数学建模模拟试题
数学建模模拟试题(一)
数学建模模拟试题(一)一、填空题(每题5分,共20分)1. 若,,x z z y ∝∝则y 与x 的函数关系是 .2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 .4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.)三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分)1. k kx y ,=是比例常数;2. )()(2211t n p m t n p m +<+;3. 增长率是常数还是人口的递减函数;4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;(每个因素3分) 2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C -=其通解是,e)0()(ktC t C -=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有 56e )0(3=-kC 和 ,40e )0(5=-k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定.三、计算题(每题25分,满分50分)1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x ,303221≤+x x ,805821≤+x x 目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:,680580m ax 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为 ,)740,745(T*=X 目标值为 753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0, λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A −→−−→−−→−−→−−→− 总费用为 2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).数学建模模拟试题(二)一、填空题(每题5分,共20分)1. 设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为 .2. 假设,,21x C Y Y C S ∝∝则S 与x 的数学关系式为 ,其中21,C C 是常数.3. 在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是 .4. 一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是 .二、分析判断题(每题15分,满分30分)1. 作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?.2. 考虑在一片面积为定数的草地上进行牛的养殖问题.为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个.三、计算题(每题25分,满分50分)1. 设某小型工厂使用A ,B 两种原料生产甲、乙两种产品,按工艺,生产每件产品甲需要原料A ,B 依次为6、5个单位,生产每件产品乙需要原料A ,B 依次为2、10个单位,两种原料的供给量依次为18和40个单位,两种产品创造的产值分别为1万元和2万元,试建立其生产规划模型,并回答以下问题:(1)产值最大的生产方案是什么?最大产值是多少?方案是否有可选择余地?若有请至少再给出一个.(2)依你所给最优方案,说明原料的利用情况.2. 如图一是某村镇9个自然屯(用91,,v v 表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:km ).若每km 的架设费用是定数20元/m ,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用.数学建模模拟试题(二)参考答案一、填空题(每题5分,共20分) 1. 0,>=k kx S ;2. kx x C C k k S ==2121,其中2121C C k k k =;3. )1()(mx xr x r -=; 4. 30,4.0)/(,100≥≥+≤+d d f f f d .二、分析判断题(每题15分,满分30分)1. 令x 表示产量,y 表示需求量,则有)(d d x y k tx-=以及,bx a y +=其中k b a ,,均为常数.将后一式代入前一式即可得到d cx tx x b a k t x +=⇒-+=d d ))1((d d2. 饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、v 1 v 2 v 3 v 4 v 6 v 5 v 7v 9 v 8 3 4 6 2 5 4 11 3 6 4 2 8 7 5图一羊制品及其深加工等.三、计算题(每题25分,满分50分)1. 