第六章 近独立粒子的最概然分布教案

合集下载

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

热力学与统计物理学第六章(应用)_近独立粒子的最概然分布

al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l

l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l

l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N

第六章:近独立粒子的最概然分布 热力学统计物理汪志诚

第六章:近独立粒子的最概然分布  热力学统计物理汪志诚

新课:§6.1 粒子运动状态的经典描述
1-d线性谐振子 自由度: 1 相空间维数:2 位置:x
动量:p mx
p2 1 m 2 x 2 能量: 2m 2
半长轴
a 2m
能量椭圆:
p2 x2 1 2 2m m 2
能量曲面包围的相体积:
( ) ab 2
例二、线性谐振子
自由度: 1 空间维数:2
位置:x
动量:p mx
p2 1 2 2 m x 能量: 2m 2
能量椭圆
p2 x2 1 2 2m m 2
p
x
新课:§6.1 粒子运动状态的经典描述小结
例三、转子 自由度:2
空间维数:4
z
, 位置:
p r 2 动量: p r 2 sin 2
新课:§6.1 粒子运动状态的经典描述
能量ε包围的相体积:
0 x L px
2 px px 2m 2m


V , 0
2 px
dxdpx dx
0
L
2 m
2 m
dpx 2 2m L
2m
新课:§6.1 粒子运动状态的经典描述
无外力矩时,转子的总角动 量守恒量
M rp r M 2 p mr p 0 z // M 选 则 2
1 1 1 1 2 2 2 ( p p ) ( p ) 2 2 2I sin 2 I sin
(2)三维自由粒子: 分解 自由度:r 3, r 6 位置:x y z 投影
动量:p x mx p y my
三个2-d子相空间

第六章 近独立粒子的最概然分布(复习要点)

第六章  近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。

②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。

这里0h 由测量精度决定的一个常数。

经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。

空间自由度和一个自旋自由度)个量子确定。

并且微观粒子能量值和动量值的分离性很显著。

③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。

若粒子的自由度为r ,一个量子态占据的相体积为rh 。

在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。

热力学与统计物理教案:第六章 近独立粒子的最概然分布

热力学与统计物理教案:第六章 近独立粒子的最概然分布

为随机事件 A 出现可能性的客观量度,称为事件 A 发生的概率 PA :
lim PA
N
NA N
PA 0 , A 不可能发生; PA 1, A 肯定发生
显然 0 PA 1 。事实上,试验的次数不可能无限多,但是,只要试验次数足够多,我们就可
以用 NA 来表示事件发生的概率。如掷一质量均匀的硬币,若只掷少数几次,正面向上和背 N
统计物理中讨论的系统是由大量微观粒子组成的,大约有1023 数量级。描述大量粒子组
成的系统的宏观性质的物理量称为宏观量,描述单个粒子性质的物理量称为微观量。 粒子(指微观粒子)的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动
规律,对粒子运动状态的描述称为经典描述。如果粒子遵从量子力学规律,对粒子运动状态 的描述称为量子描述。当然,从本质上讲,微观粒子遵从量子力学规律,不过在一定极限条 件下,经典理论还是有意义的。 粒子运动状态的经典描述
相体积。 统计物理中的几个例子
(1)自由粒子
当自由粒子在三维空间中运动时,其自由度 3 ,所以相空间是 6 维的,粒子在任一时刻 的位置由坐标 x, y, z 确定,共轭的动量分别为 px mx , py my , pz mz ,
相空间坐标分别为 x, y, z, px , py , pz 。
微观粒子服从量子力学规律。
波粒二象性: 粒子 波
, p k
, p 粒子量,
,
k
波量
普朗克常量 h 1.0551034 J S , 2
量纲: T E L P M
海森堡不确定关系 qp ~ h
经典:粒子沿轨道运动。
量子:无轨道, x, p 不能同时确定。
量子态——量子力学中微观粒子的运动状态。 量子态数的计算,量子态的描述

热力学与统计物理教学大纲

热力学与统计物理教学大纲

《热力学与统计物理》教学大纲课程名称:《热力学与统计物理》英文名称:Thermodynamics and statistic p hysics课程性质:学科教育必修课课程编号:E121015所属院部:光电工程学院周学时:3学时总学时:45学时学分:3学分教学对象(本课程适合的专业和年级) :物理学专业(本科)2012级学生预备知识:高等数学、概率统计、普物课程在教学计划中的地位作用:《热力学·统计物理》课是物理专业学生的专业基础课,与理论力学、量子力学、电动力学共同构成物理专业重要的四门必修课,通常称为物理专业的四大力学课。

