概率的几个基本性质相互独立事件
概率与统计中的事件独立性
概率与统计中的事件独立性概率与统计是数学领域中重要的分支之一,它研究的是事物发生的可能性以及事物之间的关联程度。
在概率与统计中,事件独立性是一个重要的概念。
本文将介绍事件独立性的定义、性质以及相关的应用。
一、定义事件独立性是指在一系列随机试验中,某一事件的发生与其他事件的发生无关。
具体地说,对于两个事件A和B,如果事件A发生与否不会对事件B的发生产生任何影响,或者说事件B的发生与否不会对事件A的发生产生任何影响,那么我们称事件A和事件B是相互独立的。
二、性质1. 互逆性:如果事件A和事件B相互独立,那么事件A的补事件和事件B也相互独立。
2. 自反性:任意事件与自身都是相互独立的。
3. 偶然性:事件A和事件B相互独立,并不意味着它们是不可能发生的,它们仍然可以同时发生或者同时不发生。
4. 独立性传递性:如果事件A和事件B相互独立,事件B和事件C 相互独立,那么事件A和事件C也相互独立。
三、应用事件独立性在概率与统计中有广泛的应用,以下是几个常见的应用场景:1. 抛硬币:在抛硬币的过程中,每一次的抛硬币都是一个独立事件。
无论前一次抛硬币结果是正面还是反面,对于下一次抛硬币的结果都没有影响,每次抛硬币的概率仍然是50%。
2. 掷骰子:与抛硬币类似,每一次掷骰子的结果都是独立事件。
无论前一次掷骰子的点数是多少,对于下一次掷骰子的结果都没有影响。
3. 抽样调查:在进行抽样调查的时候,每一次的抽样都是独立事件。
例如,在进行市场调研时,每一次的问卷发放都是独立的,一个人接收到问卷并填写与其他人接收到问卷并填写之间没有关联性。
4. 生活中的决策:在日常生活中,我们经常需要根据过去的经验和信息做出决策。
如果我们认为某个事件的发生与其他事件是独立的,我们可以根据概率和统计的知识来进行决策。
总结起来,概率与统计中的事件独立性是一个重要的概念。
它可以帮助我们理解和分析随机事件之间的关系,并且在实际应用中有着广泛的用途。
高考数学总复习考点知识与题型专题讲解75 事件的相互独立性与条件概率 全概率公式
高考数学总复习考点知识与题型专题讲解§10.5事件的相互独立性与条件概率、全概率公式考试要求1.了解两个事件相互独立的含义.2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.知识梳理1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=P(A)·P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式①利用古典概型:P(B|A)=n(AB) n(A);②概率的乘法公式:P(AB)=P(A)P(B|A).3.全概率公式一般地,设A1,A2,…,A n是一组两两互斥的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑i =1nP (A i )P (B |A i ). 常用结论1.如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.贝叶斯公式:设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,P (B )>0,有P (A i |B )=P (A i )P (B |A i )P (B )=P (A i )P (B |A i )∑k =1n P (A k )P (B |A k ),i =1,2,…,n . 思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(2)若事件A ,B 相互独立,则P (B |A )=P (B ).( √ )(3)抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A ,“第2枚正面朝上”为事件B ,则A ,B 相互独立.( √ )(4)若事件A 1与A 2是对立事件,则对任意的事件B ⊆Ω,都有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2).( √ ) 教材改编题1.甲、乙两人独立地破解同一个谜题,破解出谜题的概率分别为12,23,则谜题没被破解出的概率为( )A.16 B.13 C.56D.1答案 A解析设“甲独立地破解出谜题”为事件A,“乙独立地破解出谜题”为事件B,则P(A)=12,P(B)=23,故P(A)=12,P(B)=13,所以P(A B)=12×13=16,即谜题没被破解出的概率为1 6.2.在8件同一型号的产品中,有3件次品,5件合格品,现不放回地从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是()A.128 B.110 C.19 D.27答案 D解析当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为2 7.3.智能化的社区食堂悄然出现,某社区有智能食堂A,人工食堂B,居民甲第一天随机地选择一食堂用餐,如果第一天去A食堂,那么第二天去A食堂的概率为0.6;如果第一天去B食堂,那么第二天去A食堂的概率为0.5,则居民甲第二天去A食堂用餐的概率为________.答案0.55解析由题意得,居民甲第二天去A食堂用餐的概率P=0.5×0.6+0.5×0.5=0.55.题型一相互独立事件的概率例1(1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案 B解析事件甲发生的概率P(甲)=16,事件乙发生的概率P(乙)=16,事件丙发生的概率P(丙)=56×6=536,事件丁发生的概率P(丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P(甲丙)≠P(甲)P(丙),故A错误;事件甲与事件丁同时发生的概率为16×6=136,P(甲丁)=P(甲)P(丁),故B正确;事件乙与事件丙同时发生的概率为16×6=136,P(乙丙)≠P(乙)P(丙),故C错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D错误.(2)(2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.答案0.50.1解析记两人又打了X个球后结束比赛,设双方10∶10平后的第k个球甲获胜为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(AA2)=P(A1)P(A2)+P(A1)P(A2)1=0.5×0.4+0.5×0.6=0.5.由乙先发球,得P(X=4且甲获胜)=P(A1A2A3A4)+P(A1A2A3A4)=P(A1)P(A2)P(A3)P(A4)+P(A1)P(A2)P(A3)·P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5=0.1.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练1小王某天乘火车从重庆到上海,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列火车正点到达的概率;(2)这三列火车恰好有一列火车正点到达的概率;(3)这三列火车至少有一列火车正点到达的概率.解用A,B,C分别表示这三列火车正点到达的事件,则P(A)=0.8,P(B)=0.7,P(C)=0.9,所以P(A)=0.2,P(B)=0.3,P(C)=0.1.(1)由题意得A,B,C之间相互独立,所以恰好有两列火车正点到达的概率为P1=P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)恰好有一列火车正点到达的概率为P2=P(A B C)+P(A B C)+P(A B C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.(3)三列火车至少有一列火车正点到达的概率为P3=1-P(A B C)=1-P(A)P(B)P(C)=1-0.2×0.3×0.1=0.994.题型二条件概率例2(1)(2022·哈尔滨模拟)七巧板是中国民间流传的智力玩具.据清代陆以湉《冷庐杂识》记载,七巧板是由宋代黄伯思设计的宴几图演变而来的,原为文人的一种室内游戏,后在民间逐步演变为拼图版玩具.到明代,七巧板已基本定型为由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,可以拼成人物、动物、植物、房亭、楼阁等1 600种以上图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A.35B.25C.27D.15答案 D解析 设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 27=221,P (A )=C 25C 27=1021, 所以P (B |A )=P (AB )P (A )=2211021=15. (2)逢年过节走亲访友,成年人喝酒是经常的事,但是饮酒过度会影响健康,某调查机构进行了针对性的调查研究.据统计,一次性饮酒4.8两,诱发某种疾病的频率为0.04,一次性饮酒7.2两,诱发这种疾病的频率为0.16.将频率视为概率,已知某人一次性饮酒4.8两未诱发这种疾病,则他还能继续饮酒2.4两,不诱发这种疾病的概率为( ) A.78 B.56 C.34 D.2021答案 A解析 记事件A :这人一次性饮酒4.8两未诱发这种疾病,事件B :这人一次性饮酒7.2两未诱发这种疾病,则事件B |A :这人一次性饮酒4.8两未诱发这种疾病,继续饮酒2.4两不诱发这种疾病, 则B ⊆A ,AB =A ∩B =B ,P (A )=1-0.04=0.96,P (B )=1-0.16=0.84,故P (B |A )=P (AB )P (A )=P (B )P (A )=0.840.96=78. 思维升华 求条件概率的常用方法(1)定义法:P(B|A)=P(AB) P(A).(2)样本点法:P(B|A)=n(AB) n(A).(3)缩样法:去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解.跟踪训练2(1)(2023·六盘山模拟)已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回.在第1次抽到代数题的条件下,第2次抽到几何题的概率为()A.14 B.25 C.12 D.35答案 C解析设事件A=“第1次抽到代数题”,事件B=“第2次抽到几何题”,所以P(A)=35,P(AB)=310,则P(B|A)=P(AB)P(A)=31035=12.(2)某射击运动员每次击中目标的概率为45,现连续射击两次.①已知第一次击中,则第二次击中的概率是________;②在仅击中一次的条件下,第二次击中的概率是________.答案①45②12解析①设第一次击中为事件A,第二次击中为事件B,则P(A)=4 5,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是4 5.②设仅击中一次为事件C,则仅击中一次的概率为P(C)=C12×45×15=825,在仅击中一次的条件下,第二次击中的概率是P(B|C)=15×45825=12.题型三全概率公式的应用例3(1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为()A.79160 B.35 C.2132 D.58答案 C解析设事件A表示“小胡答对”,事件B表示“小胡选到有思路的题”.则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P(B)P(A|B)=58×0.9+38×0.25=21 32.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48 B.0.49 C.0.52 D.0.51答案 D解析设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P(A)=0.5,P(B|A)=0.07,P(B|A)=0.95,因此P(B)=P(A)P(B|A)+P(A)P(B|A)=0.5×(0.07+0.95)=0.51.思维升华利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(A i)P(B|A i).(3)代入全概率公式计算.跟踪训练3(1)设甲乘汽车、动车前往某目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78 B.0.8 C.0.82 D.0.84答案 C解析设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.(2)(2022·郑州模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”“冰墩墩”和“雪容融”等.小王有3张“冬梦”、2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”“冰墩墩”和“雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以A1,A2,A3表示小王取出的是“冬梦”“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则P(B|A2)=________,P(B)=________.答案1 2 9 28解析 P (B |A 2)=24=12,由题知P (A 1)=37,P (A 2)=27,P (A 3)=27,则P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3)=37×14+27×24+27×14=928.课时精练1.若P (AB )=19,P (A )=23,P (B )=13,则事件A 与B 的关系是( ) A .事件A 与B 互斥 B .事件A 与B 对立 C .事件A 与B 相互独立D .事件A 与B 既互斥又相互独立 答案 C解析 ∵P (A )=1-P (A )=1-23=13, ∴P (A )P (B )=19, ∴P (AB )=P (A )P (B )≠0,∴事件A 与B 相互独立,事件A 与B 不互斥也不对立.2.(2023·开封模拟)某盏吊灯上并联着4个灯泡,如果在某段时间内每个灯泡能正常照明的概率都是0.8,那么在这段时间内该吊灯上的灯泡至少有两个能正常照明的概率是()A.0.819 2 B.0.972 8C.0.974 4 D.0.998 4答案 B解析4个都不能正常照明的概率为(1-0.8)4=0.001 6,只有1个能正常照明的概率为4×0.8×(1-0.8)3=0.025 6,所以至少有两个能正常照明的概率是1-0.001 6-0.025 6=0.972 8.3.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8 B.0.625 C.0.5 D.0.1答案 A解析设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=P(AB)P(A)=0.20.25=0.8.4.(2022·青岛模拟)甲、乙两名选手进行象棋比赛,已知每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,若采用三局二胜制,则甲最终获胜的概率为()A.0.36 B.0.352C.0.288 D.0.648答案 D解析由题意可得甲最终获胜有两种情况:一是前两局甲获胜,概率为0.6×0.6=0.36,二是前两局甲一胜一负,第三局甲胜,概率为C12×0.6×0.4×0.6=0.288,这两种情况互斥,∴甲最终获胜的概率P=0.36+0.288=0.648.5.