高中数学人教A必修一第一章第一节(知识点+例题讲解)
高中数学新人教A版必修1课件:第一章集合与函数概念1.1.3集合的基本运算(第1课时)并集和交集
集合运算时忽略空集致错
• 典例 4 集合A={x|x2-3x+2=0},B={x|x2-2x+a- 1=0},A∩B=B,求a的取值范围.
• [错解] 由题意,得A={1,2}.∵A∩B=B,∴1∈B,或者 2∈B,∴a=2或a=1.
• [错因分析] A∩B=B⇔A⊇B.而B是二次方程的解集,它
可能为空集,如果B不为空集,它可能是A的真子集,也可
B.{x|-4<x<-2}
• C.{x|-2<x<2} D.{x|2<x<3}
• [解析] N={x|x2-x-6<0}={x|(x-3)(x+2)<0}={x|- 2<x<3},
• ∴M∩N={x|-4<x<2}∩{x|-2<x<3}
• ={x|-2<x<2},故选C.
• 4.(202X·江苏,1)已知集合A={-1,0,1,6},B={x|x>0, x∈R},则A∩B=___{_1,_6_} ______.
• 2.并集和交集的性质并集
简单 性质
A∪A=___A___; A∪∅=___A___
常用 结论
A∪B=B∪A; A⊆(A∪B); B⊆(A∪B);
A∪B=B⇔A⊆B
交集
A∩A=___A___; A∩∅=___∅___
A∩B=B∩A; (A∩B)⊆A; (A∩B)⊆B;
A∩B=B⇔B⊆A
• 1.(202X·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B= {x|x2≤1},则A∩B= ( A )
• 将x=-2代入x2-px-2=0,得p=-1,∴A={1,-2},
• ∵A∪B={-2,1,5},A∩B={-2},∴B={-2,5},
高中数学人教A版必修1第一章《1...
高中数学人教A版必修1第一章《1...
高中数学人教A版必修1第一章《1.3 函数的基本性质复习参考题》优质课公开课教案教师资格证面试试讲教案1复习目标
(一)集合的含义与表示
1、了解集合的含义、元素与集合的“属于”关系
2、能用自然语言、图形语言、集合语言描述不同的具体问题
(二)集合间的基本关系
1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情境中,了解全集与空集的含义
(三)集合的基本运算
1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
2课型分析
高三一轮复习课
3重点难点
复习重点:了解集合的含义,理解集合间包含与相等的含义,理解两个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。
复习难点:集合相关的概念与符号的理解。
4教学过程
(一)请你了解
⒈集合的含义与表示
⑴了解集合的含义,体会元素与集合的属于关系.
⑵能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
⒉集合间的基本关系
⑴理解集合之间包含与相等的含义,能识别给定集合的子集.
⑵在具体情境中,了解全集与空集的含义.
⒊集合的基本运算
⑴理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.。
新教材 人教A版高中数学必修第一册 第一章 集合与常用逻辑用语 知识点考点汇总及解题方法规律提炼
第一章集合与常用逻辑用语1.1.1集合的概念 (1)1.1.2集合的表示 (4)1.2集合间的基本关系 (8)1.3.1并集与交集 (13)1.3.2补集及集合运算的综合应用 (17)1.4.1充分条件与必要条件 (20)1.4.2充要条件 (24)1.5.1全称量词与存在量词 (28)1.5.2全称量词命题与存在量词命题的否定 (32)1.1.1集合的概念要点整理1.元素与集合的概念及表示(1)元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的元素是一样的,就称这两个集合是相等的.2.元素的特性(1)确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.(2)互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.(3)无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.温馨提示:集合含义中的“研究对象”指的是集合的元素,研究集合问题的核心即研究集合中的元素,因此在解决集合问题时,首先要明确集合中的元素是什么.集合中的元素可以是数、点,也可以是一些人或一些物.3.元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作a∉A.温馨提示:(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R∈0是错误的.4.常用的数集及其记法题型一集合的基本概念【典例1】判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.[思路导引] 构成集合的关键是要有明确的研究对象,即元素不能模糊不清、模棱两可.[解] (1)(3)由于标准不明确,故不能构成集合;(2)(4)(5)能构成集合.对集合含义的理解给定一个集合,那么任何一个元素在不在这个集合中就确定了,所谓“确定”,是指所有被“研究的对象”都是这个集合的元素,没有被“研究的对象”都不是这个集合的元素.题型二元素与集合的关系【典例2】(1)下列关系中,正确的有( )①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个 B.2个 C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.[思路导引] 判断一个元素是否为某集合的元素,关键是抓住集合中元素的特征.[解析] (1)12是实数;2是无理数;|-3|=3,是自然数;|-3|=3,是无理数.故①②③正确,选C.(2)当x=0时,63-0=2;当x=1时,63-1=3;当x=2时,63-2=6;当x≥3时不符合题意,故集合A中元素有0,1,2.[答案] (1)C (2)0,1,2判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.题型三集合中元素的特性【典例3】已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.[思路导引] 由集合中元素的确定性和互异性切入.[解析] 若a=1,则a2=1,此时集合A中两元素相同,与互异性矛盾,故a≠1;若a2=1,则a=-1或a=1(舍去),此时集合A中两元素为-1,1,故a=-1.综上所述a=-1.[答案] -1[变式] (1)本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.(2)本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?[解] (1)若a=2,则a2=4,符合元素的互异性;若a2=2,则a=2或a=-2,符合元素的互异性.所以a的取值为2,2,- 2.(2)根据集合中元素的互异性可知,a≠a2,所以a≠0且a≠1.应用集合元素的特性解题的要点(1)集合问题的核心即研究集合中的元素,在解决这类问题时,要明确集合中的元素是什么.(2)构成集合的元素必须是确定的(确定性),而且是互不相同的(互异性),在书写时可以不考虑先后顺序(无序性).(3)利用集合元素的特性求参数问题时,先利用确定性解出字母所有可能值,再根据互异性对集合中元素进行检验,要注意分类讨论思想的应用.1.1.2集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.题型一用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x (x -1)2=0的所有实数根组成的集合;(2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数.[解] (1)方程x (x -1)2=0的实数根为0,1,故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎨⎧ y =x y =2x -1,解得⎩⎨⎧ x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.题型二用描述法表示集合【典例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合;(4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.(4)不等式3x-2<4可化简为x<2,所以不等式3x-2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围.(3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.题型三集合表示方法的应用【典例3】(1)若集合A={x|ax2-8x+16=0,a∈R}中只有一个元素,则a的值为( )A.1 B.4 C.0 D.0或1(2)已知A={x|kx+2>0,k∈R},若-2∈A,则k的取值范围是________.[思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征.[解析] (1)①当a=0时,原方程为16-8x=0.∴x=2,此时A={2};②当a≠0时,由集合A中只有一个元素,∴方程ax2-8x+16=0有两个相等实根,则Δ=64-64a=0,即a=1.从而x1=x2=4,∴集合A={4}.综上所述,实数a的值为0或1.故选D.(2)∵-2∈A,∴-2k+2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a的取值范围.(2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围.[解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎨⎧ a ≠0,Δ=64-64a >0,解得a <1,且a ≠0.(2)∵-2∉A ,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键.(2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.子集的概念温馨提示:“A是B的子集”的含义是:对任意x∈A都能推出x∈B.2.集合相等的概念如果集合A的任何一个元素是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么,集合A与集合B相等,记作A=B.也就是说,若A⊆B 且B⊆A,则A=B.3.真子集的概念温馨提示:在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x ∈B,但x∉A.4.空集的概念题型一集合间关系的判断【典例1】判断下列两个集合之间的关系:(1)A={-1,1},B={x|x2=1};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)A={x|-1<x<4},B={x|x-5<0};(4)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.[思路导引] 集合间基本关系的刻画均是由元素的从属关系决定的.[解] (1)用列举法表示集合B={-1,1},故A=B.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(4)解法一(特殊值法):两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.解法二(列举法):由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.判断集合间关系的3种方法(1)列举法:用列举法将两个集合表示出来,再通过比较两集合中的元素来判断两集合之间的关系.(2)元素特征法:根据集合中元素满足的性质特征之间的关系判断.(3)图示法:利用数轴或Venn图判断两集合间的关系.题型二有限集合子集、真子集的确定【典例2】(1)填写下表,并回答问题原集合子集子集的个数∅________________{a}________________{a,b}________________{a,b,c}________________由此猜想,含n个元素的集合的所有子集的个数是多少?真子集的个数及非空真子集个数呢?(2)求满足{1,2}M⊆{1,2,3,4,5}的集合M.[解] (1)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8猜想:含n个元素的集合的子集共有2n个,真子集有2n-1个,非空真子集有2n-2个.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(1)求解有限集合子集问题的3个关键点①确定所求集合,是子集还是真子集.②合理分类,按照子集所含元素的个数依次写出.③注意两个特殊的集合,即空集和集合本身.空集是任何集合的子集,是任何非空集合的真子集.(2)与子集、真子集个数有关的3个结论 假设集合A 中含有n 个元素,则有: ①A 的子集的个数为2n 个; ②A 的真子集的个数为2n -1个; ③A 的非空真子集的个数为2n -2个.【典例3】 已知集合A ={x |-3<x <4},B ={x |1-m <x ≤2m -1},且A ⊆B ,求实数m 的取值范围.[思路导引] A ⊆B ,即集合A 中的数在集合B 中,特别注意A =∅的情况. [解] 由A ⊆B ,将集合A ,B 分别表示在数轴上,如图所示,则⎩⎨⎧1-m ≤-3,1-m <2m -1,4≤2m -1,解得m ≥4.故m 的取值范围是{m |m ≥4}.[变式] (1)本例中若将“A ⊆B ”改为“B ⊆A ”,其他条件不变,求m 的取值范围.(2)本例若将集合A ,B 分别改为A ={3,m 2},B ={1,3,2m -1},其他条件不变,求实数m 的值.[解] (1)由B ⊆A ,将集合A ,B 分别表示在数轴上,如图所示.∵B ⊆A ,∴当B =∅时,1-m ≥2m -1,解得m ≤23;当B ≠∅时,有⎩⎨⎧2m -1>1-m ,2m -1<4,1-m ≥-3,解得23<m <52.综上可知,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <52. (2)由A ⊆B ,按m 2=1和m 2=2m -1两种情况分类讨论. ①若m 2=1,则m =-1或m =1.当m =-1时,B 中元素为1,3,-3,适合题意; 当m =1时,B 中元素为1,3,1,与元素的互异性矛盾. ②若m 2=2m -1,则m =1,由①知不合题意. 综上所述,m =-1.由集合间的关系求参数的2种方法(1)当集合为连续数集时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点.(2)当集合为不连续数集时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用.1.3.1并集与交集1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质【典例1】(1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{1,2} D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4} C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.题型二交集的运算【典例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3. (2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则⎩⎨⎧2-k ≤2k -1,2-k >-3,2k -1≤4,解得1≤k ≤52.综上所述,k ≤52.[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B . ∴⎩⎨⎧2-k ≤-3,2k -1≥4,解得k ≥5.由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A ∩B =A 或A ∪B =B ,解答时常借助于交集、并集的定义及集合间的关系去分析,将A ∩B =A 转化为A ⊆B ,A ∪B =B 转化为A ⊆B .(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.1.3.2补集及集合运算的综合应用要点整理1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.题型一补集的运算【典例1】(1)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________________;(2)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________________.[思路导引] 借助补集定义,结合数轴及Venn图求解.[解析] (1)将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.(2)解法一:A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.[答案] (1){x|x<-3或x=5} (2){2,3,5,7}求集合补集的基本方法及处理技巧(1)基本方法:定义法.(2)两种处理技巧①当集合用列举法表示时,可借助Venn图求解;②当集合是用描述法表示的连续数集时,可借助数轴,利用数轴分析求解.题型二交集、并集、补集的综合运算【典例2】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3<x≤3}.求∁U A,A∩B,∁U(A∩B),(∁U A)∩B.[解] 把全集U和集合A,B在数轴上表示如下:由图可知∁U A={x|x≤-2或3≤x≤4},A∩B={x|-2<x<3},∁(A∩B)={x|x≤-2或3≤x≤4},(∁U A)∩B={x|-U3<x≤-2或x=3}.解决集合交、并、补运算的2个技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.题型三利用集合间的关系求参数【典例3】设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁A)∩B=∅,求实数m的取值范围.U[思路导引] 理清集合间的关系,分类求解.[解] 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是m≥2.[变式] (1)将本例中条件“(∁U A)∩B=∅”改为“(∁U A)∩B≠∅”,其他条件不变,则m的取值范围又是什么?(2)将本例中条件“(∁U A)∩B=∅”改为“(∁U B)∪A=R”,其他条件不变,则m的取值范围又是什么?[解] (1)由已知得A={x|x≥-m},所以∁U A={x|x<-m},又(∁U A)∩B≠∅,所以-m>-2,解得m<2.(2)由已知得A={x|x≥-m},∁U B={x|x≤-2或x≥4}.又(∁U B)∪A=R,所以-m≤-2,解得m≥2.利用集合关系求参数的2个注意点(1)与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情况.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.[针对训练]5.已知集合A={x|x<a},B={x|1<x<3}.(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.[解](1)∵B={x|1<x<3},B={x|x≤1或x≥3},∴∁R因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.1.4.1充分条件与必要条件要点整理1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.温馨提示:(1)充分、必要条件的判断讨论的是“若p,则q”形式的命题.若不是,则首先将命题改写成“若p,则q”的形式.(2)不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.题型一充分、必要条件的概念及语言表述【典例1】将下面的定理写成“若p,则q”的形式,并用充分条件、必要条件的语言表述:(1)两个全等三角形的对应高相等;(2)等底等高的两个三角形是全等三角形.