酵母菌的基因工程

合集下载

第十五章--酵母基因工程

第十五章--酵母基因工程

2
15.1.2 发展现状
o 在酵母基因工程中发展和应用较多的酵母: 酿酒酵母 乳酸克鲁维酵母(Kluyveromyces lactis) 巴斯德毕赤酵母(Pichia pastoris) 多形汉逊酵母(Hansenula polymorpha) 烷烃利用型降脂耶氏酵母(Yarrowia lipolytica) 粟酒裂殖酵母(Schizosaccharomyces pombe) o 应用:改造酵母本身用以提高发酵性能和表达异源 蛋白两方面。
15.1.3 发展趋势
1.解决酵母基因工程中还存在的缺陷 2.在人类基因组计划中的应用研究是一个重要的 发展方向 3.利用酵母基因工程筛选更多的新药 4.改造酿酒酵母自身,降低生产酒精的成本 5.酵母的生理承受极限研究将引起人们的关注
4
15.2 酵母表达系统
15.2.1 酵母表达载体
典型的酵母表达载体均为大肠杆菌和酵母菌的穿梭 质粒。 o 原核部分:大肠杆菌中ori和抗生素抗性序列。 o 酵母部分:维持复制的元件,如附加型的2μm质 粒复制起点序列,或染色体的自主复制序列 (auto-replication sequence, ARS),或整合 型载体的整合介导区;酵母转化子的筛选组分以 及编码特定蛋白的基因启动子和终止子序列。 o 分泌型表达载体还要带有信号肽序列
5
② 整合型载体
o 整合在酵母细胞染色体基因组DNA上,稳定性高, 但拷贝数量低。 o 不含酵母的复制起始区,而是含与受体菌株基 因组有某种程度同源性的一段DNA序列,能有效 介导载体与宿主染色体之间发生同源重组,使 载体整合到宿主染色体上并随同酵母染色体一 起复制。
外源基因整合靶位点—酵母rDNA单元 o 酵母rDNA单元大小为9.1kb,每个单元包含 有35S rRNA前体和5S rRNA基因,这两个转 录单元之间有非翻译区(NTS),在非翻译 区含有DNA复制原点,如图15-1所示。 o 在rDNA单元中有两个HOT区(激活rDNA间的 重组)和一个TOP区(抑制rDNA间的重组)。 o 如果所取rDNA片段只有HOT区,就容易发生 重组,整合拷贝就容易丢失。 o 如果所取的rDNA片段既有HOT区,又有TOP 区,或者两者都不存在,整合拷贝间就不 容易重组,整合拷贝就很稳定。

酵母菌作为模型生物在研究中的应用

酵母菌作为模型生物在研究中的应用

酵母菌作为模型生物在研究中的应用酵母菌是一种单细胞真菌,广泛应用于科学研究中。

作为一种模型生物,他们的简单结构和基因组使得他们成为了基因工程、生物学和医学的理想标准。

今天,我们将探讨一下酵母菌作为模型生物在研究中的应用。

1. 酵母菌的简介酵母菌是真菌界的一种单细胞生物,其名字来源于其在酿造过程中的作用。

它们可以通过无性和有性生殖繁殖,生长极其迅速,只需要十几小时就能分裂,因此酵母菌也被称为毒酒菌。

2. 酵母菌在基因工程中的应用酵母菌的基因组十分简单,只包含6000个左右的基因,而人类基因组则包含3亿多个基因,因此人类的基因研究需要花费大量的时间和精力,而酵母菌则成为了基因工程领域的重要工具。

科学家可以通过人为调整酵母菌基因组,研究基因在细胞生长和发育过程中的作用。

研究表明,酵母菌中的一些基因与健康和疾病相关,因此可以通过对酵母菌的研究来寻找人类疾病的治疗方法。

3. 酵母菌在生物学研究中的应用酵母菌也被广泛用于生物学研究。

在细胞分裂、DNA复制、细胞凋亡等领域中,酵母菌是研究者经常使用的模型生物之一。

他们的分裂周期短,因此可以更容易地观察研究对象。

通过对酵母细胞的观察,科学家可以更好地了解细胞分裂、细胞衰老等基本细胞活动的发生和机制。

4. 酵母菌在医学研究中的应用除了基因工程和生物学外,酵母菌也在医学研究中起着重要的作用。

酵母菌能够模拟许多人类疾病,如癌症、帕金森病和阿尔茨海默病等。

科学家可以通过对酵母菌进行基因改造,将与人类疾病相关的基因注入进去,然后观察研究其对酵母菌的影响和机制。

这种方法被称为“酵母菌疾病模型”,已经被广泛应用于研究许多疾病的治疗方法。

5. 酵母菌在深度学习中的应用近年来,酵母菌还被应用于计算机领域,特别是在深度学习算法中的应用。

科学家通过对酵母菌的生长过程进行监控和分析,建立了酵母菌生长的数值模型,提高了深度学习训练模型的精度和速度。

总之,作为一种模型生物,酵母菌在科学研究中发挥着举足轻重的作用。

酵母菌在基因工程中的应用

酵母菌在基因工程中的应用

酵母菌在基因工程中的应用酵母菌是一类单细胞真核生物,是生物科学研究中的一种常见模式生物。

它们普遍存在于自然界中,可以在发酵食品的制备以及生命科学研究领域发挥着重要的作用。

在基因工程领域中,酵母菌更是被广泛应用,成为了基因工程领域的重要工具之一。

下面我们就来看看,酵母菌在基因工程领域中都有哪些应用吧。

一. 酵母菌作为表达宿主酵母菌是一类常见的蛋白表达宿主,能够快速高效地表达蛋白质,是一种常见的蛋白质产生工具。

一般来说,通过基因工程手段将需要表达的蛋白质的基因导入酵母菌中,利用其自身繁殖特性,迅速高效地表达出需要的蛋白质。

此外,在表达蛋白质的过程中,酵母菌的生长条件相对简单,可以通过温度、氧气、营养等因素的控制来实现高效的表达。

二. 酵母菌在药物研究中的应用当前,越来越多的药物研发都依赖于基因工程技术,而酵母菌则成为了药物研发中的重要工具之一。

通过将需要研发的靶点基因导入酵母菌中,可以模拟药物对生物体内靶点的作用过程。

此外,还可以通过酵母菌对药物副作用的研究,为药物的准确作用机制提供参考。

三. 酵母菌在癌症研究中的应用对于癌症的研究一直以来都是生物学家们所关注的重要问题之一。

而酵母菌则成为了癌症研究中的重要研究工具之一。

通过将癌症相关基因导入到酵母菌中,并通过对其复制、修复和细胞凋亡等过程的研究,可以更好地理解癌症的发生机制和治疗过程,为癌症的诊断和治疗提供更好的参考。

四. 酵母菌在基因组研究中的应用对于生命科学研究而言,基因组研究是一项重要的研究领域。

而目前,酵母菌的基因组研究也在不断地发展。

利用酵母菌基因组研究这一工具,可以揭示基因与生物型之间的关系,探寻基因突变造成遗传性疾病的可能机制,还可以帮助人们更好地理解基因间相互作用,促进基因工程技术的发展。