某考生回答一道四选一的考题,假设他知道正确答案的概率为0.5,知道正确答案时,答对的概率为100%,而不知道正确答案时猜对的概率为25%,那么他答对题目的概率为()A.0.625 B.0.75 C.0.5 D.0.25答案 A解析记事件A为“该考生答对题目”,事件B1为“该考生知道正确答案”,事件B2为“该考生不知道正确答案”,则P(A)=P(A|B1)·P(B1)+P(A|B2)·P(B2)=1×0.5+0.25×0.5=0.625.6.将甲、乙、丙、丁4名医生随机派往①,②,③三个村庄进行义诊活动,每个村庄至少派1名医生,A表示事件“医生甲派往①村庄”;B表示事件“医生乙派往①村庄”;C表示事件“医生乙派往②村庄”,则()A.事件A与B相互独立B.事件A与C相互独立C.P(B|A)=5 12D.P(C|A)=5 12答案 D解析将甲、乙、丙、丁4名医生派往①,②,③三个村庄进行义诊包含C24A33=36(个)样本点,它们等可能,事件A含有的样本点个数为A33+C23A22=12,则P (A )=1236=13, 同理P (B )=P (C )=13,事件AB 含有的样本点个数为A 22=2,则P (AB )=236=118, 事件AC 含有的样本点个数为C 22+C 12C 12=5,则P (AC )=536, 对于A ,P (A )P (B )=19≠P (AB ),即事件A 与B 不相互独立,故A 不正确;对于B ,P (A )P (C )=19≠P (AC ),即事件A 与C 不相互独立,故B 不正确; 对于C ,P (B |A )=P (AB )P (A )=16,故C 不正确; 对于D ,P (C |A )=P (AC )P (A )=512,故D 正确. 7.(2022·石家庄模拟)某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得-20分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是23,回答第三个问题正确的概率是12,且各题回答正确与否相互之间没有影响,则该选手仅回答正确两个问题的概率是 ________;该选手闯关成功的概率是 ________. 答案 4912解析 该选手仅回答正确两个问题的概率是P 1=23×23×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12=49,该选手要闯关成功,则只有第3个问题回答正确或者第1,3两个问题回答正确或者第2,3两个问题回答正确或者三个问题都回答正确,所以闯关成功的概率为⎝ ⎛⎭⎪⎫1-232×12+23×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-23×23×12+23×23×12=12. 8.某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________. 答案 16解析 设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 16C 27=27,P (AB )=1C 27=121,故P (B |A )=P (AB )P (A )=16. 9.(2022·襄阳模拟)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率. 解 (1)该款芯片生产在进入第四道工序前的次品率P =1-⎝ ⎛⎭⎪⎫1-110×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1-18=310.(2)设“该款智能自动检测合格”为事件A ,“人工抽检合格”为事件B , 则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )=P (AB )P (A )=710910=79.10.(2023·佛山模拟)男子冰球比赛上演的是速度与激情的碰撞.2022北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛.比赛规则:12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段: 小组赛阶段各组采用单循环赛制(小组内任意两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组比赛成绩进行排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中相遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛.(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲、乙、丙、丁队)实力相当,假设他们在接下来的四分之一决赛、半决赛、铜牌赛、金牌赛中取胜的概率都依次为34,12,12,12,且每支球队晋级后每场比赛相互独立.试求甲、乙、丙、丁队都没获得冠军的概率.解(1)根据赛制,小组赛共安排3×C24=18(场)比赛,附加赛共安排8÷2=4(场)比赛,四分之一决赛共安排8÷2=4(场)比赛,半决赛共安排4÷2=2(场)比赛,铜牌赛、金牌赛各比赛一场,共2场,故本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排18+4+4+2+2=30(场)比赛.(2)设甲、乙、丙、丁队获得冠军分别为事件A,B,C,D,都没有获得冠军为事件E,∵晋级后每场比赛相互独立,∴P(A)=34×12×12=316,∵四队实力相当,∴P(B)=P(C)=P(D)=P(A)=3 16,∵事件A,B,C,D互斥,∴甲、乙、丙、丁队都没获得冠军的概率为P(E)=1-P(A∪B∪C∪D)=1-[P(A)+P(B)+P(C)+P(D)]=1-4×316=14.故甲、乙、丙、丁队都没获得冠军的概率为1 4.11.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如图所示,其中编号为i的方框表示第i场比赛,方框中是进行该场比赛的两名棋手,第i场比赛的胜者称为“胜者i”,负者称为“负者i ”,第6场为决赛,获胜的人是冠军.已知甲每场比赛获胜的概率均为23,而乙、丙、丁之间相互比赛,每人胜负的可能性相同.则甲获得冠军的概率为( )A.827B.1627C.3281D.4081 答案 D解析 甲获得冠军,则甲参加的比赛结果有三种情况:1胜3胜6胜;1负4胜5胜6胜;1胜3负5胜6胜,故甲获得冠军的概率为⎝ ⎛⎭⎪⎫233+2×⎝ ⎛⎭⎪⎫233×13=4081.12.(多选)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( ) A .P (B )=25 B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件 答案 BD解析 由题意知,A 1,A 2,A 3是两两互斥的事件,故D 正确;P (A 1)=510=12,P (A 2)=210=15,P(A3)=310,P(B|A1)=12×51112=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C不正确.13.(2022·全国乙卷)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大答案 D解析设该棋手在第二盘与甲比赛连胜两盘的概率为P甲,在第二盘与乙比赛连胜两盘的概率为P乙,在第二盘与丙比赛连胜两盘的概率为P丙,方法一由题意可知,P甲=2p1[p2(1-p3)+p3(1-p2)]=2p1p2+2p1p3-4p1p2p3,P乙=2p2[p1(1-p3)+p3(1-p1)]=2p1p2+2p2p3-4p1p2p3,P丙=2p3[p1(1-p2)+p2(1-p1)]=2p1p3+2p2p3-4p1p2p3.所以P丙-P甲=2p2(p3-p1)>0,P丙-P乙=2p1(p3-p2)>0,所以P丙最大.方法二(特殊值法)不妨设p1=0.4,p2=0.5,p3=0.6,则该棋手在第二盘与甲比赛连胜两盘的概率P甲=2p1[p2(1-p3)+p3(1-p2)]=0.4;在第二盘与乙比赛连胜两盘的概率P乙=2p2[p1(1-p3)+p3(1-p1)]=0.52;在第二盘与丙比赛连胜两盘的概率P丙=2p3[p1(1-p2)+p2(1-p1)]=0.6.所以P丙最大.14.(2023·舟山模拟)根据以往的临床记录,某种诊断癌症的试验有如下的效果:若以A 表示事件“试验反应为阳性”,以C表示事件“被诊断者患有癌症”,则有P(A|C)=0.95,P(A|C)=0.95,现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即P(C)=0.005,则P(C|A)=________.(精确到0.001)答案0.087解析∵P(A|C)=0.95,∴P(A|C)=1-P(A|C)=0.05,∵P(C)=0.005,∴P(C)=0.995,由全概率公式可得,P(A)=P(A|C)P(C)+P(A|C)P(C),∵P(AC)=P(C|A)P(A)=P(A|C)P(C),∴P(C|A)=P(A|C)P(C)P(A|C)P(C)+P(A|C)P(C)=0.95×0.0050.95×0.005+0.05×0.995=19218≈0.087.21 / 21。
概率知识点
概率知识要点(一)1. 概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nm P(A)=. 3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ .②对立事件:两个事件必有一个发生..........的互斥事件.....叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:1)A P(A )A P(P(A)=+=+.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. 4. 对任何两个事件都有)()()()(B A P B P A P B A P ⋅-+=+概率知识要点(二)一、随机变量.1、随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2、离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.互斥对立设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ1x2x… i x … P 1p 2p …i p …有性质① ,2,1,01=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3、二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. 4.、几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是得到随机变量ξ的概率分布列. ξ 1 2 3… k… Pqqpp q 2…p q 1k -…我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5、⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNkn MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为 ξ 1x 2x … i x … P1p2p… i p…则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1)⑷二项分布:∑=⋅-⋅=-np q pk n k n k E k n k)!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ三、正态分布.1、⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质. ①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称. ③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线. ④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.ξ 0 1 Pqpξ 0 1 Pqp2、 ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.▲xy a标准正态分布曲线S 阴=0.5S a =0.5+SS。
新教材北师大版高中数学选择性必修第一册第六章概率 知识点考点重点难点解题规律归纳总结
第六章概率1随机事件的条件概率................................................................................................ - 1 -1.1条件概率的概念............................................................................................. - 1 -1.2乘法公式与事件的独立性............................................................................. - 5 -1.3全概率公式..................................................................................................... - 5 -2离散型随机变量及其分布列.................................................................................... - 9 -2.1随机变量......................................................................................................... - 9 -2.2离散型随机变量的分布列........................................................................... - 12 -3离散型随机变量的均值与方差.............................................................................. - 16 -3.1离散型随机变量的均值............................................................................... - 16 -3.2离散型随机变量的方差............................................................................... - 21 -4二项分布与超几何分布.......................................................................................... - 24 -4.1二项分布....................................................................................................... - 24 -4.2超几何分布................................................................................................... - 27 -5正态分布 ................................................................................................................. - 30 - 1随机事件的条件概率1.1条件概率的概念1.