英文数学符号

合集下载

常用数学符号英文对照

常用数学符号英文对照

×times sign multiplication 2 × 3 = 6 ·multiplication dot multiplication 2 · 3 = 6÷division sign /division 6 ÷ 2 = 3obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root (radical) for n=3, n√8 = 2% percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1%10‰ × 30 = 0.3ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt × 30 = 3×10-10Geometry symbolsSymbol Symbol Name Meaning / definition Example ∠angle formed by two rays ∠ABC = 30°measuredABC = 30°anglespherical angle AOB = 30°∟right angle = 90°α = 90°°degree 1 turn = 360°α = 60°deg degree 1 turn = 360deg α = 60deg′prime arcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″α = 60°59′59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZ Δtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...is the ratio between the circumference and diameter of acirclec = π·d = 2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians / gons grads angle unit 360° = 400 gradg gradians / gons grads angle unit 360° = 400 g Algebra symbolsSymbol Symbol Name Meaning /definitionExample[a,b] closed interval [a,b] ={x | a≤x≤b}x∈[2,6]∆delta change /difference∆t = t1 - t0∆discriminant Δ =b2 - 4ac∑sigma summation -sum of allvalues in rangeof series∑ x i= x1+x2+...+x n∑∑sigma doublesummation∏capital pi product -product of allvalues in rangeof series∏ x i=x1∙x2∙...∙x ne e constant / Euler's number e =2.718281828...e = lim (1+1/x)x , x→∞γEuler-Mascheroni constantγ =0.527721566...φgolden ratio golden ratioconstantπpi constant π =3.141592654...is the ratiobetween thecircumference anddiameter of acirclec = π·d = 2·π·rLinear Algebra SymbolsSymbol Symbol Name Meaning / definition Example ·dot scalar product a · b×cross vector product a × bA⊗B tensor product tensor product of A and B A⊗B inner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose (A T)ij = (A)jiA†Hermitian matrix matrix conjugate transpose (A†)ij = (A)ji A*Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji A-1inverse matrix A A-1 = Irank(A) matrix rank rank of matrix A rank(A) = 3 dim(U) dimension dimension of matrix A rank(U) = 3 Probability and statistics symbolsSymbol Symbol Name Meaning / definition ExampleP(A) probabilityfunctionprobability of event A P(A) = 0.5P(A∩B) probability ofeventsintersectionprobability that ofevents A and BP(A∩B) = 0.5P(A∪B) probability ofevents union probability that ofevents A or BP(A∪B) = 0.5P(A | B) conditionalprobabilityfunctionprobability of event Agiven event BoccuredP(A | B) = 0.3f (x) probabilitydensity function(pdf)P(a ≤ x ≤ b) = ∫f (x) dxF(x) cumulative F(x) = P(X≤ x)distribution function (cdf)μpopulationmean mean of populationvaluesμ = 10E(X) expectationvalue expected value ofrandom variable XE(X) = 10E(X | Y) conditionalexpectation expected value ofrandom variable Xgiven YE(X | Y=2) = 5var(X) variance variance of randomvariable Xvar(X) = 4σ2variance variance ofpopulation valuesσ2 = 4std(X) standarddeviation standard deviation ofrandom variable Xstd(X) = 2σX standarddeviation standard deviationvalue of randomvariable XσX=2median middle value of random variable xcov(X,Y) covariance covariance ofrandom variables Xand Ycov(X,Y) = 4corr(X,Y) correlation correlation ofrandom variables Xand Ycorr(X,Y) = 0.6ρX,Y correlation correlation ofrandom variables Xand YρX,Y = 0.6∑summation summation - sum of all values in range of series∑∑doublesummationdouble summationBin(n,p) binomialdistributionf (k) = n C k p k(1-p)n-kPoisson(λ)Poissondistributionf (k)= λk e-λ / k!Geom(p) geometricdistributionf (k) = p(1-p) kHG(N,K,n) hyper-geometric distributionBern(p) Bernoulli distributionCombinatorics SymbolsSymbol Symbol Name Meaning / definition Examplen! factorial n! = 1·2·3·...·n5! = 1·2·3·4·5 = 120 n P k permutation 5P3 = 5! / (5-3)! = 60 n C kcombination 5C3 = 5!/[3!(5-3)!]=10Set theory symbolsSymbol Symbol Name Meaning / definition Example{ } set a collection of elements A = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A and setBA ∩B = {9,14}A ∪B union objects that belong to set A or setBA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements orequal to the set{9,14,28} ⊆{9,14,28}A ⊂B proper subset / strict subset has fewer elements than {9,14} ⊂subset the set {9,14,28}A ⊄B not subset left set not a subset of right set {9,66} ⊄{9,14,28}A ⊇B superset set A has more elements or equalto the set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset / strictsupersetset A has more elements than setB{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B {9,14,28} ⊅{9,66}2A power set all subsets of A power set all subsets of AA =B equality both sets have the same members A={3,9,14}, B={3,9,14}, A=BA c complement all the objects that do not belong to set AA \B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A -B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A ∆B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14}A ⊖B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membership A={3,9,14}, 1 ∉A(a,b) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from A andB|A| cardinality the number of elements of set A A={3,9,14},|A|=3#A cardinality the number of elements of set A A={3,9,14},#A=3aleph-null infinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { } C = {Ø} universal set set of all possible values0natural numbers / wholenumbers set (with zero) 0= {0,1,2,3,4,...} 0 ∈01natural numbers / wholenumbers set (withoutzero)1= {1,2,3,4,5,...} 6 ∈1 integer numbers set = {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set = {x | x=a/b, a,b∈} 2/6 ∈real numbers set = {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a+bi,-∞<a<∞,-∞<b<∞}6+2i∈Logic symbolsSymbol Symbol Name Meaning / definition Example ·and and x·y^ caret / circumflex and x ^ y& ampersand and x & y+ plus or x + y∨reversed caret or x∨y | vertical line or x | yx' single quote not - negation x'x bar not - negation x¬not not - negation ¬x! exclamation mark not - negation ! x⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Example limit limit value of a functionεepsilon represents a very small number,ε→0near zeroe e constant / Euler'snumber e = 2.718281828...e = lim(1+1/x)x ,x→∞y ' derivative derivative - Lagrange's notation (3x3)' = 9x2y '' second derivative derivative of derivative (3x3)'' = 18xy(n)nth derivative n times derivation (3x3)(3) = 18 derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables∫∫∫f(x,y,z)dxdydz∮closed contour / lineintegral∯closed surfaceintegral∰closed volumeintegral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡ √-1 z = 3 + 2i z* complex conjugate z = a+bi→z*=a-bi z* = 3 - 2i z complex conjugate z = a+bi→z = a-bi z = 3 - 2i ∇nabla / del gradient / divergence operator ∇f (x,y,z) vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

常见数学符号的读法

常见数学符号的读法

一、常见数学符号的读法:α(阿而法)、β( 贝塔)、γ(伽马)、δ(德尔塔)、ε(艾普西龙)、ζ(截塔)、η(艾塔)、θ(西塔)、ι(约塔)、κ(卡帕)、λ(兰姆达)、μ(米尤)、ν(纽)、ξ(可系)、ο(奥密克戎)、π(派)、ρ (若)、σ (西格马)、τ (套)、υ (英文或拉丁字母)、φ(斐)、χ(喜)、ψ(普西))、ω(欧米伽)二、数字符号更全面:1. Α α alpha ,/ a:lf /,阿尔法角度;系数2.Β β beta ,/bet/, 贝塔磁通系数;角度;系数3. Γ γ gamma ,/ga:m/, 伽马电导系数(小写)4. Δ δ delta ,/delt/, 德尔塔变动;密度;屈光度5 .Ε ε epsilon ,/ep`silon /,伊普西龙对数之基数6 .Ζ ζ zeta,/ zat/, 截塔系数;方位角;阻抗;相对粘度;原子序数7 .Η η eta ,/eit /,艾塔磁滞系数;效率(小写)8. Θ θ thet,/ θit, 西塔温度;相位角9 .Ι ι iot ,/aiot/, 约塔微小,一点儿10 .Κ κ kappa ,/kap/, 卡帕介质常数11 .∧ λ lambda lambd 兰布达波长(小写);体积12.. Μ μ mu ,/mju /,缪磁导系数;微(千分之一);放大因数(小写)13 .Ν ν nu ,/nju /,纽磁阻系数14.Ξ ξ xi,/ksi/, 克西15.Ο ο omicron omik`ron 奥密克戎16.∏ π pi ,/pai /,派圆周率=圆周÷直径=3.141617 .Ρ ρ rho,/ rou /,肉电阻系数(小写)17.∑ σ sigma ,/sigma /,西格马总和(大写),表面密度;跨导(小写)19.Τ τ tau ,/tau /,套时间常数20.Υ υ upsilon ,/jup`silon /,宇普西龙位移21.Φ φ phi,/fai /,佛爱磁通;角22.Χ χ chi,/phai/,西23.Ψ ψ psi ,/psai/, 普西角速;介质电通量(静电力线);角24.Ω ω omega ,/o`miga /,欧米伽欧姆(大写);角速(小写);角三、希腊字母读法Αα:阿尔法Alpha Ββ:贝塔BetaΓγ:伽玛Gamma Δδ:德尔塔 Delte Εε:艾普西龙 Epsilon ζ :捷塔 Zeta Ζη:依塔 Eta Θθ:西塔 Theta Ιι:艾欧塔 Iota Κκ:喀帕Kappa ∧λ:拉姆达LambdaΜμ:缪Mu Νν:拗 NuΞξ:克西 Xi Οο:欧麦克轮 Omicron ∏π:派 Pi Ρρ:柔 Rho ∑σ:西格玛 Sigma Ττ:套 Tau Υυ:宇普西龙 Upsilon Φφ:fai Phi Χχ:器 Chi Ψψ:普赛 Psi Ωω:欧米伽 Omega。

数学符号[宝典]

数学符号[宝典]

1、希腊字母:α——阿尔法β——贝塔γ——伽马Γ——德尔塔μ——可sei ψ——可赛ω——奥秘噶κ——米哟ι——南木打ζ——西格玛η——套θ——fai2、数学运算符:ⅲ—连加号ⅱ—连乘号ⅻ—并ⅺ—补ⅰ—属于ⅿ—因为ⅾ—所以ⅳ—根号‖—平行↌—垂直ⅶ—角↍—弧↋—圆ⅴ—正比于ⅵ—无穷ⅼ—积分Ↄ—约等ↆ—恒等3、三角函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体序号大写小写英文注音国际音标注音中文注音1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Θ θ kappa kap 卡帕11 Ι ι lambda lambd 兰布达12 Κ κ mu mju 缪13 Λ λ nu n ju 纽14 Μ μ xi ksi 克西15 Ν ν omicron omik`ron 奥密克戎16 Ξ π pi pai 派17 Ο ξ rho rou 肉18 Π ζ sigma `sigma 西格马19 Ρ η tau tau 套20 ΢ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Σ χ chi phai 西23 Τ ψ psi psai 普西24 Υ ω omega o`miga 欧米伽希腊字母的正确读法是什么?1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Γ δ delta delt 德尔塔5 Δ ε epsilon ep`silon 伊普西龙6 Ε δ zeta zat 截塔7 Ζ ε eta eit 艾塔8 Θ ζ thet ζit 西塔9 Η η iot aiot 约塔10 Κ θ kappa kap 卡帕11 ⅸι lambda lambd 兰布达12 Μ κ mu mju 缪13 Ν λ nu nju 纽磁阻系数14 Ξ μ xi ksi 克西15 Ο ν omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρ ξ rho rou 肉18 ∑ ζ sigma `sigma 西格马19 Σ η tau tau 套20 Τ υ upsilon jup`silon 宇普西龙21 Φ θ phi fai 佛爱22 Υ χ chi phai 西23 Φ ψ psi psai 普西角速;24 Χ ω omega o`miga 欧米伽希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΓδ:德尔塔DelteΔε:艾普西龙Epsilonδ :捷塔ZetaΕε:依塔EtaΘζ:西塔ThetaΗη:艾欧塔IotaΚθ:喀帕Kappaⅸι:拉姆达LambdaΜκ:缪MuΝλ:拗NuΞμ:克西XiΟν:欧麦克轮Omicron∏π:派PiΡξ:柔Rho∑ζ:西格玛SigmaΣη:套TauΤυ:宇普西龙UpsilonΦθ:fai PhiΥχ:器ChiΦψ:普赛PsiΧω:欧米伽Omega数学符号大全各种符号的英文读法'exclam'='!''at'='@''numbersign'='#''dollar'='$''percent'='%''caret'='^''ampersand'='&''asterisk'='*''parenleft'='(''parenright'=')''minus'='-''underscore'='_''equal'='=''plus'='+''bracketleft'='''braceright'='}''semicolon'=';''colon'=':''quote'=''''doublequote'='"''backquote'=''''tilde'='~''backslash'='\''bar'='|''comma'=',''less'='<''period'='.''greater'='>''slash'='/''question'='?''space'=' '~~~~~~~~~~~~~~~~~~~~~~。 hyphen 连字符' apostrophe 省略号;所有格符号— dash 破折号‘ ’single quotation marks 单引号“ ”double quotation m arks 双引号( ) parentheses 圆括号square brackets 方括号Angle bracket{} Brace《》French quotes 法文引号;书名号... ellipsis 省略号¨ tandem colon 双点号" ditto 同上‖ parallel 双线号/ virgule 斜线号& ampersand = and~ swung dash 代字号§ section; division 分节号Ⅾ arrow 箭号;参见号+ plus 加号;正号- minus 减号;负号ª plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号= is equal to 等于号ↅ is not equal to 不等于号ↆ is equivalent to 全等于号ↄ is equal to or approximately equal to 等于或约等于号Ↄ is approximately equal to 约等于号< is less than 小于号> is more than 大于号↉ is not less than 不小于号↊ is not more than 不大于号ↇ is less than or equal to 小于或等于号ↈ is more than or equal to 大于或等于号% per cent 百分之…‟ per mill 千分之…ⅵ infinity 无限大号ⅴ varies as 与…成比例ⅳ (square) root 平方根ⅿ since; b ecause 因为ⅾ hence 所以ↁ equals, as (proportion) 等于,成比例ⅶ angle 角↍ semicircle 半圆↋ circle 圆◈ circumference 圆周π pi 圆周率△ triangle 三角形↌ perpendicular to 垂直于ⅻ union of 并,合集ⅺ intersection of 交,通集ⅼ the integral of …的积分ⅲ (sigma) summation of 总和© degree 度† minute 分‡ second 秒#number …号‣ Celsius system 摄氏度@ at 单价x'是x prime(比如转置矩阵)x"是x double-prime数学符号大全1 几何符号↌ⅷⅶ↍↋ↆↄ△‖2 代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3运算符号×÷ⅳª4集合符号ⅻⅺⅰⅰↇↈ⊆⊂5特殊符号ⅲπ(圆周率)6推理符号|a| ↌ↂ△ⅶⅺⅻↅↆªↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §↎↏←↑→↓↔↕↖↗ΓΓΘΛΞΟΠ΢ΦΥΦΧαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫﹬﹭﹮﹯ﹰﹱﹲﹳⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊?↋↌↠↍‣上述符号所表示的意义和读法(中英文参照)+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号ↄis approximately equal to 约等于≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤ is less than or equal to 小于或等于≥ is more than or equal to 大于或等于%per cent 百分之…∞ infinity 无限大号√ (square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角↍semicircle 半圆↋circle 圆○ circumference 圆周△triangle 三角形↌perpendicular to 垂直于ⅻintersection of 并,合集∩ union of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和°degree 度′ minute 分〃second 秒#number …号@at 单价符号意义ⅵ无穷大PI 圆周率|x| 函数的绝对值ⅻ集合并ⅺ集合交ↈ大于等于ↇ小于等于ↆ恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分 x - floor(x)ⅼf(x)δx 不定积分ⅼ[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0ⅲ[1ↇkↇn]f(k) 对n进行求和,可以拓广至很多情况如:ⅲ[n is prime][n < 10]f(n)ⅲⅲ[1ↇiↇjↇn]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm↌n m与n互质a ⅰ A a属于集合A#A 集合A中的元素个数ⅰⅱⅲⅳⅵⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↂↃↄↅↆↇↈ↞↟?↋↌ &#8226;数学符号大全收藏运算符: ± × ÷ ↀ∫ ⅽↆↄ≈ ↂⅴ↝≠ ↆ≤ ≥ ↞↟↉↊/√ ‰ ∑ ∏ &关系运算符:ⅸⅹ集合符号:ⅻⅺⅰ↜⊆序号:↎↏←↑→↓↔↕↖↗ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ﹪﹫﹬﹭﹮﹯ﹰﹱﹲﹳ≈㈠㈡㈢㈣㈤㈥㈦㈧㈨㈩其它:~ ± × ÷ ∑ⅻⅺⅰ√ⅷⅶ↋ↆↄ≈ↂ≠↉↊≤≥∞ⅿⅾ☈☇‣⦅‰☆★○●◉◇◆□■△▲ⅮⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ*ΟαβγδεζηθικλμνξποστυφχψωΑ Β Γ Δ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ ΢ Σ Τ Υ Φ Ωα β γ δ ε ζ η θ ι κ λ μ μ ν ξ π ο σ τ υ φ χψ ωⅬⅭⅮⅯ↖↗↘↙∞ ⅾⅿↀↁ° ′ ″ ‣▝↠△↋ⅶ↍↌ⅷ〓〔〈〉《》「」『』〕〖【】()[]{}ﹶ§ № •#&@☆★○● ◉△▲◇◆□ ■〒▙▛▚▘☇☈ⅬⅭⅮⅯ↖↗↘↙ⅰ∏∑↌↠∕√ⅴ∞↛ⅶ↜ⅷⅸⅹⅺⅻ∫ⅽⅾⅿↀↁↂ≈ↄ↝≠ↆ≤≥↞↟↉↊﹞﹟﹠﹡﹢﹣﹤﹥﹦﹧﹨﹩!﹖﹗"#$%&'*\^_`|~⦅⦆ﹴ。﹵「▝↋↍▔▕■□▲△▖▗◆◇◈◉●▘▙▚▛★☆▜☇☈、。

