2017-2018年广东省惠州市高二上学期期末数学试卷(理科)与解析
2017-2018学年(上)高二年段期末考理科数学试题(含答案)
(上)高二年段期末考试卷理科数学(考试时间:120分钟 总分:150分 )第Ⅰ卷(选择题部分共60分)一.选择题(每小题5分共60分)1.复数12z i =-(i 是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <3.若a R ∈,则2a =是(1)(2)0a a --=的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件4.已知△ABC 的周长为20,且顶点B (-4,0),C (4,0),则顶点A 的轨迹方方程是 ( )A .1203622=+y x (y ≠0) B .1362022=+y x (y ≠0) C .120622=+y x (y ≠0) D .162022=+y x (y ≠0) 5.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若a AB =,=,c AA =1则下列向量中与BM 相等的向量是 ( )11. 22A a b c -++ 11. 22B a b c ++11. 22C a b c --+ 11. 22D a b c -+6.如图,圆O 的半径为定长R, A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是 ( ) A .椭圆 B .双曲线的一支C .抛物线D .圆7.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A .2B .12C .2-D 18.若直线l 过点(3,2)与双曲线224936x y -=只有一个公共点,则这样的直线有()A.1条B.2条C.3条D.4条9.用反证法证明命题“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度 10. 已知命题:,p x R ∃∈使sin 2x =;.01,:2>++∈∀x x R x q 都有命题给出下列结论:①命题“q p ∧”是真命题 ②命题“q p ⌝∧”是假命题 ③命题“q p ∨⌝”是真命题; ④命题“q p ⌝∨⌝”是假命题 其中正确的是( )A .②③B .②④C .③④D .①②③11.设椭圆22221(0)x y a b a b+=>>的离心率12e =,右焦点为(,0)F c ,方程20a x b x c +-=的两个实根分别为12,x x ,则点12(,)P x x ( )A. 必在圆222x y +=内B. 必在圆222x y +=上C. 必在圆222x y +=外 D 以上三种情况都有可能 12.学习合情推理后,甲、乙两位同学各举一个例子.甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2Sl”类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r =3VS”;乙: 由“若直角三角形两直角边长分别为a 、b ,则其外接圆半径r =2”类比可得“若三棱锥三条侧棱两两垂直, 侧棱长分别为a 、b 、c ,则其外接球半径r ”.这两位同学类比得出的结论( )A .两人都对B .甲错、乙对C .甲对、乙错D .两人都错第Ⅱ卷(非选择题部分共90分)二、填空题(每小题5分共25分)13.已知(2,1,2)a =- ,(4,2,)b x =-且a b ⊥ ,则x 的值为____________ 14.已知复数z 满足(1)1i z i -=+(其中i 为虚数单位),则1z +=___________ 15.原命题:“设复数z a bi =+(i 为虚数单位),若z 为纯虚数,则0a =”的逆命题、否命题、逆否命题中真命题共有________个.16.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2017—2018学年度第一学期高二理科数学试卷含答案
2017—2018学年度第一学期期末考试高二理科数学试卷(答题时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)每小题只有一个....正确选项,请将正确选项填到答题卡处1。
设集合{|(1)(2)0}A x x x =+-<, {|13}B x x =<<,则A B = A .{|13}x x -<< B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线的焦点坐标为A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为A .12B .8C .6D .45.执行如图所示的程序框图,若输入的n =10,则输出的S 等于A .错误!B .错误!C 。
错误!D .错误!6.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是A .45B .50C .55D .607。
若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为A .318B 。
315C .3824+D 。
31624+8.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角<a ,b 〉为A .30°B .45°C .60°D .以上都不对9.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是A .错误!B 。
广东省惠州市2018-2019学年高二第一学期期末考试数学(理科)试题(解析版)
惠州市2018-2019学年第一学期期末考试高二数学(理科)试题注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.作答选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。
3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。
一、选择题:在每小题给出的四个选项中,只有一项符合题目要求.1.命题“若,则”的否命题是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】【分析】根据命题“若p,则q”的否命题是“若¬p,则¬q”.【详解】命题“若,则”的否命题是“若,则”故选:B【点睛】本题考查了命题与它的否命题的应用问题,是基础题.2.若是函数的导函数,则的值为()A. 1B. 3C. 1或3D. 4【答案】B【解析】【分析】先求出函数的导函数,然后求出函数值即可.【详解】∵,∴∴.故选C.【点睛】本题考查导函数的求法,解题的关键是熟记基本初等函数的求导公式和求导法则,属于简单题.3.设,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】∵∴或∴是的充分不必要条件故选A4.已知向量,若,则实数的值为()A. B. C. D. 2【答案】D【解析】【分析】根据向量垂直的等价条件得到数量积为0,从而得到关于的方程,解方程可得所求结果.【详解】∵∴,∴,∴,解得.故选D.【点睛】本题考查空间向量垂直的等价条件及向量数量积的运算,考查转化和计算能力,属于基础题.5.执行如图所示的程序框图,若输入的分别为1,2,3,则输出的=()A. B. C. D.【答案】D【解析】当n=1时,满足进行循环的条件,执行循环体后:;当n=2时,满足进行循环的条件,执行循环体后:;当n=3时,满足进行循环的条件,执行循环体后:;当n=4时,不满足进行循环的条件,故输出的M值为:.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.6.某班有50名学生,男女人数不相等。
2017-2018年高二上期末数学试卷(理科)含答案解析 (4)
2017-2018学年高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}2.(5分)“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(5分)函数的最大值是()A.﹣1 B.1 C.6 D.74.(5分)已知双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,是双曲线的一条渐近线,则双曲线的标准方程为()A.B.C.D.5.(5分)若直线l的方向向量为,平面α的法向量为,则可能使l∥α的是()A.B.C.D.6.(5分)A(,1)为抛物线x2=2py(p>0)上一点,则A到其焦点F的距离为()A.B.+C.2 D.+17.(5分)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.238.(5分)为得到函数的图象,只需要将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度9.(5分)若,,则sin2α等于()A.B.C.D.10.(5分)若x,y满足约束条件,则的最大值是()A.B.1 C.2 D.311.(5分)某几何体的三视图如图所示,则其表面积为()A.B.9πC.D.10π12.(5分)函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知a>0,b>0,且a+b=1,则的最小值是.14.(5分)已知向量,,且⊥(+),则y的值为.15.(5分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.16.(5分)椭圆上的任意一点P(短轴端点除外)与短轴上、下两个端点B1,B2的连线交x轴于点M和N,则|OM|+|ON|的最小值是.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知p:函数y=x2﹣2x+a在区间(1,2)上有1个零点;q:函数y=x2+(2a﹣3)x+1图象与x轴交于不同的两点.若“p∧q”是假命题,“p∨q”是真命题,求实数a的取值范围.18.(12分)在数列{a n}中,a1=,a n+1=•a n,n∈N*.(1)求证:数列{}为等比数列;(2)求数列{a n }的前n 项和S n .19.(12分)已知顶点在单位圆上的△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2acosA=ccosB +bcosC . (1)cosA 的值;(2)若b 2+c 2=4,求△ABC 的面积.20.(12分)某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果及频率分布直方图如图表所示.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆E的方程;(2)设不过原点O的直线l:y=kx+m(k≠0)与椭圆E交于P,Q两点,直线OP,OQ的斜率分别为k1,k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.22.(12分)如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B﹣AC﹣D的正弦值.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={0,l,3},B={x|x2﹣3x=0},则A∩B=()A.{0}B.{0,1}C.{0,3}D.{0,1,3}【解答】解:由B中方程变形得:x(x﹣3)=0,解得:x=0或x=3,即B={0,3},∵A={0,1,3},∴A∩B={0,3},故选:C.2.(5分)“x>2“是“x2+2x﹣8>0“成立的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:由x2+2x﹣8>0解得x>2,或x<﹣4.∴“x>2“是“x2+2x﹣8>0“成立的充分不必要条件.故选:B.3.(5分)函数的最大值是()A.﹣1 B.1 C.6 D.7【解答】解:函数,其定义域为{x|3≤x≤4},显然存在最大值是大于0的,则,当=0时,y取得最大值为1.故选:B.4.(5分)已知双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,是双曲线的一条渐近线,则双曲线的标准方程为()A.B.C.D.【解答】解:∵双曲线的中心为原点,F(3,0)是双曲线的﹣个焦点,∴设双曲线方程为,a>0,∵是双曲线的一条渐近线,∴=,解得a2=4,∴双曲线方程为.故选D.5.(5分)若直线l的方向向量为,平面α的法向量为,则可能使l∥α的是()A.B.C.D.【解答】解:在A中,=﹣2,不可能使l∥α;在B中,=1+0+5=6,不可能使l∥α;在C中,=﹣1,不可能使l∥α;在D中,=0﹣3+3=0,有可能使l∥α.故选:D.6.(5分)A(,1)为抛物线x2=2py(p>0)上一点,则A到其焦点F的距离为()A.B.+C.2 D.+1【解答】解:把A(,1)代入抛物线方程得:2=2p,∴p=1.∴抛物线的焦点为F(0,).∴抛物线的准线方程为y=﹣.∴A到准线的距离为1+=.∴AF=.故选:A.7.