条件概率(1)条件概率的定义在事件A发生的条件下事件B发生的概率,称为事件A发生条件下事件B发生的条件概率,记作P(B|A).(2)条件概率公式当P(A)>0时,有P(B|A)=P(AB) P(A).1.如何从集合角度看条件概率公式?[提示]若事件A已发生,则为使事件B也发生,试验结果必须是既在A中又在B中的样本点,即此点必属于AB.由于已知A已经发生,故A成为计算条件概率P(B|A)新的样本空间,因此,有P(B|A)=P(AB) P(A).2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.P(B|A)与P(B)有何大小关系?[提示]P(B|A)≥P(B).疑难问题类型1利用定义求条件概率【例1】一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为B.(1)分别求事件A,B,AB发生的概率;(2)求P(B|A).[思路点拨]可先求P(A),P(B),P(AB),再用公式P(B|A)=P(AB)P(A)求概率.[解]由古典概型的概率公式可知(1)P(A)=25,P(B)=2×1+3×25×4=820=25,P(AB)=2×15×4=110.(2)P(B|A)=P(AB)P(A)=11025=14.用定义法求条件概率P(B|A)的步骤是:(1)分析题意,弄清概率模型;(2)计算P(A),P(AB);(3)代入公式求P(B|A)=P(AB) P(A).类型2利用基本事件个数求条件概率【例2】现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.[思路点拨]第(1)、(2)问属古典概型问题,可利用古典概型的概率计算公式求解;第(3)问为条件概率,可以利用定义P(B|A)=P(AB)P(A)求解,也可以利用公式P(B|A )=n(AB)n(A)求解.[解]设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=A26=30,根据分步计数原理n(A)=A14A15=20,于是P(A)=n AnΩ=2030=23.(2)因为n(AB)=A24=12,于是P(AB)=n ABnΩ=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.如果随机试验属于古典概型,可采用缩减基本事件总数的办法来计算,P(B|A)=n(AB)n(A),其中n(AB)表示事件包含的基本事件个数,n(A)表示事件A包含的基本事件个数.类型3条件概率的性质及应用[探究问题]1.掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?[提示]掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.2在“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?[提示]“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.3.先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?[提示]设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为B∪C|A.∴P(B∪C|A)=P(B|A)+P(C|A)=16+16=13.【例3】有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.[思路点拨]先设出基本事件,求出基本事件的概率,再求试验成功的概率.[解]设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},C={第二次取出的球是红球},D={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(C|A)=12,P(D|A)=12,P(C|B)=45,P(D|B)=15.事件“试验成功”表示为CA∪CB,又事件CA与事件CB互斥,故由概率的加法公式,得P(CA∪CB)=P(CA)+P(CB)=P(C|A)·P(A)+P(C|B)·P(B)=12×710+45×310=0.59.1.应用概率加法公式的前提是事件互斥.2.为了求复杂事件的概率,往往可以先把该事件分解成两个或多个互斥事件的和,求出简单事件概率后,相加即可得到复杂事件的概率.归纳总结1.由条件概率的定义可知,P (B |A )与P (A |B )是不同的.另外,在事件A 发生的前提下,事件B 发生的概率不一定是P (B ),即P (B |A )与P (B )不一定相等.2.在条件概率的定义中,要强调P (A )>0.当P (A )=0时,P (B |A )=0.3.P (B |A )=P (AB )P (A )可变形为P (AB )=P (B |A )·P (A ),即只要知道其中的两个值就可以求得第三值.1.2 乘法公式与事件的独立性1.3 全概率公式1.概率的乘法公式当P (A )>0时,P (AB )=P (B |A )·P (A ).2.相互独立事件的概率(1)一般地,事件A ,B 相互独立⇔P (AB )=P (A )P (B ).(2)如果事件A 1,A 2,…,A n 相互独立,那么P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).3.相互独立事件的性质若A 与B 是相互独立事件,则A 与B -,B 与A -,A -与B 也相互独立.若A ,B 相互独立,则A 与B 也相互独立,为什么?[提示] ∵A 、B 相互独立,∴P (AB )=P (A )·P (B )=P (A )(1-P (B ))=P (A )-P (A )P (B ),∴P (A )P (B )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )(1-P (B ))=P (A )P (B ), ∴A 与B 相互独立.3.全概率公式(1)全概率公式设B 1,B 2,…,B n 为样本空间Ω的一个划分,若P (B i )>0(i =1,2,…,n ),则对任意一个事件A 有P (A )=∑ni =1P (B i )P (A |B i ). *(2)贝叶斯公式设B 1,B 2,…,B n 为样本空间Ω的一个划分,若P (A )>0,P (B i )>0(i =1,2,…,n ),则P (B i |A )=P (B i )P (A |B i )∑n j =1P (B j )P (A |B j ). 疑难问题类型1 互斥事件与相互独立事件的判断【例1】 判断下列各对事件是互斥事件,还是相互独立事件.(1)运动员甲射击1次,“射中9环”与“射中8环”;(2)甲、乙两运动员各射击1次,“甲射中10环”与“乙射中9环”;(3)甲、乙两运动员各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”;(4)甲、乙两运动员各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”.[思路点拨] 利用独立事件、互斥事件的意义判断.[解] (1)甲射击1次,“射中9环”与“射中8环”两个事件不可能同时发生,二者是互斥事件;(2)甲、乙各射击1次,“甲射中10环”发生与否,对“乙射中9环”的概率没有影响,二者是相互独立事件;(3)甲、乙各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件;(4)甲、乙各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能同时发生,二者构不成互斥事件,也不可能是相互独立事件.判断两事件相互独立的方法(1)若P (AB )=P (A )P (B ),则事件A 和B 相互独立.(2)由事件本身的性质直接判定是否相互影响,从而得出事件是否相互独立.类型2 相互独立事件同时发生的概率【例2】 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45,35,25,15,且各轮问题能否正确回答互不影响. (1)求该选手进入第四轮才被淘汰的概率; (2)求该选手至多进入第三轮考核的概率. [思路点拨] (1)先找出第四轮被淘汰的事件,再看它是独立事件还是互斥事件;(2)至多进入第三轮含有第一轮被淘汰、第二轮被淘汰、第三轮被淘汰三个互斥事件,利用互斥事件、相互独立事件的概率公式求解. [解] (1)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3,4),则P (A 1)=45,P (A 2)=35,P (A 3)=25,P (A 4)=15.“该选手进入第四轮才被淘汰”记为B ,P (B )=P (A 1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A 4)=45×35×25×45=96625.(2)法一:“该选手至多进入第三轮考核”记为C ,P (C )=P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3) =15+45×25+45×35×35=101125.法二:“该选手进入第四轮没有被淘汰”记为D ,则P (D )=45×35×25×15=24625.而C 与B ∪D 为对立事件,B 与D 为互斥事件,∴P (C )=1-P (B ∪D )=1-P (B )-P (D )=1-96625-24625=101125.1.求P (AB )时,要注意事件A ,B 是否相互独立,求P (A +B )时,应注意事件A ,B 是否互斥.对于“至多”“至少”型问题的解法有两种思路:①分类讨论;②转化为求对立事件的概率,利用P (A )=1-P (A )来计算.2.复杂问题可考虑分解为等价的几个事件的概率问题,同时结合对立事件的概率求法进行求解.类型3全概率公式的应用【例3】设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第一二车间生产的成品比例为2∶3,今有一客户从成品仓库中随机提一台产品,求该产品合格的该概率.[解]设B={从仓库中随机提一台是合格品},A i={提出的一台是第i车间生产的},i=1,2,则有B=A1B∪A2B,由题意则P(A1)=0.4,P(A2)=0.6,P(B|A1)=0.85,P(B|A2)=0.88,由全概率公式得,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=0.4×0.85+0.6×0.88=0.868.1.全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为在不同情况下发生的简单事件的概率的求和问题.2.从以上典型例题的分析可以看出,应用全概率公式解决问题时,准确、迅速寻找完备事件组是解决此类问题的关键,其应用的一般方法和步骤归纳如下:(1)认真分析题目中的条件,找出完备事件组A1,A2,…,A n;(2)求出A i发生的条件下B发生的条件概率P(B|A i),这样就可以直接利用全概率公式解决此类问题了.归纳总结1.两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响;两个事件互斥是指两个事件不可能同时发生,而相互独立的两个事件可以同时发生.2.如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积.3.利用全概率公式可以将复杂事件的概率转化为简单事件的概率的求和问题,寻找完备事件组是求解的关键.2离散型随机变量及其分布列2.1随机变量1.随机变量(1)定义:在随机试验中,确定了一个对应关系,使得样本空间的每一个样本点都用一个确定的数值表示.在这个对应关系下,数值随着试验结果的变化而变化.像这种取值随着试验结果变化而变化的量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η等表示.2.离散型随机变量所有取值可以一一列举出来的随机变量,称为离散型随机变量.(1)任何随机试验的结果都可以用数字表示吗?(2)离散型随机变量的取值一定是有限个吗?[提示](1)可以.实际上我们可以建立一个随机试验的所有结果同实数间的对应关系,根据问题的需要选择相应数字.(2)不一定.可以是无限个,如1,2,3,…,n,….疑难问题类型1随机变量的概念【例1】判断下列各个量,哪些是随机变量,哪些不是随机变量,并说明理由.(1)北京国际机场候机厅中2022年5月1日的旅客数量;(2)2022年5月1日到10月1日期间所查酒驾的人数;(3)2022年6月1日上海到北京的某次动车到北京站的时间;(4)体积为1 000 cm3的球的半径长.[思路点拨]判断所给的量是否随试验结果的变化而变化,发生变化的是随机变量.[解](1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)动车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.1.解答本题主要是运用随机变量的定义,透彻理解定义是解此类题的关键.2.随机变量X满足三个特征:(1)可以用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取何值.类型2离散型随机变量的判定【例2】指出下列随机变量是否是离散型随机变量,并说明理由.(1)某超市5月份每天的销售额;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位监测站所测水位ξ.[解](1)某超市5月份每天的销售额可以一一列出,故为离散型随机变量.(2)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.(3)不是离散型随机变量,水位在(0,29]这一范围内变化,不能按次序一一列举.判断一个随机变量X是否为离散型随机变量的具体方法:(1)明确随机试验的所有可能结果;(2)将随机试验的试验结果数量化;(3)确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.类型3用随机变量表示随机试验的结果【例3】写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[思路点拨]分析题意→写出X可能取的值→分别写出取值所表示的结果[解](1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示取出标有1,2的两张卡片;X=4,表示取出标有1,3的两张卡片;X=5,表示取出标有2,3或标有1,4的两张卡片;……X=11,表示取出标有5,6的两张卡片.1.解答此类问题,关键是要弄清题意,第(1)问中,X=1,2,…,11所表示的结果不需要分别列出来,引入变量i,可写成X=i.2.在写出随机变量的取值表示的试验结果时,要特别注意随机变量的一个值表示多个试验结果的情况,不能遗漏某些试验结果.归纳总结1.随机变量可将随机试验的结果数量化.2.随机变量与函数的异同点:随机变量函数相同点都是一种映射,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域不同点把试验结果映射为实数,即随机变量的自变量是试验结果把实数映射为实数,即函数的自变量是实数2.2 离散型随机变量的分布列1.离散型随机变量取值能够一一列举出来的随机变量称为离散型随机变量. 2.