[解] (1)若两个三角形是全等三角形,则它们的对应高相等,所以“两个三角形是全等三角形”是“它们的对应高相等”的充分条件;“对应高相等”是“两个三角形是全等三角形”的必要条件.(2)若两个三角形等底等高,则这两个三角形是全等三角形,所以“两个三角形等底等高”是“这两个三角形是全等三角形”的不充分条件;“两个三角形是全等三角形”是“这两个三角形等底等高”的不必要条件.(1)对充分、必要条件的理解①对充分条件的理解:i)所谓充分,就是说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.“有之必成立,无之未必不成立”.ii)充分条件不是唯一的,如x>2,x>3都是x>0的充分条件.②对必要条件的理解:i)所谓必要,就是条件是必须有的,必不可少的,缺其不可.“有之未必成立,无之必不成立”.ii)必要条件不是唯一的,如x>0,x>5等都是x>9的必要条件.(2)用充分、必要条件的语言表述定理的一般步骤第一步:分析定理的条件和结论;第二步:将定理写成“若p,则q”的形式;第三步:利用充分、必要条件的概念来表述定理.题型二充分条件、必要条件的判定【典例2】判断下列各题中p是q的充分条件吗?p是q的必要条件吗?(1)p:x>1,q:x2>1;(2)p:(a-2)(a-3)=0,q:a=3;(3)已知:y=ax2+bx+c(a≠0),p:Δ=b2-4ac>0,q:函数图象与x轴有交点.[思路导引] 判断“若p,则q”命题的真假及“若q,则p”命题的真假.[解] (1)由x>1可以推出x2>1,因此p是q的充分条件;由x2>1,得x<-1,或x>1,不一定有x>1.因此,p不是q的必要条件.(2)由(a-2)(a-3)=0可以推出a=2或a=3,不一定有a=3,因此p不是q的充分条件;由a=3可以得出(a-2)(a-3)=0.因此,p是q的必要条件.(3)二次函数y=ax2+bx+c,当Δ>0时,其图象与x轴有交点,因此p是q的充分条件;反之若函数的图象与x轴有交点,则Δ≥0,不一定是Δ>0,因此p不是q的必要条件.充分、必要条件的判断方法(1)定义法:首先分清条件和结论,然后判断p⇒q和q⇒p是否成立,最后得出结论.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p 的必要条件;②如果命题:“若p ,则q ”为假命题,那么p 不是q 的充分条件,同时q 也不是p 的必要条件.显然,p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,即p ⇒q ,只是说法不同而已.题型三充分条件、必要条件与集合的关系【典例3】 (1)已知p :关于x 的不等式3-m 2<x <3+m 2,q :0<x <3,若p 是q 的充分条件,求实数m 的取值范围.(2)已知集合A ={y |y =x 2-3x +1,x ∈R },B ={x |x +2m ≥0};命题p :x ∈A ,命题q :x ∈B ,并且q 是p 的必要条件,求实数m 的取值范围.[思路导引] p 是q 的充分条件转化为对应集合A ⊆集合B ,q 是p 的必要条件转化为集合A ⊆集合B .[解] (1)记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3}, 若p 是q 的充分条件,则A ⊆B .注意到B ={x |0<x <3}≠∅,分两种情况讨论:①若A =∅,即3-m 2≥3+m 2,解得m ≤0,此时A ⊆B ,符合题意; ②若A ≠∅,即3-m 2<3+m 2,解得m >0, 要使A ⊆B ,应有⎩⎪⎨⎪⎧ 3-m 2≥0,3+m 2≤3,m >0,解得0<m ≤3. 综上可得,实数m 的取值范围是{m |m ≤3}.(2)由已知可得 A =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫x -322-54,x ∈R =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y | y ≥-54, B ={x |x ≥-2m }.因为q 是p 的必要条件,所以p ⇒q ,所以A ⊆B ,所以-2m ≤-54,所以m ≥58,即m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m |m ≥58. [变式] 本例(1)中若将“若p 是q 的充分条件”改为“p 是q 的必要条件”,其他条件不变,求实数m 的取值范围.[解] 记A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x | 3-m 2<x <3+m 2,B ={x |0<x <3},若p 是q 的必要条件,则B ⊆A .应有⎩⎪⎨⎪⎧ 3-m 2≤0,3+m 2≥3,解得m ≥3.综上可得,实数m 的取值范围是{m |m ≥3}.(1)利用充分、必要条件求参数的思路根据充分、必要条件求参数的取值范围时,先将p ,q 等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.(2)从集合角度看充分、必要条件:设命题p 、q 分别对应集合A 、B ,若A ⊆B ,则p 是q 的充分条件;若B ⊆A ,则p 是q 的必要条件.1.4.2充要条件要点整理充要条件如果“若p ,则q ”和它的逆命题“若q ,则p ”均是真命题,即既有p ⇒q ,又有q ⇒p ,记作p ⇔q .此时p 既是q 的充分条件,也是q 的必要条件.我们说p 是q 的充分必要条件,简称为充要条件.如果p 是q 的充要条件,那么q 也是p 的充要条件,即如果p ⇔q ,那么p 与q 互为充要条件.温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且q⇒/p,则称p是q的充分不必要条件.④若p⇒/q,且q⇒p,则称p是q的必要不充分条件.⑤若p⇒/q,且q⇒/p,则称p是q的既不充分也不必要条件.(2)“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p 是s的充要条件.题型一充要条件的判断【典例1】在下列各题中,试判断p是q的什么条件.(1)p:a+5是无理数,q:a是无理数;(2)若a,b∈R,p=a2+b2=0,q:a=b=0;(3)p:A∩B=A,q:∁U B⊆∁U A.[思路导引] 判断是否p⇒q,q⇒p.[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.(3)因为A∩B=A⇒A⊆B⇒∁U A⊇∁U B,并且∁U B⊆∁U A⇒B⊇A⇒A∩B=A,所以p 是q的充要条件.[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:(1)p是r的什么条件?(2)s是q的什么条件?(3)p,q,r,s中哪几对互为充要条件?[解] 作出“⇒”图,如右图所示,。
2023年新教材高中人教A版数学必修第一册知识点(8页)全文
新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。
高中数学人教A版(2019)必修第一册知识点总结
高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等.3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.@简单高中生(2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变.4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作=.A B6.元素与集合之间的关系∈,读作a属(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A于A.(2)不属于:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a A ∉,读作a 不属于A .7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x =的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x ->的解组成的集合.8.常用数集及其记法(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N 或N +.(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N .(3)整数集:全体整数组成的集合叫做整数集,记作Z .(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q .(5)实数集:全体实数组成的集合叫做实数集,记作R .9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.@简单高中生(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0x x -+=的所有实数根”组成的集合表示为{1,2}-.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x ,其中x 是集合中的元素代表,()p x 则表示集合中的元素所具有的共同特征.例如,不等式73x -<的解集可以表示为{73}{10}x R x x R x ∈-<=∈<.1.2集合间的基本关系1.子集一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记为A B Í或(B A Ê)读作集合A 包含于集合B (或集合B 包含集合A ).集合A 是集合B 的子集可用Venn 图表示如下:或关于子集有下面的两个性质:(1)反身性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆.2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为@简单高中生A B ⊂≠(或B A ⊃≠),读作集合A 真包含于集合B (或集合B 真包含集合A ).集合A 是集合B 的真子集可用Venn 图表示如右.3.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是一样的,我们就称集合A 与集合B 相等,记为A B =.集合A 与集合B 相等可用Venn 图表示如右.4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即(1)A ∅⊆(A 是任意一个集合);(2)A ⊂∅≠(A ≠∅).1.3集合的运算1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作A B ⋃(读作“A 并B ”).@简单高中生符号语言:{,}A B x x A x B ⋃=∈∈或.图形语言:理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈.并集的性质:(1)A B B A ⋃=⋃;(2)A A A ⋃=;(3)A A ⋃∅=;(4)()()A B C A B C ⋃⋃=⋃⋃;(5)A A B ⊆⋃,B A B ⊆⋃;(6)A B B A B ⋃=⇔⊆.2.交集自然语言:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ⋂(读作“A 交B ”).符号语言:{,}A B x x A x B ⋂=∈∈且.图形语言:理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅.@简单高中生交集的性质:(1)A B B A ⋂=⋂;(2)A A A ⋂=;(3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂;(5)A B A ⋂⊆,A B B ⋂⊆;(6)A B A A B ⋂=⇔⊆.3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U .(2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为U A ð.符号语言:{,}U A x x U x A =∈∉且ð图形语言:补集的性质(1)()U A A ⋂=∅ð;(2)()U A A U ⋃=ð;(3)()()()U U U A B A B ⋃=⋂痧;(4)()()()U U UA B A B ⋂=⋃痧.1.4充分条件与必要条件1.充分条件与必要条件一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作@简单高中生p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件.在生活中,q 是p 成立的必要条件也可以说成是:q ⌝⇒p ⌝(q ⌝表示q 不成立),其实,这与p q ⇒是等价的.但是,在数学中,我们宁愿采用第一种说法.如果“若p ,则q ”为假命题,那么由p 推不出q ,记作/p q ⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.2.充要条件如果“若p,则q”和它的逆命题“若q则p”均是真命题,即既有p q⇒,又有q p⇒就记作⇔.p q此时,我们就说p是q的充分必要条件,简称为充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q⇔,那么p与q互为充要条件.@简单高中生“p是q的充要条件”,也说成“p等价于q”或“q当且仅当p”等.1.5全称量词与存在量词1.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“"”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.p x成立”可用符号简记为全称量词命题“对M中的任意一个x,有()p x,"Î,()x Mp x成立”.读作“对任意x属于M,有()(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“$”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.p x成立”可用符号简记为存在量词命题“存在M中的元素x,使()p x,x M∃∈,()p x成立”.读作“存在M中的元素x,使()2.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:x M "Î,()p x ,它的否定:x M ∃∈,()p x ⌝.全称量词命题的否定是存在量词命题.(2)存在量词命题的否定存在量词命题:x M ∃∈,()p x ,它的否定:x M "Î,()p x ⌝.存在量词命题的否定是全称量词命题.@简单高中生第二章一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<.2.等式的基本性质性质1如果a b =,那么b a =;性质2如果a b =,b c =,那么a c =;性质3如果a b =,那么a c b c ±=±;性质4如果a b =,那么ac bc =;性质5如果a b =,0c ≠,那么a b c c=.3.不等式的基本性质性质1如果a b >,那么b a <;如果b a <,那么a b >.即a b b a>⇔<性质2如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3如果a b >,那么a c b c +=+.由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <.性质5如果a b >,c d >,那么a c b d +>+.性质6如果0a b >>,0c d >>,那么ac bd >.性质7如果0a b >>,那么n n a b >(n N ∈,2n ≥).2.2基本不等式1.重要不等式,a b R ∀∈,有222a b ab +≥,当且仅当a b =时,等号成立.2.基本不等式如果0a >,0b >,则2a b +≤,当且仅当a b =时,等号成立.@简单高中生2a b +叫做正数a ,b 的算术平均数叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.3.与基本不等式相关的不等式(1)当,a b R ∈时,有22a b ab +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.(2)当0a >,0b >时,有211a b ≤+当且仅当a b =时,等号成立.(3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.4.利用基本不等式求最值已知0x >,0y >,那么@简单高中生(1)如果积xy 等于定值P ,那么当x y =时,和x y +有最小值(2)如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S .2.3二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数与一元二次方程、不等式的解的对应关系(0)a >0>∆0=∆0<∆二次函数cbx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++ac bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax {}21x x xx <<∅∅第三章函数的概念与性质3.1函数的概念及其表示1.函数的概念设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集.@简单高中生2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ;(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b ,(,]a b .这里的实数a ,b 都叫做相应区间的端点.这些区间的几何表示如下表所示.定义名称符号数轴表示{}x a x b ≤≤闭区间[,]a b {}x a x b <<开区间(,)a b{}x a x b ≤<半开半闭区间[,)a b{}x a x b <≤半开半闭区间(,]a b (4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞,(,)a +∞(,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.定义符号数轴表示{}x x -∞<<+∞(,)-∞+∞{}x x a ≥[,)a +∞{}x x a >(,)a +∞{}x x b ≤(,]b -∞{}x x b <(,)b -∞注意:@简单高中生(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数.(2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号.3.函数的三要素(1)定义域;(2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定.4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数.5.函数的表示方法(1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系.(2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域.@简单高中生函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等.(3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的.6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1),0,(),0x x f x x x x -<⎧==⎨≥⎩,(2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩.说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.(2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.@简单高中生3.2函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性.1.单调性与最大(小)值(1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数.(3)单调性、单调区间、单调函数如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数.