(5分)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是()A.20 B.21 C.22 D.23【解答】解:由题意,模拟执行程序,可得k=0,S=0,满足条件S≤a,S=2×0+3=3,k=0+1=1满足条件S≤a,S=2×3+3=9,k=1+1=2满足条件S≤a,S=2×9+3=21,k=2+1=3由题意,此时,应该不满足条件21≤a,退出循环,输出k的值为3,从而结合选项可得输入的a的值为20.故选:A.8.(5分)为得到函数的图象,只需要将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度【解答】解:由函数y=sin(2x﹣)=sin2(x﹣),且函数y=cos2(﹣x)=cos(﹣2x)=sin2x;为得到函数的图象,只需要将函数的图象向右平移个单位长度.故选:D.9.(5分)若,,则sin2α等于()A.B.C.D.【解答】解:若,,则cosα+sinα=2(cos2α﹣sin2α),即1=4(cosα﹣sinα),平方可得1=16(1﹣sin2α),∴sin2α=,故选:A.10.(5分)若x,y满足约束条件,则的最大值是()A.B.1 C.2 D.3【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得A(1,2),则k OA==2,即的最大值为2.故选:C.11.(5分)某几何体的三视图如图所示,则其表面积为()A.B.9πC.D.10π【解答】解:由三视图可知几何体为圆柱与球的组合体.圆柱的底面半径为1,高为3,球的半径为1.所以几何体的表面积为π×12+2π×1×3+++=9π.故选B.12.(5分)函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,方程f(g(x))=0有m个实数根,方程g(f(x))=0有n个实数根,则m+n=()A.6 B.8 C.10 D.12【解答】解:由图象可知,若f(g(x))=0,则g(x)=﹣1或g(x)=0或g(x)=1;由图2知,g(x)=﹣1时,x=﹣1或x=1;g(x)=0时,x的值有3个;g(x)=1时,x=2或x=﹣2;故m=7;若g(f(x))=0,则f(x)==﹣1.5或f(x)=1.5或f(x)=0;由图1知,f(x)=1.5与f(x)=﹣1.5无解;f(x)=0时,x=﹣1,x=1或x=0;故n=3;故m+n=10;故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知a>0,b>0,且a+b=1,则的最小值是4.【解答】解:∵a>0,b>0,且a+b=1,则=(a+b)=2+≥2+2=4,当且仅当a=b=时取等号.∴的最小值是4.故答案为:4.14.(5分)已知向量,,且⊥(+),则y的值为12.【解答】解:+=(﹣2,y﹣1,5),∵⊥(+),∴•(+)=﹣4﹣(y﹣1)+15=0,则y=12.故答案为:12.15.(5分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2﹣2x﹣2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.【解答】解:∵圆的方程为:x2+y2﹣2x﹣2y+1=0∴圆心C(1,1)、半径r为:1根据题意,若四边形面积最小当圆心与点P的距离最小时,距离为圆心到直线的距离时,切线长PA,PB最小圆心到直线的距离为d=3∴|PA|=|PB|=∴故答案为:16.(5分)椭圆上的任意一点P(短轴端点除外)与短轴上、下两个端点B1,B2的连线交x轴于点M和N,则|OM|+|ON|的最小值是2a.【解答】解:设P(x0,y0),⇒化为b2x02=a2(b2﹣y02)直线B1P的方程为:y=x+b,可得M(,0);直线B2P的方程为:y=x﹣b,可得N(,0).则|OM|•|ON|==(定值)则|OM|+|ON|≥2=2a.故答案为:2a.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知p:函数y=x2﹣2x+a在区间(1,2)上有1个零点;q:函数y=x2+(2a﹣3)x+1图象与x轴交于不同的两点.若“p∧q”是假命题,“p∨q”是真命题,求实数a的取值范围.【解答】解:对于p:设f(x)=x2﹣2x+a.该二次函数图象开向上,对称轴为直线x=1,所以,所以0<a<1;对于q:函数y=x2+(2a﹣3)x+1与x轴交于不同的两点,所以(2a﹣3)2﹣4>0,即4a2﹣12a+5>0,解得或.因为“p∧q”是假命题,“p∨q”是真命题,所以p,q一真一假.①当p真q假时,有,所以;②当p假q真时,有,所以或a≤0.所以实数a的取值范围是.18.(12分)在数列{a n}中,a1=,a n+1=•a n,n∈N*.(1)求证:数列{}为等比数列;(2)求数列{a n}的前n项和S n.=a n知=•,【解答】解(1)证明:由a n+1∴{}是以为首项,为公比的等比数列.(2)由(1)知{}是首项为,公比为的等比数列,∴=()n,∴a n=,∴S n=++…+,①则S n=++…+,②①﹣②得S n=+++…+﹣=1﹣,∴S n=2﹣.19.(12分)已知顶点在单位圆上的△ABC中,角A、B、C的对边分别为a、b、c,且2acosA=ccosB+bcosC.(1)cosA的值;(2)若b2+c2=4,求△ABC的面积.【解答】解:(1)∵2acosA=ccosB+bcosC,由正弦定理得:2sinA•cosA=sinCcosB+sinBcosC⇒2sinA•cosA=sin(B+C)=sinA,又∵0<A<π⇒sinA≠0,∴.…(6分)(2)由,由于顶点在单位圆上的△ABC 中,2R=2,利用正弦定理可得:.由余弦定理可得:a 2=b 2+c 2﹣2bccosA ⇒bc=b 2+c 2﹣a 2=4﹣3=1.…(10分) ∴.…(12分)20.(12分)某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了n 人,回答问题统计结果及频率分布直方图如图表所示.(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.【解答】解:(1)第1组人数5÷0.5=10,所以n=10÷0.1=100;第2组人数100×0.2=20,所以a=20×0.9=18;第3组人数100×0.3=30,所以x=27÷30=0.9;第4组人数100×0.25=25,所以b=25×0.36=9;第5组人数100×0.15=15,所以y=3÷15=0.2.(2)第2,3,4组回答正确的人的比为18:27:9=2:3:1,所以第2,3,4组每组应依次抽取2人,3人,1人.(3)记抽取的6人中,第2组的记为a1,a2,第3组的记为b1,b2,b3,第4组的记为c,则从6名学生中任取2名的所有可能的情况有15种,它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),其中第2组至少有1人的情况有9种,它们是:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),故所抽取的人中第2组至少有1人获得幸运奖的概率为p=.21.(12分)已知椭圆的离心率为,且过点.(1)求椭圆E的方程;(2)设不过原点O的直线l:y=kx+m(k≠0)与椭圆E交于P,Q两点,直线OP,OQ的斜率分别为k1,k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.【解答】解:(1)依题意,得,解得a2=4,b2=1.所以椭圆E的方程是.(2)当k变化时,m2为定值.证明如下:由得(1+4k2)x2+8kmx+4(m2﹣1)=0.设P(x1,y1),Q(x2,y2),,,(*)因为直线OP,直线OQ的斜率分别为k1,k2,且4k=k1+k2,所以,得2kx1x2=m(x1+x2),将(*)代入解得,经检验知成立.故当k变化时,m2为定值.22.(12分)如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B﹣AC﹣D的正弦值.【解答】证明:(1)设BD的中点为O,分别连接AO,EO.又因为AB=AD,所以AO⊥BD.因为E为BC的中点,O为BD的中点,所以EO∥CD.又因为CD⊥BD,所以EO⊥BD.又因为OA∩OE=O,OA,OE⊂平面AOE,所以BD⊥平面AOE.又因为AE⊂平面AOE,所以BD⊥AE,即AE⊥BD.解:(2)由(1)求解知AO⊥BD,EO⊥BD.因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD.又因为EO⊂平面BCD,所以AO⊥EO.所以OE,OD,OA两两相互垂直.因为CD⊥BD,BC=4,CD=2,所以.因为O为BD的中点,AO⊥BD,AD=2,所以,.以O为坐标原点,OE,OD,OA分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系O﹣xyz,则O(0,0,0),A(0,0,1),,,,所以,,.设平面ABC的一个法向量为,则,.所以,取,解得.所以是平面ABC的一个法向量.同理可求平面ADC的一个法向量.设二面角B﹣AC﹣D的大小为θ,则.因为0<θ<π,所以,所以二面角B﹣AC﹣D的正弦值为.。
惠州市学年第一学期高二期末考试试题(理科数学).doc
惠州市20XX-201X 学年第一学期高二期末考试理科数学试题说明:1、全卷分为两个部分,基础测试部分和期末考试部分,满分150分,时间120 分钟;2、答卷前,考生务必将自己的姓名、县区、学校、班级、试室、座位号填写在答题卷上;3、考试结束后,考生将答题卷交回.第一部分 基础测试(共100分)一、选择题:本大题共9小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.双曲线22149x y -=的渐近线方程是( ) A . 23y x =± B. 49y x =± C. 32y x =± D. 94y x =±2.给出以下命题:①42,x R x x ∀∈>有;②,R α∃∈使得sin 22sin αα=;③,a R ∃∈对x R ∀∈使220x x a ++〉。
其中真命题的序号是( )A.②③B.①②C. ①③D.①②③ 3.已知P :2+2=5,Q:3>2,则下列判断正确的是( )A.“P 或Q ”为假,“非Q ”为假B.“P 且Q ”为假,“非P ”为假C.“P 或Q ”为真,“非Q ”为假D.“P 且Q ”为真,“P 或Q ”为假 4. 下列各组向量中不平行的是( ) A . B . C .D .5.“0x >”是“0x ≠”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.椭圆22221x y a b+=(a >b >0)的中心O 与一个焦点F 及短轴的一个端点M 组成等腰直角三角形FMO ,则它的离心率是 ( )A.12B.2C.27.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍. 为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ) A .9B .27C .18D .368.如果数据1x 、2x 、......n x 的平均值为2,方差为0.1,则135x +,235x +, (35)n x +的平均值和方差分别为( )A .2和0.1B .11和0.9C .11和0.1D .11 和28.59.椭圆2214x y +=上到点A(1,0)的距离最近的点P 的坐标是 ( )A.(43,) B .(13,) C .(43,) D .(43-,±) 二、填空题:本大题共3小题,每小题5分,共15分,把答案填写在答题卷中指定的横线上。
2017-2018学年高二年级数学期末试卷(理数)含答案
2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2
a
1f
x
a
0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知
,
则
解得 的横坐标分别是 则 有 又
,又 于是
, ,
,
,即 l 与直线 平行, 一定相交,分别联立方
设
是平面
的法向量,则
,即
。
对任意
,要使
与
的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,
2017-2018年第一学期高二理科数学期末试题答案
2017-2017学年度第一学期高二理科数学试题答案时量:120分钟 分值:150分. 命题人:徐爱田 审题人:王凯钦一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共7小题,每小题5分,共35分,) 9,14 10,221〈-〉m m 或 1112,10 13,x 22y ±= 14,52 15,29三、解答题(本大题共75分.请将详细解答过程写在答题卡上)16. (本小题满分12分)设:P: 指数函数xa y =在x ∈R 内单调递减;Q :曲线1)32(2+-+=x a x y 与x 轴交于不同的两点。
如果P 为真,Q 为假,求a 的取值范围.解:当0<a<1时,指数函数xa y = 在R 内单调递减;曲线y=x 2+(2a-3)x+1与x 轴有两个不同的交点等价于(2a-3)2-4>0, 即a<21或a>25。