热力学和统计物理的任务是研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化.本课程的作用是使学生掌握热力学与统计物理的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。

教学方法:以板书手段为主要形式的课堂教学。

在课堂教学中,教师应精心组织教学内容,注重发挥学生在教学活动中的主体作用和教师的主导作用,注重采用多种教学形式提高课程教学质量。

注意在学习中调动学生积极性和创造性,注重各种教学方法的灵活应用。

教学目标与要求:要求学生初步掌握与热现象有关的物质宏观物理性质的唯象理论和统计理论,并对二者的特点与联系有一个较全面的认识同时注重对学生逻辑思维能力的培养,强调学生物理素养的生成和提高.课程教材:汪志诚主编. 热力学统计物理(第四版).北京:高等教育出版社,2010年参考书目:[1] 苏汝铿主编. 统计物理学。

上海:复旦大学出版社,2004年[2] 王竹溪主编。

热力学简程. 北京:高等教育出版社,1964[3] 王竹溪主编。

统计物理学导论. 北京:高等教育出版社,1956考核形式:考核方式为考试。

综合成绩根据平时成绩和期末成绩评定,平时成绩不超过30%,期末成绩不少于70%。

编写日期:2012年5月制定课程内容及学时分配(含教学重点、难点):本课程内容主要包括:热力学的基本规律麦克斯韦关系及其应用,气体的节流膨胀与绝热膨胀,基本热力学函数,特性函数,平衡辐射热力学,磁介质热力学等。

第六章近独立粒子的最概然分布

第六章近独立粒子的最概然分布
讨论热力学第二定律与几率的关系中,他证明熵与几率W 的对数 成正比。后来普朗克把这个关系写成
S=klnW 并且称k 为玻尔兹曼常数。
§6.1 粒子运动状态的经典描述
1.粒子的运动状态
粒子:指组成宏观物质系统的基本单元。
例如:气体中的分子; 金属中的离子和电子; 辐射场中的光子。
粒子的运动状态是指它的力学运动状态。

pz2 )
等能面:px2 py2 pz2 2m
等能面是动量空间半径为 2m 的球面。
相空间体积(能量小于或等于ε):


dxdydz dpxdpydpz

4 V (2m )3/2
3
③线性谐振子
质量为m的粒子在弹性力 f = -kx 作用下,将在原点附近作圆频率 ω= ������/������ 的简谐振动,称为线性谐振子。

在麦氏速度分布律的基础上,第一次考虑
尔 兹
了重力对分子运动的影响,建立了更全面的玻

尔兹曼分布律,建立了玻尔兹曼熵公式。
dN

n0
(
m
2kT
3
)2
e
(
K

P
)
/
kT dv
x
dv
y dv
z
dxdydz
1877 年玻尔兹曼进一步研究了热力学第二定律的统计解释,
玻尔兹曼写道:“(热力学)第二定律是关于几率的定律,”在
气体中双原子分子的振动,晶体中的原子或离子在平衡位置附 近的振动均可看作是简谐运动。
自由度:1 μ空间维数:2
广义坐标 : q x,
广义动量: p px mx
能量: p2 1 m2x2

第6章 近独立粒子的最概然分布

第6章 近独立粒子的最概然分布

西北师范大学物理与电子工程学院
6.1
粒子运动状态的经典描述
(2)、线性谐振子(自由度为1)
p2 1 ;能量ε 坐标x;动量p x mx mω2 x 2 2m 2
p
能量椭圆:
p2 x2 1 2ε 2m ε mω2
n=2 n=1 n=0 x
(3)、转子(自由度为2)
坐标θ , φ;动量pθ mr θ , pφ mr sin θ φ;
西北师范大学物理与电子工程学院
6.3
系统微观运动状态的描述
(3)、玻耳兹曼系统、玻色系统、费米系统 玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在一 个个体量子态上的粒子数不受限制的系统。 玻色系统:由不可分辨的全同近独立玻色子组成,且处在一个 个体量子态上的粒子数不受限制的系统。 费米系统:由不可分辨的全同近独立费米子组成,且处在一个 个体量子态上的粒子数最多只能为1,受泡利不相容原理的限制。
自旋角动量在外磁场方向上的投影Sz只能取两个值: S z 在外磁场方向的投影相应为: Z 在外磁场B中的势能为: μB
e 2m
1 2
e B 2m
将S z 表为S z m S , 描述粒子的自旋状态只 要一个量子数 m s, 1 它只能取两个分立的值 。 2
3
L 量子态数为: dn x dn y dnz dp x dp y dpz 2 π
由测不准关系:pq h 对应μ空间的一个体积元,量子相格。
自由度为r,相格大小为: q1, ,qr p1, ,pr hr
因此dnx dn y dnz 表示:Vdpx dp y dpz除以相格大小 hr而得到的 三维自由粒子在 Vdpx dp y dpz内的量子态数