离散型随机变量X 的分布列(1)定义:若离散型随机变量X 的取值为x 1,x 2,…,x n ,…,随机变量X 取x i 的概率为p i (i =1,2,…,n ,…),记作:P (X =x i )=p i (i =1,2,…,n ,…),①,把①式列成如下表格:如果随机变量X 的分布列为上述表格或①式,我们称随机变量X 服从这一分布列,并记作X ~⎣⎢⎡⎦⎥⎤x 1 x 2 … x n …p 1 p 2 … p n…. (2)性质:在离散型随机变量X 的分布列中, ①p i >0(i =1,2,…,n ,…); ②p 1+p 2+…+p n +…=1. 3.伯努利试验若在某个试验中,每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”,每次“成功”的概率均为p ,每次“失败”的概率均为1-p ,则称这样的试验为伯努利试验.4.两点分布如果随机变量X 的分布列如表其中0<p<1,q=1-p,那么称离散型随机变量X服从参数为p的两点分布(又称0-1分布或伯努利分布).两点分布不仅是最简单的,也是最重要的概率分布模型,在实际生活中有着广泛的应用.在离散型随机变量分布列中,所有概率之和为什么为1?[提示]因为离散型随机变量所有取值对应的事件之和是必然事件,所以所有概率之和为1.疑难问题类型1离散型随机变量的分布列【例1】一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以X表示取出球的最大号码.(1)求X的分布列;(2)求X的取值不小于4的概率.[解](1)随机变量X的可能取值为3,4,5,6,P(X=3)=C33C36=120,P(X=4)=C11C23C36=320,P(X=5)=C11C24C36=310,P(X=6)=C11C25C36=12,所以随机变量X的分布列为X 3456P12032031012(2)X的取值不小于4的概率为P(X≥4)=P(X=4)+P(X=5)+P(X=6)=320+310+12=1920.求离散型随机变量分布列的一般步骤:(1)确定X的所有可能取值x i(i=1,2,…)以及每个取值所表示的意义;(2)利用概率的相关知识,求出每个取值相应的概率P(X=x i)=p i(i=1,2,…);(3)写出分布列;(4)根据分布列的性质对结果进行检验.类型2 离散型随机变量分布列的性质【例2】 设随机变量X 的分布列P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P ⎝ ⎛⎭⎪⎫X ≥35; (3)求P ⎝ ⎛⎭⎪⎫110<X <710.[思路点拨] (1)先求出X 的分布列,再根据分布列的性质确定a .(2)、(3)中的概率利用互斥事件的概率公式结合分布列求解即可.[解] 依题意,随机变量X 的分布列为X =i 1525354555P (X =i )a 2a 3a 4a 5a(1)由a +2a +3a +4a +5a =1,得a =115.(2)法一:P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P ⎝ ⎛⎭⎪⎫X =55=315+415+515=45.法二:P ⎝ ⎛⎭⎪⎫X ≥35=1-P ⎝ ⎛⎭⎪⎫X ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<X <710,所以X =15,25,35.故P ⎝ ⎛⎭⎪⎫110<X <710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=25.1.随机变量的取值不一定是整数,它的取值一般来源于实际问题,并有特定的含义.2.随机变量在某一范围内取值的概率等于在这一范围内取每个值的概率之和.类型3 离散型随机变量分布列的应用【例3】 袋中装有标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.[思路点拨](1)利用古典概型公式求解即可;求解(2)的关键在于确定X的所有可能取值及取每个值的概率;(3)由题意知计算介于20分到40分之间的概率等于X=3与X=4的概率之和,由(2)易得其概率.[解](1)法一:“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A)=C35C12C12C12C310=23.法二:“一次取出的3个小球上的数字互不相同”的事件记为A,“一次取出的3个小球上有两个数字相同”的事件记为B,则事件A和事件B是对立事件.因为P(B)=C15C22C18C310=13,所以P(A)=1-P(B)=1-13=23.(2)由题意,X所有可能的取值为2,3,4,5.P(X=2)=C22C12+C12C22C310=130;P(X=3)=C24C12+C14C22C310=215;P(X=4)=C26C12+C16C22C310=310;P(X=5)=C28C12+C18C22C310=815.所以随机变量X的分布列为(3)“C,则P(C)=P(X=3或X=4)=P(X=3)+P(X=4)=215+310=1330.离散型随机变量分布列问题融合了排列、组合,古典概型、互斥事件、对立事件的概率等知识,是较强的综合应用.归纳总结1.离散型随机变量可能取的值为有限个或可列举的无限个,或者说能将它的可能取值按一定次序一一列出.2.求离散型随机变量的分布列时应注意以下几点(1)确定离散型随机变量的分布列的关键是搞清X取每一个值对应的随机事件,进一步利用排列、组合知识求出X取每一个值的概率.(2)在求离散型随机变量X的分布列时,要充分利用分布列的性质,这样可以减少运算量,也可利用分布列的性质验证分布列是否正确.3离散型随机变量的均值与方差3.1离散型随机变量的均值离散型随机变量的均值或数学期望(1)定义:一般地,若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n则称EX=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望(简称期望).(2)意义:离散型随机变量X的均值或数学期望反映了离散型随机变量X取值的平均水平.(3)性质:如果X为离散型随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且EY=E(aX+b)=aEX+b.(1)随机变量的均值和样本的平均值是一个常数还是随机变量?(2)随着样本容量的增加,样本的平均值与总体平均值有什么关系?[提示](1)随机变量的均值是一个常数,它不依赖于样本的抽取;样本的平均值是一个随机变量,它是随着样本的不同而变化的.(2)随着样本容量的增加,样本的平均值越来越接近于总体平均值.疑难问题类型1求离散型随机变量的均值【例1】袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用ξ表示得分数.(1)求ξ的分布列;(2)求ξ的均值.[思路点拨]首先根据取到的两个球的不同情况,确定ξ的取值为0,1,2,3,4,再分别计算概率,即可得到分布列,然后利用均值的公式求解.[解](1)由题意知ξ的可能取值为0,1,2,3,4,当ξ=0时,即取到2个黑球,则P(ξ=0)=C24C29=16;当ξ=1时,即取到1个黑球和1个白球,则P(ξ=1)=C14·C13C29=13;当ξ=2时,即取到1个红球和1个黑球或者取到2个白球,则P(ξ=2)=C23 C29+C12·C14 C29=1136;当ξ=3时,即取到1个红球和1个白球,则P(ξ=3)=C13·C12C29=16;当ξ=4时,即取到2个红球,则P(ξ=4)=C22C29=136.所以ξ的分布列为ξ01234P 1613113616136(2)均值Eξ=0×16+1×13+2×1136+3×16+4×136=149.求离散型随机变量的均值的步骤(1)确定取值:根据随机变量X 的意义,写出X 可能取得的全部值. (2)求概率:求X 取每个值的概率. (3)写分布列:写出X 的分布列. (4)求均值:由均值的定义求出EX ,其中写出随机变量的分布列是求解此类问题的关键所在.类型2 离散型随机变量均值的性质 【例2】 已知随机变量X 的分布列为:X -2 -1 0 1 2 P141315m120(1)求EX ;(2)若Y =2X -3,求EY .[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16, 所以EX =(-2)×14+(-1)×13+0×15+1×16+2×120=-1730. (2)法一:由公式E (aX +b )=aEX +b ,得 EY =E (2X -3)=2EX -3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.法二:由于Y =2X -3,所以Y 的分布列如下:Y -7 -5 -3 -1 1 P14131516120所以EY =(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.本例条件不变,若ξ=aX +3,且Eξ=-112,求a 的值. [解] Eξ=E (aX +3)=aE (X )+3=-1730a +3=-112,所以a =15.2.已知随机变量ξ的分布列为ξ -1 0 1 P1213m若η=aξ+3,Eη=73,则a =( )A .1B .2C .3D .4 B [由分布列的性质得12+13+m =1,所以m =16, 所以Eξ=-1×12+0×13+1×16=-13, 法一:Eη=E (aξ+3)=aEξ+3=-13a +3=73. 所以a =2.法二:因为η=aξ+3,所以η的分布列如下:η -a +3 3 a +3 P121316Eη=(-a +3)×12+3×13+(a +3)×16=73. 所以a =2.]求离散型随机变量均值的解题思路(1)若给出的随机变量Y 与X 的关系为Y =aX +b ,a ,b 为常数.一般思路是先求出EX ,再利用公式E (aX +b )=aEX +b 求EY .(2)利用X 的分布列得到Y 的分布列,关键由X 的取值计算Y 的取值,对应的概率相等,再由定义法求得EY .类型3 离散型随机变量均值的应用【例3】 一名博彩者,放6个白球和6个红球在一个袋子中,定下规矩:凡是愿意摸彩者,每人交1元作为手续费,然后可以一次从袋中摸出5个球,中彩情况如下表:摸5个球中彩发放奖品有5个白球1顶帽子(价值20元)恰有4个白球1张贺卡(价值2元)恰有3个白球纪念品(价值0.5元)其他同乐一次(无任何奖品)试计算:(1)摸一次能获得20元奖品的概率.(2)按摸10 000次统计,这个人能否赚钱?如果赚钱,则净赚多少钱?[思路点拨]在一次摸球中,博彩者获得的收入是不确定的,故可将其作为一个随机变量,他能否赚钱,就要看该随机变量的均值是否大于0.[解](1)摸一次能获得20元奖品的概率是P=C56C512=1132.(2)如果把取到的白球作为随机变量X,则P(X=5)=C56C512=1132,P(X=4)=C46C16C512=15132,P(X=3)=C36C26C512=50132,P(X=2)+P(X=1)+P(X=0)=66132,所以博彩者的收入这一随机变量Y(可以为负数)的分布列为:Y -19-10.51P1132151325013266132所以收入的随机变量Y的均值为EY=(-19)×1132+(-1)×15132+0.5×50132+1×66132≈0.431 8.故这个人可以赚钱,且摸10 000次净收入的均值为4 318元.(1)实际问题中的均值问题,均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.(2)概率模型的解答步骤①审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些;②确定随机变量的分布列,计算随机变量的均值;③对照实际意义,回答概率、均值等所表示的结论.归纳总结1.本节课的重点是离散型随机变量的均值的求法,难点是均值的实际应用. 2.要掌握离散型随机变量均值的几个常用结论 (1)E (C )=C (C 为常数); (2)E (aX 1+bX 2)=aEX 1+bEX 2;(3)如果X 1,X 2相互独立,则E (X 1·X 2)=EX 1·EX 2.3.2 离散型随机变量的方差1.方差及标准差的定义 设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n(1)方差DX =∑n i =1(x i -EX )2p i .(2)标准差σX =DX . 2.方差的性质 D (aX +b )=a 2DX .(1)随机变量的方差和样本的方差是一个常数还是随机变量? (2)随着样本容量的增加,样本的方差与总体方差有什么关系?[提示] (1)随机变量的方差是一个常数,它不依赖于样本的抽取;样本的方差是一个随机变量,它是随着样本的不同而变化的.(2)随着样本容量的增加,样本的方差越来越接近于总体方差.疑难问题类型1 求离散型随机变量的方差【例1】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.求ξ的分布列、均值和方差.[解] 由题意得,ξ的所有可能取值为0,1,2,3,4, P (ξ=0)=1020=12,P (ξ=1)=120, P (ξ=2)=220=110,P (ξ=3)=320, P (ξ=4)=420=15. 故ξ的分布列为ξ 0 1 2 3 4 P1212011032015所以Eξ=0×12+1×120+2×110+3×320+4×15=1.5,Dξ=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.求离散型随机变量的方差的步骤(1)明确随机变量的取值,以及取每个值的试验结果. (2)求出随机变量取各个值的概率. (3)列出分布列.(4)利用公式EX =∑ni =1x i p i 求出随机变量的期望EX .(5)代入公式DX =∑ni =1(x i -EX )2p i ,求出方差DX .类型2 方差的性质【例2】 已知随机变量X 的分布列为X1234P 0.2 0.2 a 0.2 0.1求EX ,DX ,D (-2X [解] ∵0.2+0.2+a +0.2+0.1=1,∴a =0.3. ∴EX =0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
第10章 第3节 事件的相互独立性及条件概率 课件-山东省滕州市第一中学2022届高考数学一轮复习
中恰有一个地方降雨的概率为 C
A.0.2
B.0.3
C.0.38
D.0.56
解析 设甲地降雨为事件A,乙地降雨为事件B,
则两地恰有一地降雨为 A B + A B,
∴P(A B + A B)=P(A B )+P( A B) =P(A)P( B )+P( A )P(B)
1 1 1 15
=[1-P( A2 )·P( A3 )]P(A1)=1-4×4×2=32.
讲
课
人
:
邢
启
强
9
例2 (1)(2020·葫芦岛期末)对标有不同编号的6件正品和4件次品的产品进行检测,
不放回地依次摸出2件.在第一次摸出次品的条件下,第二次摸到正品的概率是 D
3
A.5
2
B.5
一等品,求取走的也是一等品的概率.
讲
课
人
:
邢
启
强
13
练习
1.某电视台的夏日水上闯关节目一共有三关,第一关与第二关的过关率分别
2 3
为3,4.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且是否通
过每关相互独立.一选手参加该节目,则该选手能进入第三关的概率为 C
1
2
5
1
A.2
B.3
C.6
D.12
则 P(B)=1-P( B )=1-[1-P(A1)][1-P(A2)]=1-(1-0.1)(1-0.2)=1-0.9×0.8=0.28.
讲
课
人
:
邢
启
强
解由题意知,设备在一天的运转中需要调整的部件个数可能为0,1,2,3.
概率论与数理统计知识点总结
P(X = k) = ke- , k = 0,1,2 , 其中 0 是常数,则称 X 服从参数为 的泊松分布记为 k!
