的全部正整数解),,(z y x 可表为2222,2,b a z ab y b a x +==-=,其中,b a ,是满足b a b a ,,0>>一奇一偶,且1),(=b a 的任意整数.4.不定方程zt xy =这是个四元二次方程,此方程也有不少用处,其全部正整数解极易求出:设a z x =),(,则ad z ac x ==,,其中1),(=d c ,故1),(,,===d c dt cy adt acy 因即, 所以bc t bt y y d ==则设,,|. 因此方程zt xy =的正整数解可表示为d c b a bc t ad z bd y ac x ,,,.,,,====都是正整数,且1),(=d c .反过来,易知上述给出的t z y x ,,,都是解.也可采用如下便于记忆的推导: 设d c d c y t z x 这里,==是既约分数,即1),(=d c . 由于z x 约分后得出dc,故ad z ac x ==,,同理.,ab y cb t ==2.不定方程一般的求解方法1.奇偶分析法;2.特殊模法;3.不等式法;4.换元法; 5.因式分解法6.构造法(构造出符合要求的特解或一个求解的递推关系,证明解无数个) 7.无穷递降法由于不定方程的种类和形式的多样性,其解法也是多种的,上面仅是常用的一般方法. 注:对无穷递降法的理解:以下面的问题为例: 证明:方程442x y z +=无正整数解。
证明:假设442x y z +=存在正整数解,其中z 最小的解记为0z 。
因为()()22222xy z +=,根据勾股方程的通解公式有2222220,2,x a b y ab z a b =-==+,其中,a b 一奇一偶,(),1a b =。
从222x a b =-可以得到a 为奇数,b 为偶数,令2b s =,224y ab as ==,其中(),1a s =,所以22,,(,)1a t s q t q ===。
由222x a b =-得2444x t q =-,即2444x q t +=,又可以通过勾股方程的通解公式222222,22,,(,)1x l m q lm t l m l m =-==+=,注意到2q lm =,所以2200,l l m m ==,24400t l m =+,而420z t b t =+>,与0z 的最小性矛盾。
所以原方程组无正整数解。
赛题精讲例1.(1)求不定方程3710725x y +=的所有解; (2)求不定方程719213x y +=的所有解。
解析:(1)可以由辗转相除法得到,其实根据该方法可以得到必存在整数,s t ,使得371071s t +=。
如10723733,371334,3481=⨯+=⨯+=⨯+,依次反代即可得到一个特解。
(2)213197y x -=,可以取353027yx y -=-+,此时可以得到2y =。
从而得到一个特解。
注:这个两个方法是基本方法。
例2.求所有满足方程81517xyz+=的正整数解解析:首先从同余的角度可以发现y 必须为偶数,81517xyz+=,又15y的个位数必须为5,而8x的个位数为2,4,或6,17z的个位数为3,9,1,所以0,2(mod 4)x ≡,对应的0,2(mod 4)z ≡。
这样可以令2y k=,2z l=,可以得到2281715(1715)(1715)x l k l k l k =-=-+,注意到17,15l k 均为奇数,两个的和和差必定是一个单偶,一个双偶,从而311715217152l k l k x -⎧-=⎪⎨+=⎪⎩,目标集中于17152l k-=,观察有解()(),1,1l k =。
当2k ≥时,两边取模17可以得到()(1)2mod9k-≡矛盾。
所以仅有解()2,2,2例3.a 为给定的一个整数,当a 为何值时,方程31(1)y a xy +=-有正整数解?有正整数解时,求这个不定方程。
解:31(1)y a xy +=-可以变形为333331(1)x y y x y a xy -+++=-,这样()333(1)|xy y x y -+,一个明确的事实()31,1xy y -=,从而()3(1)|1xy x -+。
这样我们得到()33(1)|1(1)|1(*)xy x xy y -+⇔-+。
不妨假设,y x y x =>两种情况。
(1)y x =3322111(1)11y y a y a y y y ++=-⇔==+--,从这个代数式发现,2y =,对1y =单独讨论,有2(1)a x =-,1,3;2,2a x a x ====,这种情况共有解:()()1,3,1;22,1a a =⇔=⇔;()32,2a =⇔,注意到*式的等价性,又有解 ()()14,1,3;91,2a a =⇔=⇔(2)x y >将等式转化为不等式321111y a y y y +<=+--,从同余的角度看有1,1a ky k =-≥,所以3211111y ky y y y +-<=+--,若1k =,则232121(1)(1)1111y y y xy y xy x x y y y ++=--⇔=--⇔==++--,只能是2,5,1;3,5,2y x a y x a ======。