第六章 近独立粒子的最概然分布(复习要点)

第六章  近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述:①、相空间、自由度;广义坐标、广义动量;粒子微观状态()r r p p p q q q ,,,,,,2121⇔。

②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0h p q =∆∆,这时经典系统的粒子运动状态不能用一个点表示,而必须用一个体积元表示,该体积元的大小rr rh p p qq 011=⋅δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。

这里0h 由测量精度决定的一个常数。

经典理论上00→h将μ空间划分为许多体积元lτ∆,以lε表示运动状态处在lτ∆内的粒子所具有的能量,则体积元lτ∆内粒子可能的运动状态数为r l lh 0τω∆=k l p p q q l r r l ,...2,1;)(11=∆∆∆∆=∆ τ其中2、粒子运动状态的量子描述:①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程一组量子数波函数粒子微观运动状态↔↔这组量子数的数目等于粒子的自由度数(不考虑自旋,考虑自旋时应乘为自旋量子数,S S 12+)②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。

空间自由度和一个自旋自由度)个量子确定。

并且微观粒子能量值和动量值的分离性很显著。

③、宏观体积下,量子态与相体积的关系---半经典近似如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。

若粒子的自由度为r ,一个量子态占据的相体积为rh 。

在相体积元rrdp dp dq dq d ∙∙∙∙= 11τ内的可能微观量子态为rrr r h dp dp dq dq h d ∙∙∙∙= 11τ考虑r=3的六维相空间,相体积元zyxdp dp dxdydzdp d =τ内的微观量子态为33hdp dp dxdydzdp hd zy x =τ二、系统微观运动状态的描述1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。

第六章-近独立粒子的最概然分布(习题课)

第六章-近独立粒子的最概然分布(习题课)

第六章 近独立粒子的最概然分布(习题课)本章题型一、基本概念:1、粒子相空间、自由度;广义坐标、广义动量;粒子微观状态、系统微观状态;经典相格与粒子微观状态;系统宏观态与系统微观态。

2、等概率原理(统计物理学的基本假设):平衡态孤立系统的各个微观态出现的概率相等。

最概然分布作为平衡态下的分布近似。

3、近独立粒子孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率、最概然分布。

,,,,21l τττ∆∆∆,,,,21l εεε}{l a,,,,21l ωωω,,,,21l a a a与分布}{l a 对应的微观状态数为()l a Ω分布{}l a 要满足的条件是:N a ll =∑E =∑ll l a ε系统总的微观状态数()()lm man a l a a lΩΩ=Ω∑~总系统某时刻的微观状态只是其中的一个。

在宏观短,微观长时间(一瞬间)系统经历了所有的微观状态()()lm man a l a a lΩΩ∑~----各态历经假说。

且各微观态出现的概率相等()()lmman a l a a lΩ≈Ω=∑11ρ()le a a l lm l βεαωδ--=⇒=Ω0ln ---玻耳慈曼分布。

此分布(宏观态)的概率为()()()()()()1=ΩΩ≈ΩΩ=Ω=∑lmman lm man a l lm man lm man lm a a a a a a p lρ 即:最概然分布几乎就是孤立系统的平衡态分布。

4、热力学第一定律的统计解释:Q d W d dU +=l ll l ll l l da d a dU a U ∑∑∑+=⇒=εεε比较可知:l ll d a W d ε∑=l ll da Q d ∑=ε即:从统计热力学观点看,做功:通过改变粒子能级引起能变化; 传热:通过改变粒子分布引起能变化。

