有理数加减法法则

合集下载

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀有理数加减法是我们初中数学中的基础知识,掌握好有理数加减法法则,对于我们解决实际问题是非常有帮助的。

下面我为大家介绍一种巧记口诀,帮助大家快速记住有理数加减法法则。

口诀一:正加正得正,负加负得负,正加负看绝对值,大减小方向负。

这个口诀的意思是,当两个正数相加时,结果也是正数;当两个负数相加时,结果也是负数;当一个正数和一个负数相加时,我们需要比较它们的绝对值,绝对值大的减去绝对值小的,结果的符号取决于绝对值大的数的符号。

举个例子来说明,假设我们要计算 3 + 5,根据口诀,两个正数相加,结果也是正数,所以 3 + 5 = 8。

再来看一个例子,-4 + (-6),根据口诀,两个负数相加,结果也是负数,所以-4 + (-6) = -10。

最后一个例子,2 + (-7),根据口诀,我们需要比较2和7的绝对值,7的绝对值大于2的绝对值,所以结果的符号取决于7的符号,即负号,所以2 + (-7) = -5。

接下来,我们来看看巧记口诀的第二部分。

口诀二:减法转化为加法,被减数不变,加上相反数,正数变负,负数变正。

这个口诀的意思是,当我们遇到减法时,可以将减法问题转化为加法问题,即将被减数不变,加上减数的相反数。

对于正数来说,相反数即为它的负数;对于负数来说,相反数即为它的正数。

举个例子来说明,假设我们要计算7 - 5,根据口诀,我们可以将减法转化为加法,即7 + (-5)。

根据口诀的第一部分,我们需要比较7和5的绝对值,7的绝对值大于5的绝对值,所以结果的符号取决于7的符号,即正号,所以7 - 5 = 7 + (-5) = 2。

再来看一个例子,-8 - (-3),根据口诀,我们可以将减法转化为加法,即-8 + 3。

根据口诀的第一部分,两个正数相加,结果也是正数,所以-8 - (-3) = -8 + 3 = -5。

通过这两个口诀,我们可以快速记住有理数加减法的法则,提高我们解决实际问题的效率。

有理数加减法法则

有理数加减法法则

有理数加减法法则一、有理数的加法法则把两个或两个以上的有理数合并成一个有理数的运算,叫做有理数的加法,相加的两个数叫做加数,得到的结果叫做和。

由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下三种情况:同号两数相加;异号两数相加;一个数同0相加。

⑴一个数同0相加,仍得这个数。

如:(-2)+0=-2,6+0=6.⑵借助数轴来探究同号两数相加的情况:(规定向东为正方向,1个单位长度为1米)同号两数相加,取相同的符号,并把绝对值相加。

⑶借助数轴来探究异号两数相加的情况:(规定向东为正方向,1个单位长度为1米)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

二、有理数加法的运算步骤进行有理数加法运算时,应按照以下“一判,二定,三加减”的步骤:第一步:判断加法的类型,并根据加法的类型确定使用哪一个法则;第二步:根据加法绝对值的大小及有理数的符号,确定和的符号:第三步:对绝对值进行加或减,确定和的绝对值。

三、有理数的加法运算律加法交换律:两个数相加,交换加数的位置和不变。

即a+b=b+a。

交换加数的位置时,各加数应连同其符号一起交换。

加法结合律:三个数相加,先把前两个数相加或先把后两个数相加和不变。

即(a+b)+c=a+(b+c)。

多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧。

①凑0,即和为0的几个数先加。

②凑10或凑100,即和为整10或者100的几个数先加。

③凑整,即和为整数的几个数先加。

④同号的几个数先加。

⑤同分母或易通分的分数先加。

四、有理数的减法法则减法的概念:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法,减法是加法的逆运算。