常用英文数学式符号的读法

常用英文数学式符号的读法

⼀、⼀般符号对应的英⽂单词 . period 句号 , comma 逗号 : colon 冒号 ; semicolon 分号 ! exclamation 惊叹号 ? question mark 问号 ─ hyphen 连字符 ’ apostrophe 省略号;所有格符号 — dash 破折号 ‘’single quotation marks 单引号 “”double quotation marks 双引号 ( ) parentheses 圆括号 [ ] square brackets ⽅括号 《》French quotes 法⽂引号;书名号 ... ellipsis 省略号 ¨ tandem colon 双点号 " ditto 同上 ‖ parallel 平⾏ / virgule 斜线号 & ampersand = and ~ swung dash 代字号 § section; division 分节号 → arrow 箭号;参见号 + plus 加号;正号 - minus 减号;负号 ± plus or minus 正负号 × is multiplied by or cross 叉乘 ÷ is divided by 除号 = is equal to 等于号 ≠ is not equal to 不等于号 ≡ is equivalent to 全等于号 ≌ is equal to or approximately equal to 等于或约等于号 ≈ is approximately equal to 约等于号 < is less than ⼩于号 > is more than (is greater than在数学中更常⽤)⼤于号 ≮ is not less than 不⼩于号 ≯ is not more than 不⼤于号 ≤ is less than or equal to ⼩于或等于号 ≥ is more than or equal to ⼤于或等于号 % per cent 百分之… ‰ per mill 千分之… ∞ infinity ⽆限⼤号 ∝ varies as 与…成⽐例 √ (square) root 平⽅根 ∵ since; because 因为 ∴ hence 所以 ∷ equals, as (proportion) 等于,成⽐例 ∠ angle ⾓ ⌒ semicircle 半圆 ⊙ circle 圆 ○ circumference 圆周 π pi 圆周率 △ triangle 三⾓形 ⊥ perpendicular to 垂直于;另外normal to,right to也都有垂直的意思。

一些数学符号的英文读法

一些数学符号的英文读法

一些数学符号的英文读法<is less than>is more than≮is not less than≯is not more than≤is less than or equal to 小于或等于号- hyphen 连字符≥is more than or equal to 大于或等于号' apostrophe 省略号,英文中省略字符用的撇号;所有格符号%percent-dash 破折号‰per mille∞infinity 无限大号∝varies as 与…成比例( ) parentheses 圆括号√(square) root 平方根[ ] square brackets 方括号∵since; because 因为《》French quotes 法文引号;书名号∴hence 所以…ellipsis 省略号∷equals, as (proportion) 等于,成比例¨ tandem colon 双点号∠angle 角∶ditto 双点号≲semicircle 半圆‖parallel 双线号≰circle 圆/virgule 斜线号○circumference 圆周~swung dash 代字号△triangle 三角形§ section; division 分节号≱perpendicular to 垂直于→arrow 箭号;参见号∪union of 并,合集∩intersection of 交,通集∫the integral of …的积分±plus or minus 正负号∑summation of 总和×is multiplied by 乘号° degree 度÷is divided by 除号′minute 分″second 秒≠is not equal to 不等于号≡is equivalent to 全等于号℃Celsius degree 摄氏度≌is equal to or approximately equal to 等于或约等于号。

数学符号英文对照表

数学符号英文对照表

1.Professional Basics Knowledge1/21/32/31/41/1001/1000 113/3244320.25+-±×÷=≈( ) [ ] { }≢≣∞∵∴→x+y (a + b ) a = ba ≠b a ±b a ≈b a >b a >>b a ≣b a <b a <<b a ≢b a ⊥b x →∞a ≡b ∟a a half, one halfa third, one thirdtwo thirdsa quarter, one quarter , a fourth, one fourtha (one) hundredtha (one) thousandthone hundred and thirteen over three hundred and twenty four four and two thirdszero (0, naught) point two fiveplus, positiveminus, negativeplus or minusmultiplied by, timesdivided bybe equal to, equalsbe approximately equal to, approximately equalsround brackets; parenthesessquare (angular) bracketsbracesless than or equal tomore than or equal toinfinitybecausethereforemaps intox plus ybracket a plus b bracket closeda equals b, a is equal to b, a is ba is not equal to b, a is not ba plus or minus ba is approximately equal to ba is greater than ba is much [far] greater than ba is greater than or equal to ba is less than ba is much less than ba is less than or equal to ba is perpendicular to bx approaches infinitya is identically equal to b, a is of identity to bangle aa ~ba ∠ba ∝ bx 2x 3x3x %2%‰5‰㏒n x㏒10x㏒e x,㏑xe x ,exp(x)x nx1/n or n xsincostg, tanctg, cotsc, seccsc, cosecsin -1 arcsincos -1 ,arcossinhcosh∑∑=ni ix 1∏∏=ni ix 1∣x ∣xb ’b ’’ the difference between a and b a is parallel to b a varies directly as b x square; x squared; the square of x~, the second power of x, x to second power x cube; x cubed; the cube of x; the third power of x, x to the third power the square root of x the cube root of x percent two percent per mill five per mill log x to the base n log x to the base 10; common logarithm log x to the base e , natural logarithm, Napierian logarithm exponential function of x; e to the power x the nth power of x; x to the power n the nth root of x, x to the power one over n sine cosine tangent cotangent secont cosecant arc sine arc cosine the hyperbolic sine the hyperbolic cosine the summation of the summation of x sub i ,where i goes from 1 to n the product of the product of x sub i , where i goes from 1to n the absolute value of x the mean value of x, x bar b primeb double prime; b second primeb ’’’ f(x) △ x, δx dx dx dy 22dx y d n n dx y d u y ∂∂ ⎰ ⎰⎰ ⎰…⎰ ⎰b aF a 22007’13’’00C1000C320Fb triple primefunction f of xfinite difference or incrementthe increment of xdee x; dee of x; differential xthe differential coefficient of y with respect to x, the first derivative of y with respect of xthe second derivative of y with respect of xthe nth derivative of y with respect of xThe partial derivative of y with respect of u, where y is a function of u and another variable (or variables)integral ofdouble integral ofn-fold integral ofintegral between limits a and b (…from a to b)vector F a sub two twenty degreesseven minutes; seven feetthirteen seconds; thirteen inches zero degree Centigrade [Celsius]one [a] hundred degrees Centigrade thirty-two degrees Fahrenheit。

数学符号

数学符号

、希腊字母:α——阿尔法β——贝塔γ——伽马Δ——德尔塔ξ——可sei ψ——可赛ω——奥秘噶μ——米哟λ——南木打σ——西格玛τ——套φ——fai2、数学运算符:∑—连加号∏—连乘号∪—并∩—补∈—属于∵—因为∴—所以√—根号‖—平行⊥—垂直∠—角⌒—弧⊙—圆∝—正比于∞—无穷∫—积分≈—约等≡—恒等3、三角函数:sin—赛因cos—考赛因tan—叹近体cot—考叹近体sec—赛看近体csc —考赛看近体序号大写小写英文注音国际音标注音中文注音1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Δ δ delta delt 德尔塔5 Ε ε epsilon ep`silon 伊普西龙6 Ζ ζ zeta zat 截塔7 Η η eta eit 艾塔8 Θ θ thet θit 西塔9 Ι ι iot aiot 约塔10 Κ κ k appa kap 卡帕11 Λ λ lambda lambd 兰布达12 Μ μ mu mju 缪13 Ν ν nu nju 纽14 Ξ ξ xi ksi 克西15 Ο ο omicron omik`ron 奥密克戎16 Π π pi pai 派17 Ρ ρ rho rou 肉18 Σ σ sigma `sigma 西格马19 Τ τ tau tau 套20 Υ υ upsilon jup`silon 宇普西龙21 Φ φ phi fai 佛爱22 Χ χ c hi phai 西23 Ψ ψ psi psai 普西24 Ω ω omega o`miga 欧米伽希腊字母的正确读法是什么?1 Α α alpha a:lf 阿尔法2 Β β beta bet 贝塔3 Γ γ gamma ga:m 伽马4 Δ δ delta delt 德尔塔5 Ε ε epsilon ep`silon 伊普西龙6 Ζ ζ zeta zat 截塔7 Η η eta eit 艾塔8 Θ θ thet θit 西塔9 Ι ι iot aiot 约塔10 Κ κ kappa kap 卡帕11 ∧λ lambda lambd 兰布达12 Μ μ mu mju 缪13 Ν ν nu nju 纽磁阻系数14 Ξ ξ xi ksi 克西15 Ο ο omicron omik`ron 奥密克戎16 ∏ π pi pai 派17 Ρ ρ rho rou 肉18 ∑ σ sigma `sigma 西格马19 Τ τ tau tau 套20 Υ υ upsilon jup`silon 宇普西龙21 Φ φ phi f ai 佛爱22 Χ χ chi phai 西23 Ψ ψ psi psai 普西角速;24 Ω ω omega o`miga 欧米伽希腊字母读法Αα:阿尔法AlphaΒβ:贝塔BetaΓγ:伽玛GammaΔδ:德尔塔DelteΕε:艾普西龙Epsilonζ :捷塔ZetaΖη:依塔EtaΘθ:西塔ThetaΙι:艾欧塔IotaΚκ:喀帕Kappa∧λ:拉姆达LambdaΜμ:缪MuΝν:拗NuΞξ:克西XiΟο:欧麦克轮Omicron∏π:派PiΡρ:柔Rho∑σ:西格玛SigmaΤτ:套TauΥυ:宇普西龙UpsilonΦφ:fai PhiΧχ:器ChiΨψ:普赛PsiΩω:欧米伽Omega数学符号大全2008年01月29日星期二 15:25因为自然科学的讨论经常要用到数学,但用文本方式只能表达L!t d5w x r ^ |$s Y 左右结构的数学公式,上下结构、根式、指数等都很难表达。

