第三章-3-系统动态-时间响应性能指标

合集下载

自动控制第三章s讲解

自动控制第三章s讲解

trtp ts
稳态误差
t
振荡系统定义为从零第一次上升到终值所需时间。
峰值时间tp:响应到达第一个峰值所需时间。 调节时间ts:到达并保持在终值 5%误差带内所需的最短时间 超调量%:最大偏离量c(tp)与终值c(∞)之差的百分比,即
% c(t p ) c() 100 %
c()
❖稳态性能:由稳态误差ess描述。
跟踪误差:e(t)=r(t)-c(t)=Tt-T2(1-e-t/T)随时间推 移而增长,直至无穷。因此一阶系统 不能跟踪加速度函数。
线性定常系统的特性
单位脉冲信号 r(t) (t) R(s) 1
单位阶跃信号 r(t) 1 单位斜坡信号 r(t) t
R(s) 1 s
R(s)
1 s2
单位加速度信号 r (t ) t 2 2 R(s) 1 s3
3.1 时间响应性能指标
3.1.1 典型输入信号
典型输入信号
单位阶跃信号、单位斜坡信号、单位脉冲信号、 单位加速度信号、正弦信号。
对应的输出分别被称为 单位阶跃响应 、单位斜坡响应 、单位脉冲响应 、 单位加速度响应。
一.阶跃函数
r(t)
A
0 r(t) A
t0 t0
R(s) A s
o
t
A=1时称为单位阶跃函数, 其数学表达式为
k Ts+1
输入R(s)
1 s2
输出速度 dc(t) 1 et T
dt
位置误差随时间增

大,最后为常值T


T



0T
3.2.5 一阶系统的单位加速度响应
无零点的一阶系统 Φ(s) =
k Ts+1

[精品]控制系统的动态响应及其性能指标

[精品]控制系统的动态响应及其性能指标

X0(s)=
1 1 2n 1 2n s (s p1 ) p1 ( p2 p1 ) (s p2 ) p2 ( p2 p1 )
1 1 x0(t)=1e p1t e p2 t p 2 p1 p1 p2
其时间响应为含有两个衰减指数曲线上升、无振荡及超
输入单位阶跃信号时 1 1 Xi(s)= , X0(s)= Ф(s)
s
X0(t)=L-1[Ф(s) 输入单位斜坡信号时
1 ] s
s
1 1 1 Xi(s)= 2 ,X0v(s) = Ф(s) =X0(s) 2 s s s
X0v(t)= .

t
0
x0 (t )dt
输入单位脉冲信号时
Xi(s)=1,X01(s)= Ф(s)∫=X0(s)s


μ=
ts tf
式中
2 2 tf= ,为阻尼振荡周期时间。 2 d n 1
X0(t) X 0 ( ∞) 0.9 0.05x0(∞) 或 0.05x0(∞)
0.1
0 (b) 图3-27
tr
ts
t
单调变化的单位阶跃响应 稳定系统的单位阶跃响应
式中 Xmax 输出超过稳态值的最大值; X0(∞) 输出稳态值。 超调量的大小直接表示了系统的相对稳定性。此值一 般应控制在5%-35%间。 2.峰值时间tp 指输出超过稳态值达到第一个峰值所需的时间 3.上升时间tr 对具有衰减振荡的响应,指输出由零值上升到第一次 穿过稳态值所需的时间。 4.调节时间ts 指输出X0(t)与稳态值X0(∞)之间的偏差,达到规 定的允许范围 ,且以后不再超过此范围所需的最小时间.
2
-
s 2 2 s n