(4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下:①设值:设12,x x D ∈,且12x x <;②作差:12()()f x f x -;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心,要注意变形到底;@简单高中生④判断符号,得出函数的单调性.(5)函数的最大值与最小值①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么我们称M 是函数()y f x =的最大值.②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么我们称m 是函数()y f x =的最小值.2.奇偶性(1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于y 轴对称.反之也成立;③偶函数在关于原点对称的两个区间上的增减性相反.(2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;@简单高中生②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念一般地,形如y x α=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质x y =2x y =3x y =21xy =1-=x y 定义域RRR[0,+)∞(,0)(0,+)-∞⋃∞值域R[0,+)∞R[0,+)∞(,0)(0,+)-∞⋃∞奇偶性奇函数偶函数奇函数非奇非偶奇函数单调性增函数在(,0]-∞上递减在[0,+)∞上递增增函数增函数在(,0-∞),0,+)∞(上递减定点(1,1)3.4函数的应用(一)略.第四章指数函数与对数函数4.1指数1.n 次方根与分数指数幂(1)方根如果n xa =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n 方表示.@简单高中生②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 表示,负的n 次方根用符号正的n 次方根与负的n 次方根可以合并写成0a >).负数没有偶次方根.0的任何次方根都是0=.叫做根式,这里n 叫做根指数,a 叫做被开方数.关于根式有下面两个等式:n a =;,,a na n⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂mna=0a>,m,*n N∈,1n>).0的正分数指数幂等于0.(2)负分数指数幂1mnmnaa-=0a>,m,*n N∈,1n>).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①r s r sa a a+=(0a>,r,s Q∈);②()r s rsa a=(0a>,r,s Q∈);③()r r rab a b=(0a>,0b>,r Q∈).3.无理数指数幂及其运算性质(1)无理数指数幂的概念当x是无理数时,x a是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x的不足近似值m和过剩近似值n逐渐逼近x时,m a和n a都趋向于同一个数,这个数就是x a.所以无理数指数幂x a(0a>,x是无理数)是一个确定的数.@简单高中生(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r sa a a+=(0a>,r,s R∈);②()r s rsa a=(0a>,r,s R∈);③()r r rab a b=(0a>,0b>,r R∈).4.2指数函数1.指数函数的概念函数x y a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,定义域是R .2.指数函数的图象和性质一般地,指数函数x y a =(0a >,且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域R值域(0,)+∞性质(1)过定点(0,1),即0x =时,1y =(2)在R 上是减函数(2)在R 上是增函数4.3对数1.对数的概念一般地,如果x a N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作N x a log =.其中a 叫做对数的底数,N 叫做真数.@简单高中生当0a >,且1a ≠时,log N x a a N x =⇔=.2.两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10log N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把log e N 记作ln N .3.关于对数的几个结论(1)负数和0没有对数;(2)log 10a =;(3)log 1a a =.4.对数的运算如果0a >,且1a ≠,0M >,0N >,那么(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N =-;(3)log log n a a M n M =(n R ∈).5.换底公式log log log c a c bb a=(0a >,且1a ≠,0b >,0c >,1c ≠).4.4对数函数1.对数函数的概念一般地,函数log a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞.@简单高中生2.对数函数的图象和性质01a <<1a >图象定义域(0,)+∞值域R3.反函数指数函数x y a =(0a >,且1a ≠)与对数函数log a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称.4.不同函数增长的差异对于对数函数log a y x =(1a >)、一次函数y kx =(0k >)、指数函数x y b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数log a y x =(1a >)的增长速度越来越慢;一次函数y kx =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,x y b =(1b >)的增长速度最终都会大大超过y kx =(0k >)的增长速度;y kx =(0k >)的增长速度最终都会大大超过log a y x =(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有log x a b kx x >>.4.5函数的应用(二)1.函数的零点与方程的解(1)函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以@简单高中生方程()0f x =有实数解⇔函数()y f x =有零点性质(1)过定点(1,0),即当1x =时,0y =.(2)增函数(2)减函数⇔函数()y f x =的图象与x 轴有公共点.(2)函数零点存在定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解.2.用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.@简单高中生给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下:(1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <.(2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间:①若()0f c =(此时0x c =),则c 就是函数的零点;②若()()0f a f c <(此时0(,)x a c ∈),则令b c =;③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解.3.函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.第五章三角函数5.1任意角和弧度制1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的端点叫做角的顶点,射线在起始位置和终止位置分别叫做角的始边和终边.(2)正角、负角、零角按逆时针方向旋转所成的角叫正角;按顺时针方向旋转所成的角叫负角;一条射线没有作任何旋转而形成的角叫零角.这样,我们就把角的概念推广到了任意角.(3)象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边落在坐标轴上,这时这个角不属于任何象限.@简单高中生(4)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅︒∈即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.终边相同的角不一定相等,但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍;象限角的表示:第一象限角的集合{}|36090360,k k k Z αα⋅︒<<︒+⋅︒∈第二象限角的集合{}|90360180360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第三象限角的集合{}|180360270360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第四象限角的集合{}|270360360360,k k k Z αα︒+⋅︒<<︒+⋅︒∈终边落在坐标轴上的角在以后的学习中很重要,它们的表示如下表.位置表示终边在x 轴非负半轴{360,}k k Z αα=⋅︒∈终边在x 轴非正半轴{180+360,}k k Z αα=︒⋅︒∈终边在x 轴{180,}k k Z αα=⋅︒∈终边在y 轴非负半轴{90+360,}k k Z αα=︒⋅︒∈终边在y 轴非正半轴{270+360,}k k Z αα=︒⋅︒∈终边在y 轴{90180,}k k Z αα=︒+⋅︒∈终边在坐标轴{90,}k k Z αα=⋅︒∈2.弧度制(1)弧度的概念长度等于半径长的圆弧所对的圆心角叫做1弧度的角.@简单高中生在半径为r 的圆中,弧长为l 的弧所对的圆心角为αrad ,那么l rα=.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)弧度与角度的换算(3)关于扇形的几个公式设扇形的圆心角为α(rad ),半径为R ,弧长为l ,则有①l R α=;②212S R α=;③12S lR =.5.2三角函数的概念1.三角函数的概念(1)三角函数的定义一般地,任意给定一个角R α∈,它的终边OP 与单位圆相交于点(,)P x y .把点P 的纵坐标y 叫做α的正弦函数,记作sin α,即@简单高中生sin y α=;把点P 的横坐标x 叫做α的余弦函数,记作cos α,即cos x α=;把点P 的纵坐标与横坐标的比值yx叫做α的正切函数,记作tan α,即tan yxα=(0x ≠).正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为:正弦函数sin y α=,x R ∈;余弦函数cos y α=,x R ∈;正切函数tan y α=,2x k ππ≠+(k Z ∈).设α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(,)x y ,点P 与原点的距离为r =.可以证明:sin y r α=;cos xr α=;tan y xα=.(2)几个特殊角的三角函数值0,2π,π,32π的三角函数值如下表所示:α函数2ππ32πsin α0101-cos α101-0tan α不存在0不存在(3)三角函数值的符号(4)诱导公式(一)终边相同的角的同一三角函数值相等.@简单高中生sin(2)sin k απα+⋅=,cos(2)cos k απα+⋅=,tan(2)tan k απα+⋅=,其中k Z ∈.2.同角三角函数间的基本关系(1)平方关系22sin cos 1αα+=.(2)商数关系sin tan cos ααα=.作用:(1)已知α的某一个三角函数值,求其余的两个三角函数值;(2)化简三角函数式;@简单高中生(3)证明三角函数恒等式.5.3诱导公式1.公式二sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=.2.公式三sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-.3.公式四sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-.小结:(1)2k απ+⋅(k Z ∈),πα+,α-,πα-的三角函数,等于α的同名函数,前面加上把α看成锐角时原三角函数值的符号.(2)利用公式一∼公式四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面步骤进行:4.公式五sin()cos 2παα-=,cos()sin 2παα-=.5.公式六sin()cos 2παα+=,cos()sin 2παα+=-.小结:2πα-,2πα+的正弦(余弦),等于α的余弦(正弦),前面加上把α看成锐角时原三角函数值的符号.5.4三角函数的图象与性质1.正弦函数、余弦函数的图象(1)正弦函数sin y x =的图象.①画点00(,sin )T x x @简单高中生在直角坐标系中画出以原点O 为圆心的单位圆,O 与x 轴正半轴的交点为(1,0)A .在单位圆上,将点A 绕着点O 旋转0x 弧度至点B ,根据正弦函数的定义,点B 的纵坐标00sin y x =.由此,以0x 为横坐标,0y 为纵坐标画点,即得到函数图象上的点00(,sin )T x x .。
高中必修一数学知识点总结 (2019新教材人教A版)
高中数学必修 1 知识梳理(新教材)第一章集合与常用逻辑用语一、集合的概念1.集合的定义:某些指定的对象集在一起就构成一个集合,集合中的每个对象叫集合的元素。
2.元素的性质:(1)确定性。
给定一个集合,集合中的元素是确定的;(2)互异性。
集合里不允许有相同的元素重复出现;(3)无序性。
集合里的元素构成与元素的顺序无关。
3.元素与集合的关系:属于“∈”与不属于“∉”的关系。
4.集合的表示方法:(1)列举法。
把集合中的元素一一列举出来。
(2)描述法。
集合中的元素公共属性描述出来。
(3)图示法。
①Venn 图:用一条封闭的曲线的内部来表示的一个集合。
如用V enn 图表示A包含于B。
AB②数轴法。
5.集合的分类(1)有限集。
含有有限个元素的集合;(2)无限集。
含有无限个元素的集合;(3)空集∅。
不含任何元素的集合。
6.常用集合(1)N:非负整数集 (或自然数集)(2)N*或N+:正整数集(3)Z:整数集(4)Q:有理数集(5)R:实数集二、集合间的基本关系1.包含关系:(1)子集:对于两个集合 A,B,如果集合 A 中任意一个元素都是集合 B 中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A)。
规定:①任何一个集合是它本身的子集。
对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C。
②空集是任何集合的子集;空集是是任何非空集合的真子集。
(2)真子集:如果集合 A⊆B,但存在元素x∈B,且x∉A,就称集合 A 是集合 B的真子集,记作 A⊊ B2.相等关系:例如:A={4,1, 2,3} , B={1, 2,3, 4},记作:{A⊆BB⊆A⟺A=B。
即A,B中的元素是一样的。
3.关于子集的结论:一般地,一个集合元素若为n个,则其子集数为2n 个,其真子集数为2n - 1个,其非空真子集数为2n - 2 个,其非空子集数为2n - 1个。
特别地,空集的子集个数为 1,真子集个数为 0。
三、集合的基本运算1. 交集: 由所有属于集合 A 且属于集合 B 的元素组成的集合,称为集合 A 与B 的交集,记作 A∩B 。
人教A版高一数学必修1重点 知识点总结
高中数学必修1知识点第一章 集合与函数概念 一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:(1)元素的确定性; (2)元素的互异性; (3)元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
(Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x ∈R| x-3>2}或{x| x-3>2} (3)图示法(文氏图): 4、常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集 Z 有理数集Q 实数集 R 5、“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a ∈A ,相反,a 不属于集合A 记作 a ∉A 6、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 二、集合间的基本关系 1.“包含”关系———子集对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说两集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B注意: 有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
最新人教版高一数学上册必修1第一章知识点总结
主要知识点: 1、 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有惟一确定的数y和它对应,那么就称f:A—B,为集合A到集合B的一个函数, 记作:.y=f(x) , x A 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且 对应关系完全一致,则称这两个函数相等.
3、集合的三要素中的互异性是个考点,经常跟函数、不等式联系 起来作为选择题或者填空题考查。
如: 已知A={1,2a,a+b},B={4,2a-3,3},且A=B,求a,b的值。
§1.1.2集合间的基本关系
教学目的: (1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
难点攻破
1、实例体会三种表示方法的的优点与缺点。
2、分段函数的画法,实例讲解。如
3、解析式的列出引导学生学会找等量关系,根据等的基本性质 教学目的: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及奇偶性及几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 主要知识点: 1、 函数单调性证明的一般格式。 2、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么就称 函数为偶函数.偶函数图象关于y轴对称. 3、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么就称 函数为奇函数.奇函数图象关于原点对称.
高中数学人教A必修一第一章第一节知识点+例题讲解 ppt课件
课前探究学习
课堂讲练互动
活页规范训练
自学导引 1.元素与集合的概念 (1)元素:一般地,我们把研究对象 统称为元素. (2)集合:把一些元素组成的总体叫做集合(简称为 集 ). (3)集合相等:只要构成两个集合的 元素 是一样的,我们就 称这两个集合是相等的. (4)集合元素的特性: 确定性 、 互异性 、无序性.
课前探究学习
课堂讲练互动
活页规范训练
3.元素与集合的关系
关系
概念
记法 读法
元素与 集合的 关系
如果 a是集合A 的元 属于
素,就说a属于集合A 如果 a不是集合A 中的元 不属于 素,就说a不属于集合A
a∈A aA
a属于 集合A a不属于 集合A
课前探究学习
课堂讲练互动
活页规范训练
4.常用数集及表示符号
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 N
N*或N+ Z
Q
R
课前探究学习
课堂讲练互动
活页规范训练
题型一 集合的基本概念 【例 1】 考查下列每组对象能否构成一个集合: (1)著名的数学家; (2)某校 2012 年在校的所有高个子同学; (3)不超过 20 的非负数; (4)2010 年度诺贝尔经济学奖获得者; (5)2010 年上海世博会的所有展馆. [思路探索] 紧扣集合的定义,根据集合的元素的确定性判断即可.
课前探究学习
课堂讲练互动
活页规范训练
Hale Waihona Puke 误区警示 因忽略集合中元素的互异性而出错 【示例】 写出由方程 x2-(a+1)x+a=0 的解组成的集合 A. [错解] x2-(a+1)x+a=(x-a)(x-1)=0,所以方程的解为 1,a, 则解集为 A 中的元素为 1,a.