二、相关公式 1、分布与微观状态数①、 ()l a l lll l B M a a ω∏=Ω∏!N!.. ②、 ()∏--+=Ωl ll l l E B a a a )!1(!)!1(..ωω ③、 ()∏-=Ωll ll l D F a a a )!(!!..ωω④、 ()l a r l l ll l cl h a N a ) ( ! !ω∆∏∏=Ω 2、最概然分布玻耳兹曼分布le a l l βεαω--=玻色-爱因斯坦分布1-=+l e a ll βεαω费米-狄拉克分布1+=+l e a ll βεαω本章题型※、第一类是求粒子运动状态在μ空间的相轨迹:关键是由已知条件写出广义坐标q 和广义动量p 满足的函数关系()0,=p q f 。

t6-近独立粒子的最概然分布

t6-近独立粒子的最概然分布

如果自由度为r,相格大小为:
q1 qr p1 pr h r
对动量采用球坐标:
pz

o
p x p sin cos p y p sin sin p z p cos

px
py
dpx dpy dpz p 2 sin dpdd
体积V内,动量 大小在p 到p dp, 方向在 到 d, 到 d的范围内, 自由粒子的量子态数为 :
量子数:3个
能量的可能值为
nx , ny , nz
2 2 2 2 2 2 p 2 px p y pz 2 2 2 nx n y nz n 2m 2m m L3
2 2 2 能量值决定于: nx n y nz
基态能级为非简并,激发态为6度简并。 比如对于:
dnx dny dnz
Vdp x dpy dpz h3
右边表示在μ空间中以h3为单位的相格的个数,左边表示量子态的数目。 一个相格h3 内只有一个量子态
进一步说明:
微观粒子的运动必须遵守不确定性关系,不可能同时具有确定的动量和 坐标,所以量子态不能用空间的一点来描述,如果硬要沿用广义坐标和广义 动量描述量子态,那么一个状态必然对应于空间中的一个体积元(相格), 而不是一个点,这个体积元称为量子相格。 自由度为1的粒子,相格大小为普朗克常数:qp h
由此得到能量 :
2 nx L
2 px 2π 2 2 2 nx nx ; nx 0,1,2, 2 2m L
基态能级为非简并,激发态为二度简并。
三维自由粒子
考虑处于长度为L的三维容器中自由粒子的运动状态。 假设此粒子限制在一个边长为L的方盒子中运动,仿照一维粒子的情 形,该粒子在三个方向动量的可能值为: 2 px nx L 2 nx , ny , nz 0,1,2, py ny L 2 pz nz L

热力学-统计物理第六章近独立粒子的最概然分布

热力学-统计物理第六章近独立粒子的最概然分布
j 0

E N
j 0
nj N
j N p j j
j 0
0 pj 1
p
j
j
1
是个概率。
找到微观粒子系统对能量分布的概率,就可以求出系统的能量。
目的:求出系统在热平衡状态的概率分布。
二、可分辨和不可分辨粒子系统 微观粒子全同性原理 (量子理论): 微观粒子(位置可以在大范围变化——非定域系) 是不可分辨的。 x x 波粒 二相性 重叠
研究对象的描述——引入何种假设、模型,如何 描述研究对象的运动状态(力学、几何)(第六章前 3节)。
如何求出概率分布——这是核心(第六章后5节)。
如何求出热力学量的统计表达式(七 、八 两章)。
主要内容
系统微观状态的经典描述和量子描述 等概率原理及微观状态分布 玻耳兹曼统计
玻色统计与费米统计
h3大小的相格内只能有一个运动状态;对于有r 个自
由度的粒子,hr相体积内只能有一个状态。所以在相 体积之dw内的量了态数为
dp V L3 ,p p 中的量子态数
,与动量的方向无关,积分之 球极坐 标系变 换
V dn 3 h
4V 2 p sin dpdd 3 p dp. h
空间中的一个 “点”进行描述。
相点:运动状态 相轨道:运动状态的变化 相体积:粒子状态代表点在μ空间所能充斥的范围。
二、 常见粒子微观运动状态描述实例
1、自由粒子
三维空间中,如果是直角坐标, 三个坐标 x, y, z 三个动量 能量 运动状态
, px mx
, py my
pz mz
L
x
即,一个量子态对应粒子相空间一个 h 大小的体积元。 三维自由粒子一个量子态对应粒子相空间体积元 h3。 则相空间体积 Vdpx dp中量子态数为 y dpz

第六章 近独立粒子的最概然分布 - 副本

第六章 近独立粒子的最概然分布 - 副本
波矢量: 动 量:
2 kx nx L
2 px nx L
L ny
L ny
2 kz nz L
pz 2 nz L
2 ky ny L
2 py ny L