X ~ () §3 随机变量的分布函数 定义 设 X 是一个随机变量,x 是任意实数,函数 F(x) = P{X x}, - x
称为 X 的分布函数
分 布 函 数 F (x) = P( X x) , 具 有 以 下 性 质 (1) F (x) 是 一 个 不 减 函 数 ( 2 )
(iv)对于任意事件 A, P( A) 1
(v) P( A) = 1 − P( A) (逆事件的概率)
(vi)对于任意事件 A,B 有 P( A B) = P( A) + P(B) − P( AB)
§4 等可能概型(古典概型)
等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同
1,Z=X+Y 的分布
设(X,Y)是二维连续型随机变量,它具有概率密度 f (x, y) .则 Z=X+Y 仍为连续性
随机变量,其概率密度为 f X +Y (z) =
−
f
(z
−
的概率密度函数,简称概率密度
则称 x 为连续性随机变量,其中函数 f(x)称为 X
+
1 概率密度 f (x) 具有以下性质,满足(1) f (x) 0, (2) f (x)dx = 1; -
(3) P(x1 X x2 ) =
x2 f (x)dx ;(4)若 f (x) 在点 x 处连续,则有 F,(x) =
数及边缘分布函数.若对于所有 x,y 有 P{X = x,Y = y} = P{X x}P{Y y} ,即
F{x, y} = FX (x)FY (y) ,则称随机变量 X 和 Y 是相互独立的。
概率问题中的独立事件
概率问题中的独立事件概率论是数学中的一个重要分支,研究与概率、随机现象相关的数学理论和方法。
在概率论中,独立事件是一个重要的概念。
本文将详细探讨概率问题中的独立事件,包括其定义、性质和应用。
一、独立事件的定义在概率论中,独立事件是指两个或多个事件在发生与否的结果上互不影响的事件。
具体来说,对于任意两个事件A和B,如果事件A的发生与否不会对事件B的发生产生任何影响,以及事件B的发生与否不会对事件A的发生产生任何影响,那么称事件A和事件B是独立事件。
二、独立事件的性质独立事件具有以下几个重要的性质:1. 互不影响性:独立事件之间的发生与否是相互独立的,即事件A 的发生与否不会对事件B的发生产生任何影响,反之亦然。
2. 交换律:如果事件A和事件B是独立事件,那么事件B和事件A也是独立事件。
3. 自反性:事件A与自身是独立事件。
4. 逻辑性:如果事件A和事件B是独立事件,并且事件B和事件C 是独立事件,那么事件A和事件C也是独立事件。
三、独立事件的应用独立事件在实际生活和各个领域中有着广泛的应用。
以下是几个常见的应用场景:1. 投掷硬币:一个常见的例子是投掷硬币。
在投掷硬币的过程中,出现正面或反面的概率为50%。
如果进行了一系列的投掷,每次都是独立事件,那么每次投掷的结果都是互不影响的。
2. 掷骰子:类似于投掷硬币,掷骰子也是概率论中常见的例子。
每次掷骰子的结果是独立事件,不受前一次投掷的结果影响。
3. 网络传输:在网络传输中,数据包的丢失或错误通常是独立事件。
每个数据包的丢失或错误与其他数据包的丢失或错误是相互独立的。
4. 医学诊断:在医学诊断中,多个症状的出现是相互独立的。
通过分析每个症状发生的概率,可以借助独立事件的概念来推断疾病的可能性。
总结:独立事件在概率论中占据重要地位,对于理解与应用概率问题具有重要意义。
独立事件的定义、性质和应用在实际问题中都具有广泛的适用性,帮助我们分析和解决概率问题。
独立事件及随机变量的概率分布
第60讲:独立事件及随机变量的概率分布一、课程标准1、理解离散型随机变量及其概率分布的概念,掌握概率分布列的基本性质,会求一些简单的离散型随机变量的概率分布列.2、理解超几何分布及其导出过程,并能进行简单的应用.3、理解随机变量的概率分布,掌握0-1分布,超几何分布的分布列,并能处理简单的实际问题二、基础知识回顾1. 事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),那么称事件A与事件B相互独立.(2)性质:①若事件A与B相互独立,则P(AB)=P(A)P(B).②如果事件A与B相互独立,那么A与B-,A-与B,A-与B-也相互独立.(3)独立重复试验:在相同条件下重复做的n次试验称为n次独立重复试验,在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k()1-p n-k(k=0,1,2,…,n).2. 随机变量的有关概念(1)随机变量:随着试验结果变化而变化的变量,常用字母X,Y,ξ,η,…表示.(2)离散型随机变量:所有取值可以一一列出的随机变量.3. 离散型随机变量的概率分布及其性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则表的概率分布列,的概率分布,P(X=x i)=p i,i=1,2,…,n表示X的概率分布.(2)离散型随机变量概率分布的性质①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.4. 常见离散型随机变量的概率分布(1)两点分布:若随机变量X服从两点分布,即其概率分布为其中p=P(X=1)称为成功概率.(2)超几何分布:在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件“X=r”发生的概率为P(X=r)=C r M C n-r N-MC nN,r=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列为超几何分布.(3)二项分布X n5. (1)明确随机变量X 取哪些值; (2)求X 取每一个值的概率; (3)列成表格. 三、自主热身、归纳总结1、某同学通过英语听力测试的概率为12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,那么n的最小值是( )A. 3 B . 4 C . 5 D . 62、某电视台的夏日水上闯关节目中的前四关的过关率分别为56,45,35,12,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为( )A . 725B . 25C . 1225D . 14253、某区要从参加扶贫攻坚任务的5名干部A ,B ,C ,D ,E 中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A 或B 被选中的概率是( )A.15B.25C.35D.7104、(2019·武汉市调研测试)已知某口袋中装有2个红球,3个白球和1个蓝球,从中任取3个球,则其中恰有两种颜色的概率是( )A.35B.45C.720D.13205、如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率是___.第5题四、例题选讲考点一互斥事件、对立事件概率公式的应用例1、某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000 张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.变式1、某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)变式2、A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C (2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.方法总结:考点二 相互独立事件例2 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有1人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次即终止的概率; (3)求甲取到白球的概率.变式1、一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立.(1)求该网民至少购买2种商品的概率;(2)用随机变量η表示该网民购买商品的种数,求η=1的概率.变式2、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)X 表示前4局中乙当裁判的次数,求X 的概率分布.方法总结: (1)确定每个事件是相互独立的;(2)确定每个事件会同时发生;(3)先求出每个事件发生的概率,再求其积.考点三 离散型随机变量的概率分布例3 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(不放回,且每个球取到的机会均等)3个球,记随机变量X 为取出3个球所得分数之和,求X 的概率分布.变式、从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X 为所组成的三位数各位数字之和.(1)求X 是奇数的概率; (2)求X 的概率分布及数学期望.方法总结:离散型随机变量概率分布的求法:(1)写出X 的所有可能取值(注意准确理解X 的含义,以免失误). (2)利用概率知识求出X 取各个值的概率. (3)列表并检验,写出概率分布. 考点四 超几何分布与二项分布例4 袋中有8个球,其中5个黑球,3个红球,从袋中任取3个球,求取出红球的个数X 的概率分布,并求至少有一个红球的概率.例5 从学校乘车到火车站的途中有三个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25,设ξ为途中遇到红灯的次数,求随机变量ξ的概率分布.变式1、乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.(1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的概率分布.方法总结:求超几何分布的分布列,关键是明确随机变量是否服从超几何分布,分清M ,N ,n ,k 的值,然后求出相应的概率,最后列表即可.利用二项分布解决实际问题的关键在于,在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验,随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布. 五、优化提升与真题演练1、(2020·合肥一六八中学测试题)如图,元件通过电流的概率均为0.9,且各元件是否通过电流相互独立,则电流能在M ,N 之间通过的概率是( )A .0.729B .0.8829C .0.864D .0.98912、(2020·山东青岛二中开学考试)掷一枚硬币两次,记事件A =“第一次出现正面”,B =“第二次出现反面”,则有( ) A .A 与B 相互独立 B .()()()⋃=+P A B P A P B C .A 与B 互斥D .1()2P AB =3、(2020·江苏省南京外国语高三期末)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( ) A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为811284、(2020·河北易县中学高三月考)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.5、(2020届山东省潍坊市高三上学期统考)某市有A ,B ,C ,D 四个景点,一位游客来该市游览,已知该游客游览A 的概率为23,游览B ,C 和D 的概率都是12,且该游客是否游览这四个景点相互独立.用随机变量X 表示该游客游览的景点的个数,下列正确的( ) A .游客至多游览一个景点的概率14B .()328P X == C .()1424P X ==D .()136E X =6、(2020届山东省烟台市高三上期末)某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为13. (1)求该企业每月有且只有1条生产线出现故障的概率;(2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在1n =与2n =之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)。
概率基本知识
概率基本知识
概率基本知识包括概率的统计定义、概率的性质、条件概率、独立性、概率计算方法等。
1. 概率的统计定义:表示某事件发生的次数与总实验次数的比值。
2. 概率的性质:包括概率的非负性、概率的归一性、概率的有限可加性等。
3. 条件概率:表示在某一事件B已经发生的条件下,另一事件A发生的概率。
计算公式为P(A|B) = P(AB)/P(B)。
4. 独立性:表示两个事件之间没有相互影响,一个事件的发生与否不会影响另一个事件的发生概率。
5. 概率计算方法:包括直接计算法、排列组合法、二项式定理、几何概型等。
以上是概率基本知识的简单介绍,如需了解更多信息,建议查阅概率论相关书籍或咨询概率论专业人士。
概率统计知识点大全
n
n
x2
∫ 3° P(x1 < X ≤ x2 ) = F (x2 ) − F (x1 ) = f (x)dx 。 x1
4° 若 f (x) 在 x 处连续,则有 F ′(x) = f (x) 。
容易验证,满足离散型分布率的条件。
当 n = 1时,P( X = k) = p k q1−k ,k = 0.1 ,这就是(0-1)
对于 n 个事件类似。 两两互斥→互相互斥。
间 (a, b] 的概率。也就是说,分布函数完整地描述了随机
两两独立→互相独立?