总之,随着基因工程技术的不断发展,酵母菌作为一种常见的模式生物,也在越来越多的领域中发挥着重要的作用。

通过其快速高效的蛋白表达能力以及对生物学过程的模拟研究,酵母菌为人们揭示了生物世界中的许多秘密。

酵母菌基因组学研究和应用

酵母菌基因组学研究和应用

酵母菌基因组学研究和应用酵母菌是一类单细胞真核生物,广泛存在于自然界中的许多环境中,包括自然发酵的果汁、发酵酒类食品、发酵面包等。

自20世纪初期以来,酵母菌被广泛应用于生物学研究和微生物技术产业中。

随着生物技术的飞速发展,酵母菌基因组学的研究有了长足的进步,对于深入探索酵母菌的生命特性及应用前景有着深远的影响。

I. 酵母菌基因组及其分子特性酵母菌基因组大小一般为12~15Mb,重复序列少且样本具有代表性。

经过多年的研究,人们从酵母菌中发现了许多重要的分子功能,如DNA复制、RNA转录、蛋白质合成和细胞分裂等,这为酵母菌成为分子生物学研究的模式生物提供了坚实基础。

同时,酵母菌基因组也是微生物基因组学研究重要的研究对象,其具有以下特点:1. 基因易于鉴定和定位酵母菌基因在基因组中数量极少,约2-3万个,大多已经被鉴定和定位。

从而将酵母菌生物系统作为研究模板,有利于快速且准确地确定细胞重要功能相关基因的定位和作用。

2. 基因可被显性改造酵母菌非常适合基因工程技术,其基因组可接受外源DNA,实现易于实现转化和改造。

此外,许多酵母菌遗传突变的同时保持菌体可生長(生存能力),从而实现适应自然界的特定条件。

II. 酵母菌在生物研究中的应用1. 酵母菌遗传学酵母菌遗传学研究从早期的生理和形态学遗传学一直发展到现代分子遗传学。

遗传学实验广泛应用于遗传变异的分析、过表达、基因敲除、基因结构和功能分析等领域。

遗传变异分析是酵母菌基因组研究的重点和核心,基本原理是通过构建遗传突变株系,利用突变表型特征鉴定与细胞生理生物学和分子生物学相关的基因、信号阶段等。

2. 酵母菌的系统生物学研究系统生物学是细胞分子行为研究的有力工具,同时也是对生命基础物理化学本质、分子演化、生命交流和植物与动物生态适应等多样性和复杂性的全面理解。

酵母菌是已知物种中的最简单系统之一,通过在酵母菌基因组及其调控层次上的研究,人们已经尝试建立符合自然进化基础系统演化发展菌体模型等,从而推动生物学研究发展。

酵母菌遗传工程及其在药物研发中的应用

酵母菌遗传工程及其在药物研发中的应用

酵母菌遗传工程及其在药物研发中的应用酵母菌是一类在酒类、面包、酸奶等食品加工中被广泛应用的微生物,同时也是生物学研究中的重要模式生物。

近年来,随着生命科学领域的不断发展,酵母菌在遗传工程领域中的应用越来越受到关注,尤其在药物研发中有广阔的应用前景。

一、酵母菌的基本特点及其在基因工程中的优势1、酵母菌的基本特点酵母菌是一类单细胞真菌,其独特的生物学特性,使之在遗传工程及其他研究中得到广泛关注。

酵母菌具有生长快、培养简单、生产糖酵解酒精等方面的优点。

在酵母菌的基因表达及调控方面,其遗传学研究已经得到较为深入的探究,所以在基因工程领域中具有较高的应用价值。

2、酵母菌在基因工程中的优势酵母菌在基因工程领域的应用优势主要表现在以下几个方面:(1)基因操作方便:酵母菌够单细胞生物,体积较小,生长速度较快,培养操作简单。

同时,在酵母菌基因操作方面也相对简单,为学者的研究提供了较为良好的条件。

(2) 基因转化效率高:酵母菌的基因转化效率较高,且在基因转录、译码等方面的表达也较为稳定可靠。

因此,酵母菌是一种理想的表达载体。

(3)多样化的基因表达系统:在酵母菌中,拥有多样化的蛋白表达系统,包括表达外源蛋白、表达重组蛋白等。

同时,酵母菌具有多种诱导基因表达的方法。

二、酵母菌遗传工程及其在药物研发中的应用1、酵母菌在药物研发中的应用酵母菌在药物研发中的应用主要是通过基因操作,将模式生物转化成重要的药物分子表达体,在产生药物的过程中取得重要突破,为医学研究提供了强有力的支持。

酵母菌可以分泌酶类、激素和重组蛋白等,广泛应用于肿瘤治疗、抗体制作和激素治疗等领域。

2、酵母菌表达体在药物研发中的应用酵母菌表达体在药物研发及生产中,具有节约时间、费用,高效易行等优点。

酵母表达体已经在很多领域被广泛应用,其中较为重要的应用领域包括肿瘤治疗药物的研究和生产、激素药物的研发、安全、有效性及毒性试验。

3、酵母菌受体研究在药物研发中的应用酵母菌受体研究在药物研发中的应用,主要是通过基因操作,模拟人体受体,研究受体与药物之间的相互作用,探索受体的构造和药物的结构。