设生产甲、乙两种产品的数量依次为,,21x x z 表示总产值,则有模型如下:212m ax x x z +=⎪⎩⎪⎨⎧=≥≤+≤+.2,1,0401051826..2121j x x x x x t s j使用图解法易得其产值最大的生产方案将有无穷多组(这是因为第二个约束条件所在直线的斜率与目标函数直线的斜率相等),其中的两个方案可以选为该直线段上的两个端点:,)4,0(,)3,2(T 2T1==XX最大产值均为 8=z (万元)(2)按照上面的第一个解,原材料全部充分利用;而按照第二个解,原材料A 将有10个单位的剩余量,原材料B 将被充分利用(但产品甲不生产).2. 由题意可知,只需求出该网络图的最小树即可.利用破圈法容易得树形图(图二):故得架设路线为:总架线长度为27km ,故总架设费用为 5420100027=⨯⨯(万元)图二 v 1 v 2 v 3 v 4 v 6 v 5 v 8 v 7 v 9 4 32 43 42 5。
数学建模试卷及参考答案
数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模试题(带答案)
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模模拟试题
数学建模模拟试题一、问题描述假设你是一家餐厅的经理,你的餐厅每天都会接待大量的顾客,他们点菜、用餐的时间长短不一。
你想要优化餐厅的桌位安排,使得尽可能多的顾客得到满意的服务。
问题1:通过合理的桌位安排,如何最大化服务的顾客数量?问题2:如果顾客点餐的平均时间和用餐的平均时间不同,如何调整桌位安排,以满足更多顾客的需求?问题3:如果餐厅的座位数有限,如何在满足顾客需求的前提下最大化利润?二、模型建立为了解决上述问题,我们可以建立以下数学模型:模型1:顾客到达与点菜模型在任意给定时间段内,顾客到达的时间间隔服从某个已知的分布,如泊松分布。
假设顾客到达的间隔时间服从参数为λ的指数分布,即泊松分布的特例。
同时,顾客到达后点菜的时间也服从某个已知的分布,如均匀分布。
我们可以通过模型1来模拟顾客的到达和点菜过程。
模型2:桌位分配模型为了最大化服务的顾客数量,我们需要合理分配桌位。
在每个时刻,我们可以计算出当前空闲桌位的数量,并根据顾客到达和点菜的情况,决定是否安排顾客入座。
具体来说,当有顾客到达时,我们首先检查是否有空闲桌位,如果有,则安排该顾客入座;如果没有空闲桌位,则查看是否有早于这个顾客到达时间的顾客离开,如果有,则安排新顾客入座,同时有早于该顾客到达时间的顾客离开;如果没有,则拒绝新顾客入座。
模型3:利润最大化模型如果餐厅的座位数有限,我们需要在满足顾客需求的前提下最大化利润。
为了实现这一目标,我们可以通过制定合理的定价策略和座位调度策略。
具体来说,我们可以分析不同座位数下顾客的需求和付费能力,然后根据市场条件和餐厅的运营成本制定最佳的定价策略。
同时,我们可以通过合理的座位调度策略,如优先满足高付费能力的顾客等,来提高利润。
三、模型求解通过使用模型1、模型2和模型3,我们可以建立一个数学建模模拟系统,通过调整模型中的参数和假设,来获得最佳的桌位安排和利润最大化策略。
具体求解的步骤如下:1. 收集数据:收集顾客到达和点菜时间的统计数据,以及餐厅的座位数、市场条件和运营成本等数据。
(完整版)数学建模模拟试题及答案
数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。
为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。
2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。
数学建模模拟试题及答案.pdf
数学建模模拟试题及答案一、填空题(每题5分,共20分) 1. 若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)m l /m g (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆−=−∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C −=其通解是,e)0()(ktC t C −=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=−k C 和 ,40e )0(5=−k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580max 21x x z += 合在一起便是所求线性规划模型:,680580max 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为,)740,745(T*=X 目标值为753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).。
数学建模试卷及答案
《数学模型》试卷一、基本问题。
(本大题共2小题,每小题20分,共40分)1.在七项全能中对于跳高运动的记分点方法由下式给出:c b m a P )(-=其中m c b a ,348.1,0.75,84523.1===是跳的高度(按cm 计)。
求跳的高度为183cm 的记分点,并确定积分1000点需要跳的高度。
2.铁匠用直条铁做蹄铁,把直条铁弯成通常铁蹄的形状。