各种数学符号和表达式的英文读法

各种数学符号和表达式的英文读法

各种数学符号和表达式的英文读法.txt52每个人都一条抛物线,天赋决定其开口,而最高点则需后天的努力。

没有秋日落叶的飘零,何来新春绿芽的饿明丽?只有懂得失去,才会重新拥有。

各种数学符号和表达式的英文读法一、一般符号对应的英文单词.period 句号,comma 逗号:colon 冒号;semicolon 分号!exclamation 惊叹号?question mark 问号 ̄hyphen 连字符'apostrophe 省略号;所有格符号—dash 破折号‘ ’single quotat ion marks 单引号“ ”double quotation marks 双引号( )parentheses 圆括号[ ]square brackets 方括号《》French quotes 法文引号;书名号...ellipsis 省略号¨tandem colon 双点号"ditto 同上‖parallel 平行/virgule 斜线号&ampersand = and~swung dash 代字号§section; division 分节号→arrow 箭号;参见号+plus 加号;正号-minus 减号;负号ªplus or minus 正负号×is multiplied by or cross 叉乘÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈is approximately equal to 约等于号<is less than 小于号>is more than (is greater than在数学中更常用)大于号≤is not less than 不小于号≥is not more than 不大于号≢is less than or equal to 小于或等于号≣is more than or equal to 大于或等于号%per cent 百分之…‟per mill 千分之…∞infinity 无限大号∝varies as 与…成比例√(square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∟angle 角≨semicircle 半圆≦circle 圆○circumference 圆周πpi 圆周率△triangle 三角形≧perpendicular to 垂直于;另外normal to,right to也都有垂直的意思。

数学符号 希腊字母

数学符号 希腊字母

序号大写小写国际音标注音英文汉字注音常用指代意义1 Αα/'ælfə/ alpha 阿尔法角度,系数,角加速度2 Ββ/'bi:tə/ 或/'beɪtə/ beta 贝塔/ 毕塔磁通系数,角度,系数3 Γγ/'gæmə/ gamma 伽玛/ 甘玛电导系数,角度,比热容比4 Γδ/'deltə/ delta 得尔塔/ 岱欧塔变化量,化学反应中的加热,屈光度,一元二次方程中的判别式5 Δε/'epsɪlɒn/ epsilon 埃普西龙对数之基数,介电常数6 Εδ/'zi:tə/ zeta 泽塔系数,方位角,阻抗,相对黏度7 Ζε/'i:tə/ eta 伊塔/ 诶塔迟滞系数,效率8 Θζ/'ζi:tə/ theta 西塔温度,角度9 Ηη/aɪ'əʊtə/ iota 埃欧塔微小,一点10 Κθ/'kæpə/ kappa 堪帕介质常数,绝热指数11 ∧ι/'læmdə/ lambda 兰姆达波长,体积,导热系数12 Μκ/mju:/ mu 谬/ 穆磁导系数,微,动摩擦系(因)数,流体动力黏度13 Νλ/nju:/ nu 拗/ 奴磁阻系数,流体运动粘度,光子频率,化学计量数14 Ξμ希腊/ksi/ 或英美/ˈzaɪ/ 或/ˈsaɪ/ xi 可西/ 赛随机变量,(小)区间内的一个未知特定值15 Ον/əuˈmaikrən/ 或/ˈɑmɪˌkrɑn/omicron 欧(阿~) 米可荣高阶无穷小函数16 ∏π/paɪ/ pi 派圆周率,π(n)表示不大于n的质数个数17 Ρξ/rəʊ/ rho 柔/若电阻系数,柱坐标和极坐标中的极径,密度18 ∑ζ/'sɪɡmə/ sigma 西格玛总和,表面密度,跨导,正应力19 Τη/tɔ:/ 或/taʊ/ tau 套/驼时间常数,切应力,2π(两倍圆周率)20 Υυ/ˈipsɪlon/ 或/ˈʌpsɪlɒn/ upsilon 宇(阿~) 普西龙位移21 Φθ/faɪ/ phi 弗爱/ 弗忆磁通,角,透镜焦度,热流量22 Φχ/kaɪ/ chi 凯/ 柯义统计学中有卡方(χ^2)分布23 Χψ/psaɪ/ psi 赛/ 普赛/ 普西角速,介质电通量,ψ函数24 Ψω/'əʊmɪɡə/ 或/oʊ'meɡə/omega 欧米伽/ 欧枚嘎欧姆,角速度,交流电的电角度,化学中的质量分数。

最全面最标准的数学符号公式的英语读法大全

最全面最标准的数学符号公式的英语读法大全

最全面最标准的数学符号公式的英语读法大全目前国内绝大部分的英语学习,仍然停留在日常交流和一些常识性知识的英语。

我们虽然受过高等教育,但是专业的、学术的英语学习仍然匮乏,我们的课本是中文的、老师用中文授课、我们的知识体系也是中文的。

所以在阅读原版教材、写英文论文、参加国际学术交流等很多时候,会遇到英语瓶颈。

真正能够应用英语来进行知识的学习,工作等,起码需要明白数学中的英语,希望这篇文章能给您带来帮助。

基本数学符号1. 加减乘除"+"当作运算符加号时读作plus,比如:1+2 ➡️ one plus two当"+"放在数字前表示正数时,读作positive,比如:+4 ➡️ positive four同样,“-”也有minus和negative两种读法,分别是减号和负数。

"×" 两种读法都可以,国外的教授会常常读成times,可能因为比较简单吧,比如:9x6 ➡️nine times six“÷”只有一种读法divided by,就是被…分成几份15÷3 ➡️ fifteen is divided by three注意:其中plus和minus是不用第三人称单数形式的,因为plus和minus根本就不是动词,而是介词。

但是乘和除,的的确确是动词,出现第三人称单数的形式。

2. 比较运算符比较运算符用来比较两个表达式的大小关系,比如:1+4>3 ➡️ one plus four is greater than three为什么用is?这里one plus four 是介词plus 连接两个名词,但是one plus four 作为一个整体当作主语,因此不用are,而是is4+5=9 ➡️ four plus five equals nine 或 four plus five is equal to nine 其他的类推,只要你认识数学符号,应该不难用英语说出来。

常用数学符号英文对照

常用数学符号英文对照

×times sign multiplication 2 × 3 = 6 ·multiplication dot multiplication 2 · 3 = 6÷division sign /division 6 ÷ 2 = 3obelus/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimal2.56 = 2+56/100separatora b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a = a4√16 = ±2n√a n-th root (radical) for n=3, n√8 = 2% percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1%ppm per-million1ppm = 1/1000000ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7ppt per-trillion 1ppt = 10-1210ppt × 30 = 3×10-10Geometry symbolsSymbol Symbol Name Meaning / definition Example ∠angle formed by two rays ∠ABC = 30°measuredABC = 30°anglespherical angle AOB = 30°∟right angle = 90°α = 90°°degree 1 turn = 360°α = 60°deg degree 1 turn = 360deg α = 60deg′prime arcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″α = 60°59′59″line infinite lineAB line segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅congruent to equivalence of geometric shapes and size ∆ABC≅∆XYZ ~ similarity same shapes, not same size ∆ABC~ ∆XYZ Δtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y | = 5πpi constant π = 3.141592654...is the ratio between the circumference and diameter of acirclec = π·d = 2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians / gons grads angle unit 360° = 400 gradg gradians / gons grads angle unit 360° = 400 g Algebra symbolsSymbol Symbol Name Meaning /definitionExample[a,b] closed interval [a,b] ={x | a≤x≤b}x∈[2,6]∆delta change /difference∆t = t1 - t0∆discriminant Δ =b2 - 4ac∑sigma summation -sum of allvalues in rangeof series∑ x i= x1+x2+...+x n∑∑sigma doublesummation∏capital pi product -product of allvalues in rangeof series∏ x i=x1∙x2∙...∙x ne e constant / Euler's number e =2.718281828...e = lim (1+1/x)x , x→∞γEuler-Mascheroni constantγ =0.527721566...φgolden ratio golden ratioconstantπpi constant π =3.141592654...is the ratiobetween thecircumference anddiameter of acirclec = π·d = 2·π·rLinear Algebra SymbolsSymbol Symbol Name Meaning / definition Example ·dot scalar product a · b×cross vector product a × bA⊗B tensor product tensor product of A and B A⊗B inner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A) determinant determinant of matrix A|| x || double vertical bars normA T transpose matrix transpose (A T)ij = (A)jiA†Hermitian matrix matrix conjugate transpose (A†)ij = (A)ji A*Hermitian matrix matrix conjugate transpose (A*)ij = (A)ji A-1inverse matrix A A-1 = Irank(A) matrix rank rank of matrix A rank(A) = 3 dim(U) dimension dimension of matrix A rank(U) = 3 Probability and statistics symbolsSymbol Symbol Name Meaning / definition ExampleP(A) probabilityfunctionprobability of event A P(AP(A∩B) probability ofeventsintersectionprobability that ofevents A and BP(A∩BP(A∪B) probability ofevents union probability that ofevents A or BP(A∪BP(A | B) conditionalprobabilityfunctionprobability of event Agiven event BoccuredP(A | Bf (x) probabilitydensity function(pdf)P(a ≤ x ≤ b) = ∫f (x) dxF(x) cumulative F(x) = P(X≤ x)distribution function (cdf)μpopulationmean mean of populationvaluesμ = 10E(X) expectationvalue expected value ofrandom variable XE(X) = 10E(X | Y) conditionalexpectation expected value ofrandom variable Xgiven YE(X | Y=2) = 5var(X) variance variance of randomvariable Xvar(X) = 4σ2variance variance ofpopulation valuesσ2 = 4std(X) standarddeviation standard deviation ofrandom variable Xstd(X) = 2σX standarddeviation standard deviationvalue of randomvariable XσX=2median middle value of random variable xcov(X,Y) covariance covariance ofrandom variables Xand Ycov(X,Y) = 4corr(X,Y) correlation correlation ofrandom variables Xand Ycorr(X,YρX,Y correlation correlation ofrandom variables Xand YρX,Y∑summation summation - sum of all values in range of series∑∑doublesummationdouble summationBin (n,p) binomialdistributionf (k) = n C k p k(1-p)n-kPoisson(λ)Poissondistributionf (k)= λk e-λ / k!Geom(p) geometricdistributionf (k) = p(1-p) kHG(N,K,n) hyper-geometric distributionBern(p) Bernoulli distributionCombinatorics SymbolsSymbol Symbol Name Meaning / definition Examplen! factorial n! = 1·2·3·...·n5! = 1·2·3·4·5 = 120 n P k permutation 5P3 = 5! / (5-3)! = 60 n C kcombination 5C3 = 5!/[3!(5-3)!]=10Set theory symbolsSymbol Symbol Name Meaning / definition Example{ } set a collection of elements A = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A and setBA ∩B = {9,14}A ∪B union objects that belong to set A or setBA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements orequal to the set{9,14,28} ⊆{9,14,28}A ⊂B proper subset / strict subset has fewer elements than {9,14} ⊂subset the set {9,14,28}A ⊄B not subset left set not a subset of right set {9,66} ⊄{9,14,28}A ⊇B superset set A has more elements or equalto the set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset / strictsupersetset A has more elements than setB{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B {9,14,28} ⊅{9,66}2A power set all subsets of A power set all subsets of AA =B equality both sets have the same members A={3,9,14}, B={3,9,14}, A=BA c complement all the objects that do not belong to set AA \B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A -B relative complement objects that belong to A and not toBA = {3,9,14},B = {1,2,3},A-B = {9,14}A ∆B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ∆B ={1,2,9,14}A ⊖B symmetric difference objects that belong to A or B butnot to their intersectionA = {3,9,14},B = {1,2,3},A ⊖B ={1,2,9,14}a∈A element of set membership A={3,9,14}, 3 ∈Ax∉A not element of no set membership A={3,9,14}, 1 ∉A(a,b) ordered pair collection of 2 elementsA×B cartesian product set of all ordered pairs from A andB|A| cardinality the number of elements of set A A={3,9,14},|A|=3#A cardinality the number of elements of set A A={3,9,14},#A=3aleph-null infinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { } C = {Ø} universal set set of all possible values0natural numbers / wholenumbers set (with zero) 0= {0,1,2,3,4,...} 0 ∈01natural numbers / wholenumbers set (withoutzero)1= {1,2,3,4,5,...} 6 ∈1 integer numbers set = {...-3,-2,-1,0,1,2,3,...} -6 ∈rational numbers set = {x | x=a/b, a,b∈} 2/6 ∈real numbers set = {x | -∞ < x <∞}∈complex numbers set= {z | z=a+bi,-∞<a<∞,-∞<b<∞}6+2i∈Logic symbolsSymbol Symbol Name Meaning / definition Example ·and and x·y^ caret / circumflex and x ^ y& ampersand and x & y+ plus or x + y∨reversed caret or x∨y | vertical line or x | yx' single quote not - negation x'x bar not - negation x¬not not - negation ¬x! exclamation mark not - negation ! x⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Example limit limit value of a functionεepsilon represents a very small number,ε→0near zeroe e constant / Euler'snumber e = 2.718281828...e = lim(1+1/x)x ,x→∞y ' derivative derivative - Lagrange's notation (3x3)' = 9x2y '' second derivative derivative of derivative (3x3)'' = 18xy(n)nth derivative n times derivation (3x3)(3) = 18 derivative derivative - Leibniz's notation d(3x3)/dx = 9x2second derivative derivative of derivative d2(3x3)/dx2 = 18xnth derivative n times derivationtime derivative derivative by time - Newton's notationtime secondderivativederivative of derivativeD x y derivative derivative - Euler's notationD x2y second derivative derivative of derivativepartial derivative ∂(x2+y2)/∂x = 2x ∫integral opposite to derivation ∫f(x)dx∫∫double integral integration of function of 2variables∫∫f(x,y)dxdy∫∫∫triple integral integration of function of 3variables∫∫∫f(x,y,z)dxdydz∮closed contour / lineintegral∯closed surfaceintegral∰closed volumeintegral[a,b] closed interval [a,b] = {x | a ≤ x ≤ b}(a,b) open interval (a,b) = {x | a < x < b}i imaginary unit i≡ √-1 z = 3 + 2i z* complex conjugate z = a+bi→z*=a-bi z* = 3 - 2i z complex conjugate z = a+bi→z = a-bi z = 3 - 2i ∇nabla / del gradient / divergence operator ∇f (x,y,z) vectorunit vectorx * y convolution y(t) = x(t) * h(t)Laplace transform F(s) = {f (t)}Fourier transform X(ω) = {f (t)}δdelta function∞lemniscate infinity symbol。

数学符号英文说法和发音大全(符号英文)

数学符号英文说法和发音大全(符号英文)