第七章 酵母基因工程

第七章 酵母基因工程
第七章 酵母菌的基因工程
Dividing Saccharomyces cerevisiae (baker’s yeast) cells
一. 酵母克隆载体
① 能在E.coli中克隆和扩增。 Ori ②有大肠杆菌的选择标记 Ampr、Tetr。 ③ 有酵母的选择标记 Leu2+、His+、Ura3+、Trp1+;
如pYF92:
pBR322 2m 酵母his 3+
2m质粒: 酿酒酵母的内源质粒,长度是2m 。含有自主 复制起始区ori和STB序列(使质粒在供体中维 持稳定)。
特点:
①很高的转化活性(103-105转化子/微克 DNA). ②拷贝数多(25-100分子/细胞)。 ③比YRp稳定。
YEp24
亮氨酸lue2—β-异丙基苹果酸脱 氢酶
• 该酶是把丙酮酸转化成亮氨酸的代谢酶之 一.只要使用亮氨酸lue2突变的营养缺陷型 酵母作受体,载体上带有亮氨酸lue2基因就 能在不含亮氨酸的培养基上实现转化克隆 的筛选(书170页图).
四. 酵母表达系统的特点
(1)优点 ①对其遗传学和生理学的研究比较深入。 ②小量培养和大规模反应器中都能生长。 ③已经分离出很强的启动子。 ④有翻译后的加工。 ⑤本身自然分泌很少,便于胞外蛋白的纯 化。 ⑥安全性高(FDA确认的安全生物),不 需要宿主的安全性检验。
④不稳定,容易丢失。
(3)着丝粒质粒(YCp) 在YRp质粒中插入酵母染色体的着丝粒 区。 YRp质粒 酵母着丝粒 特点: ①行为像染色体,能稳定遗传。 ②单拷贝存在。
③不易从细胞中提取。
(4)附加体型载体(YEp) 由大肠杆菌质粒、2m质粒及酵母染色体 DNA选择标记构成。 大肠杆菌质粒 2m质粒 酵母选择标记

第十五章:酵母菌基因工程选编

第十五章:酵母菌基因工程选编

③易进行载体DNA的导入。DNA转化技 术的不断发展优化,多数酵母菌可 以取得较高的转化率;
④培养条件简单,容易进行高密度 发酵;
⑤能将外源基因表达产物分泌到培 养基中;
⑥有类似高等真核生物的蛋白质翻 译后的修饰功能。
2.缺陷在于:
①表达效率相对低; ②酵母常有密码子偏爱性,真核基
因在其中表达时需要人工修正。
2.含有ARS的YRp和YEp质粒及其构建
①ARS为酵母菌中的自主复制序列,大 小在0.8-1.5Kb,染色体上每30-40bp 就有一个ARS元件。
②由染色体ARS构成的质粒称为YRp,而 由2μ质粒构建的杂合质粒为YEp。
③上述两类质粒在酿酒酵母中的拷贝数 最高可达200个,但是经过几代培养 后,质粒丢失率达50%-70%,主要由 于分配不均匀所致。
三.抑制超糖基化作用的突变宿主菌
许多真核生物的蛋白质在其天门冬 酰胺侧链上接有寡糖基团,常常影 响蛋白质的生物活性。整个糖单位 由糖基核心和外侧糖链两部分组成。
酵母菌普遍拥有完整的糖基化系统,酿 酒酵母细胞内的天门冬酰胺侧链糖基修 饰和加工系统对来自高等动物和人的异 源蛋白活性表达是极为有利的,但野生 型酿酒酵母对异源蛋白的糖基化反应很 难控制,呈超糖基化倾向,因此超糖基 化缺陷菌株非常重要。
②YAC载体的装载量建
①YIP 载体由大肠杆菌质粒和酵母的 DNA 片段组成,可与受体或宿主的染色体 DNA 同源重组,整合进入宿主染色体中,酵母 片段只提供选择性标志,没有复制起点。
②转化率低(只有1-10转化子/微克DNA), 但转化子遗传性稳定,多用于遗传分析。
一.广泛用于外源基因表达的酵母宿主菌
目前已广泛用于外源基因表达的研究的酵母菌包括:

基因工程:第四章-酵母基因工程

基因工程:第四章-酵母基因工程

UBC4-UBC5双突变型:
UBC4-UBC5双突变型能大幅度削弱泛
素介导的蛋白降解。
7个泛素连接酶基因的突变对衰减蛋白 降解作用同样有效。
6、内源性蛋白酶缺陷型的突变宿主菌
酿酒酵母具有20多种蛋白酶 空泡蛋白酶基因PEP4野生型和
pep4-3突变株
B-半乳糖苷酶活性明显升高
(三) 酵母菌的载体系统
酵母基因工程
酵母菌作为外源基因表达受体菌的特征 酵母菌的宿主系统 酵母菌的载体系统 酵母菌的转化系统 酵母菌的表达系统 利用重组酵母生产乙肝疫苗
1974 Clarck-Walker和Miklos发现在多数酿酒酵母 中存在质粒。
1978 Hinnen将来自一株酿酒酵母的leu2基因导入 另一株酿酒酵母,弥补了后者leu2的缺陷, 标志着酵母表达系统建立。
酵母菌有4个泛素编码基因:
UBI1 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI2 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI3 编码泛素-羧基延伸蛋白76 对数生长期表达 稳定期关闭
UBI4 编码泛素五聚体
对数生长期关闭 稳定期表达
酵母菌有7个泛素连接酶基因:
UBC1、UBC2、UBC3、UBC4、UBC5、UBC6、UBC7
酵母菌表达外源基因的优势: 全基因组测序,基因表达调控机理清楚,遗传 操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。
不含特异性病毒、不产毒素,被美国FDA认定为 安全的基因工程受体系统。
酵母菌表达外源基因的缺点:
表达产物的糖基化位点和结构特点 与高等真核生物有差距。
特点:

酵母单杂交的原理及应用

酵母单杂交的原理及应用

酵母单杂交的原理及应用1. 引言酵母单杂交是一种基因工程技术,通过将不同的酵母菌株进行杂交,实现基因的转移和重组。

这种技术在生物医药领域和食品工业等多个领域有广泛的应用。

本文将介绍酵母单杂交的原理,以及其在生物学研究和应用领域的具体应用。

2. 酵母单杂交的原理酵母单杂交是基于两个重要的生物学现象:酵母菌的性别和重组。

酵母菌是一种真核生物,有两种性别:雄性和雌性。

酵母菌的重组是指在有性生殖过程中,两个父本酵母菌的基因经过交换,重新组合成新的基因。

酵母单杂交的原理如下: - 首先,选择两个具有不同性别的酵母菌株。

- 将这两个株种分别培养在不同的培养基中,分别生成没有交配伴侣的单倍体细胞。

- 利用化学或物理方法将两种单倍体细胞融合在一起,形成杂交细胞。

- 将杂交细胞培养在适宜的培养基中,使其进行有性生殖。

- 在有性生殖的过程中,两个亲本酵母的基因进行交换和重组,形成新的基因组。

重组的结果可能是基因突变、基因删除、基因重复等。

- 通过筛选和鉴定,筛选出具有特定性状的酵母单杂交子代。

3. 酵母单杂交的应用3.1 用于基因功能研究酵母单杂交可以用于揭示基因的功能和相互作用关系。

通过将感兴趣的基因与其他酵母菌基因进行单杂交,可以确定该基因的功能和参与的生物过程。

此外,酵母单杂交也可以用于酵母基因组的大规模互作网络研究,帮助科学家理解复杂的生物调节网络。

3.2 用于疾病研究与药物筛选许多疾病与基因突变有关,通过酵母单杂交可以研究基因突变对蛋白质功能的影响,从而揭示疾病机制。

此外,酵母单杂交还可以用于药物筛选。

通过将药物与酵母菌基因进行单杂交,可以评估药物对基因的作用和效果,为新药的发现提供线索。

3.3 用于产酵母菌株的改良与优化酵母单杂交可以用于改良和优化产酵母菌株的特性。

通过筛选和鉴定具有特定性状的酵母单杂交子代,可以选择出高产酵母菌株或改良后的酵母菌株。

这对于酿酒、发酵食品和酶工程等产业具有重要意义。

第8章-酵母基因工程---基因工程原理与技术---刘志国-课件

第8章-酵母基因工程---基因工程原理与技术---刘志国-课件
酵母菌(Yeast)是一群以芽殖或裂殖方式进行无性 繁殖的单细胞真核生物,分属于子囊菌纲、担子菌纲、半知 菌类,共由56个属和500多个种组成。
酵母菌是比较成熟的真核生物表达系统。
作为宿主细胞的酵母需满足的基本要求
①安全无毒,没有致病性。 ②遗传背景清楚,容易进行遗传操作。 ③外源DNA容易导入宿主细胞,转化效率高。 ④培养条件简单,容易进行高密度发酵。 ⑤有较强的蛋白质分泌能力。 ⑥有类似高等真核生物的蛋白质翻译后的修饰加工能 力。
含有酵母菌染色体DNA同源序列的YIp质粒的构建
在大肠杆菌质粒上组装酵母菌染色体DNA特定序列和标 记基因,构建出来的质粒称为YIp。目的基因表达盒通常插 在染色体DNA特定序列中,这样目的基因就能高效整合入 酵母菌特定的染色体DNA区域。
酵母附加体质粒YEp:含有酿酒酵母2m质粒DNA复 制有关的序列,该载体在酵母细胞中稳定,拷贝数 可达60-100。转化效率高(b)。
REP1
A
IR
ori IR
同源重组
接合酵母属中的pSR1和pSB1,以及
克鲁维酵母属中的pKD1等均与2m质
B
粒类似。
FLP REP2
第一节 酵母基因工程表达体系 --------载体
酵母质粒载体既可以在大肠杆菌复制与扩增、又可以 在酵母系统中复制与扩增,故此类载体又称为穿梭载体( shuttle vector)。
由于巴斯德毕赤酵母没有合适的自主复制型载体,所以 外源基因序列一般整合入受体的染色体DNA上。其外源基因 的高效表达在很大程度上取决于整合拷贝数的多寡。目前已有 20余种具有经济价值的重组蛋白在该系统中获得成功表达。
多型汉逊酵母表达系统
多型汉逊酵母也是一种甲基营养菌。其自主复制序列 HARS已被克隆,并用于构建克隆表达载体, HARS质粒 能高频自发地整合在受体的染色体DNA上(可连续整合100多 个拷贝,因此重组多型汉逊酵母的构建也是采取整合的策略。

第十二章 酵母基因工程-PPT精选文档

第十二章 酵母基因工程-PPT精选文档
• 幻灯片 24
凝集素展示表达系统
酿酒酵母细胞表面展示表达系统的应用 可应用于生物催化剂体库构建、免疫检 测及亲和纯化、癌症诊断等领域。
一、酵母菌作为外源基因表达受体菌的特征 酵母菌 (Yeast) 是一群以芽殖或裂殖方式 进行无性繁殖的单细胞真核生物。
二、酵母菌表达外源基因的优 势: 全基因组测序,基因表达调控机理清楚, 遗传操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。 不含特异性病毒、不产毒素,被美国 FDA 认定为安全的基因工程受体系统。
B
REP2
同源重组
• 表达载体可以有自主复制型和整合型两种。 自主复制型质粒含有ARS,不稳定,拷贝 数高。 整合型质粒不含ARS,必需整合,拷贝数低 • 糖蛋白的核心寡聚糖链含有末端仅 1,3甘露 糖,所以,酿酒酵母常常用来制备亚单位 疫苗(如HBV疫苗、口蹄疫疫苗等)。
二、甲醇营养型酵母表达系统 表达载体中都含有甲醇酵母醇氧化酶基 因一(A0x1),甲醇为诱导物 不宜于食品等蛋白生产 巴斯德毕赤酵母 生产医药用重组蛋白质
aph
cat
dhfr
cup1
suc2
ilv2
六、利用酵母菌表达外源基因的步骤 克隆重组→ →酶切线性→ →转化→ →筛选 转化子→ →小规模诱导鉴定表达量→ →大 规模培养以及制备
七、酵母表面展示系统 即把外源靶蛋白基因序列与特定的载体基因 序列融合后导入酵母细胞,利用酿酒酵母 细胞内蛋白转运到膜表面的机制(GPI锚定) 使靶蛋白定位于酵母细胞表面并进行表达。
第十二章
酵母基因工程
1974 1978
Clarck-Walker和Miklos发现在多数酿酒酵 Hinnen将来自一株酿酒酵母的leu2基因导

基因工程 酵母单杂交技术的原理及应用

基因工程 酵母单杂交技术的原理及应用

酵母单杂交是在酵母双杂交的基础上,20世纪90年年代中期又发展起来的--用于核酸和文库蛋白之间的研究。

在酵母单杂交系统中,省略了在酵母双杂交系统中采用的BD-X蛋白质杂交体,而用特异的DNA序列取代DNAGal4结合位点。

将已知的特定顺式作用原件构建到最基本启动子(Pmin)上游,把报告基因连接到Pmin下游。

编码待测转录因子cDNA与已知酵母转录激活结构域(AD)融合表达载体导入酵母细胞,该基因产物如果能够和顺式作用原件结合,就能激活Pmin启动子,使报告基因得到表达。

转录因子与顺式元件结合,激活最基本启动子Pmin,使报告基因表达,若连接如3个以上顺式作用元件,可增强转录因子的识别和结合效率。

优点:简单易行,无需分离纯化蛋白,酵母菌属于真真核生物,杂交体系检测到的与DNA结合的蛋白质是处于自然构象克服了体外研究时蛋白通常处于非自然构象的缺点,因而灵敏性很高。