量:
2 2 2 2 x nx 2 mL
2 2 2 2 y ny 2 mL
2 2 2 2 z nz 2 mL
相空间 2维 2r 维
p2 A 2 p2 1 能量 是其动能和势能之和 m 2 x 2 x 2m 2 2m 2
中北大学
物理系
以x和p为直角坐标,可构成二维的μ空间,振子在任一时 刻运动状态由μ空间中的一点表示。 如果给定振子的能量ε,对应点的轨迹就由如下方程确定:
p2 2 m x2 2 m 2 1
由测不准关系可知,坐标和动量不能同时取确定的值,所 以量子态不能用相空间的一点来描述,而应用一个体积元, 称为相格,相格的大小为h.
一、经典描述 设粒子的自由度为r,粒子在任一时刻的力学运动状态由粒子 的r个广义坐标q1、q2、…qr和相应的r个广义动量p1、p2、…pr在该 时刻的数值确定,粒子能量ε是其广义坐标和广义动量的函数 即 更一般 ε = ε ( q1、q2、…qr , p1、p2、…pr) ε = ε (qi、pi、λi ) (i = 1、2、…r) λ为非参量
上式给出的能量值是分立的。分立的能量称为能级。
线性谐振子的能级是等间距的,相邻两能级的能量差为 ħ ,其大小取决于振子的圆频率。
中北大学
物理系
(三)自由粒子 空间中一个自由运动的粒子,假设此粒子限制在一个边 长为L的方盒子中运动。
y
A' 0 A
在量子力学中粒子的运动满足薛定谔方程:

《热力学·统计物理学》教学大纲

《热力学·统计物理学》教学大纲

《热力学·统计物理学》教学大纲课程性质:专业基础课课程编码:适用专业:物理学教育本科编制时间:2007年2月修改时间:2008年8月一、预备知识:普通物理课程《力学》、《热学》、《光学》、《电磁学》和《原子物理》,以及《高等数学》,还有《理论力学》的学习,《热学》是其前期课程。

二、教学目的:热力学与统计物理学课程是高等学校物理学科主干课程体系中四大力学之一,其主要内容都是后续课程中不可或缺的基础,是有承上启下的知识连接作用。

通过本课程的学习,通过本课程的学习,应使学生在《热学》的基础上,较深入地掌握热力学与统计物理学的基本概念,系统地理解研究热现象的宏观与微观理论,基本掌握运用有关理论处理具体问题的方法,在逻辑思维和演义推理方面得到进一步训练,提高分析问题和解决问题的能力。

结合一些物理学史的介绍,使学生了解如何由分析物理实验结果出发、建立物理模型,进而建立物理理论体系的过程,了解微观物理学对现代科学技术重大影响和各种应用,了解并适当涉及正在发展的学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

三、教学要求:本课程是后续多门专业课程,特别是固体物理学与半导体物理学的基础。

课程的学习有别于中学课程的学习,要求学生掌握科学的学习方法,培养学生独立的思考能力。

该课程重物理概念和基本原理,轻数学计算(热力学方面要求熟练运用雅可比行列式,统计物理学方面会运用玻耳兹曼分布和配分函数)。

在热力学方面要求学生掌握热力学的系统描述参量及其性质;热力学中的基本实验规律与三大定律;状态函数的本质及其在其他学科的应用;了解相变的基本规律和描述方法。

在统计物理学方面要求学生能够用物理学微观的统计方法把物理系统的宏观性质与微观粒子的统计规律联系起来。

掌握统计物理的基本理论,学会用来解决一些基本的和与专业有关的一些热运动方面的问题。

掌握热力学的基本规律和统计物理的基本理论,重点为三种分布函数及其关系;学会由配分函数导出系统的热力学函数和其他的物理量。

第六章 近独立粒子的最概然分布教案

第六章  近独立粒子的最概然分布教案

热力学与统计物理课程教案第六章 近独立粒子的最概然分布 6.1 粒子运动状态的经典描述首先介绍如何描述粒子的运动状态。

这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。

粒子的运动状态是指它的力学运动状态。

如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。

1、粒子运动状态经典描述的两种方法设粒子的自由度为r 。

经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。

粒子能量ε是其广义坐标和广义动量的函数:()r r p p p q q q εε,,,;,,,2121 = 如果存在外场,ε还是描述外场参量的函数。

为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。

粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。

当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。

2、下面介绍统计物理中用到的几个例子 (1)、自由粒子:自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。

粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为:⋅⋅⋅===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:()22221z y x p p p mε++=, 对应的μ空间是6维的。

(2)线性谐振子对于自由度为1的线性谐振子,在任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为⋅=x m p x ,它的能量是其动能和势能之和:2222221222x m m p x A m p ωε+=+=以x 和p 为直角坐标,可构成二维的μ空间,振子在任一时刻运动状态由μ空间中的一点表示。