变量 X 随机取值的统计规律性。
(3)伯努利试验
定义 我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一
P(B | A) = P( AB) = P( A)P(B) = P(B)
P( A)
P( A)
所以这与我们所理解的独立性是一致的。
(3)条件概率和乘法公式
若事件 A 、B 相互独立,则可得到 A 与 B 、A 与 B 、
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 P( A)
则称上式为离散型随机变量 X 的概率分布或分布律。有
时也用分布列的形式给出:
X
| x1, x2,Λ , xk,Λ
P( X = xk) p1, p2,Λ , pk,Λ 。
显然分布律应满足下列条件:
(1) pk ≥ 0 , k = 1,2,Λ ,
∞
∑ pk = 1
(2) k =1
。
(2)分布函数
对于非离散型随机变量,通常有 P(X = x) = 0 ,不可 能用分布率表达。例如日光灯管的寿命 X ,P( X = x0) = 0 。
概率论基础知识梳理
概率论基础知识梳理概率论基础知识梳理引言:概率论是一门重要的数学分支,它用于理解和预测随机事件的发生概率。
在日常生活中,我们经常面临各种各样的不确定性,例如天气变化、股市涨跌和彩票中奖等。
了解概率论的基础知识将帮助我们更好地分析和决策,从而在面对不确定性时做出明智的选择。
一、概率的基本概念和性质1.概率的定义:概率是描述一个事件发生的可能性大小的数值。
用P(A)表示事件A 发生的概率,0 ≤ P(A) ≤ 1。
2.概率的性质:- 事件的概率不会小于0,也不会大于1。
- 必然事件的概率为1,即P(S) = 1,其中S表示样本空间。
- 不可能事件的概率为0,即P(∅) = 0,其中∅表示空集。
- 对于任意两个互斥事件A和B,它们的联合概率为P(A ∪ B) = P(A) + P(B)。
二、条件概率和独立性1.条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率。
用P(A|B)表示事件A在给定事件B的条件下发生的概率。
P(A|B) = P(A∩B) / P(B)。
2.乘法定理:乘法定理用于计算两个事件的联合概率,它表达为P(A∩B) = P(A|B) * P(B)。
3.独立事件:如果两个事件A和B满足P(A|B) = P(A),或者等价地,P(B|A) =P(B),则称事件A和事件B相互独立。
三、随机变量和概率分布1.随机变量:随机变量是对随机现象结果的数值化描述。
可以分为离散随机变量和连续随机变量。
离散随机变量只能取有限个或可数个值,例如抛硬币的结果(正面或反面)。
连续随机变量可以取任意实数值,例如测量某物体的长度。
2.概率分布:概率分布用于描述随机变量各个取值的概率。
离散随机变量用概率质量函数(PMF)表示,连续随机变量用概率密度函数(PDF)表示。
常见的离散概率分布有伯努利分布、二项分布和泊松分布;常见的连续概率分布有均匀分布、正态分布和指数分布等。
四、期望和方差1.期望:期望是对随机变量取值的加权平均值,用E(X)表示,其中X为随机变量。
互斥事件和独立事件的概率及条件概率
互斥事件和独立事件的概率及条件概率【知识要点】1.一般地,设A、B为两个事件,若A、B不可能同时发生,则A、B 为.P(A∪B)=P(A)+P(B).2.一般地,设A、B为两个事件,且P(B|A)==条件概率具有以下性质:(1) ;(2)如果事件B和C是两个互斥事件,则P(B∪C|A)=.3.互相独立事件:事件A(或B)是否发生对事件B(或A)发生的没有影响,即P(B|A)=P(B),P(A|B)=P(A),这样的两个事件叫做相互独立事件.4.如果两个事件A与B相互独立,那么事件A与B,A与B,A与B也都是事件.5.设事件A发生的概率为p,则在n次独立重复试验中事件A发生k次的概率为.6.两个相互独立事件A、B同时发生的概率为P(A·B)=.【基础检测】1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.恰有1个白球与恰有2个白球B.至少有1个白球与都是白球C.至少有1个白球与至少有1个红球D.至少有1个白球与都是红球2.同时掷3枚均匀硬币,至少有2枚正面向上的概率为( )A.0.5 B.0.25 C.0.125 D.0.3753.甲、乙两位同学独立地解决一道数学试题,他们答对的概率分别是0.8和0.9,则甲、乙都答对的概率为.4.袋中有5个球,其中3个白球,2个黑球,现不放回的每次抽取一个球,则在第一次抽到白球的条件下,第二次抽到白球的概率为.5.一位学生每天骑车上学,从他家到学校共有5个交通岗.假设他在每个交通岗遇到红灯是相互独立的,且每次遇到红灯的概率为13,则他在上学途中恰好遇到3次红灯的概率为,他在上学途中至多遇到4次红灯的概率为.典例分析:例1.在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入2只苍蝇(此时笼子里共有8只蝇子,其中6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只往外飞,直到2只苍蝇都飞出,再关闭小孔.(1)求笼内恰好剩下1只果蝇的概率;(2)求笼内至少剩下5只果蝇的概率;(3)求笼内至多剩下5只果蝇的概率.例2.甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响.(1)求甲队总分不低于2分的概率;(2)用A 表示“甲、乙两队总得分之和等于3”这一事件,B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).离散型随机变量的分布列、期望与方差【知识要点】1.离散型随机变量的概念随着试验结果变化而变化的变量称为随机变量,通常用字母X、Y表示.如果对于随机变量可能取到的值,可以按一一列出,这样的变量就叫离散型随机变量.2.离散型随机变量的分布列(1)设离散型随机变量X可能取的值为x1,x2,…,x i,…,X取每一个值x i(i=1,2,…)的概率P(X=x i)=p i(i=1,2,…),则称下表为随机变量X的概率分布,简称X的①;②;(3)两点分布:(4)超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰好有X件次品,则事件{X=k}发生的概率为P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M,N∈N*,此时称分布列:(5)二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=C k n p k·(1-p)n-k,其中k=0,1,2,…,n,此时称ξ服从二项分布,记为ξ~B(n,p),并称p为成功概率.3.离散型随机变量的期望与方差则称Eξ=为随机变量型随机变量取值的.把Dξ=叫做随机变量的方差,Dξ的算术平方根Dξ叫做随机变量ξ的,记作.随机变量的方差与标准差都反映了随机变量取值的.4.基本性质若η=aξ+b(a,b为常数),Eη=E(aξ+b)=;Dη=D(aξ+b)=;若ξ服从两点分布,则Eξ=,Dξ=,若X服从二项分布,即ξ~B(n,p),则Eξ=,Dξ=.【基础检测】1.口袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码,任取2个钢球;设X表示所取2球的号码之和,则X的所有可能的值的个数为( )A.25个B.10个C.7个D.6个2.设随机变量ξ的概率分布列为P(ξ=k)=ck+1,k=0,1,2,3,则c=.3.某批花生种子,每颗种子的发芽率为45,若每坎播下5颗花生种子,则每坎种子发芽颗数的平均值为颗,方差为.4.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=5.随机变量ξ的分布列为则Eξ=,=,=.6.有10张大小形状相同的卡片,其中8张标有数字2,2张标有数字5,从中随机抽取3张卡片,设3张卡片数字之和为X,求X的分布列、期望与方差.综合练习卷1.在区间[-π2,π2]上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A.13B.2πC.12D.232.设随机变量ξ的分布列为P (ξ=i )=a (13)i ,i =1,2,3,则a 的值为( )A .1 B.913 C.1113 D.27133.一份数学试卷由25个选择题构成,每个选择题有4个选项,其中有且仅有1个选项是正确的,每题选得正确得4分,不选或选错得0分,满分100分.小强选对任一题的概率为0.8,则他在这次考试中得分的期望为( )A .60分B .70分C .80分D .90分4.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次;则向上的数之积的数学期望是 .5.用三种不同的颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,求: (1)3个矩形颜色都相同的概率为 ;(2)3个矩形颜色都不同的概率为 .6.某单位订阅《人民日报》的概率为0.6,订阅《参考消息》的概率为0.3,则它恰好订阅其中一份报纸的概率为 .7.(2011湖南)某商店试销某种商品20天,获得如下数据:品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至...3件,否则不进货...,将频率视为概率.(1)求当天商店不进货...的概率; (2)设X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望.8.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。
概率的独立事件与贝叶斯定理知识点总结
概率的独立事件与贝叶斯定理知识点总结随着数据的快速增长和计算能力的提高,概率论和统计学的应用日益广泛。
作为这两个领域核心内容的概率和贝叶斯定理在数据分析和决策中扮演着重要的角色。
本文将从概率的独立事件和贝叶斯定理两个方面进行知识点总结。
一、概率的独立事件概率的独立事件是指两个或多个事件之间不会相互影响的情况。
在独立事件中,每个事件的发生与其他事件的发生没有关联,它们之间的概率相互独立。
在概率计算中,独立事件有以下几个基本性质:1. 乘法规则:对于两个独立事件A和B,它们同时发生的概率等于各自发生的概率的乘积,即P(A∩B) = P(A)×P(B)。
2. 加法规则:对于两个独立事件A和B,它们至少有一个发生的概率等于各自发生的概率之和减去它们同时发生的概率,即P(A∪B) = P(A) + P(B) - P(A∩B)。
在实际问题中,确定事件是否独立非常重要。
如果事件之间存在关联,使用独立事件的概率计算方法将会导致不准确的结果。
二、贝叶斯定理贝叶斯定理是概率论中的一个重要定理,它是基于条件概率的转换而得到的。
贝叶斯定理可以用于在给定先验概率的情况下,通过观察到的证据来更新概率值。
设A和B是两个事件,P(A)和P(B)分别表示事件A和事件B的先验概率,P(A|B)表示在事件B发生的条件下事件A发生的概率,则贝叶斯定理可以表示为:P(A|B) = (P(A) × P(B|A)) / P(B)其中,P(B|A)表示在事件A发生的条件下事件B发生的概率。
贝叶斯定理的应用非常广泛,尤其在数据分析和机器学习领域。
通过不断观察和更新先验概率,贝叶斯定理能够帮助我们从数据中得出更加准确的结论。
三、总结概率的独立事件和贝叶斯定理是概率论和统计学中重要的基础知识。
概率的独立事件通过乘法规则和加法规则,帮助我们计算独立事件的概率。
贝叶斯定理则通过条件概率的转换,帮助我们在观察到相关证据后更新先验概率。
相互独立事件同时发生的概率
m 等可能事件: P( A) n 互斥事件: P( A B) P( A) P( B) 第三步, 运用公式 独立事件: P( A B) P( A) P( B) k k nk n 次独立重复试验 : P ( k ) C p ( 1 p ) n n
练习:(2002年全国高考)某单位6个员工 借助互联网开展工作,每个员工上网的概 率都是0.5(相互独立)。 (1)求至少3人同时上网的概率。 (2)至少几人同时上网的概率小于0.3。
解决概率问题 "三个步骤, 一个结合"
等可能事件 互斥事件 第一步, 确定事件性质 独立事件 n次独立重复试验
但忘记了开房门的那一把。于是,他逐把不 重复地试开,问: (1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开的概率是多少?
(3)如果5把内有2把房门钥匙,那么三 次内打开的概率是多少?
概率问题常常与排列组合问题相结合.