人教A版新教材高一数学必修一知识点总结 第一章集合与常用逻辑用语
人教A版新教材高一数学必修一知识点总结第一章集合与常用逻辑用语定子集的补集。
③能使用图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用。
1.1 集合的概念考点知识1.1.1 集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).1.1.2元素的三个特性与集合的相等元素的三性集合的相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.例如,集合与集合是相等的.1.1.3元素与集合关系的判断元素与集合的关系常用数集及表示符号1.1.4 集合的表达方法列举法:把集合中的元素一一列举出来并用花括号“”括起来表示集合的方法叫做列举法.描述法:用集合所含元素的共同特征表示集合的方法称为描述法.它的一般形式为,其中的表示集合中的代表元素,指的是元素的取值范围;则是表示这个集合中元素的共同特征,其中“”将代表元素与其特征分隔开来.1.2 集合间的基本关系考点知识1.2.1 子集与图图用平面上封闭曲线的内部代表集合,这种图称为图.表示集合的图的边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.子集的概念1.2.2 集合相等、真子集与空集的概念集合相等如果集合的任何一个元素都是集合的元素,同时集合的任何一个元素都是集合的元素,我们就说集合等于集合,记作,读作等于.真子集如果,且,就说集合是集合的真子集,记作.(1)用图形语言——图表示为如图;(2)空集是任何非空集合的真子集,即,且.空集(1)定义:不含任何元素的集合叫做空集;(2)用符号表示为:;(3)规定:空集是任何集合的子集.1.2.3 元素与集合、集合与集合间关系的判断(1)集合与集合之间的关系符号有:、、、、、、;(2)符号“”与“”“”“”的区别:“”及“”是表示元素与集合之间的关系;而“”“”“”等是表示集合之间的关系;(3)与的区别:一般地,表示一个元素,而表示只有一个元素的一个集合,因此有等.不能写成等.1.2.4 有限集合子集、真子集的确定(1)当一个集合的元素个数较少时,我们可以写出它的全部子集,当然也就知道其子集个数了.(2)当一个集合的元素个数较多时,一一写出子集不太现实,对于其子集的个数有如下结论:①含有个元素的集合有个子集;②含有个元素的集合有个真子集;③含有个元素的集合有个非空子集;④含有个元素的集合有个非空真子集;1.2.5 集合关系中的参数取值问题由确定集合中参数的取值范围是子集概念的重要应用,常与方程(组)、不等式(组)综合考查.一般借助数轴解决此类问题,要注意数形结合思想和分类讨论思想的应用.1.3 集合的基本运算考点知识1.3.2 并集1.3.2 交集(1)交集的三种语言文字语言由集合和集合的公共元素所组成的集合叫做与的交集,记作符号语言且图形语言(2)常用运算性质:.(3)不同情形的图如下图所示①②③且④有公共元素,但互不包含⑤1.3.3 全集与补集全集与补集的三种语言表示:1.3.4交、并、补混合运算1.3.5集合的关系与运算重要性质1.4 充分条件与必要条件考点知识1.4.1 充分条件、必要条件(1)推出当命题“如果,则”经过推理证明判断定是真命题时,我们就说由可以推出,记作,读作“推出”.(2)充分条件,必要条件如果可以推出,则称是的充分条件,是的必要条件.1.4.2 充分条件、必要条件的判定对于充分条件和必要条件,要能够正确地理解和判断.(1)从概念的角度去理解①若,则称是的充分条件,是的必要条件.②若,且,则称是的充分不必要条件.③若,且,则称是的必要不充分条件.④若,且,则称是的既不充分也不必要条件.⑤若,又有,记作,则称是的充分必要条件,即是的充要条件(2)从集合的角度去理解若以集合的形式出现,以集合的形式出现,即,则①若,则是的充分条件.②若,则是的必要条件.③若且,即,则是的充分不必要条件.④若且,即,则是的必要不充分条件.⑤若且,则是的既不充分也不必要条件.(6)且,则是的充分必要条件,即是的充要条件1.4.3 充要条件(1)“若,则”为真命题,即,∴是的充分条件,是是必要条件,另一方面,,∴是的必要条件,是的充分条件.如果既有,又有,记作,此时称是的充分必要条件,即是的充要条件,同时也是的充要条件,也就是说与互为充要条件.1.4.4 充要条件的证明证明是的充要条件,既要证明命题“”为真,又要证明“”为真,前者证明的是充分性,后者证明的是必要性.1.5 全称量词与存在量词考点知识1.5.1 全称量词、全称量词命题短语“所有”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题,叫做全称量词命题.一般地,设是某集合的所有元素都具有的性质,那么全称量词命题就是形如“对中的任意一个,成立”的命题,用符号简记为.1.5.2 存在量词、存在量词命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题,叫做存在量词命题.一般地,设是某集合的有些元素具有的某种性质,那么存在量词命题就是形如“存在中的元素,成立”的命题,用符号简记为.1.5.3 全称量词命题、存在量词命题的真假(1)要判定一个全称量词命题是真命题,必须对限定集合中的每个元素验证成立;但要判定全称量词命题是假命题,却只要能举出集合中的一个,使得不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个存在量词命题是真命题,只要在限定集合中,能找到一个,使成立即可;否则,这一存在量词命题就是假命题.15.4 全称量词命题、存在量词命题的否定通常,用符号“”表示“不成立”.(1)对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:,它的否定:.也就是说,全称量词命题的否定是存在量词命题.(2)对于含有一个量词的存在量词命题的否定,有下面的结论:全称量词命题:,它的否定:. 也就是说,存在量词命题的否定是全称量词命题.。
人教版高一数学必修一-第一章-知识点与习题讲解
必修 1 第一章集合与函数基础知识点整理第 1 讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、 无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }” 括起来,基本形式为{a 1,a 2,a 3,,a n },适用于有限集或元素间存在规律的无限集. 描述法,即 用集合所含元素的共同特征来表示,基本形式为{x A |P (x )},既要关注代表元素 x ,也要把 握其属性P (x ) ,适用于无限集.3. 通常用大写拉丁字母 A ,B ,C ,表示集合. 要记住一些常见数集的表示,如自然数集N , 正整数集N *或N +,整数集 Z ,有理数集 Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号 、 表示,例如3N ,-2N . ¤例题精讲:【例 1】试分别用列举法和描述法表示下列集合: (1)由方程x (x 2 -2x -3)=0的所有实数根组成的集合;(2)大于 2且小于 7的整数. 解:(1)用描述法表示为:{x R |x (x 2 -2x -3)=0}; 用列举法表示为{0,-1,3}.(2)用描述法表示为:{x Z |2 x 7}; 用列举法表示为{3,4,5,6}.【例 2】用适当的符号填空:已知 A ={x |x =3k + 2,k Z }, B ={x | x = 6m -1,m Z },则有:17 A ; - 5 A ; 17 B . 解:由3k +2=17,解得k =5Z ,所以17A ;7 由3k +2=-5,解得k =7Z ,所以-5A ; 3 由6m -1=17,解得m =3Z ,所以17B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数y = x + 3与y = -2x + 6的图象的交点组成的集合;(2)二次函数 y =x 2 - 4的函数值组成的集合;(3)反比例函数 y = 2 的自变量的值组成的集合. x2){y |y =x 2 -4}={y | y -4}. 2(3){x |y = 2}={x |x 0}.x点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4} , 也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同, 分析时一定要细心.*【例4】已知集合A = {a | x +a =1有唯一实数解},试用列举法表示集合 A . 解:化方程 x +a =1为:x 2 - x - (a + 2) = 0 .应分以下三种情况:x 2 - 2 ⑴方程有等根且不是2:由 △=0,得a = - 9 ,此时的解为x = 1 ,合.42 ⑵方程有一解为 2 ,而另一解不是- 2 :将 x = 2 代入得 a =- 2 ,此时另一解 x =1-2, 合.}={(1,4)}.解:(1){(x , y )|y =x +3y = -2x + 6⑶方程有一解为- 2 ,而另一解不是 2 :将x=- 2 代入得a= 2 ,此时另一解为x=2+1,合.综上可知,A={-9,- 2, 2}.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第 2 讲§1.1.2 集合间的基本关系¤知识要点:1.一般地,对于两个集合A、B ,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset ),记作A B(或B A),读作“A含于B”(或“B包含A”).2.如果集合A是集合B的子集(A B),且集合B 是集合A的子集(B A),即集合A 与集合B的元素是一样的,因此集合A与集合B相等,记作A=B.3.如果集合A B,但存在元素x B,且x A,则称集合A 是集合B 的真子集(proper subset),记作A B(或B A).4.不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5.性质:A A;若A B,B C,则A C;若A I B= A,则A B;若A U B= A,则B A.¤例题精讲:【例1】用适当的符号填空:(1){菱形}{平行四边形};{等腰三角形}{等边三角形}.(2){x R|x2+2=0};0 {0};{0};N {0}.解:(1),;(2)=,∈,,.【例2】设集合A = {x | x = n ,n Z}, B = {x | x = n + 1 ,n Z},则下列图形能表示A与B关系的 A B B A A B A B是().A .B .C. D .解:简单列举两个集合的一些元素,A = {, - 3-1,-1,0,1,1,3,},B ={,-3,-1,1,3,},易知B A,故答案选A.另解:由B ={x | x = 2n +1 , n Z},易知B A,故答案选A.【例3】若集合M =x|x2+x-6=0,N=x|ax-1=0,且N M,求实数a的值. 解:由x2+x-6=0x=2或-3,因此,M = 2, -3.(i)若a=0时,得N=,此时,N M;(ii)若a0 时,得N = {}. 若N M,满足= 2或= -3,解得a= 或a= - .a aa 23 故所求实数a的值为0或1或-1.23 点评:在考察“ A B”这一关系时,不要忘记“ ” ,因为A=时存在A B. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A={a,a+b,a+2b},B={a,ax,ax2}. 若A=B,求实数x的值.解:若a+ax2-2ax=0, 所以a(x-1)2=0,即a=0 或x=1.a +2b =ax2 当a=0 时,集合B中的元素均为0 ,故舍去;当x=1 时,集合B2中的元素均相同,故舍去.若a +b =ax 2ax2-ax-a=0.a +2b =ax因为a≠0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x≠1,所以只有x =-1.经检验,此时A=B成立. 综上所述x=-1.2 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第 3 讲§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set )由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号A U B (读作“A并B”)A I B (读作“A交B”)ðU A (读作“A的补集”)符号A U B={x|x A,或x B}A I B ={x|x A,且x B}ðA ={x|x U,且x A}图形表示U A¤例题精讲:【例1解:在数轴上表示出集合A、B,如右图所示:BA I B={x|3x5},A A BC (A U B)={x| x-1,或x9}-1 3 5 9 x4【例2】设A ={x Z | | x | 6}, B =1, 2,3, C =3,4,5,6,求: (1)A I(B I C ); (2)A Ið(B U C ).解:Q A =-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6.(1)又Q B I C =3,∴ A I ( B I C ) = 3; (2)又Q B U C =1,2,3,4,5,6,∴ A I C (B U C )=-6,-5,-4,-3,-2,-1,0.例3】已知集合A = {x | - 2 x 4} , B = {x | x m } ,且A I B = A ,求实数m 的取值范围. 解:由A I B = A ,可得A B . 在数轴上表示集合A 与集合 B ,如右图所示: B A由图形可知, m 4. 4-2m x 4 m x点评:研究不等式所表示的集合问题,常常由集合之 间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集U ={x |x 10,且x N *},A ={2,4,5,8},B ={1,3,5,8},求C (A U B ),C (A I B ), (C U A )I (C U B ), (C U A ) U (C U B ) ,并比较它们的关系. 解:由A U B ={1,2,3,4,5,8},则C U (A U B )={6,7,9}. 由A I B ={5,8},则C U (A I B )={1,2,3,4,6,7,9} 由C U A ={1,3,6,7,9},C U B ={2,4,6,7,9}, 则(C U A )I (C U B )={6,7,9}, (C U A )U(C U B )={1,2,3,4,6,7,9}. 由计算结果可以知道,(C U A )U(C U B ) =C U (A I B ),(C U A )I(C U B ) =C U (A U B ). 另解:作出 Venn 图,如右图所示,由图形可以直接观察出来结果. 点评:可用 Venn 图研究(CA )U(CB ) =C (A I B ) 与(C A )I(C B ) =C (A U B ) ,在理解的 基础记住此结论,有助于今后迅速解决一些集合问题.¤知识要点:Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图 形,我们还可以发现一些集合性质: C U (A I B ) = (C U A ) U (C U B ) , C U (A U B ) = (C U A ) I (C U B ) .2. 集合元素个数公式:n (A U B ) =n (A )+n (B )-n (A I B ).3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查 创新思维.¤例题精讲:【例 1】设集合A =-4,2a -1,a 2,B =9,a -5,1-a,若A I B =9,求实数a 的值. 解:由于A =-4,2a -1,a 2,B =9,a -5,1-a ,且A I B =9 ,则有:当2a -1=9时, 解得a =5,此时A ={-4, 9, 25},B ={9, 0, -4},不合题意,故舍去; 当 a 2=9 时,解得 a =3或-3 .a =3时, A ={-4,5,9}, B ={9,-2,-2},不合题意,故舍去; a =-3,A ={-4, -7, 9},B ={9, -8, 4} ,合题意. 所以, a =-3.【例2】设集合A ={x |(x -3)(x -a )=0,a R },B ={x |(x -4)(x -1)=0},求A U B , A I B .(教 材 P 14 B 组题 2 ) 解:B ={1,4}.当a =3时,A ={3},则A U B ={1,3,4},A I B =; 当a = 1时, A = {1,3} ,则A U B = {1,3,4}, A I B ={1}; 当a = 4时, A = {3, 4} ,则A U B = {1,3,4}, A I B ={4}; 当a 3且a 1且a 4时,A ={3,a },则A U B ={1,3,4,a },A I B =. 点评:集合 A 含有参数 a ,需要对参数 a 进行分情况讨论. 罗列参数 a 的各种情况时, 需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x|x2+4x=0},B ={x|x2+2(a+1)x+a2-1=0,a R},若A I B=B,求实数a的值.解:先化简集合A={-4,0}. 由A I B=B,则B A,可知集合B可为,或为{0},或{-4},或{-4,0}.(i)若B=,则=4(a+1)2-4(a2-1)0,解得a<-1;(ii)若0 B,代入得a2-1=0a=1或a=-1,当a =1 时,B=A,符合题意;当a = -1时,B={0} A,也符合题意.(iii)若-4B,代入得a2-8a + 7 = 0 a=7或a=1,当a =1时,已经讨论,符合题意;当a=7时,B={-12,-4},不符合题意.综上可得,a=1或a≤-1.