为求得铁条需要的长度,要测量蹄的宽度(W 英寸),并用下列形式的公式:b aW L +=求得需要的条长度(L 英寸)。
试用下列数据求的a 和b 的估计值。
并得出该公式的估计式。
宽W (英寸) 长L (英寸)6.50 12.005.75 13.50二、渔场捕捞问题。
(本大题共3小问,每小问20分。
满分共60分。
)三、在渔场中捕鱼,从长远利益而言,通常希望既使渔场中鱼量保持不变,又能达到最大的捕获量。
假设:(1)在无捕捞的情况下,鱼量的变化符合Logistic 模型:)1(Nx rx dt dx -=,其中:r 为固有增长率,N 是渔场资源条件下最大鱼量;(2)在捕捞的情况下,设单位时间的捕捞量与渔场中的鱼量成正比。
1.建立在有捕捞的情况下,渔场的产量模型;2.研究该模型鱼量的稳定性;3.找出该模型下适合的捕捞量。
《数学建模》考试卷(答案)一、1.解:把183,348.1,0.75,84523.1====m c b a 代入记分公式,得348.1)0.75183(84523.1)(-⨯=-=c b m a P =348.110884523.1⨯(=1016.5)由公式c b m a P )(-=,有c b m a P )(-=,解得公式:b a P m c +=1)( 把1000,348.1,0.75,84523.1====P c b a 代入上式,得b aP m c +=1)( 0.7594.5410.75)84523.11000(74184.0348.11+=+= (=106.7+75.0=181.7)2.解:把两组数据00.12,50.6==L W 和50.13,75.5==L W 分别代入公式 b aW L +=得方程组:⎩⎨⎧+=+=b a b a 75.55.135.60.12 解得:⎩⎨⎧=-=252b a 所以b a ,的估计值为:25,2^^=-=b a 。
考研数学模似试题及答案
考研数学模似试题及答案一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题后的括号内。
)1. 设函数f(x)=x^3-3x+1,下列说法正确的是()A. 函数在R上单调递增B. 函数在R上单调递减C. 函数在R上先递增后递减D. 函数在R上先递减后递增2. 已知矩阵A=\(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),B=\(\begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}\),则AB-BA=()A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 0 & 4 \\ 2 & 0 \end{bmatrix}\)C. \(\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}\)D. \(\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}\)3. 设曲线C:y=x^2-4x+m与直线l:x-y+1=0相交于点P,Q两点,且线段PQ的中点M的横坐标为1,则m=()A. 1B. 3C. 2D. 44. 已知函数f(x)=x^3-3x^2+2,求f'(x)=()A. 3x^2-6xC. 3x^2-6x+1D. 3x^2-6x-25. 设函数f(x)=x^2+2x+1,求f(-1)=()A. 0B. 1C. 2D. 36. 已知等差数列{a_n}的前n项和为S_n,若a_1=2,d=3,则S_5=()A. 35B. 40C. 45D. 507. 设函数f(x)=ln(x+\(\sqrt{x^2+1}\)),求f'(x)=()A. \(\frac{1}{x+\sqrt{x^2+1}}\)B. \(\frac{x}{x+\sqrt{x^2+1}}\)C. \(\frac{1}{x+\sqrt{x^2+1}}\)+\(\frac{x}{x^2+1}\)D. \(\frac{1}{x+\sqrt{x^2+1}}\)-\(\frac{x}{x^2+1}\)8. 已知圆x^2+y^2=1与直线y=kx+1相交,求k的取值范围是()A. (-∞, -\(\sqrt{2}\))∪(\(\sqrt{2}\), +∞)B. (-∞, -1)∪(1, +∞)C. (-∞, 0)∪(0, +∞)D. (-∞, -\(\sqrt{2}\))∪(\(\sqrt{2}\), 0)∪(0, +∞)9. 设函数f(x)=x^3-3x^2+2x,求f'(x)=()A. 3x^2-6x+2B. 3x^2-6x+1D. 3x^2-6x+310. 已知函数f(x)=x^2-4x+c,若f(x)在区间[1,3]上单调递增,则c 的取值范围是()A. (-∞, 0)B. [0, +∞)C. (-∞, 3)D. [。
数学建模试题
1、反映某种股票的涨跌情况,最好选择( )
A、条形统计图 B、折线统汁 C、扇形统计圈
2、用15克盐配制成含盐率为5%的盐水,需加水多少克?正确的列式是( )
A、(15-155%)5% B、15×5%-15
C、15÷5%+15
D、15÷5%-15
3、甲筐苹果16千克,乙筐苹果20千克,从乙筐取一部分放入甲管,使甲筐增加(
等于自然数__________的平方.