…(6分) 由题意有P 正确,且Q 不正确,因此,a ∈(0,1)∩[]25,21[ 即a ∈)1,21[17(本小题满分12分).已知点A (-2,0),B (2,0),直线AP 与直线AB 相交于点P ,它们的斜率之积为41-,求点P 的轨迹方程(化为标准方程). 解:设点P ),(y x ,直线AP 的斜率)2(2-≠+=x x yk AP 直线BP 的斜率)2(2≠-=x x yk BP根据已知,有:)2(4122±≠-=-⋅+x x y x y化简得:)2(1422±≠=+x y x(没有写2±≠x 扣1分)18.(本小题满分12分)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1,MD NB ==(1)求证://CN 平面AMD ;(2)求面AMN 与面NBC 所成二面角的平面角的余弦值.解:(1)ABCD 是正方形,//,//BC AD BC ∴平面AMD ;又MD ⊥平面ABCD ,NB ⊥平面ABCD ,//,//NB NB MD ∴∴平面AMD , 所以平面//BNC 平面AMD ,故//CN 平面AMD ;(2) 以D 为坐标原点,DA ,DC ,DM 分别为x ,y ,z 轴建立图示空间直角坐标系,则:A(1,0,0),B(1,1,0),C(0,1,0). N (1,1,1), M (0,0,1),(1,0,1)AM =-,(0,1,1)AM =,(0,1,0)AB =设平面AMN 的一个法向量为(,,)n x y z =,由00AM n AN n ⎧=⎪⎨⎪=⎩得: 00x z y z ⎧-+=⎨+=⎩令z=1得: (1,1,1)n =-易知: (0,1,0)AB =是平面NBC 的一个法向量.cos ,AB n -==-NMODCBA∴面AMN 与面NBC19.(本小题满分13分)设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,(2))f 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的极值点。
惠州市高二上学期期末数学试题与答案
惠州市高二上学期期末数学试题与答案一、选择题:在每小题给出的四个选项中,只有一项符合题目要求.1.命题“若,则”的否命题是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B根据命题“若p,则q”的否命题是“若¬p,则¬q”.命题“若,则”的否命题是“若,则”故选:B本题考查了命题与它的否命题的应用问题,是基础题.2.设,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A∵∴或∴是的充分不必要条件故选A3.甲、乙两校各有2名教师报名支教,若从这4名教师中任选2名,选出的2名教师来自同一学校的概率为()A. B. C. D.【答案】B从4教师中任选2名教师的种数有6种,其中来自同一学校的可能种数有2种,由此能求出所求事件的概率.从4教师中任选2名教师的种数有6种,则其中来自同一学校的可能种数有2种,故所求事件的概率是。
故选:B。
本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.4.某班有50名学生,男女人数不相等。
随机询问了该班5名男生和5名女生的某次数学测试成绩,用茎叶图记录如下图所示,则下列说法一定正确的是()A. 这5名男生成绩的标准差大于这5名女生成绩的标准差。
B. 这5名男生成绩的中位数大于这5名女生成绩的中位数。
C. 该班男生成绩的平均数大于该班女生成绩的平均数。
D. 这种抽样方法是一种分层抽样。
【答案】A根据茎叶图的分别情况分别判断即可.5名男生成绩的平均数为:,5名女生成绩的平均数为:,这5名男生成绩的方差为,女生的方差为,男生方差大于女生方差,所以男生标准差大于女生标准差,所以A对;这5名男生成绩的中位数是90, 5名女生成绩的中位数93,所以B错;该班男生和女生成绩的平均数可通过样本估计,但不能通过样本计算得到平均数准确值,所以C错;若抽样方法是分层抽样,因为男生女生不等,所以分别抽取的人数不等,所以D错。
2017-2018第一学期高二期末考试理科数学试题
2017学年度第一学期高二年级期末教学质量检测理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。
2、必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是“320x >”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.非零实数b a ,,若b a >,则下列不等式正确的是 A 22b a > B ||||c b c a > C b a a b > D ba ab 2211> 4.不等式223x x -≤+的解集是( ) A. B.C.D.5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06..数列1,211+,3211++,43211+++,…,n +++ 211的前2015项的和 A 20152014 B 20154028 C 20152016 D 201640307.已知椭圆2215x y m+=的离心率105e =,则m 的值为A .3B .5153或15 C .5 D .253或3 8.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为 A .105-B .105C .55D . 2559.若数列}{n a 是等比数列,21a =,其前n 项和为n S ,则3S 的取值范围是A ]1,(-∞B ),1()0,(+∞-∞C ),3[+∞D ),3[]1,(+∞--∞10.如图,21F F 、是椭圆)0(12222>>=+b a by a x 的两个焦点,O 为坐标原点,P 是椭圆上的一点,且满足||2||21OP F F =,若21125F PF F PF ∠=∠,则椭圆的离心率为A 32B 63C 22D 23 11、设x ,y 满足约束条件若目标函数z ax by =+z=ax+by(a>0,b>0)的最大值为12,则23a b+的最小值为( ) A. 256B.83C.113D.4D 1A 11B 1BCD N M P 8题图yxF 2F 1PO12、(理)已知双曲线)0,0(1:2222>>=-b a bx a y C 的上焦点为)0)(,0(>c c F ,M 是双曲线下支上的一点,线段MF 与圆0932222=+-+a y c y x 相切于点D ,且||3||DF MF =,则双曲线C 的渐近线方程为A .02=±y xB .02=±y xC .04=±y xD .04=±y x 6 二、填空题:本大题共4小题,每小题5分,满分20分13.双曲线的一个焦点是)2 , 0(2F ,离心率2=e ,则双曲线的标准方程是 .14.已知数列}{n a 满足11-+=n n a a )1(>n ,其中5a ,8a ,10a 三项构成等比数列,则这个等比数列的公比为 .15.若直线y =kx -2与抛物线y 2=8x 交于A 、B 两点,若线段AB 的中点的横坐标是2,则|AB |=______.16. 把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个 数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.若,i j a =2008,则i 、j 的值分别为________ ,__________三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤。
2017-2018高二上学期期末理科试题答案
2017—2018学年上学期期末考试 高中二年级 理科数学 参考答案一、选择题:CBCBC CDADA BB二、填空题:13.;13 14. 6; 15.;14 16.③. 三、解答题:17.解:p 真:若方程有两个不等的负根,则解得 2.m > ……………3分q 真:方程无实根,则216(2)160m --<,解得1 3.m << …………6分因为“或”为真,“且”为假,所以,一真一假.故2,2,13,13m m m m m >≤⎧⎧⎨⎨<<≤≥⎩⎩或或解得12 3.m m <≤≥或 ……………………………………10分18.解:(1)由题意可得2362a a a =⋅,又因为11-=a ,,)21()51()1(2d d d +-=+-⋅+-∴.2=∴d ………… …………………………………………2分32-=∴n a n ;.22n n s n -= …………………………… 4分(2)),121321(21)12)(32(111---=--==+n n n n a a b n n n ………6分)]121321()3111()1111[(2121---++-+--=+++=∴n n b b b T n n ………8分.12)1211(21--=---=n n n ………………12分 19解:(1)由题意得n n n f 9.0)2.06.04.02.0(4.14)(++++++= ………3分n n n 9.02)1(2.04.14+++=.4.141.02++=n n ………6分(2)设该车的年平均费用为S 万元,则有)4.141.0(1)(12++==n n nn f n S …………8分210x mx ++=⎩⎨⎧>>-=∆.0,042m m 244(2)10x m x +-+=p q p q p q.4.3144.1214.1410=+≥++=nn ………10分 当且仅当nn 4.1410=,即12=n 时,等号成立,即S 取最小值4.3万元.……11分 答:这种汽车使用12年报废最合算,年平均费用的最小值是4.3万元.………12分 20解: (1)因为0cos )2(cos =-+⋅C a b B c ,由正弦定理得:0cos )sin 2(sin cos sin =-+⋅C A B B C .……2分,cos sin 2cos sin cos sin C A C B B C ⋅=⋅+⋅.cos sin 2sin C A C B ⋅=+∴)(……………………4分在ABC ∆中,,0sin sin≠=+A C B )( .21cos =∴C …………………………………………5分又),,0(π∈C .3π∈∴C ………………………………………………6分(2)在ABC ∆中,由71cos =A ,得,734sin =A则.1435237121734)sin(sin =⨯+⨯=+=C A B ………………8分 由正弦定理得57sin sin ==B C b c . 设x c 7=,x b 5=,在ACD ∆中,由余弦定理得: A AD AC AD AC CD cos 2222⋅-+=,则2212911125492574427x x x x =+⨯-⨯⨯⨯⨯,解得1x =,………………10分 即5,7==b c ,……11分, 故310sin 21==∆A bc S ABC .……12分 21解:(1)∵,222BD BC CD +=∴.BD BC ⊥又∵PD ⊥底面,ABCD ∴.BC PD ⊥ …………2分 又∵D BD PD =⋂∴⊥BC 平面.PBD而⊂BC 平面,PBC ∴平面⊥PBC 平面.PBD …………4分 (2)由(1)所证,⊥BC 平面.PBD所以∠PBD 即为二面角D BC P --的平面角,即∠PBD .4π= 而32=BD ,所以.32=PD因为底面ABCD 为平行四边形,所以DB DA ⊥,分别以DA 、DB 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系.……6分则)0,0,2(A ,)0,32,0(B ,)0,32,2(-C ,)32,0,0(P ,所以,)32,0,2(-=,)0,0,2(-=,)32,32,0(-=,…………8分设平面PBC 的法向量为),,(c b a =,则⎪⎩⎪⎨⎧=∙=∙,0,0BC n 即⎩⎨⎧=+-=-.03232,02c b a令1=b ,则0,1==a c 所以).1,1,0(= …………10分∴AP 与平面PBC所成角的正弦值为分12 (46)2432sin =⨯==θ 22.解:(1)由题意得:,222211121=>==+=+F F P F MP MF MF MF∴点M 的轨迹C 为以21,F F 为焦点的椭圆.………………………2分,22,222==c a .1,2222=-==∴c a b a∴点M 的轨迹C 的方程为1222=+y x .……………………………………4分 (2)当直线l 的斜率存在时,可设其方程为31+=kx y ,设),,(),,(2211y x B y x A联立⎪⎪⎩⎪⎪⎨⎧+==+31,1222kx y y x 可得.01612)21(922=-++kx x k由求根公式可得:)21(916,)21(34221221k x x k k x x +-=⋅+-=+…………………………6分 zyx假设在y 轴上是否存在定点),0(m Q ,使以AB 为直径的圆恒过这个点, 则⊥即0=⋅.),,(),,(2211y m x y m x --=--=))((2121y m y m x x --+=⋅)31)(31(2121----+=kx m kx m x x9132))(31()1(221212+-++-++=m m x x m k x x k ………………8分9132)21(9)31(12)21(9)1(1622222+-++--++-=m m k m k k k .0)21(9)1569()1818(2222=+--+-=k m m k m由⎪⎩⎪⎨⎧=--=-,01569,0181822m m m 解得:.1-=m∴在y 轴上存在定点)1,0(-Q ,使以AB 为直径的圆恒过这个点.………11分当直线l 的斜率不存在时,经检验可知也满足以AB 为直径的圆恒过这个点)1,0(-Q . 因此,在y 轴上存在定点)1,0(-Q ,使以AB 为直径的圆恒过这个点…………12分。