工程控制基础 第3章 系统的时间响应分析

工程控制基础 第3章 系统的时间响应分析

总结 当ζ一定时ωn增大ts就减小; 当ωn一定时ζ增大,ts也减小
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
30
3.4 二阶系统性能指标
➢ 总结
➢ 要使二阶系统具有合适动态特性,应合理选择ζ和ωn。一般的做法是先根据 最大超调量Mp 、振荡次数N等要求选择系统的阻尼比ζ ,然后再根据上升 时间tr、峰值时间tp、调整时间ts等要求,确定系统无阻尼固有频率ωn
➢ 单位脉冲响应
➢ 单位阶跃响应
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
3.2 一阶系统时间响应
➢ 一阶系统:微分方程
传递函数:
➢ 单位斜坡响应
12
T:时间常数
华中科技大学 易朋兴
2019/12/30
机械工程控制基础
3.2 一阶系统时间响应
➢ 一阶系统:微分方程
传递函数:
➢ 不同输入函数不同时间常数下输出响应比较
当ζ一定时ωn增大ts就减小; 当ωn一定时ζ增大,ts也减小
2019/12/30
机械工程控制基础
29
3.4 二阶系统性能指标
➢ 二阶欠阻尼系统瞬态性能指标:
上升时间 tr 、峰值时间 t p 、最大超调量 M p 、调整时间 ts 、振荡次数 N
二阶欠阻尼单位阶跃响应
➢ 振荡次数N :在过渡过程时间内, xo(t)穿越其稳态值的次数的一半
2 n
s2

2n s

2 n
ωn、ζ
:特征参数
➢ 单位脉冲响应
• 当 ,0系统为零阻尼系统时
华中科技大学 易朋兴
2019/12/30
机械工程控制基础

控制工程基础3章

控制工程基础3章

零状态响应 随时间的推移(t → ∞)而衰减、趋于零。 (所有Re(si)<0时的自由响应。) t → ∞,仍然存在。 (稳定系统的强迫响应。)
↘强迫响应
Notes:
(1) 几个概念 系统的时间响应--输入一定时系统输出随时间的变化规律。 时域分析方法--直接求解微分方程和状态方程,求出时域响应来评价系 统的方法。 零输入响应--在没有输入(x(t)=0)时,仅由系统的初始状态引起的响应。 零状态响应--在初态为零时,仅由外部输入(激励)引起的响应。 暂态响应--是指随时间的增长而趋于零的那部分响应。 稳态响应--是指暂态消失后,余下的那部分响应。 (2) n 与 si ,既与系统的初态无关,更与系统的输入无关; 它们取决于系统的结构与参数这些固有特性。 (3) 传递函数定义指明系统初态为零,故初态决定的零输入响应为零;从而 对Y(s) = G(s)X(s)进行拉式逆变换 y(t)=L-1[Y(s)],就是系统的零状态响应。 (4) 对同一线性定常系统,若输入函数等于某函数的导函数x1(t) = x’(t) , 该输入函数的响应函数,也等于这一函数的响应函数的导函数 y1(t) = y’(t) 。
解I 另可求出 y * F k
1 1 n
2
cost 是满足微分方程(1)的特解。
令λ = ω / ωn,得到微分方程(1)的完全解为:
F 1 y yT y A1 sin nt A2 cos nt cos t (3) 2 k 1
第三章 时间响应分析
本章要点: 1、时间响应及其组成,以及一些基本概念; 2、一、二阶系统的典型信号激励的响应及其计算; 3、评价二阶系统的性能指标;
4、系统的零点对系统的影响。

《自动控制原理》第三章自动控制系统的时域分析和性能指标

《自动控制原理》第三章自动控制系统的时域分析和性能指标

i1 n
]
epjt
j
(spj)
j1
j1
limc(t) 0的充要条件是 p j具有负实部
t
二.劳斯(Routh)稳定判据
闭环特征方程
a nsn a n 1 sn 1 a 1 s a 0 0
必要条件
ai0. ai0
劳斯表
sn s n1 s n2
| | |
a a n
n2
a a n 1
n3
b1 b2
或:系统的全部闭环极点都在复数平面的虚轴上左半部。
m
设闭环的传递函数:
(s)
c(s) R(s)
k (s zi )
i 1 n
(s p j )
P j 称为闭环特征方程的根或极点 j1
n
(s pj ) 0 称为闭环特征方程
j1
若R(s)=1,则C(s)= s m
k (szi)
n
c(t)L1[c(s)]L1[
t 3、峰值时间 p
误差带
4 、最大超调量
%
C C ( )
% max
100 %
C ( )
ts
5 、调节时间
ts
(
0 . 05
0
.
02
)
6、振荡次N数
e e 7、稳态误差 ss
1C()(对单位阶跃) 输入
ss
第三节 一阶系统的动态性能指标
一.一阶系统的瞬态响应
R(s) -
K0 T 0S 1
s5 | 1 3 2
s4 | 1 3 2
s3 | 4 6
s2
|
3 2
2
s1
|
2 3
s0 | 2