在小学时,被减数要大于减数,引入负数后,任何两个数都可以进行减法运算。

有理数减法法则:减去一个数等于加这个数的相反数。

即a-b=a+(-b)。

0减去任何数得这个数的相反数。

有理数加减法法则

有理数加减法法则

有理数加减法法则
有理数减法法则:
减去一个数,等于加上这个数的相反数。

其中:两变:减法运算变加法运算,减数变成它的相反数。

一不变:被减数不变。

有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。

有理数减法法则:减去一个数,等于加上这个数的相反数。

用公式表示为:a-b=a+(-b)。

有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加仍得这个数。

在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算.6.几个数相加能得到整数的可以先相加。

有理数运算法则口诀

有理数运算法则口诀

有理数的运算法则可以通过一些简单的口诀来记忆。

有理数的加法运算法则是“同号相加一边倒;异号相加“大”减 “小”,符号跟着大的跑;绝对值相等“零”正好”。

具体来说,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加,和为0。

有理数的减法运算法则是“减正等于加负,减负等于加正”。

有理数的乘法运算法则是“符号法则:同号得正,异号负,一项为零积是零”。

合并同类项的法则为“只求系数代数和,字母指数留原样”。

去、添括号的法则为“去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号”。

有理数加减法则及其应用

有理数加减法则及其应用

有理数加减一、有理数加法法则1.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加.即若0a,则)>b,0>=+;+(baba+即若0<b,0<a,则)=+.-a+ab(b(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.即若0a,且b,0<>b=a>,则)++;a-a(bb即若0a,且b>b,0<=-+(aa-a<,则)bb(3)一个数同0相加,仍得这个数.2.有理数加法步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)确定和的符号;(2)确定是两个绝对值的和或差.二、加法的运算律(1)两个加数相加,交换加数的位置,和不变.a=+(加法交换bba+律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.)ba++++(加法结合律)=a()(cbc【规律方法】多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧.①互为相反数的两个数先相加.②符号相同的两个数先相加.③分母相同的数先相加.④几个数相加得到整数先相加.⑤整数与整数、小数与小数相加.考点一:有理数加法法则1、计算)9()3(-+-的结果是()A、-12B、-6C、+6D、122、下列计算中,正确的是()A、(+3)+(-8)=-5B、(+3)+(-8)=+11C、(+3)+(-8)=+5D、(+3)+(-8)=-113、计算:=-+)325(0____________.4、若两个有理数的和为正数,那么这两个数()A、都是正数B、都是负数C、至少有一个正数D、至少有一个负数5、已知两个有理数的和比其中任何一个加数都小,那么一定是()A、这两个有理数同为正数B、这两个有理数同为负数C、这两个有理数异号D、这两个有理数中有一个为06、如果三个数的和为零,那么这三个数一定是()A、两个正数、一个负数B、两个负数、一个正数C、三个都是0D、其中两个数之和等于第三个数的相反数7、d c b a ,,,在数轴上的对应点位置如图所示,且b a =,a c d >>,则下列各式中,正确的是()A、0>+c d B、a b c d >>>B、0=+b a D、0>+c b8、415154+--=--的根据是____________.9、计算:)5()71.1()71.3(0--++-+10、计算:511(72(51()73(-+++++-11、足球比赛中,甲队攻入乙队两球,同时被乙队攻入五球,则计算甲队净胜球数的算式为:____________.12、如果四个有理数的和的31是4,其中三个数是9,6,12--,则第四个数是()A、-9B、15C、-18D、2113、一位“粗心”的同学在做加减运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A、少5B、少10C、多5D、多1014、用简便方法计算:9997997977+++.有理数减法一、有理数减法的意义有理数减法的意义与小学学过的减法的意义相同,已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.【知识拓展】初中阶段学习了负数,数的范围扩大到了有理数,在有理数范围内的减法运算,其意义没有改变,但是被减数和减数或差既可以是正数,也可以是负数,即被减数可以比减数大,也可以比减数小,但两者之差一定为有理数.二、有理数减法法则减去一个数,等于加这个数的相反数)=-.+(baba-【易错点津】有理数的减法对于小数减大数的运算不能像小学里那样直接减,而是把它转化为加法进行计算,其关键是正确地将减法转化为加法,再按有理数的加法法则和运算律计算.【方法归纳】在进行有理数的减法运算时,关键是如何正确解决符号问题.把减法运算转化为加法运算应同时改变两个符号.考点一、有理数减法法则1、计算:=3____________.(--)12、12--的结果是()A、-1B、-3C、1D、33、下列计算错误的是()A、0---B、122=)2(--=-543-C、10---D、37-=)3(-=1512-4、两数之和是,其中一个加数是,则另一个加数是____________.5、计算:=-94____________.--6、判断题:(1)、两数之差一定小于被减数(2)、若两数的差为正数,则两数都为正数(3)、0减去一个数仍得这个数(4)、一个数减去一个负数,差一定大于被减数7、在下面的数轴上,表示数)5(--的点是()2-A、MB、NC、PD、Q8、)6(----的值是()--)1)9()9(-(A、-25B、7C、5D、23有理数减法应用9、比0小4的数是____________.,比3小4的数是,比-5小-2的数是____________.10、已知m是6的相反数,n比m的相反数大2,n比m大____________.11、某地一天的最高气温是12℃,最低气温是-5℃,则该地这天的温差是____________.12、设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则c-的值是____________.a-b13、北京等5个城市的当地时间(单位:时)可在数轴上表示如下:A、汉城与纽约的时差为13小时B、汉城与多伦多的时差为13小时C、北京与纽约的时差为14小时D、北京与多伦多的时差为14小时14、某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)(1)周一至周五这支股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?上涨或下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?有理数的加减混合运算1、运用减法法则将有理数混合运算中的减法转化为加法2、运用加法法则、加法交换律、加法结合律进行简便运算【易错点津】1、在运算中注意运算顺序,同级运算按从左到右的顺序计算,有括号的要先算括号里的,多重括号,应先算小括号,再算中括号,最后算大括号2、在运算中要注意符号的变化,以确保解题的准确性考点:加减混合1、____________与)4(3-+的和为0.2、如果四个数的和的41是8,其中三个数分别是-6,11,12,则第四个数是()A、16B、15C、14D、133、计算:)16()7(1723-+---练习:4234)25()23(32+----+-4、4.654.18)4.6()54.26(+--+-5、计算:2134384145.6-++-练习:2147.4115333.3114.5+--+-+6、计算:735761167230-+--练习:[])81()219(730+--+-7、计算:853145266128313533218+---+-练习:435)213()3210()212(75.4--+++--8、计算:)315(311431432(-+-+-练习:)43315()312(213-------。