广东省惠州市数学高二上学期理数期末考试试卷
广东省惠州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)设,则“”是“直线与直线平行的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件2. (2分)若,则等于().A . -+B . -C . -D . -+3. (2分)若平面上两定点之间的距离为5cm,一动点到这两定点的距离之和为5cm,则该动点的轨迹为()A . 椭圆B . 一段线段C . 圆D . 不确定4. (2分) (2018高三上·河北月考) 若命题p为:为()A .B .C .D .5. (2分) (2017高二上·广东月考) 抛物线焦点坐标是()A . 或B .C . 或D .6. (2分) (2017高二上·佳木斯月考) 双曲线的实轴长为()A . 2B .C . 1D .7. (2分)已知向量,且,则等于()A .B .C .D .8. (2分) (2018高一下·宜宾期末) 已知正方形的边长为,为的中点, 则()A .B .C .D .9. (2分)如图,在空间直角坐标系中,正方体的棱长为1,,则等于()A .B .C .D .10. (2分) (2018高三上·定州期末) 已知椭圆的左顶点和上顶点分别为,左、右焦点分别是,在线段上有且只有一个点满足,则椭圆的离心率的平方为()A .B .C .D .11. (2分)椭圆上一点M到焦点的距离为2,是的中点,则等于()A . 2B . 4C . 6D .12. (2分) (2018高三上·德州期末) 已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)命题“若a>b ,则2a>2b-1”的否命题是________.14. (1分)(2020·秦淮模拟) 若双曲线的渐近线方程为,则双曲线的离心率为________.15. (1分)在△ABC中,A为动点,B、C为定点,B(﹣,0),C(,0)(a>0),且满足条件sinC ﹣sinB= sinA,则动点A的轨迹方程是________.16. (1分) (2018高二下·孝感期中) 已知点,点B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交于点,则动点的轨迹方程为________.17. (1分)命题“∃x0∈R,x02+2x0﹣3>0”的否定形式为________.18. (1分)求以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,)的椭圆的标准方程________.三、解答题 (共5题;共40分)19. (10分)(2012·新课标卷理) 设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.20. (5分) (2017高二上·黄山期末) 设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足≤0。
广东省惠州市2018学年高二上学期期末数学试卷理科 含解析
2018-2018学年广东省惠州市高二(上)期末数学试卷(理科)一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列命题中的假命题是()A.∃x∈R,lgx=0 B.∃x∈R,tanx=1 C.∀x∈R,x3>0 D.∀x∈R,2x>0 2.(5分)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.只有一次中靶D.两次都不中靶3.(5分)“k<0”是“方程+=1表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号是2的小球的概率是,则n=()A.2 B.3 C.4 D.55.(5分)已知椭圆,长轴在y轴上,若焦距为4,则m等于()A.4 B.5 C.7 D.86.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.2 B.C.3 D.68.(5分)在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A.B.C.D.9.(5分)程序框图如图所示,当时,输出的k的值为()A.11 B.12 C.13 D.1410.(5分)抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=()A.B.C.D.11.(5分)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)12.(5分)在三棱锥P﹣ABC中,D为底面ABC的边AB上一点,M为底面ABC内一点,且满足,,则三棱锥P﹣AMD与三棱锥P﹣ABC的体积比为()A.B.C.D.二.填空题:本大题共4小题,每小题5分.13.(5分)若抛物线的焦点在直线x﹣2y﹣4=0上,则此抛物线的标准方程是.14.(5分)某工厂对某产品的产量与成本的资料分析后有如下数据:则该产品的成本y与产量x之间的线性回归方程为.15.(5分)在空间直角坐标系O﹣xyz中,平面OAB的一个法向量为=(2,﹣2,1),已知点P(﹣1,3,2),则点P到平面OAB的距离d等于.16.(5分)已知函数f(x)=4|a|x﹣2a+1.若命题:“∃x0∈(0,1),使f(x0)=0”是真命题,则实数a的取值范围为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)已知集合A={y|y=x2﹣x+1,x∈[,2]},B={x|x+m2≥1},若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.18.(12分)某校100名学生期中考试语文成绩的频率分布直方图如下图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中a的值;(Ⅱ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.19.(12分)从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.(Ⅰ)求轨迹E的方程;(Ⅱ)已知直线l:y=k(x﹣2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.20.(12分)已知椭圆的两焦点为F1(﹣1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.(1)求此椭圆的方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.21.(12分)如图,在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.(1)求证:CE∥平面A1BD;(2)若H为A1B上的动点,当CH与平面A1AB所成最大角的正切值为时,求平面A1BD与平面ABC所成二面角(锐角)的余弦值.22.(12分)已知点F(1,0),直线l:x=﹣1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且.(1)求动点P的轨迹C的方程;(2)过点F的直线交轨迹C于A,B两点,交直线l于点M,已知,,求λ1+λ2的值.2018-2018学年广东省惠州市高二(上)期末数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中的假命题是()A.∃x∈R,lgx=0 B.∃x∈R,tanx=1 C.∀x∈R,x3>0 D.∀x∈R,2x>0【考点】命题的真假判断与应用.【分析】A、B、C可通过取特殊值法来判断;D、由指数函数的值域来判断.【解答】解:A、x=1成立;B、x=成立;D、由指数函数的值域来判断.对于C选项x=﹣1时,(﹣1)3=﹣1<0,不正确.故选C【点评】本题考查逻辑语言与指数数、二次函数、对数函数、正切函数的值域,属容易题.2.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.只有一次中靶D.两次都不中靶【考点】互斥事件与对立事件.【分析】利用互斥事件的概念求解.【解答】解:“至多有一次中靶”和“至少有一次中靶”,能够同时发生,故A错误;“两次都中靶”和“至少有一次中靶”,能够同时发生,故B错误;“只有一次中靶”和“至少有一次中靶”,能够同时发生,故C错误;“两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.故选:D.【点评】本题考查互斥事件的判断,是基础题,解题时要熟练掌握互斥事件的概念.3.“k<0”是“方程+=1表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的方程进行判断即可.【解答】解:若方程+=1表示双曲线,则k(1﹣k)<0,即k(k﹣1)>0,解得k>1或k<0,即“k<0”是“方程+=1表示双曲线”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据双曲线的定义和方程是解决本题的关键.4.袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号是2的小球的概率是,则n=()A.2 B.3 C.4 D.5【考点】古典概型及其概率计算公式.【分析】利用等可能事件概率计算公式能求出结果.【解答】解:∵袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.从袋子中随机抽取1个小球,取到标号是2的小球的概率是,∴由题意知:,解得n=2.故选:A.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.5.已知椭圆,长轴在y轴上,若焦距为4,则m等于()A.4 B.5 C.7 D.8【考点】椭圆的简单性质.【分析】先把椭圆方程转换成标准方程,进而根据焦距求得m.【解答】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.6.若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【考点】极差、方差与标准差.【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.2 B.C.3 D.6【考点】双曲线的简单性质.【分析】求得圆的圆心和半径r,双曲线的渐近线方程,运用直线和圆相切的条件:d=r,计算即可得到所求值.【解答】解:圆(x﹣3)2+y2=r2的圆心为(3,0),半径为r,双曲线﹣=1的渐近线方程为y=±x,由直线和圆相切的条件:d=r,可得r==2.故选:A.【点评】本题考查直线和圆相切的条件:d=r,同时考查双曲线的渐近线方程,考查运算能力,属于基础题.8.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A.B.C.D.【考点】几何概型.【分析】函数f(x)=x2+ax+b2无零点的条件,得到a,b满足的条件,利用几何概型的概率公式求出对应的面积即可得到结论.【解答】解:∵a,b是区间[0,1]上的两个数,∴a,b对应区域面积为1×1=1若函数f(x)=x2+ax+b2无零点,则△=a2﹣4b2<0,对应的区域为直线a﹣2b=0的上方,面积为1﹣=,则根据几何概型的概率公式可得所求的概率为.故选:B.【点评】本题主要考查几何概型的概率计算,根据二次函数无零点的条件求出a,b满足的条件是解决本题的关键.9.程序框图如图所示,当时,输出的k的值为()A.11 B.12 C.13 D.14【考点】程序框图.【分析】模拟程序的运行可得程序框图的功能,用裂项法可求S的值,进而解不等式可求k的值.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=+++…≥时k的值,由于:S=+++…=(1﹣)+()+…+(﹣)=1﹣=,所以:由≥,解得:k≥12,所以:当时,输出的k的值为12.故选:B.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键,属于基础题.10.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=()A.B.C.D.【考点】互斥事件的概率加法公式.【分析】P(A∪B)=P(A)+P(B)﹣P(AB),由此能求出结果.【解答】解:∵抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,∴P(A)=,P(B)=,P(AB)=,P(A∪B)=P(A)+P(B)﹣P(AB)==.