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A与B,若定义A-B={x|x A,且x B},当集合A={x|x8,x N*},集合B = {x | x(x - 2)(x - 5)(x - 6) = 0}时,有A - B = . (由教材P12 补集定义“集合A相对于全集U的补集为C U A={x| x U,且x A}”而拓展)解:根据题意可知,A={1,2,3,4,5,6,7,8},B={0,2,5,6} 由定义A-B={x| x A,且x B},则A-B={1,3,4,7,8}.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则A-B也相当于A I (C U B).¤知识要点:1.设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function),记作y = f(x),x A.其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{ f (x) | x A}叫值域(range).2.设a、b是两个实数,且a<b,则:{x|a≤x≤b}=[a,b] 叫闭区间;{x|a<x<b}=(a,b) 叫开区间;6{x |a ≤x <b }=[a ,b ) , {x |a <x ≤b }=(a ,b ],都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{x | x a } = (a , +) , {x | x a }=[a ,+),{x | x b }=(-,b ),{x |x b }=(-,b ],R =(-,+).3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分 别相同时,函数才是同一函数.¤例题精讲:(2)由,解得 x 3且 x 9,3x -1-2所以原函数定义域为[3,9)U(9,+).【例 2】求下列函数的定义域与值域:(1) y = 3x + 25- 4x解:(1)要使函数有意义,则5-4x 0,解得x 5. 所以原函数的定义域是{x | x 5}.3x + 2 1 12 x + 8 1 3(4 x - 5) + 23 3 23 3 3 3 y = = = =- + - +0=- ,所以值域为{y | y - }.5- 4x 4 5-4x 4 5- 4x 4 5- 4x444(2) y = -x 2+ x + 2 = -(x - 1)2+ 9. 所以原函数的定义域是 R ,值域是(-,9]. 24 4【例3】已知函数 f (1-x )=x . 求:(1) f (2)的值; (2) f (x )的表达式1 + x解:( 1)由1-x =2,解得x =-1,所以 f (2)=-1.1 + x3 32)设1+x =t ,解得x =1+t ,所以 f (t )=1+t ,即 f (x )=1+x. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函 数的研究,常常需要结合换元法、特值代入、方程思想等.2【例 4】已知函数 f (x )=x ,x R .1 + x 21)求 f (x )+ f (1)的值;(2)计算:x(2)原式= f (1)+(f (2)+ f (12))+(f (3)+ f (13))+(f (4)+ f (14))=12+3=72 点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的 关键.¤知识要点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象, 反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看 出函数值).例 1 】求下列函数的定义域: ( 1 ) y =x +12-1;(2) x -3 y = 3 x -1-2.解:( 1)由 x +2 -10,解得x -1且x -3, 所以原函数定义域为(-,-3)U(-3,-1)U(-1,+).解:( 1)由 f (x )+ f (1)=x 2x 2x2 1 + x 21 + x 21+x2+= 1 + x 1 + x 1 + x=1.2) y = - x + x + 2.f (1)+ f (2)+ f (3)+ f (4)+2.分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同).3.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f : A→ B 为从集合A 到集合B的一个映射(mapping).记作“ f : A→ B”.判别一个对应是否映射的关键:A中任意,B中唯一;对应法则f. ¤例题精讲:【例1】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是______________ ,这个函数的定义域为______ .解:盒子的高为x,长、宽为a-2x,所以体积为V=x(a-2 x)2. 又由a-2 x0 ,解得x a.2所以,体积V以x为自变量的函数式是V =x(a-2x)2,定义域为{x|0x a}.【例2】已知f(x)= x+2x+2 x(-,1),求f [f(0)]的值.x3+ x-3x(1,+)解:∵ 0(-,1),∴ f(0)= 3 2.又∵ 3 2 >1 ,∴ f(32)=(3 2)3+(3 2)-3=2+1=5,即f[f(0)]= 5.【例3】画出下列函数的图象:(1)y=|x-2|; (教材P26 练习题3)(2) y =| x-1|+|2x+4|.解:( 1)由绝对值的概念,有y =| x - 2 |= x - 2, x2.2 -x, x 2 所以,函数y=| x - 2 |的图象如右图所示.3x+3, x 1(2)y =|x-1|+|2x+4|=x+5, -2x 1,-3 x- 3, x -2所以,函数y=|x -1|+|2x+4|的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数f(x)=[x]的函数值表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,当x(-2.5,3]时,写出f(x)的解析式,并作出函数的图象.-3, -2.5 x -2-2, -2 x -1-1, -1x0 解:f(x)=0, 0x 11, 1x 2函数图象如右:2, 2 x 33, x = 3点评:解题关键是理解符号m的概念,抓住分段函数的对应函数式.8域 I 内的某个区间 D 内的任意两个自变量 x 1 , x 2 ,当 x 1<x 2 时, 都有 f (x 1)<f (x 2),那么就说 f (x )在区间 D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数 f (x )在某个区间 D 上是增函数或减函数,就 说 f (x )在这一区间上具有(严格的)单调性,区间 D 叫 f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图 1),减函数的图象 从左向右是下降的(如右图 2). 由此,可以直观观察函数图象上升与下降的变化趋势,得 到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1 、x 2 ∈给定区间,且 x 1<x 2;→计算 f (x 1 )-f (x 2 ) →判断符 号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数 f (x )= 2x 在区间(0,1)上的单调性.x - 1解:任取x 1, x 2 ∈(0,1),且x 1 x 2 . 则 f (x 1)- f (x 2)= 2x 1 - 2x 2 = 2(x 2-x 1) .x - 1 x -1 (x -1)(x -1) 由于0x x 1,x -10,x -10,x -x0,故 f (x )-f (x )0,即 f (x ) f (x ).所以,函数 f (x )= 2 x 在(0,1)上是减函数.x -1【例2】求二次函数 f (x )=ax 2+bx +c (a 0)的单调区间及单调性. 解:设任意x ,x R ,且x x . 则f (x )- f (x )=(ax 2+bx +c )-(ax 2+bx +c )=a (x 2-x 2)+b (x -x ) =(x -x )[a (x +x )+b ]. 若 a 0 ,当x x -时,有x -x 0 , x +x - ,即a (x +x )+b 0 ,从而122 a12 12a12f (x 1)-f (x 2)0,即 f (x 1)f (x 2 ) ,所以 f (x )在(-,- b]上单调递增. 同理可得 f (x )在[- b ,+) 2a 2a上单调递减.【例 3】求下列函数的单调区间: (1)y =|x -1|+|2x +4|;(2)y =-x 2 +2|x |+3.3x +3, x1解:(1)y =|x -1|+|2x +4|=x +5, -2x 1,其图象如右. -3 x - 3, x -2由图可知,函数在[-2,+)上是增函数,在(-,-2]上是减函数.(2)y =-x2+2|x|+3=-x +2x +3, x 0,其图象如右.- x - 2x + 3, x 0由图可知,函数在(-,-1]、[0,1]上是增函数,在[-1,0]、[1,+) 上是减函数. 点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第 2 小题也可以由偶函数的对称性,先作 y 轴右侧的图象,并把 y 轴右侧的图象对折 到左侧,得到 f (| x |) 的图象. 由图象研究单调性,关键在于正确作出函数图象.1.定义最大值:设函数y = f (x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f (x) ≤M;存在x0∈I,使得f(x0) = M. 那么,称M是函数y = f (x)的最大值(Maximum Value). 仿照最大值定义,可以给出最小值(Minimum Value)的定义.2.配方法:研究二次函数y=ax2+bx+c (a0) 的最大(小)值,先配方成y=a(x+ b )2+4ac-b后,当a0时,函数取最小值为4ac-b;当a0时,函数取最大值2a4a4a4ac - b24a3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数y= 6的最大值.x+x+1解:配方为y= 6,由(x+1)2+33,得068.y=1)2 +3 (x+2)+4 4 0(x+1)2 +38(x+24 24 所以函数的最大值为8.【例2】某商人如果将进货单价为8 元的商品按每件10 元售出时,每天可售出100 件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10 件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x元,则提高了(x-10)元,减少了10g(x-10)件,所赚得的利润为y = (x -8)g[100-10g(x -10)].即y=-10x2+280x-1600=-10(x-14)2+360. 当x=14时,y =360. 所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360 元. 【例3】求函数y = 2x + x - 1的最小值.解:此函数的定义域为1, +) ,且函数在定义域上是增函数,所以当x =1时,y min =2+ 1-1 = 2 ,函数的最小值为2.点评:形如y = ax + b cx+d的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令x-1=t,则t0 ,x=t2+1 ,所以y=2t2+t+2=2(t+1)2+15,在t0时是增函数,当t =0时,y =2,故48函数的最小值为2.【例4】求下列函数的最大值和最小值:53(1)y=3-2x-x , x[-2,2]; (2)y=|x+1|-|x-2|. 解:( 1)二次函数y =3-2x-x2的对称轴为x =-b,即x=-1.2a画出函数的图象,由图可知,当x=-1时,y max=4;当x = 23时,y min10所以函数y =3-2x -x 2, x [-5,3]的最大值为 4,最小值为- 9 . 3(x 2)(2) y =|x +1|-|x -2|=2x -1 (-1 x 2).-3 ( x -1)作出函数的图象,由图可知, y [-3,3]. 所以函数的最大值为 3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图 象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函 数的图象注意分段作出.¤知识要点:1. 定义:一般地,对于函数 f (x )定义域内的任意一个x ,都有 f (- x ) = f (x ) ,那么函数 f (x )叫偶函数(even function ). 如果对于函数定义域内的任意一个 x ,都有 f (-x ) =-f (x ) ),那么 函数 f (x )叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函 数图象关于 y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判 别 f (-x )与 f (x )的关系.¤例题精讲:【例 1】判别下列函数的奇偶性:(1) f (x )=x 3-1; (2) f (x )=|x -1|+|x +1|;(3) f (x )=x 2-x 3.x 解:( 1)原函数定义域为{x | x 0} ,对于定义域的每一个 x ,都有 f (-x )=(-x )3- 1=-(x 3- 1)=-f (x ), 所以为奇函数.- xx(2)原函数定义域为 R ,对于定义域的每一个 x ,都有 f (-x )=|-x -1|+|-x +1|=|x -1|+|x +1|= f (x ) ,所以为偶函数. (3) 由于 f (-x )=x 2+x 3f (x ),所以原函数为非奇非偶函数. 【例2】已知 f (x )是奇函数,g (x )是偶函数,且 f (x )-g (x )=1 ,求 f (x )、g (x ).x +1 解:∵ f (x )是奇函数,g (x )是偶函数,∴ f (-x )=-f (x ),g (-x )=g (x ).两式相减,解得 f (x )= x ;两式相加,解得 g (x )= 1x 2 - 1 x 2 - 1则f ( x ) -g ( x ) =1x +1 f (-x )-g (-x ) = 1-x +1即f (x )-g (x )=x1+1-f (x )-g (x )=1 -x +1。
新人教A版数学必修第一册第一章知识点总结与例题讲解
集合的概念知识点总结与例题讲解一、本节知识要点(1)集合的含义与表示;(2)元素与集合之间的关系与表示;(3)集合元素的三个基本性质;(4)常用数集的表示;(5)集合的两种表示方法(列举法和描述法);(6)集合的分类.二、集合的含义与表示一般地,指定的某些对象的全体称为集合.集合中的每个对象叫做这个集合的元素.集合用大写字母来表示,集合的元素用小写字母来表示.三、元素与集合之间的关系与表示元素与集合之间是从属关系:若元素a在集合A中,就说元素a属于集合A,记作a∉.a∈;若元素a不在集合A中,则称元素a不属于集合A,记作A A要求会判断元素与集合之间的从属关系.四、集合元素的三个基本性质集合中的元素具有确定性、互异性和无序性.确定性给定一个集合,它的元素必须是确定的.也就是说,给定一个集合,任何一个元素属于或不属于这个集合,也就确定了.互异性给定一个集合,它的元素是互不相同的.即同一个集合中的元素不能重复出现.在用列举法表示集合时,相同的元素算作集合的一个元素.无序性集合中的元素是没有顺序的.如果构成两个集合的元素是相同的,那么就称这两个集合相等.五、常用数集的表示自然数集N; 正整数集N+或N*; 整数集Z; 有理数集Q; 实数集R. 六、集合的两种表示方法集合有两种常用表示方法,即列举法和描述法.此外还有韦恩图法(V enn图法).列举法把集合的元素一一列举出来,并用大括号“{}”括起来表示集合的方法叫做列举法.用列举法表示集合时要注意以下几点:(1)元素之间必须用逗号隔开;(2)元素不能重复(即集合的元素要满足互异性);(3)元素之间无先后顺序(集合的元素具有无序性);(4)表示有规律的无限集时,必须把元素间的规律表示清楚后才可以使用省略号,如﹛1 , 2 , 3 , … ﹜;(5)注意a 与{}a 的表示是有区别的:a 表示的是一个元素,{}a 表示的是只有一个元素a 的集合.二者具有从属关系,及a A ∈.列举法常用来表示有限集或有规律的无限集.描述法定义 用集合所含元素的共同特征表示集合的方法叫做描述法.记作(){}x P I x ∈,其中x 为集合的代表元素,I 表示元素x 的取值范围,()x P 表示集合的元素所具有的共同特征.第二定义 用确定的条件表示某些对象属于一个集合的方法,称为描述法.注意:“共同特征”或“确定的条件”可以说是方程,也可以是不等式(组)等.如集合{}0322=--=x x x A ,集合{}062<-=x x B .用描述法表示集合时要注意以下几点:(1)写清集合中的代表元素,如实数或有序实数对,从而正确表示数集和点集;(2)用简洁准确的语言表示集合中元素的共同特征;(3)不能出现未被说明的字母,如集合{}n x Z x 2=∈中的n 未被说明,应正确表示为{}Z n n x Z x ∈=∈,2或{}Z n n x x ∈=,2;(4)元素的取值范围,从上、下文来看,如果是明确的,可以省略.如集合{}02=+∈x x R x ,也可以写作{}02=+x x x .(5)出现多层描述时,应正确使用“或”、“且”、“非”等逻辑联结词;(6)所有描述的内容都要写在大括号内;(7)识别描述法表示的集合时,要看清代表元素,正确区分数集和点集.当集合所含元素较多或元素的共同特征不明显时,适合用描述法来表示集合.例1. 用两种方法表示二元一次方程组⎩⎨⎧=-=+152y x y x 的解. 注意:二元一次方程组的解是有序实数对,所以在表示二元一次方程组的解时,要表示为点集的形式.