有理数加减法法则及重点练习

有理数加减法法则及重点练习

有理数加减法法则及重点练习知识点一:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(-6)+(-3)=-(6+3)=-9(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(-6)+3=-(6-3);6+(-3)=3(3)互为相反数相加得0. 8+(-8)=0;(-5)+5=0知识点二:有理数减法法则:减去一个数,等于加这个数的相反数。

(把减法转化为加法)a-b=a+(-b);例:-9-(-5)=-9+5=-4知识点三:有理数加法口诀速记法:同号相加一边“倒”;异号相加“大”减“小”,符号跟着“大”的跑;绝对值相等“零”正好;数零相加变不了。

备注:“大”“小”是指加数的绝对值的大小。

知识点四:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得零。

知识点五:有理数除法法则:(一)、除以一个不等于0的数,等于乘这个数的倒数。

(二)、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.(0不能做除数)知识点六:有理数除法技巧方法:(1)直接应用有理数除法的法则进行计算。

(2)有分数除法,先确定结果的符号,再把除法转化为乘法,使用简便运算更合理。

知识点七:有理数运算时要按照步骤:一观察、二确定、三求和。

(第一步观察两数的符号,是同号还是异号;第二步确定用哪条法则;第三步求出结果)知识点八:有理数加减混合运算几种方法:(1)减法统一转化成加法;(2)省略加号和括号;(3)运用加法运算律进行计算;(一)在计算过程中的技巧:(1)同号结合法(运用运算律将正负数分别相加)(2)同分母结合法(分母相同或哟倍数关系的数结合在一起)(3)凑整法(把某些能相加得整数的结合在一起)(4)相反数结合法(互为相反数的两数可现加)(5)统一法(算式中既有分数又有小数,要把分数统一成小数或把小数统一成分数)(6)拆项法(算式中有带分数时,可先把带分数拆成整数和真分数,拆开后相加,运算就简便)拆项后注意:(1)分开的整数部分与分数部分必须保留原带分数的符号。