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.11.已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)【考点】椭圆的应用.【分析】由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.12.在三棱锥P﹣ABC中,D为底面ABC的边AB上一点,M为底面ABC内一点,且满足,,则三棱锥P﹣AMD与三棱锥P﹣ABC的体积比为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】由题意画出图形,结合向量等式可得AD=,DM=,且∠ABC=∠ADM,进一步得到△ADM与△ABC面积的关系得答案.【解答】解:如图,设三棱锥P﹣ABC的底面三角形ABC的面积为S,高为h,∵,,∴AD=,DM=,且∠ABC=∠ADM,∴=.∴=.故选:D.【点评】本题考查棱柱、棱锥、棱台体积的求法,考查平面向量在求解立体几何问题中的应用,是中档题.二.填空题:本大题共4小题,每小题5分.13.若抛物线的焦点在直线x﹣2y﹣4=0上,则此抛物线的标准方程是y2=16x 或x2=﹣8y.【考点】抛物线的标准方程.【分析】分焦点在x轴和y轴两种情况分别求出焦点坐标,然后根据抛物线的标准形式可得答案.【解答】解:当焦点在x轴上时,根据y=0,x﹣2y﹣4=0可得焦点坐标为(4,0)∴抛物线的标准方程为y2=16x当焦点在y轴上时,根据x=0,x﹣2y﹣4=0可得焦点坐标为(0,﹣2)∴抛物线的标准方程为x2=﹣8y故答案为:y2=16x或x2=﹣8y【点评】本题主要考查抛物线的标准方程.属基础题.14.某工厂对某产品的产量与成本的资料分析后有如下数据:则该产品的成本y与产量x之间的线性回归方程为=1.10x+4.60.【考点】线性回归方程.【分析】根据表中数据先求出平均数,再由公式求出a,b的值,即可写出回归直线方程.【解答】解:由题意,计算=×(2+3+5+6)=4,=×(7+8+9+12)=9,b==1.10,且回归直线过样本中心点(,),∴a=9﹣1.10×4=4.60,故所求的回归直线方程为:=1.10x+4.60.故答案为:=1.10x+4.60.【点评】本题考查了利用公式求线性回归直线方程的应用问题,是基础题目.15.在空间直角坐标系O﹣xyz中,平面OAB的一个法向量为=(2,﹣2,1),已知点P(﹣1,3,2),则点P到平面OAB的距离d等于2.【考点】点、线、面间的距离计算;空间两点间的距离公式.【分析】直接利用空间点到平面的距离公式求解即可.【解答】解:平面OAB的一个法向量为=(2,﹣2,1),已知点P(﹣1,3,2),则点P到平面OAB的距离d===2.故答案为:2.【点评】本题考查空间点、线、面距离的求法,公式的应用,是基础题.16.已知函数f(x)=4|a|x﹣2a+1.若命题:“∃x0∈(0,1),使f(x0)=0”是真命题,则实数a的取值范围为.【考点】特称命题;命题的真假判断与应用.【分析】由于f(x)是单调函数,在(0,1)上存在零点,应有f(0)f(1)<0,解不等式求出数a的取值范围.【解答】解:由:“∃x0∈(0,1),使f(x0)=0”是真命题,得:f(0)•f(1)<0⇒(1﹣2a)(4|a|﹣2a+1)<0或⇒.故答案为:【点评】本题考查函数的单调性、单调区间,及函数存在零点的条件.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2018秋•惠州期末)已知集合A={y|y=x2﹣x+1,x∈[,2]},B={x|x+m2≥1},若“x∈A”是“x∈B”的充分条件,求实数m的取值范围.【考点】充分条件.【分析】先求二次函数在区间[,2]上的值域,从而解出集合A,在解出集合B,根据“x∈A”是“x∈B”的充分条件即可得到关于m的不等式,从而解不等式即得实数m的取值范围.【解答】解:y=;该函数在[]上单调递增,x=2时,y=2;∴,B={x|x≥1﹣m2};∵x∈A是x∈B的充分条件;∴;解得m,或m;∴实数m的取值范围为.【点评】考查二次函数在闭区间上的值域的求法,描述法表示集合,以及充分条件的概念,解一元二次不等式.18.(12分)(2018秋•惠州期末)某校100名学生期中考试语文成绩的频率分布直方图如下图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求图中a的值;(Ⅱ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.【考点】频率分布直方图.【分析】(Ⅰ)根据频率和为1列出方程即可求出a的值;(Ⅱ)利用表中数据计算数学成绩在[50,90)内的人数,再求在[50,90)之外的人数.【解答】解:(Ⅰ)根据频率分布直方图中各个小矩形的面积和等于1得,10×(2a+0.18+0.18+0.18)=1,解得a=0.018,所以图中a的值为0.018;(Ⅱ)数学成绩在[50,60)的人数为:100×0.18×1=5(人);数学成绩在[60,70)的人数为:100×0.4×=20(人);数学成绩在[70,80)的人数为:100×0.3×=40(人);数学成绩在[80,90)的人数为:100×0.2×=25(人);所以数学成绩在[50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10(人).【点评】本题考查频率分布直方图的应用问题,也考查了识图、用图的能力,是基础题目.19.(12分)(2018秋•惠州期末)从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.(Ⅰ)求轨迹E的方程;(Ⅱ)已知直线l:y=k(x﹣2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.【考点】轨迹方程.【分析】(Ⅰ)先设出垂线段的中点为M(x,y),P(x0,y0)是抛物线上的点,把它们坐标之间的关系找出来,代入抛物线的方程即可;(Ⅱ)根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B 的中点横坐标,即可求出弦AB的长.【解答】解:(Ⅰ)设垂线段的中点M(x,y),P(x0,y0)是抛物线上的点,D(x0,0),因为M是PD的中点,所以x0=x,y=y0,有x0=x,y0=2y,因为点P在抛物线上,所以y18=32x,即4y2=32x,所以y2=8x,所求点M轨迹方程为:y2=8x.(Ⅱ)抛物线y2=8x的焦点坐标为(2,0),准线方程为x=﹣2,设A(x1,y1),B(x2,y2),则∵|AF|=2|BF|,∴x1+1=2(x2+1),∴x1=2x2+1∵|y1|=2|y2|,∴x1=4x2,∴x1=2,x2=,∴|AB|=x1+x2+p=+4=.【点评】本题主要考查求轨迹方程的方法,考查学生分析解决问题的能力,利用抛物线的定义将到焦点的距离转化为到准线的距离是关键,属于中档题.20.(12分)(2018秋•惠州期末)已知椭圆的两焦点为F1(﹣1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.(1)求此椭圆的方程;(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.【考点】直线与圆锥曲线的关系;椭圆的应用.【分析】(1)根据2|F1F2|=|PF1|+|PF2|,求出a,结合焦点坐标求出c,从而可求b,即可得出椭圆方程;(2)直线方程与椭圆方程联立,可得P的坐标,利用三角形的面积公式,可求△PF1F2的面积.【解答】解:(1)依题意得|F1F2|=2,又2|F1F2|=|PF1|+|PF2|,∴|PF1|+|PF2|=4=2a,∵c=1,∴b2=3.∴所求椭圆的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)设P点坐标为(x,y),∵∠F2F1P=120°,∴PF1所在直线的方程为y=(x+1)•tan 120°,即y=﹣(x+1).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解方程组并注意到x<0,y>0,可得﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)=|F1F2|•=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴S△PF1F2【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,确定P的坐标是关键.21.(12分)(2018•广州一模)如图,在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,AA1⊥平面ABC,D,E分别是CC1,AB的中点.(1)求证:CE∥平面A1BD;(2)若H为A1B上的动点,当CH与平面A1AB所成最大角的正切值为时,求平面A1BD与平面ABC所成二面角(锐角)的余弦值.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角【分析】(1)通过补形,延长延长A1D交AC的延长线于点F,连接BF,从而可证明CE∥BF,然后由线面平行的判定定理得证;(2)由已知找出C点在平面A1AB上的射影CE,CE为定值,要使直线CH与平面A1AB所成最大角的正切值为,则点H到E点的距离应最小,由此得到H 的位置,进一步求出EH的长度,则在直角三角EHB中可得到BH的长度,利用已知条件证出BF⊥平面A1AB,从而得到∠EBH为平面A1BD与平面ABC所成的二面角,在直角三角形EHB中求其余弦值.本题也可以A为坐标原点,建立空间直角坐标系,利用空间向量解决.【解答】法一、(1)证明:如图,延长A1D交AC的延长线于点F,连接BF.∵CD∥AA1,且CD=AA1,∴C为AF的中点.∵E为AB的中点,∴CE∥BF.∵BF⊂平面A1BD,CE⊄平面A1BD,∴CE∥平面A1BD.(2)解:∵AA1⊥平面ABC,CE⊂平面ABC,∴AA1⊥CE.∵△ABC是边长为2的等边三角形,E是AB的中点,∴CE⊥AB,.∵AB⊂平面A1AB,AA1⊂平面A1AB,AB∩AA1=A,∴CE⊥平面A1AB.∴∠EHC为CH与平面A1AB所成的角.∵,在Rt△CEH中,tan,∴当EH最短时,tan∠EHC的值最大,则∠EHC最大.∴当EH⊥A1B时,∠EHC最大.此时,tan=.∴.∵CE∥BF,CE⊥平面A1AB,∴BF⊥平面A1AB.∵AB⊂平面A1AB,A1B⊂平面A1AB,∴BF⊥AB,BF⊥A1B.∴∠ABA1为平面A1BD与平面ABC所成二面角(锐角).在Rt△EHB中,=,cos∠ABA1=.∴平面A1BD与平面ABC所成二面角(锐角)的余弦值为.法二、(1)证明:如图,取A1B的中点F,连接DF、EF.∵E为AB的中点,∴EF∥AA1,且.∵CD∥AA1,且CD=AA1,∴EF∥CD,EF=CD.∴四边形EFDC是平行四边形.∴CE∥DF.∵DF⊂平面A1BD,CE⊄平面A1BD,∴CE∥平面A1BD.(2)解:∵AA1⊥平面ABC,CE⊂平面ABC,∴AA1⊥CE.∵△ABC是边长为2的等边三角形,E是AB的中点,∴CE⊥AB,.∵AB⊂平面A1AB,AA1⊂平面A1AB,AB∩AA1=A,∴CE⊥平面A1AB.∴∠EHC为CH与平面A1AB所成的角.∵,在Rt△CEH中,tan,∴当EH最短时,tan∠EHC的值最大,则∠EHC最大.∴当EH⊥A1B时,∠EHC最大.此时,tan=.∴.在Rt△EHB中,.∵Rt△EHB~Rt△A1AB,∴,即.∴AA1=4.以A为原点,与AC垂直的直线为x轴,AC所在的直线为y轴,AA1所在的直线为z轴,建立空间直角坐标系A﹣xyz.则A(0,0,0),A1(0,0,4),B,D(0,2,2).∴=(0,0,4),=, =(0,2,﹣2).设平面A 1BD 的法向量为n=(x ,y ,z ),由, ,得,令y=1,则.∴平面A 1BD 的一个法向量为n=.∵AA 1⊥平面ABC ,∴=(0,0,4)是平面ABC 的一个法向量.∴cos =.∴平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值为. 【点评】本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法.是中档题.22.(12分)(2018•福建)已知点F (1,0),直线l :x=﹣1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点M ,已知,,求λ1+λ2的值.【考点】平面向量数量积的运算;轨迹方程;抛物线的定义;抛物线的简单性质.【分析】解法一:(1)我们可设出点P 的坐标(x ,y ),由直线l :x=﹣1,过P作直线l 的垂线,垂足为点Q ,则Q (﹣1,y ),则我们根据,构造出一个关于x ,y 的方程,化简后,即可得到所求曲线的方程;(2)由过点F的直线交轨迹C于A、B两点,交直线l于点M,我们可以设出直线的点斜式方程,联立直线方程后,利用设而不求的思想,结合一元二次方程根与系数关系,易求λ1+λ2的值.解法二:(1)由得,进而可得.根据抛物线的定义,我们易得动点的轨迹为抛物线,再由直线l(即准线)方程为:x=﹣1,易得抛物线方程;(2)由已知,,得λ1•λ2<0.根据抛物线的定义,可们可以将由已知,,转化为,进而求出λ1+λ2的值.【解答】解:法一:(Ⅰ)设点P(x,y),则Q(﹣1,y),由得:(x+1,0)•(2,﹣y)=(x﹣1,y)•(﹣2,y),化简得C:y2=4x.(Ⅱ)设直线AB的方程为:x=my+1(m≠0).设A(x1,y1),B(x2,y2),又,联立方程组,消去x得:y2﹣4my﹣4=0,∴△=(﹣4m)2+16>0,故由,得:,,整理得:,,∴===0.法二:(Ⅰ)由得:,∴,∴,∴.所以点P的轨迹C是抛物线,由题意,轨迹C的方程为:y2=4x.(Ⅱ)由已知,,得λ1•λ2<0.则:.①过点A,B分别作准线l的垂线,垂足分别为A1,B1,则有:.②由①②得:,即λ1+λ2=0.【点评】本小题主要考查直线、抛物线、向量等基础知识,考查轨迹方程的求法以及研究曲线几何特征的基本方法,考查运算能力和综合解题能力.。