解:解二元一次方程组⎩⎨⎧=-=+152y x y x 得:⎩⎨⎧==12y x 用列举法表示为(){}1,2,用描述法表示为()⎭⎬⎫⎩⎨⎧⎩⎨⎧==12,y x y x . 提示:(){}1,2与(){}2,1表示的是两个不同的集合.例2. 指出集合{}12-=x y x 与集合(){}12,-=x y y x 的区别.注意:区分数集和点集的关键在于代表元素.用描述法表示集合时记作(){}x P I x ∈,其中x 表示的就是代表元素,它可以是一个数字(数集),也可以是有序实数对(点集).解:集合{}12-=x y x 表示的是一个数集,它表示函数解析式12-=x y 中自变量的取值范围,所以{}=-=12x y x R ;集合(){}12,-=x y y x 表示的是一个点集,它表示函数12-=x y 的图象上所有点的坐标.例3. 用合适的方法表示下列集合:(1)文房四宝;(2)2019年9月3日,新乡市平原示范区所辖乡镇;(3)平面直角坐标系中,第二象限的点构成的集合.注意:在用描述法表示集合时,元素之间必须用逗号隔开,不要用错标点符号.点集的代表元素为有序实数对.解:(1){}砚纸墨笔,,,;(2){}师寨镇桥北乡原武镇韩董庄乡祝楼乡,,,,;(3)(){}0,0,><y x y x 且.例4. 分别用列举法和描述法表示下列集合:(1)方程022=-x 的所有实数根组成的集合;(2)由大于10小于15的所有整数组成的集合.注意:在用列举法表示集合时,代表元素的取值范围,如果从上、下文来看是明确的,可以省略.解:(1)列举法:{}2,2-;描述法:{}022=-∈x R x 或{}022=-x x .(2)列举法:﹛11 , 12 , 13 , 14﹜;描述法:{}1510<<∈x Z x .七、集合的分类集合按所含元素个数的多少可以分为有限集、无限集和空集含有有限个元素的集合叫做有限集.含无限个元素的集合叫做无限集. 不含任何元素的集合叫做空集,记作∅.如方程012=+x 的实数根组成的集合{}012=+∈x R x 就是一个空集,即{}∅==+∈012x R x .八、重要结论:判断形如02=++c bx ax 的方程的实数根的个数的方法是:(1)当0=a 时,方程可化为0=+c bx 的形式:①当0≠b 时,方程有唯一一个实数根bc x -=; ②当0,0==c b 时,方程有无数个实数根;③当0,0≠=c b 时,方程没有实数根;(2)当0≠a 时,原方程为关于x 的一元二次方程:①若042>-=∆ac b ,则方程有两个不相等的实数根;②若042=-=∆ac b ,则方程有两个相等的实数根(此种情况下表示方程的实数根组成的集合时,集合只有一个元素);③若042<-=∆ac b ,则方程没有实数根.提示:在讨论集合元素的个数时,一定要注意分类讨论.例5. 已知集合{}R a x ax R x A ∈=++∈=,0122.(1)若A 中只有一个元素,求a 的值;(2)若A 中至多有一个元素,求a 的取值范围.分析:先弄清楚集合A 的本质.集合A 是由方程0122=++x ax 的实数根组成的集合,该方程中含有参数a ,为含参方程.(1)集合A 中只有一个元素,指的是方程0122=++x ax 只有一个实数根,该方程可以是一次方程()0=a ,也可以是二次方程()0≠a ,注意分类讨论;(2)集合A 中至多有一个元素,指的是方程0122=++x ax 只有一个实数根或没有实数根.解:(1)当0=a 时,原方程可化为:012=+x ,解之得:21-=x ,集合⎭⎬⎫⎩⎨⎧-=21A ,符合题意;当0≠a 时,∵0122=++x ax 只有一个实数根∴044=-=∆a ,解之得:1=a综上,当0=a 或1=a 时, A 中只有一个元素;(2)当A 中只有一个元素时,由(1)可知:0=a 或1=a ;当A 中没有元素时,即方程0122=++x ax 没有实数根∴044<-=∆a ,解之得:1>a综上,当0=a 或a ≥1时,A 中至多有一个元素.例6. 实数集A 满足条件:A ∉1,若A a ∈,则A a ∈-11. (1)若A ∈2,求A ;(2)集合A 能否为单元素集合?若能,求出A ;若不能,请说明理由;(3)求证:A a∈-11. 分析:本题重点考查集合元素的三个基本性质:确定性、互异性和无序性. (1)解:∵A ∈2,12≠ ∴A ∈-=-1211∵11,1≠-∈-A ∴()A ∈=--21111 ∵121,21≠∈A ∴A ∈=-22111 ∴=A ﹛2 , 1- , 21﹜; (2)解:A 不能为单元素集合.理由如下:若A 为单元素集合,则有aa -=11,整理得:012=+-a a ∵()031412<-=⨯--=∆ ∴方程012=+-a a 没有实数根∴A 不能为单元素集合;(3)证明:若A a ∈,则A a ∈-11 ∴A aa a a ∈-=-=--1111111. 例7. 已知集合{}032=+-=a x x x A ,若A ∈4,求集合A .分析:由题意可知集合A 是由方程032=+-a x x 的实数根构成的,“A ∈4”指的是4=x 是方程032=+-a x x 的一个实数根.解:∵A ∈4∴4=x 是方程032=+-a x x 的一个实数根∴04342=+⨯-a解之得:4-=a∴原方程为:0432=--x x解之得:1,421-==x x∴集合{}4,1-=A .例8. 已知集合{}R x x ax x A ∈=--=,0432.(1)当A 中只有一个元素时,求a 的值,并求出此元素;(2)当A 中有两个元素时,求a 满足的条件;(3)当A 中至少有一个元素时,求a 满足的条件.分析:集合A 为含参方程0432=--x ax 的实数根构成的集合.因为方程所含参数为二次项系数,所以该方程可以是关于x 的一元一次方程,也可以是一元二次方程,所以在研究该方程的实数根时,要分为两种情况进行讨论.(1)当A 中只有一个元素时,说明方程0432=--x ax 只有一个实数根,此时0=a ;或该方程有两个相等的实数根,此时0≠a ;(2)当A 中有两个元素时,说明方程0432=--x ax 为一元二次方程,此时0≠a ,且方程有两个不相等的实数根;(3)当A 中至少有一个元素时,说明方程0432=--x ax 只有一个实数根或有两个不相等的实数根,为(1)问和(2)问结果的综合.解:(1)分为两种情况:①当0=a 时,原方程为:043=--x ,解之得:34-=x ∴⎭⎬⎫⎩⎨⎧-=34A ,符合题意; ②当0≠a 时,由题意可知方程0432=--x ax 有两个相等的实数根∴()()04432=-⨯--=∆a 解之得:169-=a ∴原方程为:0431692=---x x 解之得:3821-==x x ∴⎭⎬⎫⎩⎨⎧-=38A . 综上,当0=a 时,集合A 只有一个元素34-;当169-=a 时,集合A 只有一个元素38-; (2)∵A 中有两个元素∴方程0432=--x ax 为一元二次方程,且有两个不相等的实数根 ∴()()⎩⎨⎧>-⨯--=∆≠044302a a 解之得:169->a 且0≠a ;(3)∵A 中至少有一个元素∴A 中有一个元素或有两个元素当A 中有一个元素时,由(1)可知:0=a 或169-=a ; 当A 中有两个元素时,由(2)可知:169->a 且0≠a . 综上,a 满足的条件是a ≥169-. 重要结论: 判断形如02=++c bx ax 的方程的实数根的个数的方法是:(1)当0=a 时,方程可化为0=+c bx 的形式:①当0≠b 时,方程有唯一一个实数根bc x -=; ②当0,0==c b 时,方程有无数个实数根;③当0,0≠=c b 时,方程没有实数根;(2)当0≠a 时,原方程为关于x 的一元二次方程:①若042>-=∆ac b ,则方程有两个不相等的实数根;②若042=-=∆ac b ,则方程有两个相等的实数根(此种情况下表示方程的实数根组成的集合时,集合只有一个元素);③若042<-=∆ac b ,则方程没有实数根.例9. 已知{}x q px x x A =++=2,()(){}1112+=+-+-=x q x p x x B ,当{}2=A 时,求集合B .解:∵{}2=A∴方程x q px x =++2,即()012=+-+q x p x 有两个相等的实数根,且221==x x由根与系数的关系定理可得:()⎩⎨⎧==--441q p 解之得:⎩⎨⎧=-=43q p ∴()(){}()(){}1413111122+=+---=+=+-+-=x x x x x q x p x x B 整理得:{}0762=+-=x x x B解方程0762=+-x x 得:23,2321-=+=x x ∴集合{}23,23-+=B .例10. 设b ax x y +-=2,{}0=-=x y x A ,{}0=-=ax y x B ,若{}1,3-=A ,试用列举法表示集合B .分析:本题要先由根与系数的关系定理求出b a ,的值,然后把集合B 中的方程转化为关于x 的具体的一元二次方程,解方程即可求出集合B .解:∵b ax x y +-=2 ∴{}(){}0102=++-==-=b x a x x x y x A{}{}0202=+-==-=b ax x x ax y x B ∵{}1,3-=A∴1,321=-=x x 是方程()012=++-b x a x 的两个实数根由根与系数的关系定理可得:⎩⎨⎧-=-=+321b a 解之得:⎩⎨⎧-=-=33b a ,∴{}{}0360222=-+==+-=x x x b ax x x B 解方程0362=-+x x 得:323,32321--=+-=x x ∴集合{}323,323--+-=B .例11. 已知集合()(){}012=-+--=a ax x a x x M 中各元素之和等于3,求实数a 的值,并用列举法表示集合M .分析:本题考查到集合元素的基本性质:互异性,注意分类讨论.解:∵()(){}012=-+--=a ax x a x x M∴()()()[]}{011=----=a x x a x x M∵1-≠a a ,且集合M 中各元素之和等于3∴当1=a 时,{}0,1=M ,301≠+,不符合题意;当11=-a ,即2=a 时,{}1,2=M ,312=+,符合题意;当1≠a 且2≠a 时,{}1,1,-=a a M ,由311=-++a a 得23=a ,此时⎭⎬⎫⎩⎨⎧=21,1,23M ,符合题意.综上,实数a 的值为2或23,集合{}1,2=M 或⎭⎬⎫⎩⎨⎧=21,1,23M . 提示:在用列举法表示有限集时,要注意集合元素的互异性.题型二、集合元素的基本性质的应用集合的元素具有确定性、互异性和无序性,其中对互异性的考查最为常见.例12. 已知集合{}10,4,22a a a A +-=,若A ∈-3,求实数a 的值.分析:由元素与集合之间的关系可求出实数a 的值,但要注意所求a 的值要保证集合A 中的元素互不相同,即满足互异性,所以要对求得的a 的值进行检验. 解:当32-=-a 时,解之得:1-=a ,此时{}10,3,3--=A ,不满足元素的互异性,舍去; 当342-=+a a 时,解之得:11-=a (已舍去),32-=a当3-=a 时,{}10,3,5--=A ,符合题意.综上,实数a 的值为3-.例13. 由实数22,,,,x x x x x --所组成的集合中,含有元素的个数最多有【 】(A )2 (B )3 (C )4 (D )5分析:本题主要考查集合元素的互异性.解:∵x x =2,x x -=-2∴①当0>x 时,x x x ==2,x x x -=-=-2∴所组成的集合中含有2个元素x x -,;②当0=x 时,所组成的集合中,只有一个元素0;③当0<x 时,x x x -==2,x x x =-=-2∴所组成的集合中含有2个元素x x -,.综上,含有元素的个数最多有2个.选择【 A 】.题型三、元素与集合的关系元素与集合的关系是从属关系,只有元素属于集合和元素不属于集合两种关系. 判断一个元素是否属于集合的方法是:(1)弄清集合代表元素的含义以及集合所含元素的共同特征; (2)看元素是否满足集合元素的共同特征.例14. 已知集合A 满足条件:若A a ∈,则()111≠∈-+a A a a .若A ∈31,且集合A 中的元素不超过4个,求集合A 中的其它元素. 分析:根据“若A a ∈,则()111≠∈-+a A a a ”,将31=a 代入aa-+11即可求出集合A 的另一个元素,以此类推,可得集合A 中的其它三个元素.解:∵A ∈31∴A ∈=-+2311311 ∴A ∈-=-+32121 ∴A ∈-=+-213131 ∴A ∈=+-31211211 ……∴集合A 中的其它元素为2 , 3- , 21-. 例15. 已知集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,21,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,12,若M x ∈0,则0x 与N 的关系是【 】(A )N x ∈0 (B )N x ∉0 (C )N x ∈0或N x ∉0 (D )不能确定解:∵⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x M ,212,21∴集合M 为全体奇数的一半所组成的集合∵⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x N ,22,12∴集合N 为全体整数的一半所组成的集合 ∴若M x ∈0,则必有N x ∈0.选择【 A 】.令解:⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x N ,22,12当()Z n n k ∈=2时,{}Z n n x x N ∈+==,1;当()Z n n k ∈-=12时,⎭⎬⎫⎩⎨⎧∈+==Z n n x x N ,21.∵M x ∈0 可设()Z k k x ∈+=2100 ∴N x ∈0.(由后面可知,集合M 与集合N 的关系为N M ⊆,所以若M x ∈0,则有N x ∈0) 例16. 已知集合{}N x x x A ∈≤-=,21,{}A x x y y B ∈+==,12,则集合B 中所有元素之和为_________.分析:先解绝对值不等式21≤-x ,再用列举法表示出集合A .下面给你补充简单绝对值不等式的解法.知识点 简单绝对值不等式的解法(1)x ≥a (a ≥0)型不等式的解法:x ≥a (a ≥0)x ⇔≥a 或x ≤a -. (2)x ≤a (a ≥0)型不等式的解法:x ≤a (a ≥0)a -⇔≤x ≤a . 根据上面补充的结论,若21≤-x ,则2-≤1-x ≤2,解之得:1-≤x ≤3. 解:∵{}{}{}3,2,1,0,31,21=∈≤≤-=∈≤-=N x x x N x x x A ∴{}{}10,5,2,1,12=∈+==A x x y y B ,集合B 中所有元素之和为18.集合间的基本关系知识点总结与例题讲解一、本节知识点(1)Venn 图,表示集合的图示法; (2)子集的含义及表示; (3)集合相等;(4)真子集的含义及表示; (5)空集的含义及其性质; (6)子集、真子集个数的确定. 知识点一 Venn 图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为V enn 图(韦恩图).这种表示集合的方法叫做图示法.关于Venn 图:(1)V enn 图的边界是封闭的曲线,它可以是椭圆、圆、矩形,也可以是其它的封闭曲线;(2)用V enn 图表示集合的优点是能直观地反映集合之间的关系,缺点是集合元素的共同特征不明显.知识点二 子集的含义及表示子集反映的是集合之间的包含关系.一般地,对于两个集合A , B ,如果集合A 中的任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”).对子集的理解:(1)B A ⊆的V enn 图表示:(2)B A ⊆的符号表述:对任意的A x ∈,都有B x ∈.(3)若集合A 中存在不属于集合B 的元素时,则集合A 不是集合B 的子集.子集的性质:(1)任何一个集合都是它本身的子集(包括后面的空集,即∅⊆∅); (2)传递性:若C B B A ⊆⊆,,则C A ⊆.子集的应用根据集合之间的关系可以确定参数的值或取值范围. 若B A ⊆,在未指明A 非空时,要分两种情况进行讨论: ①∅=A ; ②∅≠A .知识点三 集合相等如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时集合A 与集合B 的元素是一样的,集合A 与集合B 相等,叫做B A =. 上面也即互为子集的两个集合相等.集合B A =的符号表述:若B A ⊆,且A B ⊆,则B A =.如何证明两个集合相等对于两个集合A , B ,若要证明B A =,只需证明B A ⊆与A B ⊆均成立即可.如何判断两个集合相等(1)当两个集合为有限集时,若两个集合的元素个数相同,且都含有相同的元素,则这两个集合相等.(2)当两个集合为无限集时,若两个集合的代表元素满足的条件一致,则两个集合相等.注意:集合相等与集合的形式无关,形式不同的两个集合也可以相等.如{}{}2,130=<<∈x Z x .知识点四 真子集的含义及表示如果集合B A ⊆,但存在元素B x ∈,且A x ∉,我们称集合A 是集合B 的真子集,记作B A ≠⊂(或A B ≠⊃),读作“A 真含于B ”(或“B 真包含A ”).对真子集的理解:(1)B A ≠⊂的V enn 图表示:(2)B A ≠⊂的符号表述:若B A ⊆,且B A ≠,则B A ≠⊂. (3)若B A ≠⊂,则B 中至少存在一个A 中没有的元素. (4)规定∅是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.子集与真子集的关系若B A ⊆,则B A =或B A ≠⊂.知识点五 空集的含义及其性质不含任何元素的集合叫做空集,记作∅.空集的性质:(1)空集是任何集合的子集(包括空集). (2)空集的只有一个子集,是空集,即它本身.(3)空集是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.重要提醒:在由集合间的关系确定参数的值或参数的取值范围时,注意对空集的讨论.知识点六 子集、真子集个数的确定若集合A 含有n 个元素,则集合A : (1)含有n 2个子集; (2)含有12-n 个非空子集; (3)含有12-n 个真子集;(4)含有22-n 个非空真子集.