例1.如图A、B、C三类不同的元件连 接成两个系统N1、、N2,当元件A、B、C都 正常工作时,系统N1正常工作;当元件A正常 工作且元件B、C至少有一个正常工作时, 系统N2正常工作.已知元件A、B、C正常工 作的概率依次为0.80,0.90,0.90.分别求系统 N1、、N2正常工作的概率P1、P2. (N1)
A
B C B
(N2)
A C
例:一个元件能正常工作的概率叫做这个元件
的可靠性,设构成系统的每个元件的可靠性为P
(0<P<1),且每个元件能否正常工作是相互
独立的。今有6个元件按图所示的两种联接方式
第49讲--互斥事件和独立事件的概率及条件概率
第49讲 互斥事件和独立事件的概率及条件概率夯实基础【学习目标】1.了解互斥事件,相互独立事件和条件概率的意义及其运算公式.2.理解独立重复试验的模型,会计算事件在n 次独立重复试验中发生k 次的概率.【基础检测】1.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )A .0.42B .0.28C .0.3D .0.72.对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是( )A .0.35B .0.42C .0.85D .0.153.某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是( )A.34B.58C.38D.9164.一个盒子中装有4只产品,其中3只是一等品,1只是二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 是“第二次取到的是一等品”,则P(B|A)=________.(P(B|A)为A 在发生的条件下B 发生的概率)【知识要点】1.互斥事件与对立事件(1)互斥事件:若A∩B为不可能事件(A∩B=),则称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生.(2)对立事件:若A∩B为不可能事件,而A∪B为必然事件,那么事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.2.概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__.(2)互斥事件的概率加法公式:①P(A∪B)=__P(A+B)__=__P(A)+P(B)__(A,B互斥).②P(A1∪A2∪…∪A n)=__P(A1)∪P(A2)∪…∪P(A n)__或P(A1+A2+…+A n)=__P(A1)+P(A2)+…+P(A n)__.(A1,A2,…,A n互斥).③对立事件的概率:P(A)=__1-P(A)__.3.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为__P(B|A)=P(AB)P(A)__.(2)条件概率具有的性质:①__0≤P(B|A)≤1__;②如果B和C是两个互斥事件,则__P(B∪C|A)=P(B|A)+P(C|A)__.4.相互独立事件(1)对于事件A,B,若A的发生与B的发生互不影响,则称__事件A与事件B相互独立__.(2)若A与B相互独立,则P(B|A)=__P(B)__,P(AB)=__P(A)P(B)__.(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.5.独立重复试验与二项分布(1)两个相互独立事件A,B同时发生的概率为P(A·B)=P(A)·P(B),此公式可推广到n 个相互独立事件,则P(A1·A2·…·A n)=P(A1)·P(A2)·…·P(A n).(2)n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.典 例 剖 析 【p 104】考点1 互斥事件、对立事件的概率计算例1设甲袋装有m 个白球,n 个黑球,乙袋装有m 个黑球,n 个白球,从甲、乙袋中各摸一球,设事件A :“两球同色”,事件B :“两球异色”,试比较P (A )与P (B )的大小.考点2 相互独立事件的概率计算例2甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率是14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率是112,甲、丙两台机床加工的零件都是一等品的概率是29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率;考点3 条件概率及其计算例3甲乙两市位于长江下游,根据一百多年来的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%.求:(1)乙市下雨时甲市也下雨的概率; (2)甲乙两市至少一市下雨的概率.考点4 互斥事件、相互独立事件的综合问题例4甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).考点5 条件概率及n 次独立重复试验与二项分布的概率计算例5(1)抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A|B )等于( )A.25B.12C.35D.45(2)某种节能灯使用了800 h ,还能继续使用的概率是0.8,使用了1 000 h 还能继续使用的概率是0.5,则已经使用了800 h 的节能灯,还能继续使用到1 000 h 的概率是________.例6某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.方法总结【p106】1.准确把握事件之间的运算关系是利用公式求概率的前提,而判断两个事件的关系是解题的关键,要把几个概念的要点分析清楚,可以通过实物和集合的知识从感性到理性来加深理解,要特别注意公式成立的前提条件,并结合正反实例对所学知识进行加深与巩固.2.注意从题目一些字眼,如“互相独立”、“互不影响”中分析各事件是否为独立事件.3.对于n次独立重复实验中事件有X次发生的概率计算,要果断使用公式解题,这样可以节约解题时间.4.注意一些事件如独立重复实验,若随机变量不是“事件发生的次数”,这时就不可盲目套用公式.走进高考【p106】1.(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85a a 1.25a 1.5a 1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.30 0.15 0.20 0.20 0.10 0.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.2.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.3.(2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23.每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).考 点 集 训A 组题1.抛掷一枚骰子,记事件A 为“落地时向上的数是奇数”,事件B 为“落地时向上的数是偶数”,事件C 为“落地时向上的数是2的倍数”,事件D 为“落地时向上的数是4的倍数”,则下列哪对事件是互斥事件但不是对立事件( )A .A 与B B .B 与C C .A 与D D .B 与D2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.164.甲、乙、丙三位同学上课后独立完成5道自我检测题,甲及格的概率为45,乙及格的概率为25,丙及格的概率为23,则三人至少有一个及格的概率为( )A.125B.1675C.2425D.59755.抛掷一枚质地均匀的骰子两次,记事件A ={两次的点数均为奇数},B ={两次的点数之和小于7},则P(B|A)=( )A.13B.49C.59D.236.设事件A 在每次试验中发生的概率相同,在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.7.事件A ,B ,C 相互独立,如果P(AB)=16,P(B -C)=18,P(AB C -)=18,则P(B)=________,P(A -B)=________.8.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.B 组题1.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是12,两次闭合都出现红灯的概率为16.则在第一次闭合后出现红灯的条件下第二次出现红灯的概率是________.2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是________.3.生产零件需要经过两道工序,在第一、第二道工序中产生废品的概率分别为0.01和p ,每道工序产生废品相互独立.若经过两道工序后得到的零件不是废品的概率是0.9603,则p =________.4.投掷五枚硬币时,已知至少出现2个正面,则正好出现3个正面的概率为________.5.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为__________.6.某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可以继续参加科目B 的考试.每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书.现在某同学将要参加这项考试,已知他每次考科目A 成绩合格的概率均为23,每次考科目B 成绩合格的概率均为12.假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为X.(1)求X 的分布列和均值;(2)求该同学在这项考试中获得合格证书的概率.第49讲 互斥事件和独立事件的概率及条件概率夯实基础 【p 104】【学习目标】1.了解互斥事件,相互独立事件和条件概率的意义及其运算公式.2.理解独立重复试验的模型,会计算事件在n 次独立重复试验中发生k 次的概率. 【基础检测】1.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )A .0.42B .0.28C .0.3D .0.7【解析】摸出黑球的概率等于1-0.42-0.28=0.3,选C.【答案】C2.对同一目标进行两次射击,第一、二次射击命中目标的概率分别为0.5和0.7,则两次射击中至少有一次命中目标的概率是( )A .0.35B .0.42C .0.85D .0.15【解析】由题意两次射击相互独立,可运用对立事件的概率公式求解:因命中目标的概率分别是0.5和0.7,则两次都不命中的概率分别是0.5和0.3,故两次射击中至少有一次命中的概率是1-0.5×0.3=0.85,应选答案C.【答案】C3.某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是( )A.34B.58C.38D.916【解析】当比赛中的一方连续三次取得胜利,则转播商获利不高于80万元, 转播商获利不低于80万元的概率是1-⎝⎛⎭⎫123×2=34. 【答案】A4.一个盒子中装有4只产品,其中3只是一等品,1只是二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 是“第二次取到的是一等品”,则P(B|A)=________.(P(B|A)为A 在发生的条件下B 发生的概率)【解析】将产品进行编号,1,2,3号为一等品,4号为二等品,用(i ,j)表示第一次、第二次分别取到第i 号、第j 号产品(i ,j =1,2,3,4),则试验的基本事件空间为{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.则事件A 包含9个基本事件,事件AB 包含有6个基本事件,根据条件概率公式P(B|A)=P (AB )P (A )=69=23.【答案】23.【知识要点】1.互斥事件与对立事件(1)互斥事件:若A ∩B 为不可能事件(A ∩B =),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.(2)对立事件:若A ∩B 为不可能事件,而A ∪B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.2.概率的几个基本性质(1)概率的取值范围:__0≤P(A)≤1__. (2)互斥事件的概率加法公式:①P(A ∪B)=__P(A +B)__=__P(A)+P(B)__(A ,B 互斥).②P(A 1∪A 2∪…∪A n )=__P(A 1)∪P(A 2)∪…∪P(A n )__或P(A 1+A 2+…+A n )=__P(A 1)+P(A 2)+…+P(A n )__.(A 1,A 2,…,A n 互斥).③对立事件的概率:P(A)=__1-P(A)__. 3.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为__P(B|A)=P (AB )P (A )__.(2)条件概率具有的性质: ①__0≤P(B|A)≤1__;②如果B 和C 是两个互斥事件,则__P(B ∪C|A)=P(B|A)+P(C|A)__. 4.相互独立事件(1)对于事件A ,B ,若A 的发生与B 的发生互不影响,则称__事件A 与事件B 相互独立__.(2)若A 与B 相互独立,则P(B|A)=__P(B)__,P(AB)=__P(A)P(B)__. (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 5.独立重复试验与二项分布(1)两个相互独立事件A ,B 同时发生的概率为P(A·B)=P(A)·P(B),此公式可推广到n 个相互独立事件,则P(A 1·A 2·…·A n )=P(A 1)·P(A 2)·…·P(A n ).(2)n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P(X =k)=C k n p k (1-p)n -k ,k =0,1,2,…,n.称随机变量X 服从二项分布,记作X ~B(n ,p),并称p 为成功概率.典 例 剖 析 【p 104】考点1 互斥事件、对立事件的概率计算例1设甲袋装有m 个白球,n 个黑球,乙袋装有m 个黑球,n 个白球,从甲、乙袋中各摸一球,设事件A :“两球同色”,事件B :“两球异色”,试比较P (A )与P (B )的大小.【解析】基本事件总数为(m +n )2,“两球同色” 可分为“两球皆白” 或“两球皆黑” ,则P (A )=mn (m +n )2+mn (m +n )2=2mn(m +n )2,“两球异色” 可分为“甲白乙黑” 或“甲黑乙白” , 则P (B )=m 2(m +n )2+n 2(m +n )2=m 2+n 2(m +n )2,∵P (B )-P (A )=(m -n )2(m +n )2≥0,∴P (A )≤P (B ),当且仅当“m =n ” 时取等号. 【点评】理解互斥事件的含义是区别事件是否互斥的根本,在实际应用过程中若将复杂事件用分类的方法化归为若干个简单事件进行求解,实质上是化归为互斥事件的和求解.同时应注意应用对立事件研究问题,对立事件应用的问题情境是正面情形类别较多,而反面情形类别相对较少.考点2 相互独立事件的概率计算例2甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率是14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率是112,甲、丙两台机床加工的零件都是一等品的概率是29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个一等品的概率; 【解析】(1)设A ,B ,C 分别表示甲、乙、丙三台机床各自加工的零件是一等品的事件,那么⎩⎪⎨⎪⎧P (A B -)=14P (B C -)=112P (AC )=29,即⎩⎪⎨⎪⎧P (A )(1-P (B ))=14P (B )(1-P (C ))=112P (A )P (C )=29,解得P (A )=13,P (B )=14,P (C )=23,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别为13, 14, 23.(2)设D 为从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个一等品的事件,则P (D )=1-P (D -)=1-(1-P (A ))(1-P (B ))(1-P (C ))=1-23·34·13=56,即从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个一等品的概率是56.【点评】相互独立事件同时发生的概率的2种求法 (1)直接法:利用相互独立事件的概率乘法公式; (2)间接法:从对立事件入手计算.考点3 条件概率及其计算例3甲乙两市位于长江下游,根据一百多年来的记录知道,一年中雨天的比例,甲为20%,乙为18%,两市同时下雨的天数占12%.求:(1)乙市下雨时甲市也下雨的概率; (2)甲乙两市至少一市下雨的概率. 【解析】分别用A ,B 表示事件“甲下雨”和“乙下雨”,按题意有,P (A )=20%,P (B )=18%,P (AB )=12%.(1)乙市下雨时甲市也下雨的概率为P (A|B )=P (AB )P (B )=1218=23.(2)甲乙两市至少一市下雨的概率为P (A ∪B )=P (A )+P (B )-P (AB )=20%+18%-12%=26%.【点评】1.求P (B|A )时,可把A 看作新的基本事件空间来计算B 发生的概率,也就是说把B 发生的样本空间缩小为A 所包含的基本事件.2.