有理数加减法法则

有理数加减法法则

有理数的加减法法则
一、有理数的加法
(1)有理数的加法法则:
同号相加,取相同符号,并把绝对值相加;
绝对值不等的异号相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
一个数同0相加,仍得这个数。

(在进行有理数加法运算时,首先判断两个加数符号;是同号还是异号,是否有0,从而确定用哪一条法则,在运算过程中,要记住“先符号,后绝对值”)
(2)相关运算律
交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c);
二、有理数的减法
(1)有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)
(2)方法指引:
在进行减法运算时,首先弄清减数的符号;
讲有理数转换为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);
【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换
律;减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算;。

有理数加减法口诀技巧

有理数加减法口诀技巧

有理数加减法口诀技巧1.同号相加,取相同的符号,绝对值相加。

同号相加永不难,符号相同好判断。

绝对值将其相加,知道答案就不忘。

这个口诀告诉我们,如果两个有理数的符号相同,则直接取相同的符号,把这两个有理数的绝对值相加即可得到结果。

例如:(-3)+(-5)=-82.异号相加,看绝对值,取较大的符号,绝对值相减。

异号相加心绞痛,振作起来取较大。

跌次高者绝对值,值得记忆别分开。

这个口诀告诉我们,如果两个有理数的符号不同,则需要比较它们的绝对值的大小。

取绝对值较大的有理数的符号,然后用较大的绝对值减去较小的绝对值即可得到结果。

例如:5+(-3)=2(-8)+3=-5有理数的减法可以转化为加法来计算。

我们将被减的数加上减数的相反数,即可得到减法的结果。

例如:10-3=10+(-3)=7三、绝对值的计算在进行有理数加减法时,经常会用到绝对值的计算。

绝对值表示一个数离原点的距离,有着一定的规律性。

我们可以使用下面的口诀来帮助计算绝对值。

正命正,负取反,绝对值计得快。

正数的绝对值就是这个数本身,负数的绝对值是去掉负号。

例如:,-4,=42,=2四、应用举例1.计算:-5+,-3,-2+6按照口诀,首先计算绝对值:,-3,=3然后按照加减法的口诀计算:-5+3-2+6=-4+4=0答案为0。

2.计算:-3-,-5,+4按照口诀,首先计算绝对值:,-5,=5然后转化为加法进行计算:-3+(-5)+4=-8+4=-4答案为-4总结有理数加减法是初中数学中的重要内容,掌握口诀技巧能够帮助学生更快、更准确地进行计算。

通过同号相加取相同符号,绝对值相加,异号相加取较大符号,绝对值相减的口诀技巧,可以在实际计算中提供指导。

同时,计算绝对值的口诀也能够加快计算速度。

希望这些口诀技巧能够帮助学生在有理数加减法中更加轻松自如地进行计算。

有理数加减法运算规则

有理数加减法运算规则

有理数加减法运算规则
以下是 8 条关于有理数加减法运算规则:
1. 嘿,同号相加可简单啦!就像你和好朋友都往一个方向跑,那你们跑的距离肯定是加在一起的呀!比如 3 加 5 就等于 8 呀。

2. 哎呀呀,如果是异号相加,那可得好好琢磨琢磨啦!这就好比两个人朝相反方向跑,那要看谁跑的力量大,最后结果就朝力量大的那个方向啦!像 5 加 (-3) 就等于 2 呀。

3. 有理数减法别害怕呀!不就是变成加法来做嘛。

就好像你本来要减一个东西,干脆反过来加上它的相反数!比如说 7 减 4 不就等于 7 加 (-4) 得
3 嘛,是不是很有趣?
4. 碰到负数减正数,这不是难为咱嘛,但别怕呀!这不就是负数加上正数的相反数嘛,就好像一场战斗,反过来打就行啦!像 (-3) 减 5 就等于 (-3) 加 (-5) 等于 -8 呀。