知识点七 关于集合为空集的重要结论(1)若集合{}∅=≤≤=n x m x A ,则n m >; (2)若集合{}∅=<<=n x m x A ,则m ≥n ;(3)若集合{}∅=<≤=n x m x A 或{}∅=≤<=n x m x A ,则m ≥n .以上结论在解决由集合间的关系确定参数取值范围的问题时要会灵活运用,并注意分类讨论(如关于空集的讨论).二、例题讲解例1. 已知集合{}41>-<=x x x A 或,{}32+≤≤=a x a x B ,若A B ⊆,求实数a 的取值范围.分析:这是一道由集合间的关系确定参数的取值范围的问题,注意数形结合思想和分类讨论思想的应用.因为A B ⊆,集合B 中含有参数,所以分为两种情况:①∅=B ;②∅≠B .对于∅≠B 这种情况,要借助于数轴来完成对参数的约束,从而可以确定参数的取值范围.最后需要说明的是,参数的取值范围要表示成集合的形式. 解:∵A B ⊆,{}32+≤≤=a x a x B ,∴分为两种情况: ①当∅=B 时,32+>a a ,解之得:3>a ;②当∅≠B 时,则有:⎩⎨⎧-<++≤1332a a a 或⎩⎨⎧>+≤4232a a a ,解之得:4-<a 或a <2≤3.综上,实数a 的取值范围为{}24>-<a a a 或.例2. 已知集合{}43≤≤-=x x A ,{}112+≤≤-=m x m x B ,若A B ⊆,求实数m 的取值范围.分析:需要知道的是由集合间的基本关系可以确定参数的取值范围. 本题在分类讨论时要用到下面的结论:关于集合为空集的重要结论(1)若集合{}∅=≤≤=n x m x A ,则n m >;(2)若集合{}∅=<<=n x m x A ,则m ≥n ;(3)若集合{}∅=<≤=n x m x A 或{}∅=≤<=n x m x A ,则m ≥n . 最后,实数m 的取值范围最好写成集合的形式. 解:∵A B ⊆,{}112+≤≤-=m x m x B ∴分为两种情况:①当∅=B 时,112+>-m m ,解之得:2>m ;②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤+-≥-+≤-41312112m m m m ,解之得:1-≤m ≤2.综上,实数m 的取值范围为{}1-≥m m .例3. 设集合{}042=+=x x x A ,(){}011222=-+++=a x a x x B ,若A B ⊆,则实数a 的值取值范围为__________.分析:在进行分类讨论时要做到不重不漏,特别注意不能漏掉对∅=B 的讨论.解决本题还要明白以下两点:(1)空集是任何集合的子集;(2)空集是任何非空集合的真子集.解:{}{}4,0042-==+=x x x A∵A B ⊆,(){}011222=-+++=a x a x x B ∴分为两种情况:(1)当∅=B 时,方程()011222=-+++a x a x 没有实数根 ∴()[]()0141222<--+=∆a a ,解之得:1-<a ;(2)当∅≠B 时,则有{}0=B 或{}4-=B 或{}4,0-=B①当{}0=B 或{}4-=B 时,方程()011222=-+++a x a x 有两个相等的实数根 ∴()[]()0141222=--+=∆a a ,解之得:1-=a∴{}0=B 符合题意;②当{}4,0-=B 时,由根与系数的关系定理可得:()⎩⎨⎧=--=+-014122a a解之得:1=a .综上,实数a 的值取值范围为{}11-≤=a a a 或. 例4. 已知集合{}52≤≤-=x x A .(1)若A B ⊆,{}121-≤≤+=m x m x B ,求实数m 的取值范围; (2)若B A ⊆,{}126-≤≤-=m x m x B ,求实数m 的取值范围; (3)若B A =,{}126-≤≤-=m x m x B ,求实数m 的取值范围. 解:(1)∵A B ⊆,{}121-≤≤+=m x m x B ,∴分为两种情况: ①当∅=B 时,121->+m m ,解之得:2<m ; ②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解之得:2≤m ≤3. 综上所述,实数m 的取值范围是{}3≤m m ; (2)∵B A ⊆,{}52≤≤-=x x A ,∴∅≠B则有:⎪⎩⎪⎨⎧≥--≤--<-51226126m m m m ,解之得:3≤m ≤4∴实数m 的取值范围是{}43≤≤m m ; (3)∵B A =∴⎩⎨⎧=--=-51226m m ,无解,即不存在实数m ,使得B A =.例 5. 已知集合{}R x x x A ∈>=,0,{}02=+-=p x x x B ,且A B ⊆,求实数p 的取值范围.分析:本题的解决要用到关于一元二次方程的结论.一元二次方程()002≠=++a c bx ax 有两个正根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 一元二次方程()002≠=++a c bx ax 有两个负根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅<-=+≥∆0002121ac x x a b x x 解:∵A B ⊆,{}02=+-=p x x x B ,∴分为两种情况: ①当∅=B 时,()0412<--=∆p ,解之得:41>p ; ②当∅≠B 时,方程02=+-p x x 有两个正实数根,则有:()⎪⎩⎪⎨⎧>=>=+≥--=∆00104121212p x x x x p ,解之得:p <0≤41. 综上所述,实数p 的取值范围是{}0>p p .例6. 已知集合{}06242=++-=m mx x x A ,{}0<=x x B ,若B A ⊆,求实数m 的取值范围.解:∵B A ⊆,∴分为两种情况:①当∅=A 时,()()062442<+--=∆m m ,解之得:231<<-m ; ②当∅≠A 时,方程06242=++-m mx x 有两个负实数根,则有:()()⎪⎩⎪⎨⎧>+=<=+≥+--=∆062040624421212m x x m x x m m ,解之得:m <-3≤1-. 综上所述,实数m 的取值范围是⎭⎬⎫⎩⎨⎧<<-233m m .集合的基本运算知识点总结与例题讲解本节知识点: (1)并集. (2)交集. (3)全集与补集. (4)德·摩根定律. 知识点一 并集自然语言 一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A与集合B 的并集,记作B A ,读作“A 并B ”.符号语言 {}B x A x x B A ∈∈=或, .图形语言(用Venn 图表示并集) 图中阴影部分表示两个集合的并集.(1)A 与B 有公共元素,相互不包含 (2)A 与B 没有公共部分(3)B A ≠⊂ (4)A B ≠⊂(5)B A =对并集的理解(1)求两个集合的并集是集合的一种运算,结果仍是一个集合,它是由属于集合A 或集合B 的元素组成的.(2)并集概念中的“或”指的是只要满足其中一个条件即可.符号语言“B x A x ∈∈或,”分为三种情况:①A x ∈,但B x ∉; ②A x ∉,但B x ∈; ③A x ∈,且B x ∈.(3)根据集合元素的互异性,在求两个集合的并集时,两个集合中的公共元素在并集中只能出现一次.并集的性质求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.知识点二 交集自然语言 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A与集合B 的交集,记作B A ,读作“A 交B ”.符号语言 {}B x A x x B A ∈∈=且, .图形语言(用Venn 图表示交集) 图中阴影部分表示两个集合的并集.如下页图所示.(1)A 与B 有部分公共元素 (2)A 与B 无公共元素,∅=B A(3)若A B ≠⊂,则B B A = (4)若B A ≠⊂,则A B A = (5)B A B A ==对交集的理解(1)求两个集合的交集是集合的一种运算,结果仍是一个集合,它是由属于集合A 且属于集合B 的所有元素组成的集合,及两个集合的公共元素所组成的集合. (2)交集概念中的“所有”二字不能省略,否则会漏掉一些元素,一定要将两个集合中的相同元素(公共元素)全部找出来.(3)当集合A 与集合B 没有公共元素时,不能说集合A 与集合B 没有交集,而是交集为空集,.交集的性质AA B BA B求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(2)求两个无限集的交集 借助于数轴进行计算.两个集合的交集等于这两个集合在数轴上对应的图形所覆盖的公共范围.知识点三 全集与补集全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.用V enn 图表示为:对补集的理解(1)补集是相对于全集而言的,求一个集合的补集,结果因全集的不同而不同.所以求补集前,要先明确全集.(2)补集既是集合间的一种关系,同时也是集合之间的一种运算. (3)符号“C U A ”有三层意思: ① C U A {}A x U x x ∉∈=且,;② C U A 是U 的一个子集,及(C U A )U ⊆; ③ C U A 表示一个集合.补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.U4321B A 知识点四 德·摩根定律知识点五 重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ; (2)②表示 A (C U B ); (3)③表示 B (C U A ); (4)④表示(C U A ) (C U B ).知识点六 集合中元素的个数若集合A 为有限集,则用card(A )表示集合A 中元素的个数. 如果集合A 中含有m 个元素,那么有card(A )m =. (1)一般地,对于任意两个有限集合A , B ,有 card ()=B A card(A )+card(B )-card ()B A . (2)一般地,对于任意三个有限集合A , B , C ,有card ()=C B A card(A )+card(B )+card(C )-card ()B A -card ()C A -card ()C B +card ()C B A .例题讲解 题型一 并集运算一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作B A ,读作“A 并B ”.即{}B x A x x B A ∈∈=或, .求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.例1. 已知集合{}31≤≤∈=x N x A ,{}5,4,3,2=B ,则=B A 【 】 (A ){}2 (B ){}3,2 (C ){}5,4,3,2 (D ){}5,4,3,2,1分析:将一个用描述法表示的集合转化为用列举法表示时,一定要弄清代表元素的含义或特征.求两个集合的并集运算时,可以按照并集的定义进行,也可以用Venn 图求解或借助于数轴求解.解:∵{}{}3,2,131=≤≤∈=x N x A1∴=B A {}{}{}5,4,3,2,15,4,3,23,2,1= . 选择【 D 】.例2. 已知集合{}1≥=x x A ,{}0322<--=x x x B ,则=B A ____________. 分析:先解一元二次不等式0322<--x x ,求出集合B ,然后把集合A 、B 在数轴上画出来,它们对应图形所覆盖的全部范围即为B A . 解:∵{}{}310322<<-=<--=x x x x x B ∴=B A {}{}{}1311->=<<-≥x x x x x x .例3. 已知集合{}m A ,3,1=,{}m B ,1=,若A B A = ,则m 等于【 】 (A )0或3 (B )0或3 (C )1或3 (D )1或3分析:{}m B ,1=,由集合元素的互异性,得1≠m ,排除C 、D 选项.因为A B A = ,根据并集的性质,所以A B ⊆,这样就将两个集合的并集运算转化为了这两个集合之间的关系,从而可以确定参数的值或取值范围. 解:∵A B A = ,∴3=m 或m m =当m m =时,解之得:0=m (1=m 不符合题意,舍去) 综上,3=m 或0=m .例 4. 已知集合{}012≤-=x x P ,{}a M =,若P M P = ,则实数a 的取值范围是__________.分析:∵P M P = ,∴P M ⊆. 解:{}{}11012≤≤-=≤-=x x x x P ∵P M P = ,∴P M ⊆,∴P a ∈ ∴实数a 的取值范围是{}11≤≤-a a .例5. 已知集合{}x A ,3,2,1=,{}2,3x B =,且{}x B A ,3,2,1= ,求x 的值.分析:由题意可知:A B A = ,所以A B ⊆,从而A x ∈2,且32≠x . 解:分为三种情况:①当12=x 时,解之得:1-=x (1=x 不符合题意,舍去); ②当22=x 时,解之得:2±=x ; ③当x x =2时,解之得:0=x . 综上所述,x 的值为0或2±或1-.注意:在求参数的值时,参数的值要满足集合元素的互异性.例6. 已知集合{}32>-=x x A ,{}a x x x B ->-=332,求B A . 分析:对于含参集合参与的集合运算,要注意分类讨论.解:{}{}532>=>-=x x x x A ,{}{}3332-<=->-=a x x a x x x B . 当3-a ≤5,即a ≤8时,{}53>-<=x a x x B A 或 ; 当53>-a 时,即8>a 时,=B A R .a例7.(易错题)已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,求由m 的取值构成的集合.分析:因为A B A = ,所以A B ⊆.由于集合B 是一个含参集合,所以要对集合B 分∅=B 和∅≠B 两种情况进行讨论. 解:∵A B A = ,∴A B ⊆. 当0=m 时,∅=B ,满足A B ⊆;当0≠m 时,{}11-=⎭⎬⎫⎩⎨⎧==m x x B 或{}1=B :①若{}1-=B ,则11-=m,解之得:1-=m ;②若{}1=B ,则11=m,解之得:1=m . 综上所述,m 的取值构成的集合为{}1,0,1-.例8. 设集合{}52<<-=x x M ,{}122+<<-=t x t x N ,若M N M = ,则实数t 的取值范围是__________.分析:先将并集运算的结果M N M = 转化为两个集合M , N 之间的关系M N ⊆,从而列出关于参数t 的不等式(组)求解.注意含参集合的分类讨论.解:∵M N M = ,∴M N ⊆. 分为两种情况:①当∅=N 时,有t -2≥12+t ,解之得:t ≤31;②当∅≠N 时,则有:⎪⎩⎪⎨⎧≤+-≥-+<-51222122t t t t ,解之得:t <31≤2.综上所述,实数t 的取值范围是{}2≤t t .警示:在解决本题时,任意忽略∅=N 的情况,另外要注意端点值能否取到.例9. 已知集合{}2,1-=A ,{}01>+=mx x B ,若B B A = ,求实数m 的取值范围. 分析:注意本题与例7的区别. 解:∵B B A = ,∴B A ⊆. 分为三种情况:①当0=m 时,01>恒成立,∴{}=>+=01mx x B R ,满足B A ⊆;②当0>m 时,{}⎭⎬⎫⎩⎨⎧->=>+=m x x mx x B 101,有11-<-m ,解之得:1<m∴10<<m ;③当0<m 时,{}⎭⎬⎫⎩⎨⎧-<=>+=m x x mx x B 101,有21>-m ,解之得:21->m∴021<<-m .。
(完整版)人教版高中数学必修一第一章知识点
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学人教A版必修一第一章知识点总结及题型
高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。
知识点四:集合的表示方法集合的表示方法有列举法和描述法。
列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。
知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。
子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。
知识点六:集合的运算集合的运算包括交集和并集。
集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。
3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。
4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
高中数学人教A版必修第一册第一章.1集合的含义课件
康托尔
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
格奥尔格·康托尔 康托尔(Georg Cantor,1845-1918,德)
德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡 (今苏联列宁格勒),1918年1月6日病逝于哈雷。其父为迁居俄 国的丹麦商人。康托尔11岁时移居德国,在德国读中学。1862年 17岁时入瑞士苏黎世大学,翌年转入柏林大学,主修数学,从学于 E.E.库默尔、K.(T.W.)外尔斯特拉斯和L.克罗内克。1866年曾 去格丁根学习一学期。
1 ____ A, 2 ____ A 9 ____ A, 13 ____ A
高中数学人教A版必修第一册第一章.1 集合的 含义课 件(公 开课课 件)
四、巩固练习 高中数学人教A版必修第一册第一章.1集合的含义课件(公开课课件)
1、用、 填空 (1)设A为所有亚洲国家组成的集合,则
中国____A, 美国____A
元素组成的总体叫做集合(简称为集).
通常用大写的拉丁字母 A,B,C,…表示集合, 用小写的拉丁字母 a,b,c ,…表示集合中的元素.