自动控制原理第3章

自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

自控(第六版 胡寿松)第三章

自控(第六版 胡寿松)第三章

3.1
时间响应性能指标
3.2
3.3
一阶系统的时域响应
二阶系统的时域响应
3.4
3.5
系统的稳定性分析
系统稳态性能分析
2
3.1
时间响应性能指标
工程实际中,有些系统的输入信号是已知的(如恒值系 统),但对有些控制系统来说,常常不能准确地知道其输 入量是如何变化的(如随动系统)。
因此,为了方便系统的分析和设计,使各种控制系统有一 个进行比较的统一的基础,需要选择一些典型试验信号作 为系统的输入,然后比较各种系统对这些输入信号的响应。
11
y(t) p
1 0.5 0

稳态误差
td tr t p
ts
t
峰值时间tp:响应超过其稳态值到达第一个峰值所需时间。 调节时间ts:响应到达并保持在稳态值内所需时间。 超调量%:响应的最大偏离量h(tp)与稳态值h(∞)之差的百 分比,即 h( t p ) h() % 100% h() 稳态性能:由稳态误差ess描述。
17
3.2.2 单位斜坡响应
设系统的输入为单位斜坡函数r(t)=t,其拉氏变换为 R( s ) 1 / s 2 则输出的拉氏变换为
C ( s) 1 1 1 T T 2 2 Ts 1 s s s s 1
t T
T
t T
r(t)=t
C ( t ) t T Te
R( s ) L[ r ( t )] A ( t )e st dt
0

A ( t )e dt A ( t )e st dt A
st 0 0
0

单位脉冲函数的拉氏变换为R(s)=1。

系统时间响应的性能指标课件

系统时间响应的性能指标课件

整个调节过程分为两个阶段: . a.动态过程 反映系统的动态特性。输出量处于
激烈变化之中,其信息用动态性能描述。 . b.稳态过程 反映系统的稳态特性。输出量稳定
在新的平衡状态,并保持不变。提供有关稳态误 差的信息,由稳态性能描述。
三、动态响应指标
注意tr 的另一种定义。
• 描述稳定的系统在单位阶跃函数作用下,动态过程 随时间的变化状况的指标。
缺点: 难以判断系统结构和参数对动 态性能的影响,很难用于系统的设计。对 于高阶系统,系统分析的工作量将急剧增 加,不易确定其性能指标。必须借助计算 机实现。
第三章 时域分析法
第一节 系统时间响应的 性能指标
一 典型输入信号
为了能对不同的控制系统的性能用统一的标 准来恒量,通常需要选择几种典型的外作用。
2、除一、二阶系统外,精确确定这些指标 的解析式相当困难。
小结
• 理解系统的时间响应由动态过程和稳态过程组成; • 掌握动态性能指标的定义。
峰值时间
A
超调量G%= %
误差带
定义一
B
上升时间
调节时间
定义二
调节时间
上升时间
上升时间tr-rise time 峰值时间tp-peak time 调节时间ts-settling time
v说明
1、上升时间和峰值时间反映了系统的响应 速度;超调量反映了系统的阻尼程度;调节 时间同时反映系统响应速度和阻尼程度的综 合性指标。
第三章 时域分析法
什么是时域分析? 指控制系统在典型输入信号作用下,根据
输出量的时域表达式(解析、几何),分析系 统的稳定性、动态性能和稳态性能 。 已知系统微分方程形式的数学模型
求c(t)与ai、bj 、r(t)的关系(解析、几何)。