5. 计算的时候可别马虎呀!得像细心的侦探一样,不放过任何一个细节。

你想想,要是算错了,那结果不就全错啦!就像 2 加 3 要是算成 4 ,那可
就闹笑话啦!
6. 有理数加减法就像是搭积木,一块一块认真搭,才能搭出正确的结果来呀!可不能瞎捣乱哟!就好比 (-1) 加 2 再加 (-3) ,得一步步来算,最后
得到 -2 呢。

7. 加减法的法则咱得牢记在心呀,这可是咱的秘密武器!难道不是吗?比如计算 4 减 (-2) 得 6 ,这就是规则的魔力呀!
8. 不管题目怎么变,有理数加减法规则都能搞定呀!咱可不能被它难住了,要勇往直前!像计算 (-5) 加 3 减 (-2) ,就按照规则慢慢来,结果就是0 呀。

总之,有理数加减法运算规则就是我们计算的好帮手,只要掌握好了,什么题目都不怕!。

有理数加减法口诀技巧

有理数加减法口诀技巧

有理数加减法技巧口诀
1、有理数加减法顺口溜
有理数加法顺口溜一
同号相加值(绝对值)相加,符号同原不变它。

异号相加值(绝对值)相减,符号就把大的抓。

互为相反数,相加便得0,0加一个数仍得这个数。

有理数加法顺口溜二
同号相加号不变,绝对值来把结果算。

异号相加大减小,绝对值来把符号找。

相反数相加和为0,0加任何数仍得这个数。

有理数加法顺口溜三
同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记号。

有理数减法顺口溜四
减正等于加负,减负等于加正。

2、有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时,和为零;
绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
一个数同零相加仍得这个数。

3.有理数减法法则
减去一个数,等于加上这个数的相反数。

减法运算变加法运算,减数变成它的相反数,被减数不变。

有理数加减法知识点归纳

有理数加减法知识点归纳

有理数加减法知识点归纳有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:a+b+c=a+b+c加法的法则指出,两个有理数相加的结果由两部分构成:先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值.在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.一、要正确认识“+、-”号在小学数学中,“+”、“-”表示加号和减号。

学习有理数后,“+”与“-”还表示正号与负号。

我们通常把四则运算中的加+、减-、乘×、除÷号叫运算符号;把表示正负数的正+、负-号叫性质符号。

另外,负-号除了表示上述两种意义外,还表示一个数的相反数。

如:-5可表示为5的相反数,而相反数。

二、要正确进行运算在初次进行有理数的加减运算时,首先要分清“+”、“-”号是运算符号还是性质符号。

刚开始时,最好把性质符号用括号括起来,使性质符号与运算符号分开。

其次,要牢记运算的法则。

第三,减法统一变加法。

因为学了相反数后,减去一个数,等于加上这个数的相反数。

这是有理数的减法法则,它把减法变成了加法。

三、要及时更新观念有理数的加减,打破了小学数学中的加与减的严格界限,把加、减统一成加法。

这都是由于引进了负数,也正是由于引进了负数,小学时我们所熟悉的许多结论在有理数范围内都不一定成立了。

下面的几个问题认真思考并做出回答:1“两个数相加,和一定大于或等于各个加数”吗?2“两个数相减,差一定小于或等于被减数”吗?3“一个数的3倍一定大于这个数的2倍”吗?感谢您的阅读,祝您生活愉快。

有理数加减法法则(含乘除法法则)

有理数加减法法则(含乘除法法则)

