2019_2020学年新教材高中数学全册综合检测新人教B版必修第二册
高中数学新教材人教B版必修第二册训练:4.3 指数函数与对数函数的关系
第四章 4.3请同学们认真完成 [练案8]A 级 基础巩固一、选择题1.函数y =e x 与y =ln x 的图像( D ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称D .关于直线y =x 对称[解析] ∵函数y =e x 与y =ln x 是互为反函数, ∴其图像关于直线y =x 对称.2.函数y =f (x )的图像经过第三、四象限,则y =f -1(x )的图像经过( B ) A .第一、二象限 B .第二、三象限 C .第三、四象限D .第一、四象限[解析] 因为第三、四象限关于y =x 对称的象限为第三、二象限,故y =f -1(x )的图像经过第二、三象限.3.函数y =f (x )的图像过点(1,3),则它的反函数的图像过点( D ) A .(1,2) B .(2,1) C .(1,3)D .(3,1)[解析] ∵互为反函数的图像关于直线y =x 对称, ∴点(1,3)关于直线y =x 的对称点为(3,1),故选D .4.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (8)=( A ) A .3 B .13C .-3D .-13[解析] 由题意可知f (x )=log a x ,f (2)=log a 2=1,a =2, 即f (x )=log 2x ,f (8)=log 28=3.5.(多选题)函数y =2|x |在下面的区间上,不存在反函数的是( AC ) A .[-1,1] B .(-∞,0] C .[-2,4]D .[2,4][解析] 函数若在区间上单调,则存在反函数,易知函数y =2|x |在[-1,1],[-2,4]上不单调.二、填空题6.已知f (x )=2x +b 的反函数为f -1(x ),若y =f -1(x )的图像经过点Q (5,2),则b =__1__.[解析] 由互为反函数的图像关于直线y =x 对称可知,点Q ′(2,5)必在f (x )=2x +b 的图像上,∴5=22+b , ∴b =1.7.函数f (x )=4-x 的反函数是__f -1(x )=4-x 2(x ≥0)__. [解析] 函数的值域为[0,+∞),令y =4-x , 将其中的x ,y 对调得x =4-y ,解得y =4-x 2, 所以反函数f -1(x )=4-x 2(x ≥0).8.若函数y =f (x )的反函数是y =-2-x 2(-1≤x ≤0),则原函数的定义域是-1]__,f (-1)=__-1__.[解析] 因为原函数的定义域为反函数的值域,又-1≤x ≤0,所以1≤2-x 2≤2,即y ∈[-2,-1].令-2-x 2=-1,解得x =±1,因为原函数的定义域为[-2,-1],所以x =-1. 三、解答题9.已知y =12x +a 与y =3-bx 互为反函数,求a 、b 的值.[解析] 由y =12x +a ,得x =2y -2a ,∴y =2x -2A .即函数y =12x +a 的反函数为y =2x -2a ,由已知得函数y =2x -2a 与函数 y =3-bx 为同一函数,∴⎩⎪⎨⎪⎧-b =2-2a =3,∴⎩⎪⎨⎪⎧a =-32b =-2.10.求下列函数的反函数. (1)f (x )=12x +1; (2)f (x )=1-1-x 2(-1≤x <0);(3)f (x )=⎩⎪⎨⎪⎧x 2-1(0≤x ≤1)x 2(-1≤x <0).[解析] (1)设y =f (x )=12x +1.∵x ≠-12,∴y ≠0.由y =12x +1,解得x =1-y 2y .∴f -1(x )=1-x 2x (x ≠0).(2)设y =f (x )=1-1-x 2. ∵-1≤x <0,∴0<y ≤1.由y =1-1-x 2,解得x =-2y -y 2. ∴f -1(x )=-2x -x 2(0<x ≤1).(3)设y =f (x )=⎩⎪⎨⎪⎧x 2-1(0≤x ≤1)x 2(-1≤x <0),当0≤x ≤1时,-1≤y ≤0, 由y =x 2-1,得x =1+y ; 当-1≤x <0时,0<y ≤1, 由y =x 2,得x =-y .∴f -1(x )=⎩⎨⎧1+x (-1≤x ≤0)-x (0<x ≤1).B 级 素养提升一、选择题1.若f (ln x +1)=x ,则f (5)=( C ) A .log 5e B .ln 4 C .e 4D .4e[解析] 解法一:令ln x +1=t ,则x =e t -1,∴f (t )=e t -1, ∴f (5)=e 5-1=e 4.解法二:令ln x +1=5,则ln x =4, ∴x =e 4,∴f (5)=e 4.2.若函数y =ax1+x 的图像关于直线y =x 对称,则a 的值为( B )A .1B .