第三章二阶系统响应与时域性能指标解析

第三章二阶系统响应与时域性能指标解析

第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。

二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。

了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。

二阶系统的传递函数可以表示为$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。

首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。

阶跃响应是系统对阶跃信号输入的响应。

通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。

1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。

通过阶跃响应曲线可以直观地看出系统的峰值超调量。

2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。

在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。

一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。

3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。

在阶跃响应曲线中,峰值时间可以直接读取。

4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。

在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。

二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。

系统时间响应分析

系统时间响应分析

二阶系统的响应特性完全由ζ和 ωn两个参数决定,所以ζ、ωn是 二阶系统的两个重要参数。
左 半 平 面 ξ>0
ξ= 0

右 半 平 面 ξ<0
0 < ξ< 1
jω n
ξ=1 两个相等根
β
0
ω d=ω n
σ
ξ=0
ξ>1
jω n
两个不等根
图 3-9二 阶 系 统 极 点 分 布
过阻尼二阶系统:传递函数可分 解为两个一阶惯性环节相加或相 乘,因此可视为两个一阶环节的 并联,也可视为两个一阶环节的 串联。
二、 一阶系统的单位脉冲响应
输入信号是理想的单位脉冲函数时,系统输出 称为单位脉冲响应 函数或简称为单位脉冲响应。
W (s)X 0(s) G (s)X i(s)
Xi(s)L[(t)]1
W(s)G(s)
单位脉冲响应函数:系统传递函数的Laplace逆变换!!!
w(t)L1[G(s)]L1[ 1 ] Ts1
减小的,当t为 时,其响应速度为零;
实验方法求一阶系统的传递函数
1. 输入单位阶跃信号,并测出它的响应曲线及稳态值; 2.从响应曲线上找出0.632(即特征点A)所对应的时间t为T
四、一阶系统单位斜坡响应
不同输入信号响应关系:
系统对输入信号导数的响应,就等于系统对该输入信 号响应的导数;
系统对输入信号积分的响应,就等于系统对该输入信 号响应的积分。
)时,系统的输出称为单
Xo(s) G(s)Xi(s)
X i (s) L[ (t)] 1
同样有:W (s) G (s) 单位脉冲响应是传递函数的Laplace逆变换
记d n 1,2 称 d 为二阶系统的有阻尼固有频率。

第三章系统的时间响应分析.pptx

第三章系统的时间响应分析.pptx

华中科技大学 易朋兴
2020/7/21
机械工程控制基础
10
3.1 时间响应及其组成
➢ 控制系统中典型输入信号
单位脉冲信号
单位阶跃信号
单位斜坡信号
单位抛物线信号
正弦信号
随机信号
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
11
3.2 一阶系统时间响应
➢ 一阶系统: 微分方程
传递函数:
T:时间常数
若存在特征根具有正实部, 若存在特征根实部为0,
系统自由响应项发散, 其余实部为负,则自由响应
系统不稳定
称为瞬态响应项等幅振荡
系统临界稳定
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
9
3.1 时间响应及其组成
➢ 系统特征根si:系统的特征根影响系统自由响应的收敛性和 振荡特性
➢ 结论
➢ 特征根实部影响自由响应项的收敛性
13
T:时间常数
单位脉冲响应
单位阶跃信号
单位斜坡信号
华中科技大学 易朋兴
2020/7/21
机械工程控制基础
14Biblioteka 3.2 一阶系统时间响应➢ 一阶系统:微分方程
传递函数:
T:时间常数
➢ 性能指标:调整时间ts
➢ 一阶系统地阶跃输入作用下,达到稳态值的(1-△)所需要的时间 ( △为允许误差) 稳态值
△·稳态值
➢ 若所有特征根均有负实部,系统自由响应项收敛,系 统稳定,此时自由响应称为瞬态响应,强迫响应项称
为稳态响应
➢ 若存在特征根实部为正,系统自由响应项发散,系统 不稳定
➢ 若存在特征根实部为0,其余实部为负,则自由响应 等幅振荡,系统临界稳定

自动控制原理-03-01

自动控制原理-03-01

td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()

自控第三章

自控第三章

.10.90.50.1图3-2表示性能指标td,tr,tp,Mp 和ts 的单位阶跃响应曲线h(t)(∞h (∞h (∞h )(∞h %100)()()(%⨯∞∞-=h h t h p σtt 第三章:1、一阶系统对典型输入信号的输出响应。

(单位)阶跃函数(Step function )0,)(1≥t t ;(单位)斜坡函数(Rampfunction )速度 0,≥t t ;(单位)加速度函数(Acceleration function )抛物线0,212≥t t ;(单位)脉冲函数(Impulse function ) 0,)(=t t δ;正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。

2、动态性能指标: 1.延迟时间d t :(Delay Time )响应曲线第一次达到稳态值的一半所需的时间,叫延迟时间。

jklmno2.上升时间:r t (Rise Time )响应曲线从稳态值的10%上升到90%,所需的时间。

〔5%上升到95%,或从0上升到100%,对于欠阻尼二阶系统,通常采用0~100%的上升时间,对于过阻尼系统,通常采用10~90%的上升时间〕,上升时间越短,响应速度越快。