热力学统计物理第六章近独立粒子的最概然分布

热力学统计物理第六章近独立粒子的最概然分布
自由度 r =1(曲线上运动) : x 和 px 描述其状态; r = 3(3D空间中运动): x, y, z 和 px , py , pz 描述状态。
若粒子有内部运动, 则 r 更大。如双原子分子, φ, p , pφ
一般地,设粒子的自由度为 r , 其力学运动状态由粒子 的 r 个广义坐标 q1、q2、…qr 和相应的 r 个广义动量 p1、 p2、… pr 共 2r 个量的值确定。粒子能量ε: ε=ε( q1、q2、…qr ,p1、p2、…pr ) 。 总之,微观粒子运动状态的经典描述是采用粒子的坐 标和动量共同描述的方法。
热统
而 S z (自旋方向取向量子化) 2 e e B e B B ms 所以 z 2m 2m m 即外场中的电子自旋状态只需要一个量子数 m s
2

13
2 自由粒子 (1)一维自由粒子: 自由运动的粒子被限制在边长为L的一维容器中。波函数 要满足一定的边界条件,采用周期性条件,即
能级为
2
1 , n 2

px
x
n 0, 1, 2,
热统 21
相邻两个状态之间所夹的面积为

2 1 1 n 1 n ( n 1 ) ( n ) h 2 2 推广之:粒子的一个状态在 空间中占有的体积为相格 hr
② 3D自由粒子:r = 3 , 设粒子处于体积 V 中。状态由 x、 y、z、px、py、pz 确定,μ空间是 6 维的。 粒子能量 ε= ( px2 + py2 + pz2 ) / 2m 动量子空间的半径 p p 2 p 2 p 2 2m x y z
热统

第六章 近独立粒子及其最概然分布

第六章  近独立粒子及其最概然分布
0 0 2

p
上一页 下一页
目 录 退 出
6.2
粒子运动状态的量子描述
一、微观粒子的波粒二象性与测不准关系
微观粒子普遍地具有粒子和波动的二象性,一方面是客观存在的单个实 体,另一方面在适当的条件下显示干涉、衍射等波动的现象。 德布罗意波: 德布罗意,薛定谔
能量为、动量为p的自由粒子 对应 圆频率为、波矢为k的单色平面波
德布罗意关系: p k

适用于一切微观粒子。
h ; 其中h和都称为普朗克常量: h 6.626 10 34 J . S 2π 1.055 10 34 J . S
普朗克常数是物理中的基本常数, 它的量纲是[时间]· [能量]=[长度]· [动量]=[角动量]
结论:确定了系统的r个广义坐标和r个广义动量,就确定了体系的运动状态。
上一页 下一页
目 录 退 出
6.1 二、 空间
粒子运动状态的经典描述
把遵从经典力学规律的粒子看作是具有r个自由度的力学体系时,近独 立粒子的运动状态由粒子r个广义坐标和r个广义动量确定----构成一个 2r维抽象空间,称为空间,也称为粒子相空间。 μ空间中任何一点代表力学体系中一个粒子的一个运动状态,这个点称为 代表点(或相点)。当粒子运动状态随时间改变时,代表点相应地在μ空 间中移动,描画出一条轨迹,称为相轨迹。 ①、相点是一个粒子运动状态,而不是粒子,粒子只能在真实空间运动。 ②、任何粒子总可以找到与其对应的空间,不同自由度的粒子不能用同一 空间描述状态。 ③、若粒子受 i E 的限制,粒子状态只能在能量曲面内,称为相体积。 H H ,q ④、 空间中相轨道不相交,因为在物理问题中 P 是单 q p 值函数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学与统计物理课程教案第六章 近独立粒子的最概然分布 6.1 粒子运动状态的经典描述首先介绍如何描述粒子的运动状态。

这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。

粒子的运动状态是指它的力学运动状态。

如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。

1、粒子运动状态经典描述的两种方法设粒子的自由度为r 。

经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。

粒子能量ε是其广义坐标和广义动量的函数:()r r p p p q q q εε,,,;,,,2121 = 如果存在外场,ε还是描述外场参量的函数。

为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。

粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。

当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。

2、下面介绍统计物理中用到的几个例子 (1)、自由粒子:自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。

粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为:⋅⋅⋅===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:()22221z y x p p p mε++=, 对应的μ空间是6维的。