数学符号英文说法和发音大全!!各路出国党不妨看过来!Symbols+ plus /'pl?s/- minus /'ma?n?s/±plus or minus /'pl?s ?: 'ma?n?s/x multiplied by /'m?lt?pla?d ba?// over; divided by /'??v?/ /d?'va?d?d/÷divided /d?'va?d?d/= equals /'?:kw?lz/≈approximately, similar /?'pr?ks?m?tl?/ /'s?m?l? t?/≡equivalent to; identical /?k'w?v?l?nt t?/ /a?'dent?kl t?/≠ not equal to /'n?t 'i?kw?l t?/> greater than /'gre?t? e?n/< less than /'les e?n/≥ greater than or equal to /'gre?t? e?n ?r 'i?kw?l t?/≤ less than or equal to /'les e?n ?r' i?kw?l t?/?not greater than /'n?t 'gre?t? e?n/?not less than /'n?t 'les e?n/?much greater than /'m?? 'gre?t? e?n/?much less than /'m?? 'les e?n/⊥perpendicular to /p??p?n'd?kj?l? t?/∣∣parallel to /'p?r?lel t?/?not equivalent to, not identical to /'n?t ?k'w?v?l?nt t?/ /'n?t a?'dent?kl t? ??not similar to /'n?t 's?m?l? t?/2squared /'skwe?d/3cubed /'kju:bd/4 to the fourth; to the power four /t? e? 'f??θ/ /te e? 'pɑ?? f??/n to the n; to the nth; to the power n /t? e? en; t? d?enθ; t? e? pɑ??r en/√root; square root /ru:t/ /skwe? ru:t/?cube root /kju:b ru:t/?fourth root /f??θ ru?t/! factorial /f?k't??r??l/% percent /p?'sent/∞infinity /?n'f?n?t?/∝varies as; proportional to /'v??r?z/ /pr?'p????n?l/˙dot /d?t/¨double dot /d?bl d?t/: is to, ratio of /re?????/f(x) fx f; function /ef/ /'f??k??n/f'(x) f dash; derivative /d??/ /d?'r?v?t?v/f''x f double-dash; second derivative /'d?bl d??/ /'sek?nd d?'r?v?t?v/f'''(x) f triple-dash; f treble-dash; third derivative /'tr?pl d??/ / trebl d??/ /θ?:d d?'r?v?t?v'r?v?t?v/f(4) f four; fourth derivative /f??θ d??partial derivative, delta /pa???l d?'r?v?t?v/ /delt?/∫integral /'?nt?gr?l/∑sum /s?m/w.r.t. with respect to /w?e 'r?spekt/log log /l?g/log?x log to the base 2 of x /l?g t? e? be?s tu: ?v eks/∴therefore /'e??f??/∵because /b?'k?z/→gives, leads to, approaches /g?vz/ /li:dz t?/ /?pr????z// per /p?:/∈belongs to; a member of; an element of /b?'l??z/ /'memb?/ /'el?m?nt/?does not belong to; is not a member of; is not an element of /n?t b?'l??/ /n?t ? 'memb?/ /n?t ?n 'e ?contained in; a proper subset of /k?n'te?nd ?n/ /'pr?p? 's?bset/?contained in; subset /'s?bset/?intersection /'?nt?sek??n/?union /'ju?n??n/?for all /f? r?:l/cos x cos x; cosine x /k?z/sin x sine x /sa?n/tan x tangent x /tan/cosec x cosec x /'k??sek/sinh x shine x /'?a?n/cosh x cosh x /'k??/tanh x than x /θ?n/|x| mod x; modulus x /m?d/ /'m?dj?l?s/℃degrees Centigrade /d?'gri:z 'sent?gre?d/℉degrees Fahrenheit /d?'gri:z 'f?r?nha?t/°K degrees Kelvin /d?'gri:z 'kelv?n/C absolute zero /abs?lu:t zi:r??/0°K, –273.15 °mm millimetre /'m?l?mi?t?/cm centimetre /'sent?mi?t?/cc, cm3cubic centimetre, centimetre cubed /'kju?b?k 'sent?mi?t?/ /'sent?mi?t? 'kju: m metre /'mi?t?/km kilometre /k?'l?m?t?/mg milligram /'m?l?gr?m/g gram /gr?m/kg kilogram /'k?l?gr?m/AC A.C. /e? si:/DC D.C. /di: si:/Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x + y) x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x2x squaredx3x cubedx4 x to the fourth; x to the power fourxn x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n√root x; square root x; the square root of x?the cube root of x?the fourth root of xthe nth root of x(x + y)2x plus y all squared(x/y)2x over y all squaredn! n factorial; factorial nx% x percent∞infinityx ∝y x varies as y; x is (directly) proportional to yx ∝1/y x varies as one over y; x is indirectly proportional to y?x dot?x double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to xf(4) f four x; the fourth derivative of f with respect to x?v the partial derivative of v?v?θdelta v by delta theta, the partial derivative of v with respect to θ?2v?θ2delta two v by delta theta squared; the second partial derivative of v with respect to dv the derivative of vdvdθ d v by d theta, the derivative of v with respect to thetad2vdθ2 d 2 v by d theta squared, the second derivative of v with respect to theta,∫integralintegral from zero to infinity∑sumthe sum from i equals 1 to nw.r.t. with respect tologey log to the base e of y; log y to the base e; natural log (of) y∴therefore∵because→gives, approachesΔx → 0delta x approaches zerolimΔx→0the limit as delta x approaches zero, the limit as delta x tends to zeroLtΔx→0the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metres per secondx ∈ A x belongs to A; x is a member of A; x is an element of Ax? A x does not belong to A; x is not a member of A; x is not an element of AA? B A is contained in B; A is a proper subset of BA ?B A is contained in B; A is a subset of BA ?B A intersection BA ?B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαalpha /'?lf?/Ββbeta /'bi:t?/Γγgamma /'g?m?/Δδdelta /'delt?/Εεepsilon /'epsil?n/Ζζzeta /'zi?t?/Ηηeta /'i?t?//Θθtheta /'θi?t?Ιιiota /a?'??t?/Κκkappa /'k?p?/Λλlamda /'l?md?/Μμmu /'mju?/Ννnu /'nju?/Ξξxi /'ksa?/Οοomicron /'??m?kr?n/ Ππpi /'pa?/Ρρ?rho /'r??/Σσsigma /'s?gm?/Ττtau /'tɑ?/Υυupsilon /'j?ps?l?n/ Φφphi /'fa?/Χχchi /'ka?/Ψψ psi /'psa?/Ωω omega /'??m?g?/ ^Roman alphabetA a /'e?/B b /'bi?/C c /'si?/D d /'di?/E e /'i?/F f /'ef/G g /'?i?/H h /'e??/I i /'a?/J j /'?e?/K k /'ke?/L l /'el/M m /'em/N n /'en/O o /'??/P p /'pi?/Q q /'kju?/R r /'ɑ?/S s /'es/T t /'ti:/U u /'ju:/V v /'vi:/W w /'d?blju?/X x /'eks/Y y /'wa?/Z z /'zed/^Fractions? a half /? 'hɑ:f/? a quarter /? 'kw??t?/z/? three quarters /θri? 'kw??t?:d/? a third /?'θ?:dz/? two thirds /tu: 'θ??a fifth /? 'f?fθ/?t wo fifths /tu: 'f?fθs/?t hree fifths /θri? 'f?fθs/?f our fifths /f?? 'f?fθs/?a sixth /? 's?ksθ/?f ive sixths /fa?v 's?ksθs/? an eighth /?n 'e?tθ/? three eighths /θri? 'e?tθs/? five eighths /fa?v 'e?tθs/? seven eighths /sev?n 'e?tθs/^Decimal Fractions0.1 nought point one /n?:t p??nt w?n/0.01 nought point oh one /n?:t p??nt ?? w?n/0.0001 nought point oh oh oh one /ten p??nt ?????? w?n/1.1 one point one /w?n p??nt w?n/1.2 one point two /w?n p??nt tu:/1.23 one point two three /w?n p??nt tu: θri:/1.0123 one point oh one two three /w?n p??nt ?? w?n tu: θri:/10.01 ten point oh one /ten p??nt ?? w?n/21.57 twenty-one point five seven /'twent? w?n p??nt fa?v 'sev?n/2.6666666666.... two point six recurring /tu: p??nt s?ks r?'k?:r??/'k?:r??/ 2.612361236123... two point six one two three recurring /tu: p??nt s?ks w?n tu: θri: r? 2.5 million two point five million /tu: p??nt fa?v 'm?lj?n/^SI Units: Prefixes10-24 yocto y /'j?kt??/10-21 zepto z /'zept??/10-18 atto a /'at??/10-15 femto f /'femt??/10-12 pico p /'pi:k??/10-9 nano n /'nan??/10-6 micro μ/'ma?kr??/10-3 milli m /'m?l?/10-2 centi c /'sent?/10-1 deci d /'des?/103 kilo k /'k?l??/106 mega M /'meg?/109 giga G /'g?g?/1012 tera T /'ter?/1015 peta P /'pet?/1018 exa E /'eks?/1021 zetta Z /'zet?/1024 yotta Y /'j?t?/1027 xona X /'z??n?/1030 weka W /'wek?/1033 vunda V /'v?nd?/^Cardinal Numbers1 one /w?n/2 two /tu:/3 three /θri:/4 four /f??/5 five /fa?v/6 six /s?ks/7 seven /'sev?n/8 eight /e?t/9 nine /na?n/10 ten /ten/11 eleven /?'lev?n/12 twelve /twelv/:'ti:n/13 thirteen /θ?14 fourteen /f??'ti:n/15 fifteen /f?f'ti:n/16 sixteen /s?kst'i:n/17 seventeen /seven'ti:n/18 eighteen /e?'ti:n/19 nineteen /na?n'ti:n/20 twenty /'twent?/21 twenty-one /twent?'w?n/22 twenty-two /twent?'tu:/23 twenty-three /twent?'θri:/24 twenty-four /twent?'f??/25 twenty-five /twent?'fa?v/26 twenty-six /twent?'s?ks/27 twenty-seven /twent?'sev?n/28 twenty-eight /twent?'e?t/29 twenty-nine /twent?'na?n/:t?/30 thirty /'θ?40 forty /'f??t?/50 fifty /'f?ft?/60 sixty /'s?kst?/70 seventy /'sev?nt?/80 eighty /'e?t?/90 ninety /'na?nt?/100 a hundred; one hundred /? 'h?ndr?d/ /w 101 a hundred and one /? 'h?ndr?d ?n 102 a hundred and two /? 'h?ndr?d ?n 110 a hundred and ten /? 'h?ndr?d ?n 120 a hundred and twenty /? 'h?ndr?d ?n 200 two hundred /tu: 'h?ndr?d/ 300 three hundred /θri: 'h?ndr?d 400 four hundred /f?? 'h?ndr?d/ 500 five hundred /fa?v 'h?ndr?d/ 600 six hundred /s?ks 'h?ndr?d/ 700 seven hundred /'sev?n 'h?ndr? 800 eight hundred /e?t 'h?ndr?d/ 900 nine hundred /na?n 'h?ndr?d/ 1 000 a thousand, one thousand /?θ'ɑ?z?nd 1 001 a thousand and one /?'θɑ?z?nd 1 010 a thousand and ten /?'θɑ?z?nd 1 020 a thousand and twenty /?'θɑ?z?nd 1 100 one thousand, one hunded /w?n 'θɑ?z 1 101 one thousand, one hundred and one /w?n 'θɑ?z 1 110 one thousand, one hundred and ten /w?n 'θɑ?z9 999 nine thousand, nine hundred and ninety-nine /na?n 'θɑ?10 000 ten thousand /ten 'θɑ?15 356 fifteen thousand, three hundred and fifty six /'f?fti:n 'θ100 000 a hundred thousand /? 'h?ndr?d 'θ1 000 000 a million /? 'm?lj?n/100 000 000 a hundred million /? 'h?ndr?d 'm?1 000 000 000 a billion /? 'b?lj?n/100 000 000 000 a hundred billion /? 'h?ndr?d 'b?l 1 000 000 000 000 a trillion /? 'tr?lj?n/1 000 000 000 000 000 a quadrillion /? kw?dr?lj?n/ 1 000 000 000 000 000 000 a quintillian /? kw?n't?lj?n/ 1 000 000 000 000 000 000 000 a sextillion /? seks't?lj?n/1 000 000 000 000 000 000 000 000 a septillion /? sep't?lj?n/1 000 000 000 000 000 000 000 000 000 an ocillion /?n ?kt't?lj?n/1 000 000 000 000 000 000 000 000 000 000 a nonillion /? n?n'?lj?n/1 000 000 000 000 000 000 000 000 000 000 000 a decillion /? de's?lj?n/^Ordinal Numbers1st first /f?:st/2nd second /'sek?nd/:d/3rd third /θ?4th fourth /f?:θ/5th fifth /f?fθ/6th sixth /s?ksθ/7th seventh /'sev?nθ/8th eighth /e?tθ/9th ninth /na?nθ/10th tenth /tenθ/11th eleventh /?'lev?nθ/12th twelfth /'twelfθ/:'ti:nθ/13th thirteenth /θ?14th fourtheenth /f??'ti:nθ/15th fidteenth /f?f'ti:nθ/16th sixteenth /s?ks'ti:nθ/17th seventeenth /seven'ti:nθ/18th eighteenth /e?'ti:nθ/19th nineteenth /na?n'ti:nθ/20th twentieth /'twent??θ/21st twenty-first /twent?'f?:st/22nd twenty-second /twent?'sek?nd/:d/23rd twenty-third /twent?'θ?24th twenty-fourth /twent?'f?:θ/25th twenty-fifth /twent?'f?fθ/26th twenty-sixth /twent?'s?ksθ/27th twenty-seventh /twent?'sev?nθ/28th twenty-eighth /twent?'e?tθ/29th twenty-ninth /twent?'na?nθ/30th thirtieth /'θ??t??θ/'f?:st/31st thirty-first /θ??t?40th fortieth /'f?:t??θ/50th fiftieth /'f?ft??θ/100th hundredth /'h?ndr?dθ/1 000th thousandth /'θɑ?z?ndθ/1 000 000th millionth /'m?lj?nθ/。

数学符号英文说法和发音大全!!(符号英文)

数学符号英文说法和发音大全!!(符号英文)