3.峰值时间p t (Peak Time ):响应曲线达到过调量的第一个峰值所需要的时间。

4.调节时间:s t (Settling Time ):在响应曲线的稳态线上,用稳态值的百分数(通常取5%或2%)作一个允许误差范围,响应曲线达到并永远保持在这一允许误差范围内,所需的时间。

5.最大超调量:p M (Maximum Overshoot ):指响应的最大偏离量h(tp)于终值)(∞h 之差的百分比,即%σ13- r t 或p t 评价系统的响应速度;s t 同时反映响应速度和阻尼程度的综合性指标。

%σ评价系统的阻尼程度。

3、一阶系统的时域分析单位阶跃响应 单位阶跃函数的拉氏变换为Ss R 1)(=,则系统的输出由式为 111111)()()(+-=⋅+==TS S S TS s R s s C φ 对上式取拉氏反变换,得Tt e t c --=1)( 0≥t (3-4)注:R(s)的极点形成系统响应的稳态分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 1 2
tr
n 1 2
1 2

我们还可以得到如下的近似公式
2.16 0.60
arctan t
Tr1
n
ts
3
n
4
对于 5% 误差
通常还用 t s 通常还用:
对于 2% 误差
3.5
ts
n
n
• 在过程控制中,经常还会用到一个指标:衰减比n--它是指同方 向过渡过程曲线上的相邻两个波峰之比. 向过渡过程曲线 的相邻两个波峰之
1 1 e
nt
系统关于单位阶跃输入的响应 通常用来评价系统的响应特性
y ( t)
sin n t


(*) ( )
4
时间响应性能指标
二阶系统暂态
对应于式( (*) )的响应曲线族 如图所示,其中横坐标是无 量纲变量 nt
曲线形状随阻尼比 变化 而变化

峰值时间仅仅是阻尼振荡频率d的函数(
d n 1 2 )
10
时间响应性能指标
时间响应性能指标 :峰值时间
• 峰值时间:系统响应超过其终值到达第一个峰值所需的时间。
1 1
2 n t
y u (t ) 1
e
sin( n 1 t arctan
2
1
Tr1
• 注意:对于取值 算上升时间
2.16 0.60
n
0.5 0 5 ,我们还可以利用下面的表达式来计 我们还可以利用下面的表达式来计 1 .7 tr n
由前述公式可见,要使系统反应快,必须减小tr。因此当 ζ一定, n必须加大;若 必须加大 若n为固定值,则 为固定值 则 ζ 越小, 越小 tr也越小。 也越小
8
时间响应性能指标
时间响应性能指标 • 为了比较不同系统的响应,必须使各系统 从标准化的初始条件开始运动。 • 大多数标准化初始条件是系统静止状态。 • 确定了标准化初始条件后 确定了标准化初始条件后,就可以比较不 就可以比较不 同系统的响应特性(如最大偏离量、调节 时间等)了。
9
时间响应性能指标
• 超调量:响应的最大偏离量与终值的差同终值的比。 由于我们已经得到了峰值时间,因此很容易计算
M p y (t p ) 1 1 1
2 n n 1 2

e
2 sin n 1 a cos( ) n 1 2


1
2
,
0 1
17
时间响应性能指标
时间响应性能指标 :超调量
Mo y (T p ) y ss y ss e


1
2
, 0 1
等 线 等超调量线,仅仅取决于阻 等超调量线 仅仅取决于阻 尼比
a sin( )
Ims
Res
由上式可见,最大百分比超调量完全由 ζ 决定, ζ 越小,超调量 越大。当ζ =0时,σ %= 100%,当 ζ =1时,σ % =0。 σ 与 ζ 的关系曲线见图。
7
时间响应性能指标
时间响应性能指标
性能指标通常通过系统的阶跃响应来定义。系统暂态响应 可以通过实际响应跟踪期望响应的快速性和阻尼程度刻画。 响应的快速性可以利用上升时间和峰值时间来衡量。 实际响应与期望响应的阻尼程度可以利用最大偏离量和调 节时间(回复时间 过渡过程时间)来衡量 节时间(回复时间,过渡过程时间)来衡量。 利用最大偏离量和期望响应,可以计算最大偏离量关于期 望响应的百分数 称为超调量 最大超调量 百分比超调 望响应的百分数,称为超调量(最大超调量,百分比超调 量)。
1 2
1