缺点:有时由于插入的靶元件与酵母内源转录激活因子可能发生相互作用,或插入的靶元件不需要转录激活因子就可以激活报道基因的转录,因而存在假阳性结果。

如果酵母表达的AD杂合蛋白对细胞有毒性或者融合蛋白在宿主细胞内不能稳定的表达,或者融合蛋白发生错误折叠,或者不能定位于细胞核内,以及融合的GAL4-AD封闭了蛋白上与DNA作用的位点则都可能干扰AD杂合蛋白结合于靶元件的能力,从而产生假阴性的结果。

酵母单杂交系统应用:1. 鉴别DNA结合位点,并发现潜在的结合蛋白基因,目前对于酵母单杂交技术的应用主要体现在这方面。

Chew et al(1999)应用酵母单杂交技术证实了在大鼠脑中存在的COUP-TFⅠ、EAR2和NURR1等蛋白质GRIK5基因的内含子结合蛋白。

2. 对DNA结合结构域进行分析如果能得到DNA结合结构域的结构信息,就可以用酵母单杂交技术对该结构进行分析.Mak et al(1996)运用此技术测试哺乳动物具有基本的螺旋- 环- 螺旋(bHLH)结构的转录因子,通过对肌调节因子4(MRF4)的研究,证实其具有转录活性。

酵母菌的基因组学研究

酵母菌的基因组学研究

酵母菌的基因组学研究酵母菌是单细胞真核生物中最重要的一种,是各种淀粉类、水果类和酿造酒类的发酵剂。

酵母菌在生命科学研究中有着举足轻重的地位,已经成为基础研究的重要模型生物之一。

随着技术的发展,酵母菌基因组学研究取得了长足的进展,对于生命科学和医学的发展都起到了积极的作用。

一、酵母菌基因组的测序酵母菌的基因组是指该生物所有基因序列的总和,是构成其遗传信息基础的全部内容。

酵母菌的基因组在20世纪中期被人们确定,当时采用的是细胞学方法和遗传学方法。

随着分子生物学和基因工程技术的快速发展,酵母菌基因组测序也迎来了飞跃性发展。

目前,已经完成了酿酒酵母、伯克霍尔德菌等多种酵母菌的全基因组测序,为深入研究酵母菌的生命活动和对人类健康的影响提供了重要的基础数据。

通过对基因组数据的分析,科学家们不断深入酵母菌基因的结构和功能,为了进一步研究酵母菌的生命行为提供了有力的保障。

二、基于酵母菌的基因功能研究酵母菌的单细胞结构使得其基因表达和调控相对简单,基因功能的研究更为直接和有效。

科学家们通过对酵母菌基因的分析和研究,发现了许多重要的基因和基因功能。

比如,通过研究酵母菌基因可知其对营养物的吸收和代谢,证实了这种生物可以发酵多种糖类,对人们的生活和工程化生产具有重要的意义。

还有,人类的许多基因在酵母菌中也存在表达。

对基因的功能研究可以在小鼠或其他模式生物上进行,这些研究可以为人类疾病的治疗和预防提供新的途径。

因此,酵母菌基因活动的详细研究对于深入理解人类遗传疾病的发生和治疗具有重要的启示作用。

三、酵母菌中的基因编辑技术基因编辑技术是研究人员操纵基因组的一种有效方法。

随着科学技术的不断发展,人类对于基因编辑技术应用范围和效应的研究也越来越深入。

这种技术以机器制造DNA的特定序列为基础,通过人工手段进行基因的修改和创新,从而实现人类对基因的控制和调控。

基因编辑技术在复杂生物体中仍然十分复杂,但是酵母菌的单细胞特性使得基因编辑技术在酵母菌中有着更广泛的应用。

酵母菌在生物学中的底物里的应用

酵母菌在生物学中的底物里的应用

酵母菌在生物学中的底物里的应用酵母菌,在我们的日常生活中常用于制作食品、酒类等,但是酵母菌的应用不仅仅限于此,它在生物学领域中也有着举足轻重的地位。

本文将从酵母菌的形态结构、代谢特点、基因工程等角度探讨酵母菌在生物学领域中的应用。

一、酵母菌的形态结构酵母菌是一种单细胞真菌,形状多为球形或卵圆形,大小一般为5-10微米。

它们通常在营养水平高、温度适宜、氧气充足的环境下繁殖迅速,并且成熟的细胞可以分裂成两个等大小的细胞。

除了单细胞形态外,酵母菌还有一种菌丝形态,特别是在有限的营养条件下,它们会产生出菌丝,并形成特殊的菌落。

二、酵母菌的代谢特点酵母菌是典型的无氧生物,它们可以利用多种糖类和脂肪酸进行发酵代谢,产生气体和乙醇等有机物质。

但是,当它们处于氧气充足的环境中时,则进行呼吸代谢。

此外,酵母菌还可以利用特殊的代谢方式合成大量的丝氨酸和蛋白质,这在生物学研究中非常重要。

三、酵母菌的基因工程应用酵母菌的模式生物学地位是非常显著的,因为它具有单细胞和真核生物的双重特性,不仅易于培养和操作,还具有高度可重复性、遗传和代谢机理等相似性。

因此,酵母菌用于基因工程研究是非常理想的选择。

从最早的酵母基因突变实验开始,酵母菌逐渐成为了基因克隆、基因诱导发现、蛋白质研究等方面的主要研究对象。

以酵母谷氨酸解群体基因定位和克隆为例,它将酵母菌作为模型生物进行突变筛选,获得了大量的基因变异体,并将这些突变体进行重组,进而定位、克隆这些基因并识别其遗传调控网络。

酵母菌已成为研究蛋白突变、质量控制和生物信息学等生物领域的板凳模式生物,广泛应用于蛋白质互作、生物学网络分析、基因组学、代谢工程和生物制造等多个领域。

四、酵母菌的3D打印应用酵母菌不仅可以应用于基因工程研究,还可以被用于3D打印领域。

由于酵母菌的生长、分裂和运动等行为受到许多物理和生化信号的调节,这使得酵母菌能够被利用于制造望远镜透镜、过滤器、传感器、生物染色和侦察等方面的产品。

酵母菌操纵基因表达的机制研究

酵母菌操纵基因表达的机制研究

酵母菌操纵基因表达的机制研究酵母菌是一种单细胞真菌,因其易于培养、复制和研究而成为生物学研究的经典模型生物。

随着分子生物学技术的进步,研究人员可以对酵母菌进行基因工程,使其表达外源蛋白,从而用于制药、生物技术等领域。

然而,酵母菌同时也为研究生物遗传学中的关键问题提供了有力的支撑,尤其是在基因表达调控方面。

下文将介绍酵母菌操纵基因表达的机制研究的进展。

1. 酵母菌基因表达的调控机制酵母菌基因表达的调控机制类似于其他真核生物,包括转录调控、RNA加工修饰、RNA转运和蛋白质翻译等过程。

在这些过程中,转录调控扮演了决定性的角色。

酵母菌基因的转录调控主要包括转录因子的结合和染色质重塑。

以酵母菌S. cerevisiae为例,已知有超过200种转录因子参与到基因的转录调控中,他们能够结合到基因上游的启动子区域或下游的增强子区域,并促进或抑制转录的发生。