2017-2018学年惠州第一学期期末考试及答案
精品文档1. 锥体的体积公式V2. 球的表面积公式 S、选择题:本大题共 5.B . 2、、2C.6D. 26.设mn 是两条不同的直线,B 是两个不同的平面, 则下列命题中正确的是A .若 mil n , mil a,贝U n //aB .若 a 丄 B, mil aC.若aD.若 m ± n , m ± a ,7.设f X 是定义在R 上的奇函数,当x0时, f x 2x 2x ,则 f 1等于2017— 2018学年度第一学期期末考试第I 卷(选择题共48 分)参考公式:1-Sh,其中S 是锥体的底面积,h 是锥体的高. 324 R 34 R ,球的体积公式V,其中R 为球的半径 312小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集 U {0,1,2,3}, A {1,3},则集合 C u A ()动点P 在直线x+y-4=0上,O 为原点,则|OP|的最小值为2. 3. 4. A.0 B . 1,2 C 空间中,垂直于同一直线的两条直线 A.平行 已知幕函数 A. 16 函数f (x) B. 相交 C .异面 0,2 x 的图象经过点 1162, D .0,1,2.以上均有可能 2 2、、1 x lg(x 2)的定义域为 A. (-2,1 ) B.[-2,1] C.2,D.D.的值等于2,1A.— 38.函数y=B-x2+2x的值域是A. R B.(2 , + g) D. (011.函数 f(x) =e x -1的零点所在的区间是x( )1A. ( 0,丄) 1B. ( 1,1)C.(1,1)D2)12.已知函数f(x)x 2 4x, x x 2 4x,x0,若 f(2a 1)0 f(a),则实数a 的取值范围是(A ( , 1) (3,)B ・(,3) ( 1,)(1,3)D • ( 3, 1)9•已知圆c ,:x 2 y 2 4x 6y 9 0,圆 C 22 2:xy 12x 6y 190, 则两圆位置关系是 ( )A.相交B.内切C.外切D.相离10.当 0 a1时,在同一坐标系中, 函数 ya x 与 y log a x 的图象是( )第n 卷(非选择题,共 72分)二、填空题:本大题共4小题,每小题4分,共16分.a 1 y 10垂直,则实数a = _______13. _______________________________________ 计算(Ig5)2 Ig2 Ig5 Ig2 . 14.已知直线l 1 : ax 3y 1 0与直线l 2 : 2x15. 已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为16. 圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是三、解答题:本大题共6小题,共56分,解答应写出文字说明,证明过程或演算步骤 17. (本小题满分10分)已知数列 a n 的前n 项和S n =3n 2+8n , b n 是等差数列,且a n b n b n 1.(i)求数列 b n 的通项公式;(n)令Cn ®一1一 求数列c n 的前n 项和T n .(bn 2亍 *18. (本小题满分10 分)已知函数 f(x) log a (1 x) log a (x 3) (0 a 1). (i)求函数f(x)的零点;(n)若函数f (x)的最小值为4,求a 的值•D 为AB 边中点,19. (本小题满分12分)__ 2 2已知圆 C : x + y - 8y + 12= 0,直线 l : ax + y + 2a = 0. (I )当a 为何值时,直线l 与圆C 相切;(n )当直线I 与圆C 相交于A , B 两点,且AB= 2 2时,求直线I 的方程.20. (本小题满分12分)三棱柱ABC- A 1B 1C 1中,CG 丄平面ABC △ ABC 是边长为4的等边三角形, 且 CG=2AB.(I)求证:平面 CCDL 平面ADC; (n)求证:AC //平面CDB; (川)求三棱锥 D- CAB 的体积.21. (本小题满分12分)2S n 为数列{ a n }的前n 项和•已知a n >0, a n a n = 4S n 3.(I)求{a n}的通项公式;5 1(n)设b n ----------------------- ,求数列{b n }的前n项和•a.a n 12017 —2018学年高一上学期期末考试高一数学答案一、选择题C D D D B D A B C D B A二、填空题3 . 2 2 13、1 14 、515 、4,3 16 、x + y — 10y= 05三、解答题x|2 x 3 L L L L所以A B(n )因为B C C,所以B C L L L L L L L L 分所以a 1 2,即a 3 LLLLLLLLLL 分17、解:(I )由题意知,B{X|X2} LLLL 分1 x>018、解:(I )要使函数有意义:则有c小,解之得:3<x<1 Lx 3>02由f(x) 0,得x 2x 即x2 2x 20, x••• -1 ,3 ( 3,1)--f (x)的零点是1 x 3(n )函数化为:3 11 .3LLLLLLLLLLLLL2 223<x<1 /. 0<-( x 1) 4 4 L L L L L L2•/ 0<a<1 - log a (x 1) 4 log a 4即f(X)min lOg a44由Iog4 4,得a10分19、解:(I )若直线I与圆C相切,则有圆心(0,4 )到直线I : ax+ y + 2a = 0 的距离为4 2a 2LLLLLLJa213 解得a 34 LLLLLLLLL2 得GD= 2因为CD 4「.2所以解得a 7或1.故所求直线方程为7X— y + 14= 0或X— y+ 2 = 0. L L L L L L L 10 分的高.•三棱锥D- CAB的体积为丄L L L L L L L 12 分21、解:(I )任取X1, X2 € [ — 1,1],且X1<X2,则一X2€[—1,1] , ••• f(x)为奇函数,• f (X1) —f(X2) = f(X1) + f ( —X2)=-X1 + f —X220、解:(I ) T CG丄平面ABC 又AB?平面ABC二CG丄AB•/△ ABC是等边三角形,CD为AB边上的中线,• CD! AB L •/ CDn CC=C.・. AB丄平面 CCD •/ AB?平面 ADC:平面 C1CDL 平面 ADC; LLLLLLL4 分(n )连结BG,交BiC于点O,连结DO贝y O是BG的中点,DO>^ BAG的中位线.••• DO// AG. •/ DC?平面 CDB, AG?平面CDB, /• AG//平面 CDB; L L(川)T CC丄平面 ABC BB// CC, • BB丄平面 ABC • BB为三棱锥 D- CBBX1 , + f~~ >0, X1 —X2<0, • f(X1) —f(X2)< 0,即f(x”<f(X2). X1 十一X2精品文档11欢迎下载LLLLL 问题转化为 vm — 2am^ 1 > 1,即卩vm — 2am >0,对a € [ —1,1]恒成立. L L 9分下面来求 m 的取值范围.设 g (a ) = — 2m- a + n i >0.① 若 m= 0,则 g ( a ) = 0 >0,对 a € [ — 1,1]恒成立. ② 若m^0,贝U g (a )为a 的一次函数,若 g (a ) >0,对a € [ — 1, 1]恒成立, 必须 g( — 1) > 0 且 g(1) > 0, ••• m<— 2 或 m> 2.综上,m= 0 或 m^ — 2 或 m> 2 L L L L L L L 12 分 1 2x 11 (n) ••• f(x )在[—1,1]上单调递增,•• 1 1 3x1 L L L L L L 6分 2x 1 1 3x•不等式的解集为 x 0 x 2L LL L L L L 7分5 (川) •- f (1) = 1 , f (x )在[ —1,1]上单调递增. •在[ —1,1] 上,f (x )w 1. 二f (x )在[—1,1]上单调递增.。
2017-2018学年广东省惠州市高二(上)期末数学试卷(理科)
2017-2018学年广东省惠州市高二(上)期末数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0C.∃x0∈R,x+1<0 D.∀x∈R,x2+1≤02.(5分)函数y=(x﹣2)2在x=1处的导数等于()A.﹣1 B.﹣2 C.﹣3 D.﹣43.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.124.(5分)设x∈R,则“x>1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s26.(5分)已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α⊥β,则λ的值是()A.﹣6 B.6 C.﹣D.7.(5分)计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1000)2表示二进制数,将它转换成十进制形式是1×23+0×21+1×20=9,那么将二进制数转换成十进制形式是()A.29﹣2 B.210﹣2 C.210﹣1 D.29﹣18.(5分)某校高三年级有1221名同学,现采用系统抽样方法抽取37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有()A.12人B.11人C.10人D.9人9.(5分)若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A.B.C.D.10.(5分)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是()A.12,4 B.16,5 C.20,5 D.24,611.(5分)某中学早上8点开始上课,若学生小明与小方均在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小明比小方至少早5分钟到校的概率为()A.B.C.D.12.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2二.填空题:本题共4小题,每小题5分,共20分.13.(5分)函数f(x)=﹣x3+4x在点(1,f(1))处的切线方程是.14.(5分)如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图.若甲运动员的中位数为a,乙运动员的众数为b,则a﹣b=.15.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.16.(5分)已知抛物线y2=12x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.18.(12分)某种产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下列所示的对应数据.广告支出x/万元1234销售收入y/万元12284256(1)求出y与x的回归直线方程;(2)若广告费为9万元,则销售收入约为多少?(参考公式:==,=)19.(12分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图,已知测试平均成绩在区间[30,60)有20人.(I)求m的值及中位数n;(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?20.(12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.21.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.22.(12分)如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.2017-2018学年广东省惠州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0C.∃x0∈R,x+1<0 D.∀x∈R,x2+1≤0【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x∈R,x2+1>0,则¬p为:∃x0∈R,x+1≤0.故选:B.2.