有理数加减法法则
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
一个数同零相加,仍得这个数。

有理数减法法则:减去一个数,等于加上这个数的相反数。

其中:两变:减法运算变加法运算,减数变成它的相反数。

一不变:被减数不变。

可以表示成:a-b=a+(-b)。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。

几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。

除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。

有理数加减法则

有理数加减法则

有理数加减法则首先,让我们回顾一下有理数的基本概念。

有理数是可以表示为两个整数的比值的数,其中分母不为零。

有理数包括正整数(1, 2, 3, ...)、负整数(-1, -2, -3, ...)、零(0)以及分数(1/2, 3/4, -5/6, ...)。

有理数可以用于表示各种实际情况,比如温度、时间、距离等。

因此,了解有理数的加减法则对我们解决实际问题非常重要。

有理数的加法规则如下:对于任意两个有理数a和b,它们的和记作a + b。

如果a和b都是正整数、负整数或零,那么它们的加法运算就非常简单,只需要按照正整数和负整数的加法规则进行计算即可。

例如,2 + 3 = 5,-4 + (-6) = -10,0 + 8 = 8。

如果a和b中有一个是分数,那么需要先找到它们的公共分母,然后按照分数加法的规则进行计算。

比如,1/2 + 3/4,首先找到它们的公共分母为4,然后分别将分子相加得到5/4。

因此,1/2 + 3/4 =5/4。

有理数的减法规则与加法规则类似,只是在计算过程中需要注意减数的取法。

对于任意两个有理数a和b,它们的差记作a - b。

如果a和b都是正整数、负整数或零,那么它们的减法运算也很简单,只需要按照正整数和负整数的减法规则进行计算即可。

例如,5 - 3 = 2,-4 - (-6) = 2,8 - 0 = 8。

如果a和b中有一个是分数,同样需要先找到它们的公共分母,然后按照分数减法的规则进行计算。

比如,3/4 - 1/2,首先找到它们的公共分母为4,然后分别将分子相减得到1/4。

因此,3/4 - 1/2 = 1/4。

有理数的加减法则在解决实际问题时非常有用。

比如,假设小明有5块钱,他又借了2块钱,那么他现在手上有多少钱?这个问题可以用有理数的加法来解决,5 + (-2) = 3,所以小明现在手上有3块钱。

再比如,假设小红有1/3块蛋糕,她又买了1/4块蛋糕,她现在一共有多少蛋糕?这个问题可以用有理数的加法来解决,1/3 + 1/4 = 7/12,所以小红现在一共有7/12块蛋糕。

有理数加减法法则

有理数加减法法则

七年级上册数学之巴公井开创作有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。

(-8)+(-3)=-(8+3)=-11(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(-8)+3=-(8-3);8+(-3)=5(3)互为相反数相加得0. 8+(-8)=0;(-5)+5=0有理数减法法则:减去一个数,等于加这个数的相反数。

(把减法转化为加法)a-b=a+(-b);例:-9-(-5)=-9+5=-4有理数加法口诀速记法:同号相加一边“倒”;异号相加“大”减“小”,符号跟着“大”的跑;绝对值相等“零”正好;数零相加变不了。

备注:“大”“小”是指加数的绝对值的大小。

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得零。

有理数除法法则:(一)、除以一个不等于0的数,等于乘这个数的倒数。

(二)、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.(0不克不及做除数)有理数除法技巧方法:(1)直接应用有理数除法的法则进行计算。

(2)有分数除法,先确定结果的符号,再把除法转化为乘法,使用简便运算更合理。

有理数运算时要依照步调:一观察、二确定、三求和。

(第一步观察两数的符号,是同号还是异号;第二步确定用哪条法则;第三步求出结果)有理数加减混合运算几种方法:(1)减法统一转化成加法;(2)省略加号和括号;(3)运用加法运算律进行计算;(一)在计算过程中的技巧:(1)同号结合法(运用运算律将正负数分别相加)(2)同分母结合法(分母相同或哟倍数关系的数结合在一起)(3)凑整法(把某些能相加得整数的结合在一起)(4)相反数结合法(互为相反数的两数可现加)(5)统一法(算式中既有分数又有小数,要把分数统一成小数或把小数统一成分数)(6)拆项法(算式中有带分数时,可先把带分数拆成整数和真分数,拆开后相加,运算就简便)拆项后注意:(1)分开的整数部分与分数部分必须保存原带分数的符号。