数学符号英文说法和发音大全!!各路出国党不妨看过来!Symbols+ plus /'plʌs/- minus /'maɪnəs/±plus or minus /'plʌs ɔ: 'maɪnəs/x multiplied by /'mʌltɪplaɪd baɪ// over; divided by /'əʊvə/ /dɪ'vaɪdəd/÷divided /dɪ'vaɪdəd/= equals /'ɪ:kwəlz/≈approximately, similar /ə'prɒksɪmətlɪ/ /'sɪmɪlə tʊ/≡equivalent to; identical /ɪk'wɪvələnt tʊ/ /aɪ'dentɪkl tʊ/≠ not equal to /'nɒt 'iːkwəl tʊ/> greater than /'greɪtə ðən/< less than /'les ðən/≥ greater than or equal to /'greɪtə ðən ər 'iːkwəl tʊ/≤ less than or equal to /'les ðən ər' iːkwəl tʊ/⊁not greater than /'nɒt 'greɪtə ðən/⊀not less than /'nɒt 'les ðən/≫much greater than /'mʌʧ 'greɪtə ðən/≪much less than /'mʌʧ 'les ðən/⊥perpendicular to /pɜːpən'dɪkjʊlə tʊ/∣∣parallel to /'pærəlel tʊ/≢not equivalent to, not identical to /'nɒt ɪk'wɪvələnt tʊ/ /'nɒt aɪ'dentɪkl tʊ≄≉not similar to /'nɒt 'sɪmɪlə tʊ/²squared /'skweəd/³cubed /'kju:bd/4 to the fourth; to the power four /tə ðə 'fɔːθ/ /te ðə 'pɑʊə fɔː/n to the n; to the nth; to the power n /tə ðɪ en; tə dɪenθ; tə ðə pɑʊər en/√root; square root /ru:t/ /skweə ru:t/∛cube root /kju:b ru:t/∜fourth root /fɔːθ ruːt/! factorial /fæk'tɔːrɪəl/% percent /pə'sent/∞infinity /ɪn'fɪnətɪ/∝varies as; proportional to /'vɛərɪz/ /prə'pɔːʃənəl/˙dot /dɒt/¨double dot /dʌbl dɒt/: is to, ratio of /reɪʃɪəʊ/f(x) fx f; function /ef/ /'fʌŋkʃən/f'(x) f dash; derivative /dæʃ/ /dɪ'rɪvətɪv/f''x f double-dash; second derivative /'dʌbl dæʃ/ /'sekənd dɪ'rɪvətɪv/f'''(x) f triple-dash; f treble-dash; third derivative /'trɪpl dæʃ/ / trebl dæʃ/ /θɜ:d dɪ'rɪvətɪv f(4) f four; fourth derivative /fɔːθ dɪ'rɪvətɪv/∂partial derivative, delta /paːʃəl dɪ'rɪvətɪv/ /deltə/∫integral /'ɪntɪgrəl/∑sum /sʌm/w.r.t. with respect to /wɪð 'rɪspekt/log log /lɒg/log₂x log to the base 2 of x /lɒg tə ðə beɪs tu: əv eks/∴therefore /'ðɛəfɔː/∵because /bɪ'kɒz/→gives, leads to, approaches /gɪvz/ /li:dz tʊ/ /əprəʊʧəz// per /pɜ:/∈belongs to; a member of; an element of /bɪ'lɒŋz/ /'membə/ /'elɪmənt/∉does not belong to; is not a member of; is not an element of /nɒt bɪ'lɒŋ/ /nɒt ə 'membə/ /nɒt ən 'e ⊂contained in; a proper subset of /kən'teɪnd ɪn/ /'prɒpə 'sʌbset/⊆contained in; subset /'sʌbset/⋂intersection /'ɪntəsekʃən/⋃union /'juːnɪən/∀for all /fə rɔ:l/cos x cos x; cosine x /kɒz/sin x sine x /saɪn/tan x tangent x /tan/cosec x cosec x /'kəʊsek/sinh x shine x /'ʃaɪn/cosh x cosh x /'kɒʃ/tanh x than x /θæn/|x| mod x; modulus x /mɒd/ /'mɒdjʊləs/℃degrees Centigrade /dɪ'gri:z 'sentɪgreɪd/℉degrees Fahrenheit /dɪ'gri:z 'færənhaɪt/°K degrees Kelvin /dɪ'gri:z 'kelvɪn/0°K, –273.15 °C absolute zero /absəlu:t zi:rəʊ/mm millimetre /'mɪlɪmiːtə/cm centimetre /'sentɪmiːtə/cc, cm³cubic centimetre, centimetre cubed /'kjuːbɪk 'sentɪmiːtə/ /'sentɪmiːtə 'kju: m metre /'miːtə/km kilometre /kɪ'lɒmɪtə/mg milligram /'mɪlɪgræm/g gram /græm/kg kilogram /'kɪləgræm/AC A.C. /eɪ si:/DC D.C. /di: si:/Examplesx + 1 x plus onex -1 x minus onex ± 1 x plus or minus onexy x y; x times y; x multiplied by y(x — y)(x + y) x minus y, x plus yx/y x over y; x divided by y;x ÷ y x divided by yx = 5 x equals 5; x is equal to 5x ≈ y x is approximately equal to yx ≡ y x is equivalent to y; x is identical with yx ≠ y x is not equal to yx > y x is greater than yx < y x is less than yx ≥ y x is greater than or equal to yx ≤ y x is less than or equal to y0 < x < 1 zero is less than x is less than 1; x is greater than zero and less than 10 ≤ x ≤ 1zero is less than or equal to x is less than or equal to 1; x is greater than or equal to zero and less than or equal to 1x²x squaredx³x cubedx4 x to the fourth; x to the power fourxn x to the n; x to the nth; x to the power nx-n x to the minus n; x to the power of minus n√root x; square root x; the square root of x∛the cube root of x∜the fourth root of xthe nth root of x(x + y)²x plus y all squared(x/y)²x over y all squaredn! n factorial; factorial nx% x percent∞infinityx ∝y x varies as y; x is (directly) proportional to yx ∝1/y x varies as one over y; x is indirectly proportional to yẋx dotẍx double dotf(x) fx f of x; the function of xf'(x) f dash x; the (first) derivative of with respect to xf''x f double-dash x; the second derivative of f with respect to xf'''(x) f triple-dash x; f treble-dash x; the third derivative of f with respect to x f(4) f four x; the fourth derivative of f with respect to x∂v the partial derivative of v∂v∂θdelta v by delta theta, the partial derivative of v with respect to θ∂²v∂θ²delta two v by delta theta squared; the second partial derivative of v with respect to θdv the derivative of vdv dθ d v by d theta, the derivative of v with respect to thetad²v dθ² d 2 v by d theta squared, the second derivative of v with respect to theta,∫integralintegral from zero to infinity∑sumthe sum from i equals 1 to nw.r.t. with respect tologey log to the base e of y; log y to the base e; natural log (of) y∴therefore∵because→gives, approachesΔx → 0delta x approaches zerolimΔx→0the limit as delta x approaches zero, the limit as delta x tends to zeroLtΔx→0the limit as delta x approaches zero, the limit as delta x tends to zerom/sec metres per secondx ∈A x belongs to A; x is a member of A; x is an element of Ax∉ A x does not belong to A; x is not a member of A; x is not an element of AA⊂ B A is contained in B; A is a proper subset of BA ⊆B A is contained in B; A is a subset of BA ⋂B A intersection BA ⋃B A union Bcos x cos x; cosine xsin x sine xtan x tangent x, tan xcosec x cosec xsinh x shine xcosh x cosh xtanh x than x|x| mod x; modulus x18 ℃eighteen degrees Centigrade70 ℉seventy degrees FahrenheitGreek alphabetΑαalpha /'ælfə/Ββbeta /'bi:tə/Γγgamma /'gæmə/Δδdelta /'deltə/Εεepsilon /'epsilən/Ζζzeta /'ziːtə/Ηηeta /'iːtə/Θθtheta /'θiːtə/Ιιiota /aɪ'əʊtə/Κκkappa /'kæpə/Λλlamda /'læmdə/ Μμmu /'mjuː/Ννnu /'njuː/Ξξxi /'ksaɪ/Οοomicron /'əʊmɪkrən/ Ππpi /'paɪ/Ρρςrho /'rəʊ/Σσsigma /'sɪgmə/Ττtau /'tɑʊ/Υυupsilon /'jʊpsɪlən/ Φφphi /'faɪ/Χχchi /'kaɪ/Ψψ psi /'psaɪ/Ωω omega /'əʊmɪgə/ ^Roman alphabetA a /'eɪ/B b /'biː/C c /'siː/D d /'diː/E e /'iː/F f /'ef/G g /'ʤiː/H h /'eɪʧ/I i /'aɪ/J j /'ʤeɪ/K k /'keɪ/L l /'el/M m /'em/N n /'en/O o /'əʊ/P p /'piː/Q q /'kjuː/R r /'ɑː/S s /'es/T t /'ti:/U u /'ju:/V v /'vi:/W w /'dʌbljuː/X x /'eks/Y y /'waɪ/Z z /'zed/^Fractions½ a half /ə 'hɑ:f/¼ a quarter /ə 'kwɔːtə/¾ three quarters /θriː 'kwɔːtəz/⅓ a third /ə'θɜ:d/⅔ two thirds /tu: 'θɜ:dz/⅕a fifth /ə 'fɪfθ/⅖t wo fifths /tu: 'fɪfθs/⅗t hree fifths /θriː 'fɪfθs/⅘f our fifths /fɔː 'fɪfθs/⅙a sixth /ə 'sɪksθ/⅚f ive sixths /faɪv 'sɪksθs/⅛ an eighth /ən 'eɪtθ/⅜ three eighths /θriː 'eɪtθs/⅝ five eighths /faɪv 'eɪtθs/⅞ seven eighths /sevən 'eɪtθs/^Decimal Fractions0.1 nought point one /nɔ:t pɔɪnt wʌn/0.01 nought point oh one /nɔ:t pɔɪnt əʊ wʌn/0.0001 nought point oh oh oh one /ten pɔɪnt əʊəʊəʊ wʌn/1.1 one point one /wʌn pɔɪnt wʌn/1.2 one point two /wʌn pɔɪnt tu:/1.23 one point two three /wʌn pɔɪnt tu: θri:/1.0123 one point oh one two three /wʌn pɔɪnt əʊ wʌn tu: θri:/10.01 ten point oh one /ten pɔɪnt əʊ wʌn/21.57 twenty-one point five seven /'twentɪ wʌn pɔɪnt faɪv 'sevən/ 2.6666666666.... two point six recurring /tu: pɔɪnt sɪks rɪ'kɜ:rɪŋ/2.612361236123... two point six one two three recurring /tu: pɔɪnt sɪks wʌn tu: θri: rɪ'kɜ:rɪŋ/ 2.5 million two point five million /tu: pɔɪnt faɪv 'mɪljən/^SI Units: Prefixes10-24 yocto y /'jɒktəʊ/10-21 zepto z /'zeptəʊ/10-18 atto a /'atəʊ/10-15 femto f /'femtəʊ/10-12 pico p /'pi:kəʊ/10-9 nano n /'nanəʊ/10-6 micro µ/'maɪkrəʊ/10-3 milli m /'mɪlɪ/10-2 centi c /'sentɪ/10-1 deci d /'desɪ/103 kilo k /'kɪləʊ/106 mega M /'megə/109 giga G /'gɪgə/1012 tera T /'terə/1015 peta P /'petə/1018 exa E /'eksə/1021 zetta Z /'zetə/1024 yotta Y /'jɒtə/1027 xona X /'zəʊnə/1030 weka W /'wekə/1033 vunda V /'vʊndə/^Cardinal Numbers1 one /wʌn/2 two /tu:/3 three /θri:/4 four /fɔː/5 five /faɪv/6 six /sɪks/7 seven /'sevən/8 eight /eɪt/9 nine /naɪn/10 ten /ten/11 eleven /ɪ'levən/12 twelve /twelv/13 thirteen /θɜ:'ti:n/14 fourteen /fɔː'ti:n/15 fifteen /fɪf'ti:n/16 sixteen /sɪkst'i:n/17 seventeen /seven'ti:n/18 eighteen /eɪ'ti:n/19 nineteen /naɪn'ti:n/20 twenty /'twentɪ/21 twenty-one /twentɪ'wʌn/22 twenty-two /twentɪ'tu:/23 twenty-three /twentɪ'θri:/24 twenty-four /twentɪ'fɔː/25 twenty-five /twentɪ'faɪv/26 twenty-six /twentɪ'sɪks/27 twenty-seven /twentɪ'sevən/28 twenty-eight /twentɪ'eɪt/29 twenty-nine /twentɪ'naɪn/30 thirty /'θɜ:tɪ/40 forty /'fɔːtɪ/50 fifty /'fɪftɪ/60 sixty /'sɪkstɪ/70 seventy /'sevəntɪ/80 eighty /'eɪtɪ/90 ninety /'naɪntɪ/100 a hundred; one hundred /ə 'hʌndrəd/ /w 101 a hundred and one /ə 'hʌndrəd ən w 102 a hundred and two /ə 'hʌndrəd ən t 110 a hundred and ten /ə 'hʌndrəd ən t 120 a hundred and twenty /ə 'hʌndrəd ən ' 200 two hundred /tu: 'hʌndrəd/ 300 three hundred /θri: 'hʌndrəd 400 four hundred /fɔː 'hʌndrəd/ 500 five hundred /faɪv 'hʌndrəd/ 600 six hundred /sɪks 'hʌndrəd/ 700 seven hundred /'sevən 'hʌndrə800 eight hundred /eɪt 'hʌndrəd/ 900 nine hundred /naɪn 'hʌndrəd/ 1 000 a thousand, one thousand /əθ'ɑʊzənd/ /w 1 001 a thousand and one /ə'θɑʊzənd ən 1 010 a thousand and ten /ə'θɑʊzənd ən 1 020 a thousand and twenty /ə'θɑʊzənd ən 1 100 one thousand, one hunded /wʌn 'θɑʊzənd 1 101 one thousand, one hundred and one /wʌn 'θɑʊzənd 1 110 one thousand, one hundred and ten /wʌn 'θɑʊzənd9 999 nine thousand, nine hundred and ninety-nine /naɪn 'θɑʊzənd10 000 ten thousand /ten 'θɑʊzənd/ 15 356 fifteen thousand, three hundred and fifty six /'fɪfti:n 'θɑʊzən 100 000 a hundred thousand /ə 'hʌndrəd 'θɑʊ1 000 000 a million /ə 'mɪljən/100 000 000 a hundred million /ə 'hʌndrəd 'mɪ1 000 000 000 a billion /ə 'bɪljən/100 000 000 000 a hundred billion /ə 'hʌndrəd 'bɪl 1 000 000 000 000 a trillion /ə 'trɪljən/1 000 000 000 000 000 a quadrillion /ə kwɒdrɪljən/ 1 000 000 000 000 000 000 a quintillian /ə kwɪn'tɪljən/ 1 000 000 000 000 000 000 000 a sextillion /ə seks'tɪljən/1 000 000 000 000 000 000 000 000 a septillion /ə sep'tɪljən/1 000 000 000 000 000 000 000 000 000 an ocillion /ən ɒkt'tɪljən/ 1 000 000 000 000 000 000 000 000 000 000 a nonillion /ə nɒn'ɪljən/1 000 000 000 000 000 000 000 000 000 000 000 a decillion /ə de'sɪljən/^Ordinal Numbers1st first /fɜ:st/2nd second /'sekənd/3rd third /θɜ:d/4th fourth /fɔ:θ/5th fifth /fɪfθ/6th sixth /sɪksθ/7th seventh /'sevənθ/8th eighth /eɪtθ/9th ninth /naɪnθ/10th tenth /tenθ/11th eleventh /ɪ'levənθ/12th twelfth /'twelfθ/13th thirteenth /θɜ:'ti:nθ/14th fourtheenth /fɔː'ti:nθ/15th fidteenth /fɪf'ti:nθ/16th sixteenth /sɪks'ti:nθ/17th seventeenth /seven'ti:nθ/ 18th eighteenth /eɪ'ti:nθ/19th nineteenth /naɪn'ti:nθ/20th twentieth /'twentɪəθ/21st twenty-first /twentɪ'fɜ:st/ 22nd twenty-second /twentɪ'sekənd/ 23rd twenty-third /twentɪ'θɜ:d/ 24th twenty-fourth /twentɪ'fɔ:θ/25th twenty-fifth /twentɪ'fɪfθ/26th twenty-sixth /twentɪ'sɪksθ/ 27th twenty-seventh /twentɪ'sevənθ/ 28th twenty-eighth /twentɪ'eɪtθ/29th twenty-ninth /twentɪ'naɪnθ/ 30th thirtieth /'θɜːtɪəθ/31st thirty-first /θɜːtɪ'fɜ:st/40th fortieth /'fɔ:tɪəθ/50th fiftieth /'fɪftɪəθ/100th hundredth /'hʌndrədθ/1 000th thousandth /'θɑʊzəndθ/1 000 000th millionth /'mɪljənθ/。