(5分)函数y=(x﹣2)2在x=1处的导数等于()A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:函数的导数为y′=2x﹣4,∴y′|x=1=﹣2,故选B3.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.12【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选C4.(5分)设x∈R,则“x>1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由不等式x2+x﹣2>0,得x>1或x<﹣2,所以由x>1可以得到不等式x2+x﹣2>0成立,但由x2+x﹣2>0不一定得到x>1,所以x>1是x2+x﹣2>0的充分不必要条件,故选A5.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s2【解答】解:由题意知y i=x i+100,则=(x1+x2+…+x10+100×10)=(x1+x2+…+x10)=+100,方差s2=[(x1+100﹣(+100)2+(x2+100﹣(+100)2+…+(x10+100﹣(+100)2]=[(x1﹣)2+(x2﹣)2+…+(x10﹣)2]=s2.故选:D.6.(5分)已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α⊥β,则λ的值是()A.﹣6 B.6 C.﹣D.【解答】解:由题意可知:平面α和β的法向量分别是(2,3,﹣1)和(4,λ,﹣2),由平面α⊥β,可得它们的法向量垂直,故(2,3,﹣1)•(4,λ,﹣2)=8+3λ+2=0,解得λ=,故选C7.(5分)计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1000)2表示二进制数,将它转换成十进制形式是1×23+0×21+1×20=9,那么将二进制数转换成十进制形式是()A.29﹣2 B.210﹣2 C.210﹣1 D.29﹣1【解答】解:由题意得,二进制数=1×29+1×28+…+1×20==210﹣1.故选:C.8.(5分)某校高三年级有1221名同学,现采用系统抽样方法抽取37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有()A.12人B.11人C.10人D.9人【解答】解:使用系统抽样方法,从1221人中抽取37人,即从33人抽取1人.∴从区间[496,825]共330人中抽取10人.故选:C.9.(5分)若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A.B.C.D.【解答】解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是,故选D.10.(5分)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是()A.12,4 B.16,5 C.20,5 D.24,6【解答】解:模拟执行程序,可得m=4,n=10,i=1a=4,不满足条件n整除a,i=2,a=8不满足条件n整除a,i=3,a=12不满足条件n整除a,i=4,a=16不满足条件n整除a,i=5,a=20满足条件n整除a,退出循环,输出a的值为20,i的值为5.故选:C.11.(5分)某中学早上8点开始上课,若学生小明与小方均在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小明比小方至少早5分钟到校的概率为()A.B.C.D.【解答】解:设小明到校的时间为x,小方到校的时间为y;(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y)|40≤x≤60,40≤y≤60}是一个矩形区域,对应的面积为S=20×20=400,则小明比小方至少早5分钟到校为事件A={x|y﹣x≥5};作出符合题意的图象,如图所示;则符合题意的区域为△ABC,联立得C(55,60),由得B(40,45),=×15×15,则S△ABC由几何概率模型可知小明比小方至少早5分钟到校的概率为P==.故选:A.12.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2【解答】解:由题意,双曲线C1:c2=a2+b2,e1=;双曲线C2:c′2=(a+m)2+(b+m)2,e2=,∴=﹣=,∴当a>b时,e1>e2;当a<b时,e1<e2,故选:B.二.填空题:本题共4小题,每小题5分,共20分.13.(5分)函数f(x)=﹣x3+4x在点(1,f(1))处的切线方程是y=x+2.【解答】解:函数f(x)=﹣x3+4x,可得f′(x)=﹣3x2+4:,f′(1)=1,f(1)=3,所以切线方程为y﹣3=x﹣1,即y=x+2.故答案为:y=x+2.14.(5分)如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图.若甲运动员的中位数为a,乙运动员的众数为b,则a﹣b=8.【解答】解:由茎叶图可知甲运动员得分从小到大排列为7,8,9,15,17,19,23,24,26,32,41;所以甲的中位数为a=19,乙运动员得分为5,7,8,11,11,13,20,22,30,31,40,所以乙的众数为b=11,所以a﹣b=8.故答案为:8.15.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,如图,M(1,,1),N(1,1,),A(1,0,0),C(0,1,0),∴=(0,,1),=(1,0,).∴cos<>===.即直线AM与CN所成角的余弦值为.故答案为:.16.(5分)已知抛物线y2=12x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.【解答】解:设|AF|=a,|BF|=bA、B在准线上的射影点分别为Q、P,连接AQ、BQ,由抛物线定义,得AF|=|AQ|且|BF|=|BP|在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2﹣2ab,又∵ab≤()2,∴(a+b)2﹣2ab≥(a+b)2﹣2×()2=(a+b)2,得到|AB|≥(a+b).所以≤=,即的最大值为.故答案为:.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.【解答】解:(Ⅰ)由题意知本题是一个古典概型,设A表示事件“抽取3张卡片上的数字之和大于7”,∵任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),其中数字之和大于7的是(1、3、4),(2、3、4),∴.(Ⅱ)设B表示事件“至少一次抽到3”,∵每次抽1张,连续抽取两张全部可能的基本结果有:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16个基本结果.事件B包含的基本结果有(1、3)(2、3)(3、1)(3、2)(3、3)(3、4)(4、3),共7个基本结果.∴所求事件的概率为.18.(12分)某种产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下列所示的对应数据.广告支出x/万元1234销售收入y/万元12284256(1)求出y与x的回归直线方程;(2)若广告费为9万元,则销售收入约为多少?(参考公式:==,=)【解答】解:(1)=,=,=30,x i y i=418,所以=,=﹣=﹣2,所以=x﹣2.(2)若广告费为9万元,代入方程为=×9﹣2=129.4,即销售收入约为129.4万元.19.(12分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图,已知测试平均成绩在区间[30,60)有20人.(I)求m的值及中位数n;(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?【解答】解:(Ⅰ)由频率分布直方图知,第1组的频率为0.002×10=0.02,第2组的频率为0.002×10=0.02,第3组的频率为0.006×10=0.06,则m×(0.02+0.02+0.06)=20,解得m=200;由直方图可知,中位数n位于[70,80),则0.02+0.02+0.06+0.22+0.04(n﹣70)=0.5,解得n=74.5;…(4分)(Ⅱ)设第i组的频率和频数分别为p i和x i,由图知,p1=0.02,p2=0.02,p3=0.06,p4=0.22,p5=0.40,p6=0.18,p7=0.10,则由x i=200×p i,可得x1=4,x2=4,x3=12,x4=44,x5=80,x6=36,x7=20,…(8分)故该校学生测试平均成绩是==74<74.5,…(11分)所以学校应该适当增加体育活动时间.…(12分)20.(12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.【解答】解:由y2=4x,得p=2,其准线方程为x=﹣1,焦点F(1,0).设A(x1,y1),B(x2,y2).(1)由抛物线的定义可知,|AF|=x1+,从而x1=3.代入y2=4x,解得y1=±2.∴点A的坐标为(3,2)或(3,﹣2).(2)斜率存在时,设直线l的方程为y=k(x﹣1),代入y2=4x整理得:k2x2﹣(2k2+4)x+k2=0.再设B(x2,y2),则x1+x2=2+.∴|AB|=x1+x2+2=4+>4.斜率不存在时,|AB|=4,∴线段AB的长的最小值为4.21.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.22.(12分)如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.【解答】解:(Ⅰ)依题意,当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°.设F(﹣c,0),则.将代入a2=b2+c2,得a=2c.所以椭圆的离心率为.(Ⅱ)由(Ⅰ),椭圆的方程可设为,设A(x1,y1),B(x2,y2).依题意,直线AB不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入3x2+4y2=12c2,整理得(4k2+3)x2+8ck2x+4k2c2﹣12c2=0.则,,所以.因为GD⊥AB,所以,.因为△GFD∽△OED,所以=.所以的取值范围是(9,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广东省惠州市高二(上)期末数学试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0C.∃x 0∈R,x+1<0 D.∀x∈R,x2+1≤02.(5分)函数y=(x﹣2)2在x=1处的导数等于()A.﹣1 B.﹣2 C.﹣3 D.﹣43.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.124.(5分)设x∈R,则“x>1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s26.(5分)已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α⊥β,则λ的值是()A.﹣6 B.6 C.﹣D.7.(5分)计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1000)2表示二进制数,将它转换成十进制形式是1×23+0×21+1×20=9,那么将二进制数转换成十进制形式是()A.29﹣2 B.210﹣2 C.210﹣1 D.29﹣18.(5分)某校高三年级有1221名同学,现采用系统抽样方法抽取37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有()A.12人B.11人C.10人D.9人9.(5分)若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A.B.C.D.10.(5分)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是()A.12,4 B.16,5 C.20,5 D.24,611.(5分)某中学早上8点开始上课,若学生小明与小方均在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小明比小方至少早5分钟到校的概率为()A.B.C.D.12.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2二.填空题:本题共4小题,每小题5分,共20分.13.(5分)函数f(x)=﹣x3+4x在点(1,f(1))处的切线方程是.14.(5分)如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图.若甲运动员的中位数为a,乙运动员的众数为b,则a﹣b=.15.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.16.