2、
EMBED Equation.DSMT4
, EMBED Equation.DSMT4
试比较a与b的大
小
。
3、甲、乙两数的最大公约数是75,最小公倍数是450.若它们 的差最小,则两个数为______和______. 4、小虎在计算算式399+(3417-口)17时,由于没有注意到括号, 所以计算出来的结果是3737,那么这个算式的正确结果应该是 ___________. 5、已知小强比小刚早出生6年,今年小强的年龄是小刚年龄的2 倍少3岁,那么两人今年的年龄之和是________岁。 6 、 某 班 有 49 名 同 学 , 其 中 男 同 学 的 EMBED Equation.DSMT4 和女同学的 EMBED Equation.DSMT4 参加了数学小组,那么这 个班中没有参加数学 小组的同学有_______名。
8、客车和货车分别从甲、乙两地出发相向而行。如果两车出发的时间都是6:00,那么它们 在11:00相遇;如果客车和货车分别于7:00和8:00出发,那么它们在12:40相遇。现在,客车 和货车出发的时间分别是10:00和8:00,则它们相遇的时间是____。(本题中所述的时间均为 同一天,采用24小时制计法。)
(2)桌子上有8枚棋子,甲乙二人轮流拿棋子。规定先拿的只要不都拿走,拿几枚都成,后 拿者不能多于先拿的2倍,如此进行下去,谁拿最后一枚棋子谁就算胜利。请你回答,怎样 拿必然取胜,为什么?
数学建模模拟试题及参考答案
《数学建模》模拟试题一、(02')人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。
二、(02')雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。
三、(03')要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。
将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030,0==θθ时的总淋雨量。
(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。
四、(03')建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。
参考答案一、人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学建模模拟试题
数学建模模拟试题模拟题1模拟题2模拟题3模拟题4模拟题5模拟题6模拟题1一、简答题(20分*2)1.试举出两个实例说明建立数学模型的必要性。
包括实际问题的背景。
建模的目的,需要大体上什么样的模型以及怎样应用这种模型等。
2.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个),建立何种数学模型:“一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决”。
二、综合应用题(60分)试建立方桌问题在四条腿脚呈长方形情形时的数学模型,以说明方桌能否在地面上放稳的问题。
(提示:要求按照五步建模法进行建模工作,本题至少应给出前四个步骤。
)模拟题21.管道包扎问题管道需要包扎,以便对管道起保护作用,包扎时用很长的带子缠绕在管道外部,为了节省材料,如何进行包扎才能使带子完全包住管道且带子不发生重叠.2.传染病模型假设为易受传染者注射预防针,注射的覆盖率同这类人数与传染者人数的平方之积成正比:00002|,|i n s s i i i l i s k dtdii s i s k dt dst t -===-=--===λ a )求上述方程的轨线;b )当疾病被消灭后还有易受传染者吗?3. 湖水污染问题若流入湖水的污染物浓度为)(t P I ,试构造模型,求t 时刻湖水中污染物的浓度。
4. 三级运载火箭问题a) 求三级火箭各级的最优质量分配;b) 证明n 级火箭的最优质量比是n 的单调下降函数,且当∞→n 时趋于uv e)1(λ-。
5. 生产销售存贮模型建立不允许缺货的生产销售存贮模型。
设生产速率为常数k ,销售速率为常数r ,k r <。
在每个生产周期T 内,开始一段时间(00T t ≤≤)边生产边销售,后一段时间(T t T ≤≤0)只销售不生产,存贮量)(t q 的变化如图所示。
设每次生产开工费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<的情况。
数学建模竞赛模拟试题(2)