注意到*式的等价性,又有解5,2,14;5,3,9y x a y x a ======综上,可以有1,2,3,9,14a =,对应的解分别为()()()()()()()()()3,15,22,11,23,52,21,35,32,5共9组解。
例4.证明:不定方程254x y =-无整数解解析:254x y =-给我们的第一个印象是,x y 同为奇数或同为偶数。
若同为偶数,则254324k l =-也就是2518k l +=,进一步有k 为奇数,因为奇数的平方模8余1,矛盾。
若同为奇数,则需进一步讨论,关键是取模为多少比较好讨论。
结合费马小定理如(,11)1y =,则5110(mod11)y or =,从而54678(mod11)y or or -≡,但是20,1,3,4,5,9(mod11)x ≡。
比较两者我们就可以到相应的结论例5.求证:2222265x y z u v xyzuv ++++=-存在无数组解且每个解都大于2009。
证明:观察有特解()1,2,3,4,5。
从原方程可以得到22222()()12yzuv x y z u v yzuv x yzv -++++=--。
这说明从一组解可以得到另一组解(),,,,yzuv x y z u v -。
由于方程结构的对称性,不妨假设0x y z u v <<<<<,则y z u v yzuv x <<<<-,主要是证明v x yzuv +<,这是因为v x vx yzuv +<<。
不断依次类推就可得到结论。
例6.(普特南竞赛题)求方程||1rsp q -=的整数解,其中q p ,是质数,s r ,是大于1的正整数,并证明你所得到的解是全部解.解析:容易看到两个质数中肯定有一个为2,不妨假设2p =,|2|1r s q -=,即21r sq -=±。
若21r s q =+,从余数去讨论,3(mod 4)q ≡,s 为奇数。
1221(1)(1)rss s q q qq--=+=+-++,所以12121212rr s s q q q --⎧+=⎪⎨-++=⎪⎩,()1111(1)2211222sr sr s r r r s s-=-+=-++,提取公因数,有()1111(1)(2)2211222sr r s r s r r s s --⎡⎤=-+=-++⎣⎦,从奇偶性可以看出这种情形方程无解。
21r s q =-为偶数,注意到1221(1)(1)r s s s q q q q --=-=-+++。
12121212r r s s q q q --⎧-=⎪⎨+++=⎪⎩,()11111(1)21221122(1)22sr sr s r r r rs s s s --=+-=+++-+,令2u s v =,()11111(1)21221122(1)22sr sr s r r u r r u s v s v --++=+-=+++-+,观察最后两项,只能11r =, 3q =, 2s =,从而3r =综上,考察到对称性,原方程恰有两组解: 3,2,2,3,2,3,3. 2.p p q q or r r s s ==⎧⎧⎪⎪==⎪⎪⎨⎨==⎪⎪⎪⎪==⎩⎩ 例8.(09湖北)求不定方程21533654321=+++++x x x x x x 的正整数解的组数. 解 令x x x x =++321,y x x =+54,z x =6,则1,2,3≥≥≥z y x .先考虑不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解.1,2,3≥≥≥z y x ,123215≤--=∴y x z ,21≤≤∴z .当1=z 时,有163=+y x ,此方程满足2,3≥≥y x 的正整数解为)4,4(),3,7(),2,10(),(=y x .当2=z 时,有113=+y x ,此方程满足2,3≥≥y x 的正整数解为)2,5(),(=y x . 所以不定方程2153=++z y x 满足1,2,3≥≥≥z y x 的正整数解为)2,2,5(),1,4,4(),1,3,7(),1,2,10(),,(=z y x .又方程)3,(321≥∈=++x N x x x x x 的正整数解的组数为21x C -,方程y x x =+54)2,(≥∈x N y 的正整数解的组数为11C -y ,故由分步计数原理知,原不定方程的正整数解的组数为81693036C C C C C C C C 1124132312261129=+++=+++.例8.(09 巴尔干)求方程235x y z -=的正整数解。