(2)线性谐振子对于自由度为1的线性谐振子,在任一时刻,粒子的位置由它的位移x 确定,与之共轭的动量为⋅=x m p x ,它的能量是其动能和势能之和:2222221222x m m p x A m p ωε+=+=以x 和p 为直角坐标,可构成二维的μ空间,振子在任一时刻运动状态由μ空间中的一点表示。

如果给定振子的能量ε,对应点的轨迹是上式所确定的椭圆,标准形式为:12222=+ωεεm x m p(3)转子考虑质量为m 的质点A 被具有一定长度的轻杆系于原点O 时所作的运动。

质点的位置由坐标z y x ,,确定。

质点的能量就是它的动能:⎪⎪⎭⎫⎝⎛++=⋅⋅⋅22221z y x m ε 用球极坐标φθr ,,描述质点的位置:θz φθr y φθr x cos ,sin sin ,cos sin ===,质点的能量可以表为:⎪⎪⎭⎫⎝⎛++=⋅⋅⋅222222sin 21φθr θr r m ε。

若质点与原点的距离保持不变即0=⋅r ,于是上式简化为:⎪⎪⎭⎫ ⎝⎛+=⋅⋅22222sin 21φθr θr m ε,引入与之共轭的动量:2222sin ,⋅⋅==φθmr p θmr p φθ,则上式可表为:⎪⎭⎫ ⎝⎛+=2222sin 121φθp r θp I ε。

前面讨论的质点是被看作转子的一个例子。

转子是这样的一个物体,它在任何时刻的位置可以由其主轴在空间的方位角φθ,确定。

在统计物理中将双原子分子绕其质心的转动看作转子。

6.2 粒子运动状态的量子描述1、德布罗意关系微观粒子(光子、电子、质子、中子乃至原子、分子等等)普遍地具有粒子和波动的二象性。

一方面它们是客观存在的单个实体,另一方面在适当的条件下又可以观察到微观粒子显示干涉、衍射等等为波动所特有的现象。

德布罗意提出能量为ε、动量为的自由粒子联系着圆频率为ω、波矢为的平面波,称为德布罗意波。

能量ε与圆频率ω,动量p 与波矢k 的关系为:ωε =, k p = 即德布罗意关系,适用于一切微观粒子。

常量:πh2=,h 和 都称为普朗克常量,是量子力学的基本常量。

其数值为: s J h .10626.634-⨯= s J .10055.134-⨯= 2、测不准原理粒子和波动二象性的一个重要结果是微观粒子不可能同时具有确定的动量和坐标。

如果以q ∆表示粒子坐标q 的不确定值,p ∆表示粒子动量p 的不确定值,则在量子力学所容许的最精确的描述中,q ∆与p ∆的乘积满足:h p q ≈∆∆上式称为不确定关系。

不确定关系表明,如果粒子的坐标具有完全确定的数值即0→∆q ,粒子的动量将完全不确定即∞→∆p ;反之,当粒子的动量具有完全确定的数值即0→∆p 时,粒子的坐标将完全不确定即∞→∆q 。

这生动地说明了粒子的运动不是轨道运动。

在经典力学中,粒子可同时具有确定的坐标和动量,这并不是说我们可以任意的精确度做到这一点,而是说在经典力学中,原则上不允许对这种精确度有任何限制。

由于普朗克常量数值非常小,不确定关系在任何意义上都不会跟宏观物理学的经验知识发生矛盾。

在量子力学中微观粒子的运动状态称为量子态。

量子态由一组量子数表征,这组量子数的数目等于粒子的自由度数。

下面举例加以说明。

3、量子态的描述 (1)、自旋考虑一个粒子,质量为m ,电荷为e -,自旋角动量量子数为21。

粒子的自旋磁矩μ与自旋角动量S 之比为:meS μ-= 如果加上沿z 方向的外磁场,磁感应强度为β,则粒子自旋角动量在外磁场方向的投影Z S 有两个可能值,即2±=Z S 。

自旋磁矩在外磁场方向的投影相应为m e μZ 2 ±=。

粒子在外磁场中的势能为:βme βμ2±=⋅。

将Z S 表为 s Z m S =,描述粒子的自旋状态只要一个量子数s m ,它只能取两个分立的值21±。

(2)、线性谐振子在原子物理课讲过,圆频率为ω的线性谐振子,能量的可能值为:2,1,0,21=⎪⎭⎫ ⎝⎛+=n n ωεn其中n 是表征线性谐振子的运动状态和能量的量子数。