----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 数学建模竞赛模拟试题(2)A 题: 最省包装箱制造方案某包装箱厂日常生产各种包装箱,由于该厂只和少数客户有长期协作关系,如:电视机厂、洗衣机厂、摩托车厂、电焊条厂、洗衣粉厂、邮局等,在比较长的时间内他们的包装箱大小都保持不变, 每月的订货数量也基本相同。
除此之外都是顾客临时电话或上门来订货,故而顾客的到达、顾客的订货数量、所订包装箱任务的要求和尺寸都具有比较大的随机性,尤其包装箱大小几乎全不相同。
而且包装箱的颜色有白色和土黄色的两种,纸张的质量也有好、中、差三种(本题中暂不考虑),纸板的型号也有两种(主要是瓦楞的弯曲程度不同、因而所能够承受力的大小也不同,1型优于2型,当然价格也是1型比2型贵15%。
当然包装箱四壁中瓦楞的方向更不可改变,否则无法承受来自上方的压力,详细见下面纸板的长、宽的计算方法),至于交货日期也早晚不等,最迟的可能15天交货也行,最早的会要求后天下班前交货(这种情况下可适当提高包装箱的单价)。
由于订货情况的特殊性,该厂非常重视产品质量(原料质量和型号不能降低,但可以提高)和交货时间方面的信誉。
目前该厂每天大约有20批左右的任务,任务总和一般占到其最大生产能力的80%左右,而且如果任务紧急,可以通过加班来完成。
该厂每天的生产任务由厂调度员在前一天下班前下达,一般不再更改。
由于制造包装箱的纸板在流水线上生产,而在流水线上作为原料用的大型纸卷的宽度只有1.2米,1.3米,1.6米,2.2米四种规格(长度可认为足够长),所以每次仅生产一种包装箱所需要的纸板几乎总造成比较大的浪费,为此应该将不同尺寸的包装箱搭配在一起生产以减少浪费。
如果进行搭配生产,因为受到流水线设备的限制,只能按调度员所选择的宽度的纸卷来生产纸板,刚制造完的纸板立即在同一条流水线上被切成两种不同规格的纸板,并且这两种不同规格的纸板最多只能有一种可以再切成相同的两块(因为流水线上最多只能够让三把纵向刀和两把横向刀同时工作,如图1)。
初中数学建模题目
初中数学建模题目一、代数方程建模1. 小明每天早上7点上学,他以每分钟70米的速度走到学校,需要30分钟。
请问小明家离学校的距离是多少?2. 一个化肥厂生产化肥,每生产一吨需要耗电40度。
如果电费每度为0.6元,那么生产100吨化肥需要多少电费?二、几何图形建模1. 一个矩形花园的长是15米,宽是8米。
要在花园四周种上花边,花边的总长度是多少?2. 一个三角形ABC的三边长分别为3、4、5厘米,求三角形的面积?三、概率统计建模1. 一盒子里有红球和白球共10个,其中红球有6个。
如果随机从盒子里摸出一个球,那么摸到红球的概率是多少?2. 小华在数学考试中得了85分,全班平均分是90分。
求小华的分数高于全班平均分的概率?四、函数关系建模1. 小明从家里出发去公园,走了1小时后,他走了3公里。
如果他的速度保持不变,请问他还需要多少时间才能到达公园?2. 一个水库的水位高度与降雨量有关,当降雨量为50毫米时,水位会上升5米。
求水库的水位高度与降雨量的函数关系。
五、三角函数建模1. 一个摩天轮的高度为40米,直径为50米。
当摩天轮转过一圈时,求最顶端点到地面的高度?2. 一个登山队要从山脚爬到山顶,已知山的斜度为60度,登山队爬了300米后,他们还有多远才能到达山顶?六、数列建模1. 一个自然数列的前两项分别为1和2,以后各项都是其前面各项的和。
求这个数列的第10项是多少?2. 一个商场销售某商品,每件商品的进价为8元,售价为10元。
每天售出50件,求一个月(30天)后,商场能赚多少钱?七、线性规划建模1. 某地计划建设一个生态公园,需要种上一些树木。
已知种一棵树需要花费100元,而生态公园的总预算是5000元。
问在满足预算限制的条件下,最多能种多少棵树?2. 某公司生产两种产品:产品A的单价为20元,利润率为20%;产品B的单价为15元,利润率为15%。
公司现有资金20万元,问应如何安排两种产品的生产量,才能使公司获得最大利润?。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
小学数学建模试题及答案
小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。
答案:5
4. 一个数的一半加上3等于9,那么这个数是______。
答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。
请问第五天注入了多少升水?
答案:第五天注入了32升水。
6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。
问小明最初有多少个苹果?