对于酵母菌基因转录调控的研究主要包括以下2个方面:1)基因组层面的转录组学研究,通过测定大量的RNA序列,可以探索酵母菌转录网络的结构和时空分布规律;2)单细胞层面的单细胞转录组学研究,通过测定单个细胞的RNA序列,可以揭示生物体内异质性细胞群体中个体的转录表达模式。

这两种方法相辅相成,为揭示酵母菌转录调控网络提供了有利的手段。

2. 酵母菌基因表达的情况酵母菌基因表达调控机制的研究不仅可以帮助人们理解生物的基本结构和生命过程,还有助于进行药物研发和新生物技术的应用。

酵母菌作为基因工程的经典模型,已被广泛用于制造人类蛋白质等方面,为当今的制药和生物技术行业提供了重要的支撑。

例如,利用酵母菌工程生产人类胰岛素、奶牛生长激素等蛋白质,均已商业化生产。

同时酵母菌也被广泛应用于疾病预防、治疗和药物筛选等方面。

另一方面,酵母菌的基因调控研究还涉及到重大疾病和癌症的治疗和预防方面。

目前已经研究出了数种利用基因组学的方法来预测并降低个体患某些疾病的风险。

例如,利用转录组学的方法和酵母菌模型可以对乳腺癌、结肠癌和肺癌等疾病的基因表达进行预测,并优化疾病的治疗和预防方案。

酵母菌的基因调控及其在酿酒过程中的应用

酵母菌的基因调控及其在酿酒过程中的应用

酵母菌的基因调控及其在酿酒过程中的应用酵母菌是一类常见的单细胞真菌,在生物学和食品学等领域具有重要的应用价值。

在酿酒过程中,酵母菌的基因调控起着至关重要的作用,它决定了酵母菌的代谢途径、营养需求、分裂周期等。

本文将介绍酵母菌的基因调控机制及其在酿酒过程中的应用。

一、酵母菌基因调控机制酵母菌的基因调控机制主要涉及到基因的转录和翻译过程。

在酵母菌内,基因的转录主要受到转录因子的控制,而转录因子的表达和活性则受到多种因素的影响。

1. 转录因子的表达调控转录因子是一类广泛存在于生物体内的蛋白质,它们具有结合到DNA上的能力,并且可以促进或者抑制基因的转录。

酵母菌内的转录因子可以被调节其表达水平,从而影响到某些基因的表达。

例如,在酿酒过程中,酵母菌需要大量产生酒精以进行发酵。

这个过程中,转录因子STB5被启动,促进了基因ADH1的转录和翻译,从而使得酵母菌能够高效生成酒精。

类似地,酵母菌还可能通过调节其它转录因子的表达来适应不同的环境条件和生长状态。

2. 翻译后调节除了在转录水平上的调控外,酵母菌的基因还可以通过翻译后事件来调节其表达和调节代谢途径。

例如,酵母菌的mRNA可能会被翻译为不同的蛋白质,这些蛋白质在细胞内发挥不同的功能。

此外,酵母菌内还存在一些调节元件,例如microRNA和siRNA 等,在翻译后对基因表达进行调节。

3. 基因组重组酵母菌还具有基因组重组的能力,这个过程有利于适应不同的环境条件。

基因组重组是指染色体内部或者染色体之间的片段交换以及染色体各个区域的移动、删除和复制等过程。

酵母菌基因组重组的频率很高,研究这个过程可以对酵母菌表达调控机制的理解提供帮助。

二、酵母菌在酿酒过程中的应用酿酒是酵母菌的一种重要应用,酵母菌内的基因表达调控起着至关重要的作用。

在酿酒前,一个合适的酵母菌菌株被选择,利用其在发酵过程中产生的酶分解葡萄糖,生产大量的酒精和二氧化碳。

1. 酵母菌的筛选酿酒中使用的酵母菌通常要在制定酵母菌的工艺流程前经过筛选。

生物技术概论论文-酵母基因工程菌的构建过程及其在食品领域中的应用

生物技术概论论文-酵母基因工程菌的构建过程及其在食品领域中的应用

酵母基因工程菌的构建过程及其在食品领域中的应用随着科技的发展,食品生物技术在食品工业发展中的地位和作用越来越大,已经渗透到食品工业的方方面面,特别是基因工程技术等技术在21世纪的食品工业中充当重要的角色。

而工程菌就是用基因工程的方法,使外源基因得到高效表达的菌类细胞株系,是采用现代生物工程技术加工出来的新型微生物,具有多功能、高效和适应性强等特点。

主要应用于治理海洋石油泄漏,生产基因工程药物,酵母基因工程中等方面。

而酵母基因工程中,酵母基因工程菌就是菌类细胞株系用的是酵母菌,能够发挥着一定的功能,可以提高发酵的效率。

酵母基因工程的优点:1.是真核生物,大多具有价高的安全性。

2.繁殖速度快,能大规模生产,具有降低基因工程产品成本的潜力。

3.将原核生物中已知的分子和基因操作技术与真核生物中复杂的转运后修饰能力相结合,能方便外缘基因的操作。

4.采用高表达启动子,可高效表达目的基因,而且可诱导调控。

5.提供了翻译后加工和分泌的环境,使得产物和天然蛋白质一样或类似。

6.酵母菌可表达外源蛋白与末端前导肽融合,指导新生肽分泌,同时在分泌过程中可对表达的蛋白进行糖基化修饰。

7.不会形成不溶性的包涵体,易于分离提纯8.移去起始甲硫氨酸,避免了在作为药物中使用中引起免疫反应的问题。

9.酵母菌(主要是酿酒酵母)已完成全基因组测序,他具有比大肠杆菌更完备的基因表达控制机制和对表达产物的加工修饰和分泌能力。

10.酵母可进行蛋白的N-乙酰化,C-甲基化,对定向到膜的胞内表达蛋白具有重要意义。

构建基因工程菌是一个复杂、繁琐的过程,因此构建酵母基因要注意:1、结构简单,易于研究2、繁殖能力强,数目多3、成本低,易于培养、4易于观察。

一.酵母基因工程菌的构建过程:1.目的基因的获取:获取目的基因是实施基因工程的第一步,有三种方法提取目的基因。

(1)从自然界中已有的物种中分离出来:.从基因文库中获取目的基因(俗称:鸟枪法):将含有某种生物的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物不同的基因,称为基因文库。