英文,常用数学符号、公式和等式的读法

英文,常用数学符号、公式和等式的读法

英⽂,常⽤数学符号、公式和等式的读法⼀、常⽤数学符号、公式和等式的读法+ 加号,加 plus+ 正号 positive- 减号,减 minus- 负号,负 negetive± 加或减 plus or minus± 正或负 plus or minus2 乘 multiplied by times into÷ 除 divided by: ⽐ proportional to= 等号 equal sign= 等于 to equal,to equals> ⼤于 greater than< ⼩于 less than⼤于等于 greater than or equal⼩于等于less than or equal≡恒等于 identical with≈约等于 approximately equal≌全等于 congruent~等价于 equivalent to;相似于 similar to→趋近于 approaches( ) 括号,括弧 1) parentheses;parenthesis;sign parenthesis圆括号,圆括弧 2) round brackets[ ] ⽅括号1) squre [angular] brackets括号2) brackets{ } 花括号 braces∑ 求和summstion of;sigma从1到n的和 the sum form i equalsone to n;sigma从1到n的积 the product form i equalsone to nx1 +x2+x3+ΛΛ x one x two plus x three,etc(et cetera)a=b 1) a equals to b2) a is equal to b3) a is ba≠b a is not equal to b;a is not ba>b a is greater than baa?b a is greater than or equal to ba?b a is less than or equal to ba≈b a approximately equal (s) ba∝b a varies directly as b;a is (directly) proportional to ba∈A a is member of set AA?B A is contained in B;A is a proper subset of B AIB A intersection B AYB A union{ }或φ empty setimpliesis equivalent to xRy x is in the relation R to y a±b a plus or minus b (a+b)(a-b) a plus b,a minus b(a+b)2 a plus b all squared(a÷b)2 a over b all squaredn! n factorial;factorial na% a persent|a| mod a;modulus ax→∞ x approaches infinity0< x0?x?a zero is less than or equal to x is less than or equal to ac=a.b 1)c equals (is equal to) a multiplied by b2) c equals a times b1:2 the ratio of one to two1/2 a half;one half1/3 a third;one third1/100 a[one] hundredth1/1000 a[one] thousandth0.1(.1) zero point one;nought point one0.01(.01) zero point zero one;nought point nought one3.1416 three point one four one six14. one four point one four,one four recurringa:b the ratio of a to ba:b=c 1) a devided by b equals c2) a devided by b is c3)the ratio of a to b is ca:b=c:d 1) the ratio of a to b equals the ratio of c to d2) a is to b as c is to da+b>c a plus b is greater then ca+b< then b plus>a+b=c a plus b is (are;equals;is equal to) ca-b=c a minus b(b from a) is(equals;is equal to;leaves) c (a,b) a[a,b]a?x?b the closed interval from a to b(a,b) the interval a[a,b] the interval a?xaa?x?b a is less then or equal to x is less then or equal to blogax logarithm (base) of xlnx natural logarithm of xx2 1)x square;x squured2) x to the second power3) x raised to the second power4) the square of x5) the second power of x6) x to the secondx3 1)x cube;x cubed2) x to the third power3) x raised to the third power4) the cube of x5) the third power of x6) x to the thirdx n 1)x to the n-th power2) x raised to the n-th power3) the n-th power of x4) x to the n-thx-n 1) x to the minus n-th2) x to the minus n-th powerradical=b 1) the square root of a is(equals) b 2) the square root out of a is(equals) bthe square root of athe cube root of athe cube rootthe n-th roota′ a primea n 1) a second prime2) a double prime3) a twice dashed;a m 1) a triple prime2) a third primea1 1) a sub one2) a firsta2 1) a sub two2) a seconda m 1) a sub m2) a m-tha'm 1) a prime,sub m2) a sub m,primea'1 a first primea n2 a second, second primey first derivative of ysecond derivative of ydy/dx first derivative of y with respect to xd2y/dx2 second derivative of y with respect to xy=f(x) y is a function of x∫ integral of1) integral of……from a to b2) integral of……between limits a and bcapital L equals the square root of (out of ) capital R square plus minus x squarea to the m by n-th power equals the n-th root of (out of) a to the m-th powerP=∞ p is equal to infinity∟ angle⊥ perpendicular;is perpendicular to∠ parallel;is parallel to△ABC triangje ABCvector Fa bar≌ is congruent to~ is similar tA-1 inverse of matrix A % percent⼆、英语缩写词abs absolute 绝对的absolutely 绝对地A.D Anno Domini 公元ad inf ad infinitum 趋于⽆限ads address 地址agg aggregate 总数、共计al algebra 代数alt altitude ⾼度alternate 交错,交替a.m above-mentioned 上述的a.m. arithmetic mean 算术平均amt amount 数量ans answer 答案、解答、回答AoI and-or-inverter 与或⾮等差数列A.P arithmeticprogressionappl application 应⽤appr approximate 近似、约计appx appendix 附录arg argument ⾃变数,幅⾓arith arithmetic 算术aut automatic ⾃动的aux,auxil auxiliary 辅助的av,avg average 平均Ax Axiom 公理B.C Before Christ 公元前⼆进制编码的⼗进制BCD Binary Coded DecimalBC.O Binary Coded Octal ⼆进制编码的⼋进制℃(c)centigrate 摄⽒度C cubic ⽴⽅的cycle 周centi 厘,百分之⼀ca circa ⼤约CAD Computer-Aided计算机辅助设计Design计算机辅助教学CAI Computer-AidedInstructioncalcd calculated 计算的cat catalog (ue) ⽬录,⼀览表C.C.W Counter-Clockwise 逆时针⽅向c.d centre distance 中⼼距离cf. confer 参看、见、⽐较cg center of gravity 重⼼厘⽶2克2秒(单位)制C.G.S Centimetre Gramme SecondCh. Chapter 章chap chapter 章char character 字符cir circular 圆形的circum circumference 圆周cit cited 引⽤ckt circuit 电路C.l. center-line 中⼼线算术平均法,平均⾼度法C.L.A center line average methodcm centimetre 厘⽶coeff. coefficient 系数com common 公,公共col column ⾏,纵⾏,栏,项⽬,柱comp. compare ⽐较con contra 相反conclusion 结论con.sec conic sections 圆锥曲线const constant 常数construction 作图contcontinued 续,接(contd)Contr. Contracted 省略的Contraction 省略Cor corollary 推论,系cp compare ⽐较ct constant 常数circuit 电路,线路ctr (s) center (s) 中⼼cu (cub) cubic ⽴⽅C.W. clockwise 顺时针⽅向CY cycle 周期,周d degree 度D density 密度diameter 直径date ⽇期D.C. digital computer 数字计算机微分⽅程D.E differentialequationdef(def’n)definition 定义deg degree 度demon demonstrative 求证den density 密度der derivative 导数,微商det detail 详细,细节,详图DF decimal fraction (⼗进)⼩数dia (m) diameter 直径diag diagram 图,图解diff difference 差,不同DIV divide 除Do (d°)ditto 同上,同前,如前所述doub double 加倍,⼆倍,成双的,成倍的DP data processing 数据处理E east 东edit edition 版,版本e.e error expected 允许的误差例如e.g exempligratia=forexampleeq. equal 相等eq (eq’n)equation 等式,⽅程esp. especially 特别et al et alii 及其他et alibi 及别处etc et cetera 等等et seq et sequentia 及以下等等ex (s) example(s) 例exercise 练习,习题extra 特别的ext external 外部的exterior 在外f frequency 频率fig figure 图,图形fn function 函数,功能FQCY frequency 频率fxd fixed 固定的,不变的g(gm) gramme 克GA general average 平均值最⼤公约数G.C.D greatest commondivisorG.C.F greatest commonfactor最⼤公约数G.C.M greatest commonmeasuregeom. geometry ⼏何学G.P geometrical等⽐数列,⼏何数列progressiongr(grm) gram 克h hour ⼩时height ⾼,⾼度H.C.F. highest common最⾼公因式,最⼤公约数factorhf half 半hor horizontal ⽔平的hr hour ⼩时hyp hypothesis 假设ib (ibid) ibidem 在同处(书,⽂献等出处) id idem 同前,同上,同作者,同样iden identical 恒等,全等i.e id est=that is 即,就是,换⾔之ig idem quod 如同ih inverted hour 逆(反)时针的im image 图像inc increase 增加ind index 索引,指标,刻度indef indefinite ⽆限,不定in.ex in extenso 全部inf infinity ⽆穷⼤,⽆限⼤infra 上、下限inh inverted hour 逆(反)时针的int interior 内部的,在内int.al inter alia 尤其I/O input/output 输⼊/输出信息技术IT informationinformation信息论theory独⽴变数IV independentvariableJ journal 期刊,杂志jour journal 期刊,杂志kg kilogram 千克km kilometer 千克l length 长度l.c loco citato 上述引⽂中最⼩公倍数(式)L.C.M. least commonmultipleLowest common multiple 最低公倍式Lgth length 长度l.h left hand 左⽅,左侧lim limit 极限lin linear 直线的,⼀次的,线性的lit liter (公)升loc location 位置loc.cit loco citato 上述引⽂中最低(数)位,最右(数)位ISD least significantdigitM mega 兆(106)mille 千M(m) medium 中间,中等m metre ⽶milli 毫(10-3)million 兆(106)minute 分钟µ(mu) micro 微(10-6)mae mean absoluteerrormag magnitude 量,⼤⼩math mathematical 数学的mathematics 数学max maximum 最⼤,最⼤值min minimum 最⼩,最⼩值minute 分钟mo (s) month(s) ⽉mon monthly ⽉刊MS mean square 均⽅n net 净N number 数,编号,第…号North 北Northern 北⽅的n.a.s.c necessary andsufficient condition 充要条件,充分且必要的条件N.B nota bene= note 注意wellneg negative 负的Net network ⽹络No(s) number(s) 数,编号,第…号nr near 在…附近常微分⽅程O.D.E. ordinarydifferentialequationopp opposed 相反的,对⾯ord ordinary 普通的,通常的p page 页PAR parallel 平⾏的,平⾏线,并联的par paragraph 节,段P.C. per cent 百分⽐pcs pieces 个,件,份P.D.E partialdifferentialequationPERT programevaluation andreview techniques 计划评审技术(统筹⽅法)ph phase 相位,相pos positive 正的pp pages 负(复数)p.p proportional part ⽐例部分Pr pair 偶,对pr(pri,pry) primary 初级,最初的prep perpendicular 垂直,正交proc proceeding 学报,会刊ps pseudo 伪,假pt(s) part(s) 部分p.t.o please turn over 请见(本页的)反⾯,请翻到下页q question 问题q.e quod est 这就是,即Q.E D quod erat证毕,证完,这就是所要证的,所求证者demonstrandum w.r.t with respect to 关于,相对于。