初中接触过哪些集合的实例 数集: 自然数的集合,有理数的集合 点集: 圆:到一个定点的距离等于定长的点的集合
高中数学人教A版必修第一册第一章.1 集合的 含义课 件(公 开课课 件)
六、作业
1、(上交作业本A)P11 习题1.1 A组第1,3 ,4题 2、(课本)
P5 练习第2题 P11 习题1.1 A组第1,2题 3、预习新课1.1.2
高中数学人教A版必修第一册第一章.1 集合的 含义课 件(公 开课课 件)
人教版高中数学必修一第一章知识点0001
第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1) 集合的概念集合中的元素具有确定性、互异性和无序性.(2) 常用数集及其记法N表示自然数集,N “或N .表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集(3) 集合与元素间的关系对象a与集合M的关系是a M,或者a - M,两者必居其一.(4) 集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举岀来,写在大括号内表示集合③描述法:{x| x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5) 集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(【1.1.2】集合间的基本关系(7)已知集合A有n(n _1)个元素,则它有个子集,它有2个真子集,它有个非空子集,它有2n -2非空真子集(8)交集、并集、补集【1.1.3】集合的基本运算(1)(2)—元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1) 函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f ,对于集合A中任何一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f ) 叫做集合A到B的一个函数,记作f : A_. B .②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2) 区间的概念及表示法①设a, b是两个实数,且 a . b,满足a_x_b的实数x的集合叫做闭区间,记做[a,b];满足a x ::: b的实数x的集合叫做开区间,记做(a,b);满足a _ x :::b,或a ”:x _ b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x _ a, x a,^ b, x ::: b的实数x的集合分别记做[a, ::),(a, ::),( -::, b],( -::,b).注意:对于集合{x | a :::x :::b}与区间(a, b),前者a可以大于或等于b,而后者必须a :b.(3) 求函数的定义域时,一般遵循以下原则:① f (x)是整式时,定义域是全体实数.②f(X)是分式函数时,定义域是使分母不为零的一切实数.③ f (x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.n⑤y 二tanx 中,x = k (k Z).2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a乞g (x)乞b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4) 求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的•事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值•因此求函数的最值与值域,其实质是相同的,只是提问的角度不同•求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y = f (x)可以化成一个系数含有y的关于x的二次方程2a( y)x b(y)x c( y) =0,则在a(y) = 0时,由于x, y为实数,故必须有2二b (y) -4a(y) c(y) _ 0,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5) 函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系•列表法:就是列岀表格来表示两个变量之间的对应关系•图象法:就是用图象表示两个变量之间的对应关系.(6) 映射的概念①设A、B是两个集合,如果按照某种对应法则f ,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f )叫做集合A到B的映射,记作f : B .②给定一个集合A到集合B的映射,且a A,b • B •如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【131】单调性与最大(小)值(1) 函数的单调性函数的 性质定义图象判定方法函数的 单调性如果对于属于定义域 I 内某 个区间上的任意两个自变量 的值X 1、X 2,当X 1< x 2时,都 有f(x 1)vf(x 2),那么就说 f(x)在这个区间上是增函数.y y=f (x )f(x )/ f (X )(1) 利用定义(2) 利用已知函数的 单调性(3) 利用函数图象(在 某个区间图象上升为增) (4) 利用复合函数 oX 1 X 2X如果对于属于定义域 I 内某 个区间上的任意两个自变量 的值X 1、X 2,当X 1 < X 2时,都 有f(x 1)>f(X 2),那么就说 f(x)在这个区间上是减函数.yf(X 1)y=f(x )(1) 利用定义(2) 利用已知函数的 单调性(3) 利用函数图象(在 某个区间图象下降为减)(4) 利用复合函数olX 1 X 2X增函数,减函数减去一个增函数为减函数.③对于复合函数y = f [g(x)],令u=g(x),若y=f(u)为增,u=g(x)为增,则f[g(x)]为增;若 y = f (u)为减,u = g(x)为减,则 y = f[g(x)]为增;若 y = f (u)为f[g(x)] 为减.a(2)打"/函数f(x) =x (a 0)的图象与性质xf (x)分别在(」:,— a ]、[ .-a, •::)上为增函数,分别在 (3)最大(小)值定义①一般地,设函数 y = f (x)的定义域为I ,如果存在实数 M 满足:对于任意的x • I ,都有f (x)乞M ;f max (X )=M增,u=g(x)为减,则y = f [g(x)]为减;若y = f (u)为减,u=g(x)为增,_则 [f a,0)、(0八a ]上为减函数.(2)存在X o • I ,使得f (X o ) =M •那么,我们称 M 是函数f(x)的最大值,记作(1)②一般地,设函数y= f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x I,都有f (x) _ m ;(2)存在X。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂讲练互动
活页规范训练
误区警示 因忽略集合中元素的互异性而出错 【示例】 写出由方程 x2-(a+1)x+a=0 的解组成的集合 A. [错解] x2-(a+1)x+a=(x-a)(x-1)=0,所以方程的解为 1,a, 则解集为 A 中的元素为 1,a.
错解没有注意到字母 a 的取值带有不确定性,得到 了错误答案{1,a}.事实上,当 a=1 时,不满足集合中元素的 互异性.
课前探究学习
课堂讲练互动
活页规范训练
[正解] x2-(a+1)x+a=(x-a)(x-1)=0,所以方程的解为 1, a.若 a=1,则解集 A 中的元素为 1;若 a≠1,则解集 A 中的元 素为 1,a.
集合中的元素具有确定性、无序性、互异性,集合 元素的三个特性中互异性对解题的影响最大,解与集合有关的 参数取值,一定要代入集合验证它是否符合集合元素的互异性.
课前探究学习
课堂讲练互动
活页规范训练
想一想:试判断下列各组对象能否构成一个集合,并说明理由. ①中央电视台著名节目主持人; ②北京市内跑得快的汽车; ③上海市所有的高中生; ④爱好唱歌的人. 提示 紧扣集合定义,根据集合的元素的确定性判断即可. ①②④中没有明确的标准,不符合集合的定义,不能构成集合, 只有③能构成集合.
课前探究学习
课堂讲练互动
活页规范训练
(2)互异性:是指对于一个给定的集合,它的任意两个元素都是 不同的.简单地说,一个集合中不能出现相同的元素. (3)无序性:集合中的元素是没有前后顺序的,如由 1,2,3 和 3,2,1 组成的集合是同一集合. 3.元素与集合的关系 (1)a∈A 与 a∉A 取决于 a 是不是集合 A 中的元素,根据集合中 元素的确定性可知,对于任何 a 与 A,a∈A 与 a∉A 这两种情况 必有一种且只有一种成立. (2)符号“∈”“∉”表示元素与集合的关系,不能用来表示集 合与集合之间的关系,这一点要牢记.
课前探究学习
课堂讲练互动
活页规范训练
题型一 集合的基本概念 【例 1】 考查下列每组对象能否构成一个集合: (1)著名的数学家; (2)某校 2012 年在校的所有高个子同学; (3)不超过 20 的非负数; (4)2010 年度诺贝尔经济学奖获得者; (5)2010 年上海世博会的所有展馆. [思路探索] 紧扣集合的定义,根据集合的元素的确定性判断即可.
课前探究学习
课堂讲练互动
活页规范训练
2.元素与集合的表示 表示 元素:通常用小写拉丁字母a,b,c…表示集合中的元素; 集合:通常用大写拉丁字母A,B,C…表示集合.
课前探究学习
课堂讲练互动
活页规范训练
3.元素与集合的关系
关系
概念
记法 读法
元素与 集合的 关系
如果 a是集合A 的元 属于
第一章 集合与函数概念
课前探究学习
课堂讲练互动
活页规范训练
1.1 集 合 1.1.1 集合的含义与表示
第 1 课时 集合的含义
课前探究学习
课堂讲练互动
活页规范训练
【课标要求】 1.通过实例了解集合的含义,并掌握集合中元素的三个特性. 2.体会元素与集合间的“从属关系”. 3.记住常用数集的表示符号并会应用.
课前)“著名的数学家”无明确的标准,对于某个人是否“著 名”无法客观地判断,因此“著名的数学家”不能构成一个集 合;类似地,(2)也不能构成集合;(3)任给一个实数 x,可以明 确地判断是不是“不超过 20 的非负数”,即“0≤x≤20”与 “x>20 或 x<0”,两者必居其一,且仅居其一,故“不超过 20 的非负数”能构成集合.(4)(5)中研究的对象是确定的,所以能 构成集合. 规律方法 判断指定的对象能不能构成集合,关键在于能否找 到一个明确标准,对于任何一个对象,都能确定它是不是给定 集合的元素,同时还要注意集合中元素的互异性、无序性.
课前探究学习
课堂讲练互动
活页规范训练
单击此处进入 活页限时训练
课前探究学习
课堂讲练互动
活页规范训练
知识回顾 Knowledge
Review
课前探究学习
课堂讲练互动
活页规范训练
课前探究学习
课堂讲练互动
活页规范训练
题型二 集合中元素的特性及应用 【例 2】 已知集合 A 是由三个元素 m,m2+1,1 组成,且 2∈A, 求 m. [思路探索] 分别令 2=m,2=m2+1,再结合集合中元素的互异 性,分类讨论求解.
课前探究学习
课堂讲练互动
活页规范训练
解 ∵2∈A,则 m=2 或 m2+1=2, ∴m=2 或 m=±1, 当 m=2 时,集合中的元素为:2,5,1,符合集合中元素的互异 性. 当 m=1 时,不符合元素的互异性,舍去. 当 m=-1 时,集合中的元素为:-1,2,1,符合集合中元素的 互异性. 综上可知 m=2 或 m=-1.
课前探究学习
课堂讲练互动
活页规范训练
题型三 元素与集合的关系 【例 3】 (12 分)若所有形如2+6 x∈N(x∈N)的数组成集合 A. (1)试判断元素 1 和 2 与集合 A 的关系; (2)求集合 A 中的元素. 审题指导 (1)令 x=1,x=2,判断2+6 x∈N 是否成立; (2)令 x 分别取 0,1,2,3,4,代入2+6 x逐一检验确定 x 的值.
【核心扫描】 1.利用集合中元素的三个特性解题.(重点) 2.准确认识元素与集合之间的符号“∈”“∉”.(难点)
课前探究学习
课堂讲练互动
活页规范训练
自学导引 1.元素与集合的概念 (1)元素:一般地,我们把研究对象 统称为元素. (2)集合:把一些元素组成的总体叫做集合(简称为 集 ). (3)集合相等:只要构成两个集合的 元素 是一样的,我们就 称这两个集合是相等的. (4)集合元素的特性: 确定性 、 互异性 、无序性.
课前探究学习
课堂讲练互动
活页规范训练
[规范解答] (1)当 x=1 时,2+6 1=2∈N;(3 分) 当 x=2 时,2+6 2=32∉N,∴1∈A,2∉A.(6 分) (2)令 x=0,1,2,3,4,代入2+6 x∈N 检验,(9 分) 可得 0,1,4∈N(12 分) 【题后反思】 (1)对于元素与集合之间的关系,一定要明确集合是 由怎样的元素构成,然后再确定某对象是否为集合中的元素. (2)解决这类比较复杂的集合问题要充分利用集合满足的性质,运 用转化思想,将问题等价转化为比较熟悉的问题解决.
课前探究学习
课堂讲练互动
活页规范训练
【变式 3】 若所有形如 3a+ 2b(a∈Z,b∈Z)的数组成集合 A, 判断 6-2 2是不是集合 A 中的元素. 解 因为在 3a+ 2b(a∈Z,b∈Z)中, 令 a=2,b=-2,即可得到 6-2 2, 所以 6-2 2是集合 A 中的元素.
课前探究学习
素,就说a属于集合A 如果 a不是集合A 中的元 不属于 素,就说a不属于集合A
a∈A aA
a属于 集合A a不属于 集合A
课前探究学习
课堂讲练互动
活页规范训练
4.常用数集及表示符号
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 N
N*或N+ Z
Q
R
课前探究学习
课堂讲练互动
活页规范训练
名师点睛 1.准确认识集合的概念 (1)集合在数学中是不加定义的,我们只对它进行描述性说明, 集合的本质是某些确定元素组成的总体.集合是一个整体,已 暗含“所有”、“全体”的含义,因此一些对象一旦组成了集 合,那么这个集合就是这些对象的全体.
课前探究学习
课堂讲练互动
活页规范训练
(2)集合含义中的“元素”所指的范围非常广泛,如某些学生、 某些方程的解、1~10 内的自然数等我们看到的,听到的,想 到的各种各样的事物或一些抽象的符号等,都可以看作“元 素”.
课前探究学习
课堂讲练互动
活页规范训练
2.集合中元素的特性的理解 (1)确定性:是指集合中的元素是确定的,即任何一个对象都能 明确它是或不是某个集合的元素,两者必居其一,它是判断一 组对象是否形成集合的标准. 如:大于 3 小于 11 的偶数分别为 4,6,8,10,它们是确定的,可 构成集合,而“我国的小河流”,由于“小”这个标准不确定, 所以构不成集合.
课前探究学习
课堂讲练互动
活页规范训练
规律方法 根据集合中元素的确定性可以解出字母的所有可能 的值,再根据集合中元素的互异性对集合中的元素进行检验.另 外,在利用集合中元素的特性解题时要注意分类讨论思想的运 用.
课前探究学习
课堂讲练互动
活页规范训练
【变式 2】 已知集合 M 是由三个元素-2,3x2+3x-4,x2+x- 4 组成,若 2∈M,求 x. 解 当 3x2+3x-4=2 时,即 x2+x-2=0, 则 x=-2 或 x=1. 经检验,x=-2,x=1 均不合题意. 当 x2+x-4=2 时,即 x2+x-6=0,则 x=-3 或 2. 经检验,x=-3 或 x=2 均合题意. ∴x=-3 或 x=2.
课前探究学习
课堂讲练互动
活页规范训练
【变式 1】 下列对象能构成集合的是( ). A.中国大的城市 B.方程 x2-9=0 在实数范围内的解 C.直角坐标平面内第一象限的一些点 D. 3的近似值的全体
课前探究学习
课堂讲练互动
活页规范训练
解析 A 中的城市大到什么程度不明确,所以不能构成集合; B 能构成集合;C 中“一些点”无明确的标准,对于某个点是 否在“一些点”中无法确定,因此“直角坐标平面内第一象限 的一些点”不能构成集合;D 中“ 3的近似值”不明确精确到 什么程度,因此很难判断一个数如“2”是不是它的近似值,所以 不能构成集合. 答案 B