若事件B ,C 互斥,则P (B ∪C|A )=P (B|A )+P (C|A ),即为了求得比较复杂事件的概率,往往可以先把它分解成若干个互不相容的较简单事件之和,先求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.考点4 互斥事件、相互独立事件的综合问题例4甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).【解析】 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (A 3)P (A 4) =⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【点评】理解题意,领会事件的实质是将所求概率的事件分解为互斥事件和与相互独立事件积.考点5 条件概率及n 次独立 重复试验与二项分布的概率计算例5(1)抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A ={2,3,5},B ={1,2,4,5,6},则P (A|B )等于( )A.25B.12C.35D.45【解析】在事件B 发生的条件下研究事件A ,总共有5种结果,而事件AB 只含有其中的2种,所以P (A|B )=n (AB )n (B )=25.【答案】A(2)某种节能灯使用了800 h ,还能继续使用的概率是0.8,使用了1 000 h 还能继续使用的概率是0.5,则已经使用了800 h 的节能灯,还能继续使用到1 000 h 的概率是________.【解析】设“节能灯使用了800 h 还能继续使用”为事件A ,“使用了1 000 h 还能继续使用”为事件B.由题意知P (A )=0.8,P (B )=0.5.∵B A ,∴A ∩B =B ,于是P (B|A )=P (A ∩B )P (A )=P (B )P (A )=0.50.8=58.【答案】58【点评】条件概率的2种求法: (1)定义法先求P (A )和P (AB ),再由P (B|A )=P (AB )P (A ),求P (B|A ).(2)基本事件法当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),得P (B|A )=n (AB )n (A ). 例6某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位): (1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【解析】令X 表示5次预报中预报准确的次数,则X ~B ⎝⎛⎭⎫5,45,故概率P (X =k )=C k 5⎝⎛⎭⎫45k ⎝⎛⎭⎫1-455-k(k =0,1,2,3,4,5).(1)“5次预报中恰有2次准确”的概率为P (X =2)=C 25×⎝⎛⎭⎫452×⎝⎛⎭⎫1-453=10×1625×1125≈0.05.(2)“5次预报中至少有2次准确”的概率为P (X ≥2)=1-P (X =0)-P (X =1)=1-C 05×⎝⎛⎭⎫450×⎝⎛⎭⎫1-455-C 15×45×⎝⎛⎭⎫1-454=1-0.000 32-0.006 4≈0.99. (3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为C 14×45×⎝⎛⎭⎫1-453×45≈0.02.【点评】二项分布满足的3个条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验中只有两种结果:事件要么发生,要么不发生.方 法 总 结 【p 106】1.准确把握事件之间的运算关系是利用公式求概率的前提,而判断两个事件的关系是解题的关键,要把几个概念的要点分析清楚,可以通过实物和集合的知识从感性到理性来加深理解,要特别注意公式成立的前提条件,并结合正反实例对所学知识进行加深与巩固.2.注意从题目一些字眼,如“互相独立”、“互不影响”中分析各事件是否为独立事件.3.对于n 次独立重复实验中事件有X 次发生的概率计算,要果断使用公式解题,这样可以节约解题时间.4.注意一些事件如独立重复实验,若随机变量不是“事件发生的次数”,这时就不可盲目套用公式.走 进 高 考 【p 106】1.(2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出 险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出 险次数1234≥5(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【解析】(1)设续保人本年度的保费高于基本保费为事件A , 则P (A )=1-P (A -)=1-(0.30+0.15)=0.55. (2)设续保人保费比基本保费高出60%为事件B , 则P (B|A )=P (AB )P (A )=0.10+0.050.55=311.(3)平均保费E (X )=0.85a ×0.30+0.15a +1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=0.255a +0.15a +0.25a +0.3a +0.175a +0.1a =1.23a ,∴平均保费与基本保费比值为1.23. 2.(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【解析】(1)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, P (X =1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×13×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×14=1124, P (X =2)=⎝⎛⎭⎫1-12×13×14+12×⎝⎛⎭⎫1-13×14+12×13×⎝⎛⎭⎫1-14=14, P (X =3)=12×13×14=124.所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.【命题立意】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有哪些,当随机变量取这些值时所对应的事件的概率是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.3.(2016·山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23.每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).【解析】(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“星队至少猜对3个成语”.由题意,E =ABCD +A -BCD +A B -CD +AB C -D +ABC D -. 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)·P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -)=34×23×34×23+2×⎝⎛14×23×34×23+34×13×⎭⎫34×23=23,所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 的可能取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=512, P (X =6)=34×23×34×23=14,可得随机变量X 的分布列为P1144 572 25144 112 512 14所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 考 点 集 训 【p 241】A 组题1.抛掷一枚骰子,记事件A 为“落地时向上的数是奇数”,事件B 为“落地时向上的数是偶数”,事件C 为“落地时向上的数是2的倍数”,事件D 为“落地时向上的数是4的倍数”,则下列哪对事件是互斥事件但不是对立事件( )A .A 与B B .B 与C C .A 与D D .B 与D【解析】∵抛掷一枚骰子,记事件A 为“落地时向上的数是奇数”, 事件B 为“落地时向上的数是偶数”, 事件C 为“落地时向上的数是2的倍数”, 事件D 为“落地时向上的数是4的倍数”, ∴A 与B 是对立事件, B 与C 是相同事件,A 与D 不能同时发生,但A 不发生时,D 不一定发生,故A 与D 是互斥事件但不是对立事件,B 与D 有可能同时发生,故B 与D 不是互斥事件.本题选择C 选项. 【答案】C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡【解析】至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.【答案】A3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16【解析】恰有一个一等品,即一个是一等品另一个不是一等品两种情况.∴P =23×⎝⎛⎭⎫1-34+⎝⎛⎭⎫1-23×34=512. 【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 概率的几个基本性质
在掷骰子的试验中,我们可以定义许多事件,如: C1 ={出现1点}; C2 ={出现2点}; C3 ={出现3点}; C4 ={出现4点}; C5 ={出现5点}; C6 ={出现6点}; D1 ={出现的点数小于3};D2={出现的点数大于4}; D3 ={出现的点数小于5};D4={出现的点数大于3}; E ={出现的点数小于7};F ={出现的点数大于6}; G ={出现的点数为偶数}; H ={出现的点数为奇数};
解:(1)“甲获胜”是“和棋或乙获胜”的对立事件,因为“和棋 与“乙获胜”是互斥事件,所以 甲获胜的概率为:1-(0.5+0.3)=0.2
(2)设事件A={甲不输},B={和棋},C={甲获胜} 则A=B∪C,因为B,C是互斥事件,所以 P(A)=P(B)+P(C)=0.5+0.2=0.7
3.已知,在一商场付款处排队等候付款的人数及其概率如下:
答:至少有 1 人击中目标的概率是 0.84 .
是一个事件,它的发生,就是事件 A 、 B 同时 发生,记作 A B .
于是需要研究,上面两个相互独立事件 A ,B
同时发生的概率 PA B是多少?
从甲坛子里摸出 1个球,有 5 种等可能的结果; 从乙坛子里摸出 1个球,有 4种等可能的结果,于是 从两个坛子里各摸出1个球,共有 5×4 种等可能的结 果,表示如下:
P P(A B) P(A• B) P(A• B)
0.36 0.48 0.84
解法2: “2人都未击中目标” 的概率是 :
P( A B) P( A) P(B)
(1 0.6)(1 0.6) 0.40.4 0.16
因此,至少有1人击中目标的概率是 :
P 1 P(A B) 1 0.16 0.84
则 I AI B
(5)互斥事件: 事件A与事件B在任何一次试验中都不会同时发生
(6)互为对立事件:事件A与事件B在任何一次试验中有且仅有一 个发生
练习:
1.在画图形的试验中,判断下列事件的关系. (1)A1={四边形},A2={平行四边形}; (2)B1={三角形},B2={直角三角形},B3={非直角三角形}; (3)C1={直角三角形},C2={等腰三角形},C3={等腰直角三角形}。
这就是说,两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积.
2.独立事件同时发生的概率
一般地,如果事件 A1, A2 , , An 相互独
立,那么这个 n 事件同时发生的概率等于每个事件发 生的概率的积,即:
PA1 A2 An PA1 PA2 PAn
课本P138小字部分 概率的和与积互补公式
思考: 1.上述事件中C1至C6这6个事件之间是什么关系?它们各自发生的概
率是多少?
2. 事件D1 和事件D2 之间是什么关系? 它们各自发生的概率是多少?
3. 事件D1 可以看成哪些事件的并事件? 这些事件发生的概率和D1发 生的概率有什么联系?
4.事件D3 和事件D4各自发生的概率是多少?它们的并事件的概率又 是多少?
率. P AB
P A PB 2 1
1
52 5
例1:甲、乙2人各进行1次射击,如果2人击中 目标的概率都是 0.6 ,计算: (1)2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率;
I
A
AB
B
A B A∩B A B
解: ( 1)记 “甲、乙2人各射击1次,甲击中目标” 为事件 A; “甲、乙2人各射击1次,乙击中目 标”为事件 B.由于甲(或乙)是否击中,对乙(或甲)击中
(白,白)(白,白)(白,黑)(白,黑) (白,白)(白,白)(白,黑)(白,黑) (白,白)(白,白)(白,黑)(白,黑) (黑,白)(黑,白)(黑,黑)(黑,黑) (黑,白)(黑,白)(黑,黑)(黑,黑)
在上面 5×4 种结果中,同时摸出白球的结果有
3×2 种.因此,从两个坛子里分别摸出 1个球,都
排队人数
0
1
2
3
4
5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求至多2个人排队的概率。
解:设事件Ak={恰好有k人排队},事件A={至多2个人排队}, 因为A=A0∪A1∪A2,且A0,A1,A2这三个事件是互斥事件,
所以,P(A)=P(A0)+P(A1)+P(A2)=0.1+0.16+0.3=0.56。
(或 A )发生的概率没有影响,这样的两个事件叫
做相互独立事件.
由 3 2 3 2 ,我们看到: 54 5 4
PA B PA PB
这就是说,两个相互独立事件同时发生的概率, 等于每个事件发生的概率的积.
A+B表示什么意思 事件A,B至少有一个发生 A·B表示什么意思 事件A,B同时发生
PA B PA PB
还是对立事件?还是其他什么关系?
甲
乙
1.独立事件的定义
把 “从甲坛子里摸出 1 个球,得到白球” 叫
做事件A ,把 “从乙坛子里摸出 1个球,得到白
球”叫做事B件 .很明显,从一个坛子里摸出的是
白球还是黑球,对从另一个坛子里摸出白球的概率没 有影响.
这就是说,事件 A(或 B )是否发生对事件 B
这两种情况在各射击1次时不可能同时发生,即
A• B 与 A• B 是互斥事件 P(A• B) P(A• B) P(A) P(B) P(A) P(B)
0.6(1 0.6) (1 0.6)0.6 0.24 0.24 0.48
答:恰有 1 人击中目标的概率是 0.48 .
解: ( 3) “其中至少有1人击中目标” 的概率是 :
相互独立的. 必然事件与任何事件相互独立
不可能事件与任何事件相互独立
2.独立事件同时发生的概率
事件 A ·B:(事件的积)
“从两个坛子里分别摸出 1 个球,都是白球”
是一个事件,它的发生,就是事件 A 、 B 同时 发生,记作 A B.
I
A A·B
B
“从两个坛子里分别摸出 1 个球,都是白球”
一般情况下,对n个随机事件 A1, A2 , , An ,有
P( A1 A2 An ) 1 P( A1 • A2 • • An )
事件 A :“从甲坛子里摸出 1 个球,得到黑球” 事件 B :“从乙坛子里摸出 1 个球,得到黑球”
性质:
一般地,如果事件 A 与 B 相互独立, 那么 与A ,B 与A ,B 与A 也B都是
(1)取到红色牌(事件C)的概率是多少? (2)取到黑色牌(事件D)的概率是多少?
解:
(1)因为 C A U B ,且A与B不会同时发生,所以A与B是互
斥事件,根据概率的加法公式,得
P(C) P(A) P(B) 1 2
(2)因为C与D是互斥事件,又由于 C U D为必然事件,所以
C与D互为对立事件,所以
思考:
什么情况下两个事件 A 与 B 的并事件发生的概率,会等于 事件 A 与事件 B 各自发生的概率之和?
概率的加法公式:
如果事件 A 与事件 B 互斥,则
P(A B) P(A) P(B)
特别地,如果事件 A 与事件 B 是互为对立事件,则
P(A) 1 P(B)
例.如果从不包括大小王的52张扑克牌中随机抽取一张,那么 取到红心(事件A)的概率是1/4,取到方块(事件B)的概率 是1/4。问:
是白球的概率:
PA B 3 2
54
另ห้องสมุดไป่ตู้方面,从甲坛子里摸出 1 个球,得到白球
的概率: PA 3
5
从乙坛子里摸出 1 个球,得到白球的概率:
PB 2
4
3 2 3 2 54 5 4
3.例题
例如: 在上面问题中,“从两个坛子里分别摸出 1
个球,甲坛子里摸出黑球” 与 “从两个坛子里分
别摸出 1 个球,乙坛子里摸出白球” 同时发生的概
P(D) 1 P(C) 1 2
事件的关系和运算:
(1)包含关系: 若事件A发生,事件B就一定发生,则 B A (2)相等关系: 若B A 且A B ,则A=B
(3)并事件: 若某事件 I 发生当且仅当事件 A 发生或事件 B发生,
则 I AUB
(4)交事件: 若某事件 I 发生当且仅当事件A发生且事件B发生,
练习:
1.如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。
解:设该士兵射击一次,“中靶”为事件A,“未中靶”为事件B, 则A与B互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
的概率是没有影响的 因此A与B是相互对立事件 因此, “2人都击中目标” 就是事件 A·B .
PA B PA PB=0.6×0.6 =0.36
答: 2人都击中目标的概率是 0.36.
解: ( 2) “其中恰有1人击中目标” 包括:
事件 A• B :“甲击中、乙未击中” 和
事件 A • B :“乙击中、甲未击中”
4.要从 3名男生和 2名女生中任选 2人参加演讲比赛, (1)抽选的结果总共有几种? (2)刚好选到1名男生,一名女生的概率是多少?
C52