常用数学符号英文对照

常用数学符号英文对照

常用数学符号英文对照Basic math symbolsSymbol Symbol Name Meaning / definition Example= equals sign equality 5 = 2+35 is equal to 2+3≠not equal sign inequality 5 ≠ 45 is not equal to 4≈approximatelyequal approximationsin(0.01) ≈ 0.01,x≈y means x isapproximately equal to y> strictinequality greater than5 > 45 is greater than 4< strictinequality less than4 < 54 is less than 5≥inequality greater than or equal to 5 ≥ 4,x≥y means x is greater than or equal to y≤inequality less than or equal to 4 ≤ 5,x ≤ y means x is greater than or equal to y( ) parentheses calculate expressioninside first2 × (3+5) = 16[ ] brackets calculate expressioninside first[(1+2)×(1+5)] = 18 + plus sign addition 1 + 1 = 2−minus sign subtraction 2 − 1 = 1±plus - minus both plus and minusoperations3 ± 5 = 8 and -2±minus - plus both minus and plusoperations3 ± 5 = -2 and 8* asterisk multiplication 2 * 3 = 6×times sign multiplication 2 × 3 = 6·multiplicationdotmultiplication 2 · 3 = 6÷division sign /obelusdivision 6 ÷ 2 = 3/ division slash division 6 / 2 = 3–horizontal line division / fractionmod modulo remainder calculation 7 mod 2 = 1. period decimal point, decimalseparator2.56 = 2+56/100a b power exponent 23= 8a^b caret exponent 2 ^ 3= 8√a square root √a ·√a = a√9 = ±33√a cube root 3√a ·3√a ·3√a = a3√8 = 24√a fourth root 4√a ·4√a ·4√a ·4√a =a4√16 = ±2n√a n-th root(radical)for n=3, n√8 = 2 % percent1% = 1/100 10% × 30 = 3‰per-mille1‰ = 1/1000 = 0.1% 10‰× 30 = 0.3 ppm per-million1ppm = 1/1000000 10ppm × 30 = 0.0003 ppb per-billion 1ppb = 1/1000000000 10ppb × 30 = 3×10-7Geometry symbolsSymbolSymbol NameMeaning / definitionExample∠angle formed by two rays ∠ABC = 30°measured angle ABC = 30°sphericalangleAOB = 30°∟ right angle = 90° α = 90°°degree 1 turn = 360° α = 60° degdegree1 turn = 360degα = 60deg ′ primearcminute, 1° = 60′α = 60°59′″double prime arcsecond, 1′ = 60″ α = 60°59′59″line infinite lineABline segment line from point A to point Bray line that start from point Aarc arc from point A to point B= 60°⊥ perpendicular perpendicular lines (90° angle) AC ⊥ BC| | parallel parallel lines AB | | CD≅ congruent toequivalence of geometric shapes and size∆ABC ≅ ∆XYZ~similarity same shapes, not same size ∆ABC~ ∆XYZΔtriangle triangle shape ΔABC≅ΔBCD |x-y| distance distance between points x and y | x-y| = 5πpi constant π= 3.141592654...is the ratio between the circumferenceand diameter of a circlec= π·d=2·π·rrad radians radians angle unit 360° = 2π rad c radians radians angle unit 360° = 2πcgrad gradians /gonsgrads angle unit 360° = 400 gradggradians /gonsgrads angle unit 360° = 400 gAlgebra symbolsSymbol Symbol Name Meaning / definition Examplex x variable unknown value to find when 2x= 4, then x= 2 ≡equivalence identical to≜equal by definition equal by definition:= equal by definition equal by definition~ approximately equal weak approximation 11 ~ 10≈approximately equal approximation sin(0.01) ≈ 0.01∝proportional to proportional to y∝x when y= kx,k constant ∞lemniscate infinity symbol≪much less than much less than 1 ≪ 1000000≫much greater than much greater than 1000000 ≫ 1( ) parentheses calculate expressioninside first2 * (3+5) = 16[ ] brackets calculate expressioninside first[(1+2)*(1+5)] = 18 { } braces set⌊x⌋floor brackets rounds number to lowerinteger⌊ 4.3⌋ = 4⌈x⌉ceiling brackets rounds number to upperinteger⌈ 4.3⌉ = 5x! exclamation mark factorial4! = 1*2*3*4 = 24 | x|single vertical bar absolute value | -5 | = 5f (x) function of x maps values of x to f(x) f (x) = 3x+5(f∘g) function composition(f∘g) (x)= f (g(x))f (x)=3x,g(x)=x-1 ⇒(f∘g)(x)=3(x-1)(a,b) open interval (a,b) ={x| a< x< b}x∈ (2,6)[a,b] closed interval [a,b] ={x| a≤x≤b}x∈ [2,6]∆delta change / difference ∆t= t1 -t0∆discriminant Δ = b2- 4ac∑sigma summation - sum of allvalues in range of series∑x i= x1+x2+...+x n∑∑sigma double summation∏capital piproduct - product of all values in range of series∏ x i =x 1∙x 2∙...∙x nee constant / Euler's numbere = 2.718281828... e = lim (1+1/x )x , x →∞γ Euler-Mascheroni const antγ = 0.527721566...φgolden ratio golden ratio constantπpi constantπ = 3.141592654...is the ratio between the circumference and diameter of a circlec = π·d = 2·π·rLinear Algebra SymbolsSymbolSymbol NameMeaning / definitionExample· dot scalar producta ·b ×cross vector producta ×b A ⊗Btensor product tensor product of A and BA ⊗ Binner product[ ] brackets matrix of numbers( ) parentheses matrix of numbers| A | determinant determinant of matrix Adet(A )determinant determinant of matrix A|| x || double vertical bars normA Ttranspose matrix transpose(A T)ij = (A )jiProbability and statistics symbols Symbol Symbol Name Meaning / definition Example P(A) probabilityfunctionprobability of event A P(A) = 0.5P(A∩B) probability ofeventsintersectionprobability that of events Aand BP(A∩B) = 0.5P(A∪B) probability ofevents union probability that of events Aor BP(A∪B) = 0.5P(A| B) conditionalprobabilityfunctionprobability of event A givenevent B occuredP(A | B) = 0.3f (x) probabilitydensityfunction (pdf)P(a ≤x ≤b)= ∫ f (x)dxF(x) cumulativedistributionfunction (cdf)F(x) = P(X≤x)μpopulation mean mean of population values μ= 10E(X) expectationvalue expected value of randomvariable XE(X) = 10E(X | Y) conditionalexpectation expected value of randomvariable X given YE(X | Y=2) = 5var (X )variancevariance of random variable Xvar (X ) = 4σ2variance variance of population valuesσ2 = 4std (X )standard deviation standard deviation of random variable Xstd (X ) = 2σX standard deviationstandard deviation value of random variable X σX = 2medianmiddle value of random variable xcov (X ,Y ) covariancecovariance of random variables X and Y cov (X,Y ) = 4corr (X ,Y ) correlationcorrelation of random variables X and Y corr (X,Y ) = 0.6ρX ,Ycorrelationcorrelation of random variables X and YρX ,Y= 0.6∑summationsummation - sum of all values in range of series∑∑double summationdouble summationMo mode value that occurs most frequently in populationMR mid-rangeMR = (x max +x min )/2Mdsample median half the population is below this valueQ 1lower / first quartile25% of population are below this valueQ 2median / second quartile50% of population are below this value = median of samplesQ3upper / thirdquartile 75% of population are below this valuex sample mean average / arithmetic mean x= (2+5+9) / 3 = 5.333s2sample variance population samples varianceestimators2= 4s sample standarddeviation population samples standard deviation estimators= 2z x standard score z x= (x-x) /s xX ~ distribution of X distribution of randomvariable XX ~N(0,3)N(μ,σ2) normaldistributiongaussian distribution X ~N(0,3)U(a,b) uniformdistributionequal probability in rangea,bX ~U(0,3)exp(λ) exponentialdistributionf (x)= λe-λx, x≥0gamma(c, λ) gammadistributionf (x)= λ c x c-1e-λx/ Γ(c), x≥0χ2(k) chi-squaredistributionf (x)= x k/2-1e-x/2/( 2k/2 Γ(k/2) )F (k1, k2) F distributionBin(n,p) binomialdistributionf (k)= n C k p k(1-p)n-kPoisson(λ) Poissondistributionf (k)= λk e-λ/ k!Geom(p) geometricdistributionf (k)= p(1-p)kHG(N,K,n) hyper-geometric distributionBern(p) Bernoulli distributionSet theory symbolsSymbol Symbol Name Meaning / definition Example{ } set a collection of elements A = {3,7,9,14},B = {9,14,28}A ∩B intersection objects that belong to set A and setBA ∩B = {9,14}A ∪B union objects that belong to set A or setBA ∪B ={3,7,9,14,28}A ⊆B subset subset has fewer elements or equal tothe set{9,14,28} ⊆{9,14,28}A ⊂B proper subset /strict subsetsubset has fewer elements than theset{9,14} ⊂{9,14,28}A ⊄B not subset left set not a subset of right set {9,66} ⊄{9,14,28}A ⊇B superset set A has more elements or equal tothe set B{9,14,28} ⊇{9,14,28}A ⊃B proper superset /strict supersetset A has more elements than set B{9,14,28} ⊃{9,14}A ⊅B not superset set A is not a superset of set B {9,14,28} ⊅{9,66}2Apower set all subsets of Apower set all subsets of AA =B equalityboth sets have the same membersA={3,9,14},B={3,9,14}, A=BA ccomplementall the objects that do not belong to set AA \B relative complementobjects that belong to A and not to BA = {3,9,14},B = {1,2,3}, A-B = {9,14} A - B relative complementobjects that belong to A and not to BA = {3,9,14},B = {1,2,3}, A-B = {9,14} A ∆ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},B = {1,2,3}, A ∆ B = {1,2,9,14} A ⊖ Bsymmetric differenceobjects that belong to A or B but not to their intersectionA = {3,9,14},B = {1,2,3}, A ⊖ B = {1,2,9,14}a ∈Aelement of set membershipA={3,9,14}, 3 ∈ Ax ∉ A not element ofno set membershipA={3,9,14}, 1 ∉ A(a ,b ) ordered pair collection of 2 elementsA ×B cartesian product set of all ordered pairs from A and B|A| cardinalitythe number of elements of set AA={3,9,14}, |A|=3 #Acardinality the number of elements of set AA={3,9,14}, #A=3aleph-nullinfinite cardinality of natural numbers setaleph-one cardinality of countable ordinal numbers setØ empty set Ø = { }C = {Ø}universal set set of all possible valuesnatural numbers /whole numbers set (with zero) 0= {0,1,2,3,4,...} 0 ∈1natural numbers /whole numbers set (without zero)1= {1,2,3,4,5,...} 6 ∈1integer numbers set={...-3,-2,-1,0,1,2,3,...}-6 ∈rational numbers set= {x | x =a /b , a ,b ∈}2/6 ∈real numbers set= {x | -∞ < x <∞} 6.343434∈complex numbers set= {z | z=a +bi , -∞<a <∞, -∞<b <∞}6+2i ∈∨reversed caret or x∨y | vertical line or x| y x' single quote not - negation x'x bar not - negation x¬not not - negation ¬x ! exclamation mark not - negation ! x⊕circled plus / oplus exclusive or - xor x⊕y ~ tilde negation ~ x⇒implies⇔equivalent if and only if (iff)↔equivalent if and only if (iff)∀for all∃there exists∄there does not exists∴therefore∵because / sinceCalculus & analysis symbolsSymbol Symbol Name Meaning / definition Examplelimit limit value of a functionεepsilonrepresents a very small number, near zeroε → 0eeconstant / Euler's numbere = 2.718281828...e = lim(1+1/x )x,x →∞y ' derivativederivative - Lagrange's notation (3x 3)' = 9x 2y '' second derivative derivative of derivative(3x 3)'' = 18xy (n )nth derivativen times derivation(3x 3)(3)= 18derivativederivative - Leibniz's notation d (3x 3)/dx = 9x 2secondderivativederivative of derivatived 2(3x 3)/dx 2 = 18xnthderivativen times derivationtime derivative derivative by time - Newton's notationtime second derivativederivative of derivativeD x y derivative derivative - Euler's notationD x 2ysecond derivativederivative of derivativepartialderivative∂(x 2+y 2)/∂x = 2x∫ integral opposite to derivation∫ f(x)dx∫∫ double integral integration of function of 2 variables∫∫ f(x,y)dxdy ∫∫∫triple integral integration of function of 3 variables∫∫∫ f(x,y,z)dxdydz∮closedcontour / line integral∯closedsurface integral∰closedvolume integral[a ,b ] closed interval [a ,b ] ={x | a ≤ x ≤ b }(a ,b )open interval (a ,b ) ={x | a < x < b }i imaginary unit i ≡ √-1 z = 3 + 2iz * complex conjugate z = a +bi → z *=a -bi z* = 3 - 2izcomplex conjugatez = a +bi → z = a -bi z = 3 - 2i∇ nabla / del gradient / divergence operator ∇f (x ,y ,z )vectorunit vectorx * y convolutiony (t ) = x (t ) * h (t )) = {{。