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀

有理数加减法法则巧记口诀数学中的有理数加减法是我们在学习数学的过程中经常遇到的一个内容。

为了更好地掌握有理数的加减法运算,我们可以借助一些巧妙的口诀来帮助记忆和理解。

下面我将为大家介绍一些有理数加减法法则的巧记口诀。

一、加法法则巧记口诀1. 同号相加,取绝对值,再加同号。

当加法中两个有理数的符号相同时,我们可以先将其绝对值相加,然后再加上相同的符号即可。

比如,两个正数相加,结果仍为正数,数值为两个正数的和。

2. 异号相加,取绝对值,差的符号,绝对值大的。

当加法中两个有理数的符号不同时,我们可以先将其绝对值相加,然后最后的结果的符号取绝对值大的那个数的符号,数值为两个数的绝对值之差。

比如,一个正数和一个负数相加,结果的符号取绝对值较大的那个数的符号,数值为两个数的绝对值之差。

例如,对于计算-5 + 3,我们可以将其绝对值相加得到8,然后根据差的符号,绝对值较大的数是-5,所以最终结果为-8。

二、减法法则巧记口诀1. 减去一个负数,变成加一个正数。

当减法中有一个负数时,我们可以将减法转化为加法,即减去一个负数等于加上一个正数。

比如,对于计算7 - (-3),我们可以将其转化为7 + 3,结果为10。

2. 减法即加上相反数。

减法可以转化为加法,即减去一个数等于加上它的相反数。

比如,对于计算5 - 3,我们可以将其转化为5 + (-3),结果为2。

通过以上的巧记口诀,我们可以更加方便地记忆和理解有理数的加减法法则。

当然,除了记忆口诀外,我们还需要掌握有理数的符号规律和运算规则,不断进行练习和实践,才能更好地运用有理数的加减法解决实际问题。

有理数加减法是数学中非常基础和重要的内容,掌握了这些法则,我们就能更好地进行数学运算,解决实际问题。

希望大家通过以上的巧记口诀能够更好地理解和记忆有理数的加减法法则,提升数学的学习效果。

加油!。

有理数加减法法则

有理数加减法法则

有理数加法法则计算步骤
同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时,和为零;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加仍得这个数。

有理数加法法则要点
同号相加不变,异号相加变减。

在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算.6.几个数相加能得到整数的可以先相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学
有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。

(-8)+(-3)=-(8+3)=-11 (2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. (-8)+3=-(8-3);8+(-3)=5
(3)互为相反数相加得0. 8+(-8)=0;(-5)+5=0
有理数减法法则:
减去一个数,等于加这个数的相反数。

(把减法转化为加法)a-b=a+(-b);
例:-9-(-5)=-9+5=-4
有理数加法口诀速记法:
同号相加一边“倒”;异号相加“大”减“小”,符号跟着“大”的跑;
绝对值相等“零”正好;数零相加变不了。

备注:“大”“小”是指加数的绝对值的大小。

有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得零。

有理数除法法则:
(一)、除以一个不等于0的数,等于乘这个数的倒数。

(二)、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.(0不能做除数)
有理数除法技巧方法:
(1)直接应用有理数除法的法则进行计算。

(2)有分数除法,先确定结果的符号,再把除法转化为乘法,使用简便运算更合理。

有理数运算时要按照步骤:一观察、二确定、三求和。

(第一步观察两数的符号,是同号还是异号;第二步确定用哪条法则;第三步求出结果)
有理数加减混合运算几种方法:
(1)减法统一转化成加法;(2)省略加号和括号;(3)运用加法运算律进行计算;
(一)在计算过程中的技巧:
(1)同号结合法(运用运算律将正负数分别相加)
(2)同分母结合法(分母相同或哟倍数关系的数结合在一起)
(3)凑整法(把某些能相加得整数的结合在一起)
(4)相反数结合法(互为相反数的两数可现加)
(5)统一法(算式中既有分数又有小数,要把分数统一成小数或把小数统一成分数)
(6)拆项法(算式中有带分数时,可先把带分数拆成整数和真分数,拆开后相加,运算就简便)
拆项后注意:(1)分开的整数部分与分数部分必须保留原带分数的符号。

(2)运算符号和数的性质符号要用括号分开。

有理数乘除运算几种方法:
乘除混合运算往往先将除法转化为乘法,然后确定积的符号,最后求结果。

相关文档
最新文档