上式给出的能量值是分立的,分立的能量称为能级。

线性谐振子的能级是等间距的,相邻两能级的能量差为ω ,其大小取决于振子的圆频率。

(3)、转子转子的能量:IM ε22=在经典理论中,2M 原则上可以取任何正值。

原子物理课讲过,在量子理论中2M 只能取分立值:() 2,1,0,122=+=l l l M对于一定的l ,角动量在某一z 轴的投影z M 只能取分立值:m M z =,l l l m ,,1, +--=共12+l 个可能的值。

这就是说,在量子理论中自由度为2的转子的运动状态由m l 、两个量子数表征。

m 的取值与经典运动平面的取向相应。

在经典理论中运动平面在空间的取向是任意的,而在量子理论中m 只能取上述分立值,称为空间量子化。

(4)、自由粒子首先讨论一维自由粒子。

设粒子处在长度为L 的一维容器中,我们采用周期性边界条件,周期性边界条件要求,粒子可能的运动状态,其德布罗意波波长λ的整数倍等于容器的长度L ,即:λn L x =, 2,1,0=x n根据波矢量大小x k 与波长的关系,并考虑到在一维空间中波动可以有两个传播方向,便可求得波矢量x k 的可能值为:x x n Lπk 2=, ,2,1,0±±=x n 将上式代入德布罗意关系,可得一维自由粒子动量的可能值为:x x n Lπp2=,2,1,0±±=x n x n 就是表征一维自由粒子的运动状态的量子数。

一维自由粒子能量的可能值为:2222222L n m πm p εx x n x⋅== , ,2,1,0±±=x n 能量也取决于x n 。

现在讨论三维自由粒子。

设粒子处在边长为L 的立方容器内,粒子三个动量分量z y x p p p ,,的可能值为:x x n L πp2=,2,1,0±±=x n y y n L πp 2= ,2,1,0±±=y nx z n L πp 2= ,2,1,0±±=z nz y x n n n ,,就是表征三维自由粒子运动状态的量子数。

三维自由粒子能量的可能值为:()()222222222221L n n n m πp p p m εz y x z y x ++⋅=++= 如果粒子局域在微观大小的空间范围内运动,例如电子在原子大小的范围、核子在原子核大小的范围内运动,则上式给出的动量值和能量值的分立性是显著的。

注意粒子的运动状态由三个量子数z y x n n n ,,表征,而能级只取决于222zy x n n n ++的数值。

因此处在一个能级的量子态一般不止一个。

例如,能级2222m L π 有6个量子态,简并度是6。

如果粒子是在宏观大小的容器内运动,上式给出的动量值和能量值是连续的。

考虑在体积3L V =内,在x p 到x x dp p +,y p 到y y dp p +,z p 到z z dp p +的动量范围内自由粒子的量子态数。

由于x p 与x n 是一一对应的,且相邻的两个x n 之差为1。

因此在x p 到x x dp p +的范围内,可能的x p 的数目为:x x dp πLdn2=同理,在y p 到y y dp p +的范围内,可能的y p 的数目为:y y dp πLdn2= 在z p 到z z dp p +的范围内,可能的z p 的数目为:z z dp πLdn2=既然自由粒子的量子态由动量的三个分量x p 、y p 、z p (或三个量子数x n 、y n 、z n )的数值表征,在体积3L V =内,在x p 到x x dp p +,y p 到y y dp p +,z p 到z z dp p +内,自由粒子的量子态数为:z y x z y x z y x dp dp dp h V dp dp dp πL dn dn dn 332=⎪⎭⎫⎝⎛= 上式可以根据不确定关系来理解。

不确定关系指出,粒子坐标的不确定值q ∆和与之共轭的动量的不确定值p ∆满足:h p q ≈∆∆。

因此,如果用坐标q 和动量p 来描述粒子的运动状态,一个状态必然对应于μ空间中的一个体积,称它为相格。

对于自由度为1的粒子,相格的大小为h 。

如果粒子的自由度为r ,相格大小为:r r r h p p q q =∆⋅⋅⋅∆∆⋅⋅⋅∆11因此,将μ空间的体积z y x dp dp Vdp 除以相格大小3h 而得到的三维自由粒子在z y x dp dp Vdp 内的量子态数。

在某些问题中,往往采用动量空间的球极坐标φθp 、、来描写自由粒子的动量。

φθp 、、与z y x p p p 、、的关系为:ϕθcos sin p p x =;ϕθsin sin p p y =;θcos p p z =用球极坐标、动量空间的体积元为φd θdpd θp sin 2。

相关文档
最新文档