第十章 酵母基因工程-08级

第十章  酵母基因工程-08级

如果说大肠杆菌是外源基因最成熟的原 核生物表达系统, 核生物表达系统,则酵母菌是最成熟的真核 生物表达系统。 生物表达系统。
2、酵母菌表达外源基因的优势
全基因组测序,基因表达调控机理比较清楚, ① 全基因组测序,基因表达调控机理比较清楚, 遗传操作简便; 遗传操作简便; ② 具有原核细菌无法比拟的真核蛋白翻译后加工 系统; 系统; 大规模发酵历史悠久、技术成熟、工艺简单、 ③ 大规模发酵历史悠久、技术成熟、工艺简单、 成本低廉; 成本低廉; 能将外源基因表达产物分泌至培养基中; ④ 能将外源基因表达产物分泌至培养基中; 不含有特异性的病毒、不产内毒素,美国FDA FDA认 ⑤ 不含有特异性的病毒、不产内毒素,美国FDA认 定为安全的基因工程受体系统( 定为安全的基因工程受体系统(Generally Recognized As Safe GRAS); ); 酵母菌是最简单的真核模式生物。 ⑥ 酵母菌是最简单的真核模式生物。
选择标记
对应于营养缺陷型受体的野生型基因:HIS4 (组氨醇脱 对应于营养缺陷型受体的野生型基因: 氢酶基因) 精氨酸合成酶基因); 氢酶基因);ARG4(精氨酸合成酶基因 ;TRP1(色氨酸 精氨酸合成酶基因 色氨酸 合成酶基因); 尿嘧啶合成酶基因) 合成酶基因 ;URA3 (尿嘧啶合成酶基因)。 抗性选择标记:抗生素G418抗性基因和Zeocin G418抗性基因和Zeocin抗性基因 抗性选择标记:抗生素G418抗性基因和Zeocin抗性基因
2、酿酒酵母的附加型载体
pUC质粒的复制起点和amp pUC质粒的复制起点和ampr抗性基因 质粒的复制起点和 酵母菌的2μm质粒的复制区 酵母菌的2μm质粒的复制区 酵母转化的选择元件: 酵母转化的选择元件:LEU2(亮氨酸合成酶基因); (亮氨酸合成酶基因)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酵母菌克隆表达质粒的构建
含有CEN的YCp质粒的构建
CEN为酵母菌染色体DNA上与染色体均匀分配有关的序列 将CEN DNA插入含ARS的质粒中,获得的新载体称为YCp YCp质粒具有较高的有丝分裂稳定性,但拷贝数只有1~5个
含有TEL的YAC质粒的构建
酵母菌克隆表达质粒的构建
含有酵母菌染色体DNA同源序列的YIp质粒的构建
转化质粒在酵母细胞中的命运
单双链DNA均可转化酵母菌,但单链的转化率是双链的10~30倍 含有复制子的单链质粒进入细胞后,能准确地转化为双链并复制
不含复制子的单链质粒进入细胞后,能高效地同源整合入染色体
这对于体内定点突变酵母基因组极为有利 克隆在YIp整合型质粒上的外源基因,如果含有受体细胞的染色体 DNA的同源序列,会发生高频同源整合,整合子占转化子总 数的50%~80%
酵母菌的转化程序
碱金属离子介导的酵母菌完整细胞的转化
酿酒酵母的完整细胞经碱金属离子(如Li+等)、PEG、热休克 处理后,也可高效吸收质粒DNA,而且具有下列特性: 吸收线型DNA的能力明显大于环状DNA,两者相差80倍 共转化现象极为罕见
酵母菌的转化程序
酵母菌电击转化法
酵母菌原生质体和完整细胞均可在电击条件下吸收质粒DNA, 但在此过程中应避免使用PEG,它对受电击的细胞具有较很大的负 作用。电击转化的优点是不依赖于受体细胞的遗传特征及培养条件 适用范围广,而且转化率可高达105 / mg DNA。
酵母菌的转化程序
酵母菌原生质体转化法
早期酵母菌的转化都采用在等渗缓冲液中稳定的原生质体转化 法,在Ca2+和PEG的存在下,转化细胞可达原生质体总数的1%~ 2%。但该程序操作周期长,而且转化效率受到原生质再生率的严重 制约。 原生质体转化法的一个显著特点是,一个受体细胞可同时接纳 多个质粒分子,而且这种共转化的原生质体占转化子总数的25%~ 33%。
显性标记基因
显性标记基因的编码产物大都是毒性物质的抗性蛋白
标记基因 编码产物 氨基糖苷转移酶 氯霉素乙酰转移酶 二氢叶酸还原酶 遗传表型 抗G418 抗氯霉素 抗氨甲喋呤和磺胺
aph cat dhfr
cup1
suc2 ilv2
铜离子螯合物
蔗糖转化酶 乙酰乳糖合成酶
耐受铜离子
耐受高浓度蔗糖 抗硫酰脲除草剂
GAL10 Promoter GAL80 GAL4 UAS GAL1 GAL7 GAL10
半乳糖诱导效果不明显,基因基底水平表达
GAL80
GAL4
UAS
GAL1
GAL7
GAL10
外源基因在酵母菌中表达的限制因素
外源基因稳态mRNA的浓度 外源基因mRNA的翻译活性 酵母菌对密码子的偏爱性 在酿酒酵母中,高丰度的蛋白质(如甘油醛-3-磷酸脱氢酶
酵母菌启动子的可控性
温度控制型启动子
a – a 型启动子:
酿酒酵母有a和a两种单倍 体,分别由MATa和MATa hmla2-102 35℃ Sir3-8TS a2 a1 a 型启动子 MATa 25℃ 受体细胞基因组 Sir3-8TS a1 a 型启动子 重组质粒
两个等位基因决定。
a1因子决定a细胞特征表达 a2因子阻遏a细胞特征表达
在大肠杆菌质粒上组装酵母菌染色体DNA特定序列和标记基因, 构建出来的质粒称为Yip。目的基因表达盒通常插在染色体DNA特定 序列中,这样目的基因就能高效整合入酵母菌特定的染色体DNA区 域。
7 酵母菌的基因工程
D 酵母菌的转化系统
酵母菌的转化程序 转化质粒在酵母细胞中的命运 用于转化子筛选的标记基因
GAPDH、磷酸甘油激酶PKG、乙醇脱氢酶ADH)中96%
以上的氨基酸是由25个密码子编码的
酵母菌表达系统的选择
酿酒酵母表达系统
酿酒酵母的基因表达系统最为成熟,包括转录活性较高的甘油 醛-3-磷酸脱氢酶基因GAPDH、磷酸甘油激酶基因PKG、乙醇脱氢 酶基因ADH所属的启动子,多种重组外源蛋白获得成功表达。 酿酒酵母表达系统的最大问题在于其超糖基化能力,往往使得