答案:小明最初有10个苹果。
四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。
问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。
8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。
问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。
建模数学试题及答案
建模数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是线性方程的标准形式?A. \( ax + by = c \)B. \( ax^2 + by^2 = c \)C. \( ax^3 + by^3 = c \)D. \( ax + by + cz = d \)答案:A2. 函数 \( f(x) = x^2 \) 的导数是什么?A. \( 2x \)B. \( x^2 \)C. \( x \)D. \( 1 \)答案:A3. 以下哪个是二阶微分方程?A. \( y' = 2x \)B. \( y'' = 2x \)C. \( y = 2x \)D. \( y' + y = 2x \)答案:B4. 积分 \( \int x^2 dx \) 的结果是?A. \( \frac{x^3}{3} + C \)B. \( x^3 + C \)C. \( 2x^2 + C \)D. \( 3x^2 + C \)答案:A5. 以下哪个是矩阵?A. \( [a] \)B. \( (a, b) \)C. \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)D. \( \{a, b\} \)答案:C6. 以下哪个是概率论中的随机变量?A. 一个固定的数字B. 一个确定的函数C. 一个可能取不同值的变量D. 一个常数答案:C7. 以下哪个是线性代数中的基本概念?A. 函数B. 微分C. 向量空间D. 积分答案:C8. 函数 \( f(x) = \sin(x) \) 的不定积分是什么?A. \( -\cos(x) + C \)B. \( \cos(x) + C \)C. \( \sin(x) + C \)D. \( \tan(x) + C \)答案:B9. 以下哪个是微分方程?A. \( y = 2x \)B. \( y' = 2x \)C. \( y'' = 2x \)D. \( y''' = 2x \)答案:B10. 以下哪个是统计学中的基本概念?A. 函数B. 微分C. 样本D. 积分答案:C二、填空题(每题2分,共20分)1. 线性方程 \( ax + by = c \) 的斜率是 _______。
数学建模模拟试题及答案
数学建模模拟试题及答案一、填空题(每题5分,共20分) 1. 若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆-=-∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C -=其通解是,e)0()(ktC t C -=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=-k C 和 ,40e )0(5=-k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:,680580m ax 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为,)740,745(T*=X 目标值为753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A −→−−→−−→−−→−−→− 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).。
数学建模模拟试题
一、根除埃博拉病毒世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。
建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。
除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。
二、饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31号发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高。
4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
(完整版)数学建模试卷(附答案)
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
数学建模竞赛模拟赛题
问题A如果以非线性器件的输入诃)与输出y(t)的关系是y(t)=u(t)+ U (t)(其中t是时间),那么当输入是包含频率1 , f2的信号u(t)=cos2pifl t+cos2pif2 t时,输出y(t)中不仅包含输入新婚1 , f2 ,而且还会出现2 fl, fl±f2等新的频率成分,这些新的频率称为交调,如果交频出现在原有频率fl ,f2的附近,就会形成噪声干扰,因此工程设计中队交品德出现有一定的要求现有一SCS(),输入信号为u (t) = A1 cos2pi fl t + A 2 cos2pi f2 t + A 3 cos2pi f t,其中A1 =25, A 2 = 25,A3= 45是输入信号振幅,对输入信号的频率1 , f2 , f3的设计要求为1) 36< f1 <40, 41 < f2 <50, 46< f3 <55;2)输出的交调均不得出现在'± 5的范围内(i=1,2,3),此范围称为/ i的接收带(参见附图)3)定义输出中的信噪比SNR = 10 10g l0(B i2/ C n2)(单位:分贝)其中B i是输出中对应于频率为f i的信号的振幅Cn为某一频率为f n的交调的振幅若/n出现在fn = fi± 6处(i = 1,2,3)则对应的SNR应大于10分贝(参见附图)4) f i不得出现在fj的接收带内(i, j = 1,2,3; i中j)5)为简单起见/ i只取整数值且交调只需考虑二阶类型(即{ fi±fj} i,j = 1,2,3;) 和三阶类型(即{ f i ± f j ± fk } i, j, k = 1,2,3;)试按上述要求设计输入信号频率f1 , f2, f3B倍号振幅£ -6 f-6 f. £ f +6工一_____________________ 1 _____________________ .1接收带问题B下表给出了我国12只足球队在1988—1989年全国足球甲级联赛中的成绩要求1)设计一个依据这些成绩排出诸队名次的算法并给出用该算法排名次的结果2)把算法推广到任意N个队的情况3)讨论数据应具备什么样的条件用你的方法才能够排出诸队的名次对下表的说明1) 12支球队依次记作T1,T2,…T122)符号X表示两队未曾比赛3)数字表示两队比赛结果如T1行与T2列交叉处的数字表示T1与T2比赛了2场T1与T2的进球数之比为0 1和3 1问题C编制油田开发规划是油田开发的核心问题,它是确定在一个时期内(三年、五年、十年等等)油田开发生产的战略决策和具体部署,直接影响到油田的开发效果和开发效益的好坏,这就要求所编制的油田开发规划要具有科学性、合理性和可行性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年数学建模竞赛试题
注意事项(请参赛队员详细阅读!)