英文,常用数学符号、公式和等式的读法

英文,常用数学符号、公式和等式的读法

一、常用数学符号、公式和等式的读法+ 加号,加 plus+ 正号 positive- 减号,减 minus- 负号,负 negetive± 加或减 plus or minus± 正或负 plus or minus· 乘 multiplied by times into÷ 除 divided by: 比 proportional to= 等号 equal sign= 等于 to equal,to equals> 大于 greater than< 小于 less than≥ 大于等于 greater than or equal≤ 小于等于less than or equal≡ 恒等于 identical with≈ 约等于 approximately equal≌ 全等于 congruent~等价于 equivalent to;相似于 similar to→ 趋近于 approaches( ) 括号,括弧 1) parentheses;parenthesis;sign parenthesis圆括号,圆括弧 2) round brackets[ ] 方括号1) squre [angular] brackets括号2) brackets{ } 花括号 braces∑ 求和summstion of;sigma从1到n的和 the sum form i equalsone to n;sigma从1到n的积 the product form i equalsone to nx1 +x2+x3+ΛΛ x one x two plus x three,etc(et cetera)a=b 1) a equals to b2) a is equal to b3) a is ba≠b a is not equal to b;a is not ba>b a is greater than baa≥b a is greater than or equal to ba≤b a is less than or equal to ba≈b a approximately equal (s) ba∝b a varies directly as b;a is (directly) proportional to ba∈A a is member of set AA⊂B A is contained in B;A is a proper subset of B AIB A intersection BAYB A union{ }或φ empty set⇒implies⇔is equivalent to xRy x is in the relation R to y a±b a plus or minus b(a+b)(a-b) a plus b,a minus b(a+b)2 a plus b all squared(a÷b)2 a over b all squaredn! n factorial;factorial na% a persent|a| mod a;modulus ax→∞ x approaches infinity0< x0≤x≤a zero is less than or equal to x is less than or equal to ac=a.b 1)c equals (is equal to) a multiplied by b2) c equals a times b1:2 the ratio of one to two1/2 a half;one half1/3 a third;one third1/100 a[one] hundredth1/1000 a[one] thousandth0.1(.1) zero point one;nought point one0.01(.01) zero point zero one;nought point nought one3.1416 three point one four one six14. one four point one four,one four recurringa:b the ratio of a to ba:b=c 1) a devided by b equals c2) a devided by b is c3)the ratio of a to b is ca:b=c:d 1) the ratio of a to b equals the ratio of c to d2) a is to b as c is to da+b>c a plus b is greater then ca+b< then b plus>a+b=c a plus b is (are;equals;is equal to) ca-b=c a minus b(b from a) is(equals;is equal to;leaves) c (a,b) a<X[a,b]a≤x≤b the closed interval from a to b(a,b) the interval a<X≤B< td>[a,b] the interval a≤x<B< td>a<Xa≤x≤b a is less then or equal to x is less then or equal to blogax logarithm (base) of xlnx natural logarithm of xx2 1)x square;x squured2) x to the second power3) x raised to the second power4) the square of x5) the second power of x6) x to the secondx3 1)x cube;x cubed2) x to the third power3) x raised to the third power4) the cube of x5) the third power of x6) x to the thirdx n 1)x to the n-th power2) x raised to the n-th power3) the n-th power of x4) x to the n-thx-n 1) x to the minus n-th2) x to the minus n-th powerradical=b 1) the square root of a is(equals) b 2) the square root out of a is(equals) bthe square root of athe cube root of athe cube rootthe n-th roota′ a primea n 1) a second prime2) a double prime3) a twice dashed;a m 1) a triple prime2) a third primea1) a sub one12) a firsta2 1) a sub two2) a second1) a sub mam2) a m-tha'1) a prime,sub mm2) a sub m,primea first primea'12 a second, second primeany first derivative of ysecond derivative of ydy/dx first derivative of y with respect to xd2y/dx2 second derivative of y with respect to xy=f(x) y is a function of x∫ integral of1) integral of……from a to b2) integral of……between limits a and bcapital L equals the square root of (out of ) capital R squareplus minus x squarea to the m by n-th power equals the n-th root of (out of) a tothe m-th powerP=∞ p is equal to infinity∠ angle⊥ perpendicular;is perpendicular to∥ parallel;is parallel to△ABC triangje ABCvector Fa bar≌ is congruent to~ is similar tA-1 inverse of matrix A % percent二、英语缩写词abs absolute 绝对的absolutely 绝对地A.D Anno Domini 公元ad inf ad infinitum 趋于无限ads address 地址agg aggregate 总数、共计al algebra 代数alt altitude 高度alternate 交错,交替a.m above-mentioned 上述的a.m. arithmetic mean 算术平均amt amount 数量ans answer 答案、解答、回答AoI and-or-inverter 与或非等差数列A.P arithmeticprogressionappl application 应用appr approximate 近似、约计appx appendix 附录arg argument 自变数,幅角arith arithmetic 算术aut automatic 自动的aux,auxil auxiliary 辅助的av,avg average 平均Ax Axiom 公理B.C Before Christ 公元前二进制编码的十进制BCD Binary CodedDecimalBC.O Binary Coded Octal 二进制编码的八进制℃(c)centigrate 摄氏度C cubic 立方的cycle 周centi 厘,百分之一ca circa 大约CAD Computer-Aided计算机辅助设计Design计算机辅助教学CAI Computer-AidedInstructioncalcd calculated 计算的cat catalog (ue) 目录,一览表C.C.W Counter-Clockwise 逆时针方向c.d centre distance 中心距离cf. confer 参看、见、比较cg center of gravity 重心厘米·克·秒(单位)制C.G.S Centimetre GrammeSecondCh. Chapter 章chap chapter 章char character 字符cir circular 圆形的circum circumference 圆周cit cited 引用ckt circuit 电路C.l. center-line 中心线算术平均法,平均高度法C.L.A center lineaverage methodcm centimetre 厘米coeff. coefficient 系数com common 公,公共col column 行,纵行,栏,项目,柱comp. compare 比较con contra 相反conclusion 结论con.sec conic sections 圆锥曲线const constant 常数construction 作图contcontinued 续,接(contd)Contr. Contracted 省略的Contraction 省略Cor corollary 推论,系cp compare 比较ct constant 常数circuit 电路,线路ctr (s) center (s) 中心cu (cub) cubic 立方C.W. clockwise 顺时针方向CY cycle 周期,周d degree 度D density 密度diameter 直径date 日期D.C. digital computer 数字计算机微分方程D.E differentialequationdef(def’n)definition 定义deg degree 度demon demonstrative 求证den density 密度der derivative 导数,微商det detail 详细,细节,详图DF decimal fraction (十进)小数dia (m) diameter 直径diag diagram 图,图解diff difference 差,不同DIV divide 除Do (d°)ditto 同上,同前,如前所述doub double 加倍,二倍,成双的,成倍的DP data processing 数据处理E east 东edit edition 版,版本e.e error expected 允许的误差例如e.g exempligratia=forexampleeq. equal 相等eq (eq’n)equation 等式,方程esp. especially 特别et al et alii 及其他et alibi 及别处etc et cetera 等等et seq et sequentia 及以下等等ex (s) example(s) 例exercise 练习,习题extra 特别的ext external 外部的exterior 在外f frequency 频率fig figure 图,图形fn function 函数,功能FQCY frequency 频率fxd fixed 固定的,不变的g(gm) gramme 克GA general average 平均值最大公约数G.C.D greatest commondivisor最大公因子G.C.F greatest commonfactor最大公约数G.C.M greatest commonmeasuregeom. geometry 几何学G.P geometrical等比数列,几何数列progressiongr(grm) gram 克h hour 小时height 高,高度H.C.F. highest common最高公因式,最大公约数factorhf half 半hor horizontal 水平的hr hour 小时hyp hypothesis 假设ib (ibid) ibidem 在同处(书,文献等出处) id idem 同前,同上,同作者,同样iden identical 恒等,全等i.e id est=that is 即,就是,换言之ig idem quod 如同ih inverted hour 逆(反)时针的im image 图像inc increase 增加ind index 索引,指标,刻度indef indefinite 无限,不定in.ex in extenso 全部inf infinity 无穷大,无限大infra 上、下限inh inverted hour 逆(反)时针的int interior 内部的,在内int.al inter alia 尤其I/O input/output 输入/输出信息技术IT informationtechnologyinformation信息论theory独立变数IV independentvariableJ journal 期刊,杂志jour journal 期刊,杂志kg kilogram 千克km kilometer 千克l length 长度l.c loco citato 上述引文中最小公倍数(式)L.C.M. least commonmultipleLowest common multiple 最低公倍式Lgth length 长度l.h left hand 左方,左侧lim limit 极限lin linear 直线的,一次的,线性的lit liter (公)升loc location 位置loc.cit loco citato 上述引文中最低(数)位,最右(数)位ISD least significantdigitM mega 兆(106)mille 千M(m) medium 中间,中等m metre 米milli 毫(10-3)million 兆(106)minute 分钟μ(mu)micro 微(10-6)平均绝对误差mae mean absoluteerrormag magnitude 量,大小math mathematical 数学的mathematics 数学max maximum 最大,最大值min minimum 最小,最小值minute 分钟mo (s) month(s) 月mon monthly 月刊MS mean square 均方n net 净N number 数,编号,第…号North 北Northern 北方的n.a.s.c necessary andsufficient condition 充要条件,充分且必要的条件N.B nota bene= note注意wellneg negative 负的Net network 网络No(s) number(s) 数,编号,第…号nr near 在…附近常微分方程O.D.E. ordinarydifferentialequationopp opposed 相反的,对面ord ordinary 普通的,通常的p page 页PAR parallel 平行的,平行线,并联的par paragraph 节,段P.C. per cent 百分比pcs pieces 个,件,份偏微分方程P.D.E partialdifferentialequationPERT programevaluation andreview techniques 计划评审技术(统筹方法)ph phase 相位,相pos positive 正的pp pages 负(复数)p.p proportional part 比例部分Pr pair 偶,对pr(pri,pry) primary 初级,最初的prep perpendicular 垂直,正交proc proceeding 学报,会刊ps pseudo 伪,假pt(s) part(s) 部分p.t.o please turn over 请见(本页的)反面,请翻到下页q question 问题q.e quod est 这就是,即Q.E D quod erat证毕,证完,这就是所要证的,所求证者demonstrandumw.r.t with respect to 关于,相对于。

【英语知识】英文常见的数学符号缩写

【英语知识】英文常见的数学符号缩写

【英语知识】英文常见的数学符号缩写展开全文听力对大家来说不是速度太快听不懂跟不上,就是听懂了填写速度太慢从而跟不上速度了,下面为大家整理了数学符号缩写词方式介绍。

数学符号+ 表示'多': many, lots of, a great deal of, a good many of, etc.++(+2) 表示'多'的比较级:more+3 表示'多'的最高级:most- 表示'少': little, few, lack ,in short of/ be in shortage of etc.× 表示'错误'、'失误'和'坏'的概念:wrong/incorrect,something bad,notorious,negative, etc.> 表示'多于'概念:bigger/larger/greater/more than/better than, etc.表示'高' 概念:superior to,surpass, etc.< 表示'少于'概念:less/smaller,etc.表示'低'概念:inferior to,etc.= 表示'同等'概念:means,that is to say, in other words,the same as,be equal to, etc.表示'对手'概念:a match, rival, competitor, counterpart, etc.( ) 表示'在......之间':among, within, etc.≠ 表示'不同'概念:be different from, etc.~表示'大约'概念:about/around,or so,approximately, etc./ 表示'否定','消除'等概念:cross out, eliminate, etc.。

数学符号的英文意思)

数学符号的英文意思)

± plus or minus× ;˙ times or mutiply÷ divide- ; / divide, such as a/b= equals, is equal to≠ does not equal, is not equal to< is less than> is greater than≦ is less than or equal to≧ is greater than or equal to<> is not equal to; is less than or greater than: is to, as in proportions, a : b as c : d- - - between numerais or letters, shows omission of some numerals or letters at the end of a series or esquence shows "and so no"√ positive square rootn的次方根 nth root! factorial指数 exponent, use a as a factor b timesab subscript, for descriptive discrimination % percent| | absolute value~ similar, is similar toㄥ angle, as in ㄥA or ㄥABCmㄥ measure of angle直角 right angle; is perpendicular to⊙ circle弧形 arc△ triangle正三角 equilateral triangle等腰三 isosceles triangle直角三角 right triangle□ square四边形 quadrilateral平行四边形 parallelogram梯形 trapezoid( x , y ) coordinates of a point in a plane ( x , y , z ) coordinates of a point in space ∴ therefore$ dollar sign¢ cent sign( ) parentheses, shows order of operations[ ] brackets, shows order of operations{ } braces, shows order of operations; also shows members of a set, when empty shows empty set 圆周 Circumference面积 area直径 diameter半径 radius周边;周长 perimeter次方 power根(数) root长 length宽 width高 height基数;底边 base。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s
Karp reduction is Karp reducible to; is polynomial-time many-one reducible to computational complexity theory proportionality is proportional to; varies y as everywhere Karp reduction [2] is Karp reducible to; is A B means the problem A can be polynomial-time many-one reducible to polynomially reduced to the problem B. computational complexity theory addition plus; add 4 + 6 means the sum of 4 and 6. arithmetic 2+7=9 x means that y = kx for some constant k. if y = 2 x , then y x. L1 L2 means that the problem L1 is Karp reducible to L2 .[1] If L1 L2 and L2 P, then L1 P.
Table of mathematical symbols - Wikipedia, the free encyclopedia
/w/index.php?title=Table_of_mathematical_symbols&printable=ye
s
Table of mathematical symbols
x •á e x
3 i 4 and 5 i 5 5 ? 4 and 5 ? 5
i
subgroup
is a subgroup of
?
group theory reduction is reducible to A i B means the problem A can be reduced to the problem B. Subscripts can be added to the i computational to indicate what kind of reduction. complexity theory
ring theory This may also be written R* as described below, or U( R). multiplication times; multiplied by 3 ? 4 means the multiplication of 3 by 4. arithmetic dot product dot u ? v means the dot product of vectors u and v linear algebra (1,2,5) ? (3,4,?1) = 6 2 R 4 = .5 6 R 3 or 6 R 3 means the division of 6 by 3. 12 R 4 = 3 G / H means the quotient of group G modulo its {0, a, 2 a , b , b + a, b+2 a } / {0, b } = {{0, b }, { subgroup H. {2 a , b +2 a }} 7 ? 8 = 56
3<4 5>4
5Z < Z A 3 < S3
0.003 •á 1000000
•á
•â
of smaller (greater) order than (This is I. M. Vinogradov 's notation. Another analytic number theory notation is the Big O notation , which looks like f = O( g ).) x i y means x is less than or equal to y . inequality is less than or equal to, is greater than or equal to x ? y means x is greater than or equal to y. (The forms <= and >= are generally used in order theory programming languages where ease of typing and use of ASCII text is preferred.) H i G means H is a subgroup of G.
If L1
L2 and L2
P , then L1
P.
+
disjoint union A1 = {3, 4, 5, 6} ? A2 = {7, 8, 9, 10} the disjoint union of ... A1 + A2 means the disjoint union of sets A1 and A1 + A2 = {(3,1), (4,1), (5,1), (6,1), (7,2), (8,2), (9,2), and ... A2 . (10,2)} set theory subtraction minus; take; subtract arithmetic 9 ? 4 means the subtraction of 4 from 9. 8?3=5
Explanation
Examples
I
2+tical symbols - Wikipedia, the free encyclopedia
/w/index.php?title=Table_of_mathematical_symbols&printable=ye
7 ? 8 = 56
{1,2} ? {3,4} = {(1,3),(1,4),(2,3),(2,4)}
?
set theory cross product cross linear algebra group of units the group of units of R? consists of the set of units of the ring R , along with the operation of multiplication. u ? v means the cross product of vectors u and v (1,2,5) ? (3,4,?1) = (?22, 16, ? 2)
Symbol Symbol
in HTML in TEX
Name Read as Category equality x = y means x and y do represent the same thing is equal to; equals or value. everywhere inequality is not equal to; does not equal (The forms !=, /= or <> are generally used in everywhere x I y means that x and y do not represent the same thing or value. 2=2 1+1=2
From Wikipedia, the free encyclopedia
Contents
1 Common symbols 2 Standardization 3 See also 4 Variations 5 References 6 External links
Common symbols
This is a listing of common symbols found within all branches of mathematics . Each symbol is listed in both HTML, which depends on appropriate fonts to be installed, and in TEX, as an image. This list is incomplete ; you can help by expanding it (/w/index.php?title=Table_of_mathematical_symbols& action=edit ) .
s
programming languages where ease of typing and use of ASCII text is preferred. ) strict inequality
< >
x < y means x is less than y. is less than, is greater than x > y means x is greater than y . order theory proper subgroup is a proper subgroup of H < G means H is a proper subgroup of G. group theory (very) strict inequality x •á y means x is much less than y. is much less than, is much greater than x •â y means x is much greater than y . order theory asymptotic comparison f •á g means the growth of f is asymptotically bounded by g.
相关文档
最新文档