(5分)已知抛物线y2=12x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.18.(12分)某种产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下列所示的对应数据.(1)求出y与x的回归直线方程;(2)若广告费为9万元,则销售收入约为多少?(参考公式:==,=)19.(12分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图,已知测试平均成绩在区间[30,60)有20人.(I)求m的值及中位数n;(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?20.(12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.21.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.22.(12分)如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.2017-2018学年广东省惠州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)设命题p:∀x∈R,x2+1>0,则¬p为()A.∃x0∈R,x+1>0 B.∃x0∈R,x+1≤0C.∃x0∈R,x+1<0 D.∀x∈R,x2+1≤0【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x∈R,x2+1>0,则¬p为:∃x0∈R,x+1≤0.故选:B.2.(5分)函数y=(x﹣2)2在x=1处的导数等于()A.﹣1 B.﹣2 C.﹣3 D.﹣4【解答】解:函数的导数为y′=2x﹣4,∴y′|x=1=﹣2,故选:B.3.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.12【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选:C.4.(5分)设x∈R,则“x>1”是“x2+x﹣2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由不等式x2+x﹣2>0,得x>1或x<﹣2,所以由x>1可以得到不等式x2+x﹣2>0成立,但由x2+x﹣2>0不一定得到x>1,所以x>1是x2+x﹣2>0的充分不必要条件,故选:A.5.(5分)某公司10位员工的月工资(单位:元)为x 1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s2【解答】解:由题意知y i=x i+100,则=(x1+x2+…+x10+100×10)=(x1+x2+…+x10)=+100,方差s2=[(x1+100﹣(+100)2+(x2+100﹣(+100)2+…+(x10+100﹣(+100)2]=[(x﹣)2+(x2﹣)2+…+(x10﹣)2]=s2.1故选:D.6.(5分)已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α⊥β,则λ的值是()A.﹣6 B.6 C.﹣D.【解答】解:由题意可知:平面α和β的法向量分别是(2,3,﹣1)和(4,λ,﹣2),由平面α⊥β,可得它们的法向量垂直,故(2,3,﹣1)•(4,λ,﹣2)=8+3λ+2=0,解得λ=,故选:C.7.(5分)计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1000)2表示二进制数,将它转换成十进制形式是1×23+0×21+1×20=9,那么将二进制数转换成十进制形式是()A.29﹣2 B.210﹣2 C.210﹣1 D.29﹣1【解答】解:由题意得,二进制数=1×29+1×28+…+1×20==210﹣1.故选:C.8.(5分)某校高三年级有1221名同学,现采用系统抽样方法抽取37名同学做问卷调查,将1221名同学按1,2,3,4,…,1221随机编号,则抽取的37名同学中,标号落入区间[496,825]的人数有()A.12人B.11人C.10人D.9人【解答】解:使用系统抽样方法,从1221人中抽取37人,即从33人抽取1人.∴从区间[496,825]共330人中抽取10人.故选:C.9.(5分)若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A.B.C.D.【解答】解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是,故选:D.10.(5分)如图程序框图中,若输入m=4,n=10,则输出a,i的值分别是()A.12,4 B.16,5 C.20,5 D.24,6【解答】解:模拟执行程序,可得m=4,n=10,i=1a=4,不满足条件n整除a,i=2,a=8不满足条件n整除a,i=3,a=12不满足条件n整除a,i=4,a=16不满足条件n整除a,i=5,a=20满足条件n整除a,退出循环,输出a的值为20,i的值为5.故选:C.11.(5分)某中学早上8点开始上课,若学生小明与小方均在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小明比小方至少早5分钟到校的概率为()A.B.C.D.【解答】解:设小明到校的时间为x,小方到校的时间为y;(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y)|40≤x≤60,40≤y≤60}是一个矩形区域,对应的面积为S=20×20=400,则小明比小方至少早5分钟到校为事件A={x|y﹣x≥5};作出符合题意的图象,如图所示;则符合题意的区域为△ABC,联立得C(55,60),由得B(40,45),则S=×15×15,△ABC由几何概率模型可知小明比小方至少早5分钟到校的概率为P==.故选:A.12.(5分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2【解答】解:由题意,双曲线C1:c2=a2+b2,e1=;双曲线C2:c′2=(a+m)2+(b+m)2,e2=,∴=﹣=,∴当a>b时,e1>e2;当a<b时,e1<e2,故选:B.二.填空题:本题共4小题,每小题5分,共20分.13.(5分)函数f(x)=﹣x3+4x在点(1,f(1))处的切线方程是y=x+2.【解答】解:函数f(x)=﹣x3+4x,可得f′(x)=﹣3x2+4:,f′(1)=1,f(1)=3,所以切线方程为y﹣3=x﹣1,即y=x+2.故答案为:y=x+2.14.(5分)如图是根据某赛季甲、乙两名篮球运动员参加11场比赛的得分情况画出的茎叶图.若甲运动员的中位数为a,乙运动员的众数为b,则a﹣b=8.【解答】解:由茎叶图可知甲运动员得分从小到大排列为7,8,9,15,17,19,23,24,26,32,41;所以甲的中位数为a=19,乙运动员得分为5,7,8,11,11,13,20,22,30,31,40,所以乙的众数为b=11,所以a﹣b=8.故答案为:8.15.(5分)在棱长为1的正方体ABCD﹣A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,如图,M(1,,1),N(1,1,),A(1,0,0),C(0,1,0),∴=(0,,1),=(1,0,).∴cos<>===.即直线AM与CN所成角的余弦值为.故答案为:.16.(5分)已知抛物线y2=12x的焦点为F,若点A,B是该抛物线上的点,,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.【解答】解:设|AF|=a,|BF|=bA、B在准线上的射影点分别为Q、P,连接AQ、BQ,由抛物线定义,得AF|=|AQ|且|BF|=|BP|在梯形ABPQ中根据中位线定理,得2|MN|=|AQ|+|BP|=a+b.由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2﹣2ab,又∵ab≤()2,∴(a+b)2﹣2ab≥(a+b)2﹣2×()2=(a+b)2,得到|AB|≥(a+b).所以≤=,即的最大值为.故答案为:.三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次抽取3张卡片,求3张卡片上数字之和大于7的概率;(Ⅱ)若第一次抽1张卡片,放回后再抽取1张卡片,求两次抽取中至少一次抽到数字3的概率.【解答】解:(Ⅰ)由题意知本题是一个古典概型,设A表示事件“抽取3张卡片上的数字之和大于7”,∵任取三张卡片,三张卡片上的数字全部可能的结果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),其中数字之和大于7的是(1、3、4),(2、3、4),∴.(Ⅱ)设B表示事件“至少一次抽到3”,∵每次抽1张,连续抽取两张全部可能的基本结果有:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16个基本结果.事件B包含的基本结果有(1、3)(2、3)(3、1)(3、2)(3、3)(3、4)(4、3),共7个基本结果.∴所求事件的概率为.18.(12分)某种产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下列所示的对应数据.(1)求出y与x的回归直线方程;(2)若广告费为9万元,则销售收入约为多少?(参考公式:==,=)【解答】解:(1)=,=,=30,x i y i=418,所以=,=﹣=﹣2,所以=x﹣2.(2)若广告费为9万元,代入方程为=×9﹣2=129.4,即销售收入约为129.4万元.19.(12分)为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试.根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),并得到频率分布直方图(如图,已知测试平均成绩在区间[30,60)有20人.(I)求m的值及中位数n;(Ⅱ)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间.根据以上抽样调查数据,该校是否需要增加体育活动时间?【解答】解:(Ⅰ)由频率分布直方图知,第1组的频率为0.002×10=0.02,第2组的频率为0.002×10=0.02,第3组的频率为0.006×10=0.06,则m×(0.02+0.02+0.06)=20,解得m=200;由直方图可知,中位数n位于[70,80),则0.02+0.02+0.06+0.22+0.04(n﹣70)=0.5,解得n=74.5;…(4分)(Ⅱ)设第i组的频率和频数分别为p i和x i,由图知,p1=0.02,p2=0.02,p3=0.06,p4=0.22,p5=0.40,p6=0.18,p7=0.10,则由x i=200×p i,可得x1=4,x2=4,x3=12,x4=44,x5=80,x6=36,x7=20,…(8分)故该校学生测试平均成绩是==74<74.5,…(11分)所以学校应该适当增加体育活动时间.…(12分)20.(12分)已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1)若|AF|=4,求点A的坐标;(2)求线段AB的长的最小值.【解答】解:由y2=4x,得p=2,其准线方程为x=﹣1,焦点F(1,0).设A(x1,y1),B(x2,y2).(1)由抛物线的定义可知,|AF|=x1+,从而x1=3.代入y2=4x,解得y1=±2.∴点A的坐标为(3,2)或(3,﹣2).(2)斜率存在时,设直线l的方程为y=k(x﹣1),代入y2=4x整理得:k2x2﹣(2k2+4)x+k2=0.再设B(x2,y2),则x1+x2=2+.∴|AB|=x1+x2+2=4+>4.斜率不存在时,|AB|=4,∴线段AB的长的最小值为4.21.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.22.(12分)如图,椭圆的左焦点为F,过点F的直线交椭圆于A,B两点.当直线AB经过椭圆的一个顶点时,其倾斜角恰为60°.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点.记△GFD的面积为S1,△OED(O为原点)的面积为S2,求的取值范围.【解答】解:(Ⅰ)依题意,当直线AB经过椭圆的顶点(0,b)时,其倾斜角为60°.设F(﹣c,0),则.将代入a2=b2+c2,得a=2c.所以椭圆的离心率为.(Ⅱ)由(Ⅰ),椭圆的方程可设为,设A(x1,y1),B(x2,y2).依题意,直线AB不能与x,y轴垂直,故设直线AB的方程为y=k(x+c),将其代入3x2+4y2=12c2,整理得(4k2+3)x2+8ck2x+4k2c2﹣12c2=0.则,,所以.因为GD⊥AB,所以,.因为△GFD∽△OED,所以=.所以的取值范围是(9,+∞).赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在yxo[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。