7 酵母菌的基因工程
A 酵母菌作为基因工程受体菌的特征
酵母菌的分类学特征
酵母菌(Yeast)是一群以芽殖或裂殖方式进行无性繁殖的单细 胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母 菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。如 果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最 成熟的真核生物表达系统。
7 酵母菌的基因工程
A 酵母菌作为基因工程受体菌的特征
酵母菌表达外源基因的优势
全基因组测序,基因表达调控机理比较清楚,遗传操作简便 具有原核细菌无法比拟的真核蛋白翻译后加工系统
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉
能将外源基因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国FDA认定为安全的 基因工程受体系统(Generally Recognized As Safe GRAS)
a 型启动子
a1-a2阻遏a细胞特征表达
编码a2因子的基因突变型 hmla2-102能产生a2变体,
hmla2-102
MATa
a 型启动子
它能灭活a1,同时阻遏a型
a1
酵母菌启动子的可控性
超诱导型启动子
酿酒酵母 的半乳糖 利用酶系
由GAL1 GAL7和 GAL10 基因编码 半乳糖诱导时,GAL4高效表达,GAL1、GAL1、GAL10超高效表达
克鲁维酵母属 如乳酸克鲁维酵母(Kluyveromyces lactis)
毕赤酵母属
裂殖酵母属
如巴斯德毕赤酵母(Pichia pastoris)
如非洲酒裂殖酵母(Schizosaccharomyces pombe)
汉逊酵母属
如多态汉逊酵母(Hansenula polymorpha)
其中酿酒酵母的遗传学和分子生物学研究最为详尽,但巴斯德毕赤酵母 表达外源基因最理想。
7 酵母菌的基因工程
E 酵母菌的表达系统
酵母菌启动子的可控性 外源基因在酵母菌中表达的限制因素 酵母菌表达系统的选择
酵母菌启动子的可控性
温度控制型启动子
pho4TS-PHO5启动子:
酿酒酵母PHO5启动子在培养基中游离磷酸盐耗尽时才能打开 PHO4基因编码产物是PHO5启动子的正调控因子 PHO4温度敏感型突变基因pho4TS的编码产物在35℃时失活 因此,装在pho4TS-PHO5启动子下游的外源基因在35℃时关闭 23℃诱导表达
UBA1编码泛素激活酶E1,UBA1突变株是致死性的,但其等位
基因缺陷是非致死性的,而且也能削弱泛素介导的蛋白降解 Ubc4 - ubc5 双突变型:
七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效
7 酵母菌的基因工程
C 酵母菌的载体系统
酵母菌中的野生型质粒 酵母菌克隆表达质粒的构建
酵母菌中的野生型质粒
能抑制超糖基化的突变类型 突变类型 生物效应 甘露糖生物合成缺陷型 天门冬酰胺侧链糖基化缺陷型 外侧糖链添加缺陷型
mnn alg och
减少泛素依赖型蛋白降解作用的突变宿主菌
泛素介导的蛋白质降解作用
靶蛋白
Lys
HOOC
Ubiquitin 76 aa
ubiquitin ligase E3 靶蛋白
Lys
STB
B
酵母菌中的野生型质粒
乳酸克鲁维酵母中的线状质粒
乳酸克鲁维酵母中含有两种不同 的双链线状质粒pGKL1和pGKL1 拷贝数为50-100个,分别携带K1
反向重复序列 pGKL1 8.9 kb DNA聚合酶 毒素蛋白ab 免疫蛋白 g 亚基
K2两种能使多种酵母菌致死的毒 素蛋白编码基因(a b g),同时含有毒素蛋白抗性基因。
酵母菌表达系统的选择
多型汉逊酵母表达系统
多型汉逊酵母也是一种甲基营养菌。其自主复制序列HARS已被
转录水平
羧肽酶Y 转录水平
抑制超糖基化作用的突变宿主菌
许多真核生物的蛋白质在其天门冬酰胺侧链上接有寡糖基团, 它们常常影响蛋白质的生物活性。整个糖单位由糖基核心和外侧糖
链两部分组成。
酵母菌普遍拥有蛋白 质的糖基化系统,但野生 型酿酒酵母对异源蛋白的 糖基化反应很难控制,呈 超糖基化倾向,因此超糖 基化缺陷株非常重要。
有些重组蛋白(如人血清白蛋白等)与受体细胞紧密结合,而不能
大量分泌。这一缺陷可用非酿酒酵母型的表达系统来弥补。
酵母菌表达系统的选择
乳酸克鲁维酵母表达系统
乳酸克鲁维酵母的双链环状质粒pKD1已被广泛用作重组异源 蛋白生产的高效表达稳定性载体,即便在无选择压力的条件下,也 能稳定遗传40代以上。 乳酸克鲁维酵母表达分泌型和非分泌型的重组蛋白,性能均优
酵母菌克隆表达质粒的构建
含有ARS的YRp质粒的构建
ARS为酵母菌中的自主复制序列,0.8-1.5kb,染色体上每30-40kb
就有一个ARS元件。酵母菌自主复制型质粒的构建组成包括复制子、标 记基因、提供克隆位点的大肠杆菌质粒DNA。 以ARS为复制子的质粒称为YRp 以2m质粒上的复制元件为复制子的质粒称为YEp 上述两类质粒在酿酒酵母中的拷贝数最高可达200个,但培养几代 后,质粒的丢失率高达50%-70%,主要是由于分配不均匀所致。
提高重组蛋白表达产率的突变宿主菌
能导致酿酒酵母中重组蛋白产量提高或质量改善的突变类型
突变类型 生物效应 改善重组蛋白分泌 提高重组蛋白表达 提高重组蛋白表达 作用位点 钙离子依赖型的ATP酶 转录后加工 转录水平
ssc1 ssc2 rgr1
ose1
ssc11 rho-
提高重组蛋白表达
改善重组蛋白分泌 提高重组蛋白表达
酵母菌共有七个泛素连接酶基因:
相关文档
最新文档