1. 凯里学院校内数学建模竞赛丁2012年6月29日8: 00至7月
1日20 : 00举行。
2. 参赛队可在A、B两题中任选其中一题,可以使用各种图书资料、网络信息、计算机和软件以及各种实验手段。
3. 答卷论文请提交WORD文档方式的A4纸电子稿。
并按下列要求制作。
论文用白色A4纸单面打印;上下左右各留出至少 2.5厘米的贞边距;
从左侧装订。
封面:只需填上所选论文题目(注明A或B)及参赛队序号,其他一律不要。
首页:论文题目、摘要(含模型的主要特点、建模方法和主要结果)。
正文:问题提出、问题分析、模型假设、符号说明、模型建立、模型求
解、计算方法设计和软件实现、模型结果分析和检验、模型优缺点分析等。
4. 论文从第三页开始编写贞码,贞码必须位丁每贞贞脚中部,用阿拉伯数字从“ 1”开始连续编号。
论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三
级标题用小四号黑体字,左端对齐(不居中)。
论文中其他汉字一律采用
小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),
在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。
评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。
正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出贞码。
参考文献按正文中的引用次序列出,其中书籍的表述方式为:
[编号]作者,书名,出版地:出版社,出版年。
参考文献中期刊杂志论文的表述方式为:
[编号]作者,论文名,杂志名,卷期号:起止贞码,出版年。
参考文献中网上资源的表述方式为:
[编号]作者,资源标题,网址,访问时间(年月日)。
5. 竞赛评奖以模型假设的合理性、建模的创造性、结果的正确性、文字表述的活晰程度为主要标准。
6. 答卷(电子稿)务必丁2012年7月1日20:00 —22:00交到凯里学院数学实验室潘东云或雷学红老师处。
凯里学院数学建模领导小组
2012年06月28日
凯里学院2012数学建模竞赛试题
A题山地降水量
附件1给出了某村寨地形分布数据,附件2给出了该地30年雨量站资料请你建立数学模型解决以下问题
1、流入该区域山谷的最大、最小、年均水量;
2、给出高度z=700处的动能;
3、分别考虑植被完好和石漠化两种情形对水量是否有影响,并给出理由。
附件1:山地数据
附件2:某地30年雨量站资料
凯里学院2012数学建模竞赛试题
B题烟雾警报器
火灾中产生的烟雾引起窒息是导致人们在火灾中意外死亡的一个主要原因。
在所有致命的火灾中,有一半以上发生在晚上10时到第二天凌晨6时之间,因为这一时间段内通常大家都在家里熟睡而无法感觉到烟雾。
烟雾警报器可以在你睡眠的时候提醒你有火情。
所以烟雾警报器的安置就显
得格外重要,必须使它能够及时预报火警,为人们留出足够的安全疏散时间。
附件提供的是某城市某小区一幢16层住宅楼楼层的家居户型图。
根据你的想象给出房屋中的家具布局,可以就其中某一套户型,或者一层楼的5户户型, 或者整幢住宅楼,作为研究对象。
1)建立数学模型,确定烟雾警报器安装的数量和位置,以保证夜间火灾发
生时室内人员能够安全撤离;
2)进一步,建立数学模型,确定家居消防灭火器的数量和安放的位置;附件
Al户型入白门
1WC 3300 1100 30 2550
I T t 1 f
人户门
O s
CM
s
F
:
o
<5
g
CO
360。
4200 noa
』一。