1 n n 1 2 1 2 2 e

sin 1 2 a sin 1 e
, 0 1

我们还常常利用百分比超调量来表示超调量
Mo y (t p ) y ss y ss e

根据定义,令
y(tr ) 1
tr
sin( n 1 2 t r ) 0
其中,
n 1 tr
2
n 1
2
1 2 arctg
12
时间响应性能指标
时间响应性能指标 性能指标 :上升时间
• 上升时间的确切解析表达式难以计算,我们通常使用线性近似表 达式进行计算
13
时间响应性能指标
时间响应性能指标 性能指标 :上升时间
实际上升时间
线性近似
14
时间响应性能指标
时间响应性能指标 :调节时间
• 调节时间:响应到达并保持在终值 间 间。 • 我们考察误差表达式
5%(2%)内所需的最短时
e(t ) r (t ) y (t )

1 1
2
e
n t
2

)
tp d n 1 2
等峰值时间 线
等d线
j n 2
上式表明,峰值时间 tp与阻尼振荡频率 d 成反比。当 n一定, ζ越小, tp也越小(响应就越快)。 也越小(响应就越快)
11
时间响应性能指标
时间响应性能指标 性能指标 :上升时间
时间响应性能指标
• 峰值时间:系统响应超过其终值到达第一个峰值所需的时间。
1 1
2
y u (t ) 1
e
n t
sin( n 1 t arctan
2
1
2

)
dyu (t ) n nt d du (t ) y (t ) e sin( s ( d t ) e nt cos( d t ), ( (t ) ) 2 2 dt dt 1 1 1 2 n dyu (t ) 0 tg g ( d t ) d t n t tp d dt d d n 1 2
tp d n 1 2
n
n 1 2
B1 n e B2
2 1
2

1 2
M p 1 e
, 0 1
e ( ) lim [ r ( t ) y ( t )]
t
22
时间响应性能指标
参数选择
1
解:


1 2
e
, 0.05 e
18
时间响应性能指标
时间响应性能指标 :超调量
Mo y (T p ) y ss y ss


1 2
e
, 0 1

更一般地,Mo 或 可 以表示为
Mo
p

y (T p ) y y
和 的关系
19
时间响应性能指标
时间响应性能指标 :稳态误差
e
n t s
0.05 nt s 3 t s
n 对于 5% 误差
4
3
ts
n
对于 2% 误差

在上面的近似公式中,调节时间仅仅取决于复数共轭极点的实部n
Ims
等调节时间线
Res
等ts线(等σ线)
16
时间响应性能指标
时间响应性能指标 :超调量
y (t ) 1
e n t

sin( n t cos
1
)
阶跃输入作用下的二阶系统暂态响应
5
时间响应性能指标
二阶系统暂态
脉冲函数是阶跃函数 的微分,因此,脉冲输 入作用下的响应函数也 是阶跃输入作用下的响 应函数的微分
脉冲输入作用下的二阶系统暂态响应
6
时间响应性能指标
2 1 2
B n 1 e B2
注意与阻尼比的区别, 非同一参数!!
21
时间响应性能指标
时间响应性能指标 :小结
B1 B2
Mo
ts ts 3
y (t p ) y ss y ss
e


1 2
, 0 1
n
4
对于 5% 误差 对于 2% 误差
tr
时间响应性能指标
时间响应性能指标 :小结
幅值值 阶跃响应
26
例子
控制科学与工程学系
例1: 参数选择
R( ) R(s) Y( ) Y(s)
时间响应性能指标
n2 Go ( s ) s ( s 2n )
选择增益 K 和参数 p ,使得百分比超调量小于 5%,调节 时间(考虑 2% 误差)小于 4 秒。
t s 0 s 0
• •
其中,GE(s) 是误差传递函数 注意,只有稳定系统才有误差,这是一个稳态指标
20
时间响应性能指标
时间响应性能指标 :小结
• 对于不包含零点的二阶系统,我们可以得到如下的精确公式
1
2

12
Mp 1 e
, 0 1
e
,
tp
时间响应性能指标
二阶系统暂态
Y(s) s K
2
R (s )
p s K n
2
单位脉冲输入
Y(s) s
二阶系统
2
2
2 n s n
单位阶跃输入 with a unity step input
n
2

1
1
2
cos

Y(s)
s 2 2 s 2 s n n
sin( n 1 t arctan
相关文档
最新文档