-1C .±1D .任意实数[解析] 因为函数图像本身关于直线y =x 对称,故可知原函数与反函数是同一函数,所以先求反函数,再与原函数作比较即可得出答案;或利用反函数的性质求解,依题意,知点(1,a 2)与(a2,1)均在原函数图像上,故可得a =-1. 3.已知函数y =f (x )与y =e x 互为反函数,函数y =g (x )的图像与y =f (x )的图像关于x 轴对称,若g (a )=1,则实数a 的值为( C )A .-eB .-1eC .1eD .e[解析] ∵函数y =f (x )与y =e x 互为反函数, ∴f (x )=ln x ,又∵函数y =g (x )的图像与y =f (x )的图像关于x 轴对称,∴g (x )=-ln x , ∴g (a )=-ln a =1,∴ln a =-1,∴a =1e .4.函数y =10x 2-1(0<x ≤1)的反函数是( D ) A .y =-1+lg x (x >110)B .y =1+lg x (x >110)C .y =-1+lg x (110<x ≤1)D .y =1+lg x (110<x ≤1)[解析] 由y =10x 2-1(0<x ≤1),得x 2-1=lg y , 即x =lg y +1.又∵0<x ≤1,即-1<x 2-1≤0, ∴110<10x 2-1≤1,即原函数的值域为(110,1]. ∴原函数的反函数为y =lg x +1(110<x ≤1).二、填空题5.若点(1,2)既在y =ax +b 的图像上,又在其反函数的图像上,则a =__-3__,b =__7__. [解析] 由题意可知点(1,2)和点(2,1)都在y =ax +b 的图像上,∴⎩⎨⎧2=a +b 1=2a +b,解得⎩⎪⎨⎪⎧a =-3b =7.6.已知函数f (x )的反函数为g (x )=1+2lg x (x >0),则f (1)+g (1)=__2__. [解析] 令g (x )=1,则2lg x =0,∴x =1. ∵f (x )与g (x )互为反函数, ∴f (1)=1,g (1)=1+2lg 1=1, ∴f (1)+g (1)=2.7.设a >0且a ≠1,若函数f (x )=a x -1+2的反函数的图像经过定点P ,则点P 的坐标是__(3,1)__.[解析] 因为函数f (x )=a x -1+2经过定点(1,3),所以函数f (x )的反函数的图像经过定点P (3,1).三、解答题8.已知函数f (x )=log a (2-x )(a >1).(1)求函数f(x)的定义域、值域;(2)求函数f(x)的反函数f-1(x);(3)判断f-1(x)的单调性.[解析](1)要使函数f(x)有意义,需满足2-x>0,即x<2,故原函数的定义域为(-∞,2),值域为R.(2)由y=log a(2-x)得,2-x=a y,即x=2-a y.∴f-1(x)=2-a x(x∈R).(3)f-1(x)在R上是减函数.证明如下:任取x1,x2∈R且x1<x2,∵f-1(x2)-f-1(x1)=2-ax2-2+ax1=ax1-ax2,∵a>1,x1<x2,∴ax1<ax2即ax1-ax2<0,∴f-1(x2)<f-1(x1),∴y=f-1(x)在R上是减函数.9.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).[解析](1)要使函数有意义,必须a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,设0<x1<x2,则1<ax1<ax2,故0<ax1-1<ax2-1,∴log a(ax1-1)<log a(ax2-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上是增函数;类似地,当0<a<1时,f(x)在(-∞,0)上为增函数.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1).∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.由Ruize收集整理。
(新教材)2019-2020学年人教B版高中数学必修第二册第6章 平面向量初步 6.1.5 课时29
所以O→A+O→C=2O→E=-3O→B.
知识对点练
课时综合练
解析
所以O→B=-23O→E, |O→B|=23|O→E|. 设点 A 到 BD 的距离为 h,则 S△AOB=12|O→B|·h,S△AOC=2S△AOE=|O→E|·h.
1→ 1→ 所以SS△△AAOOCB=2|O|→OEB|·|·hh=2|O|→OEB||=12×23=13.
求证:D→E=13(b-a).
知识对点练
课时综合练
大儒诚信教育资源
证明 ∵CDDA=EABE=12,∴D→A=23C→A=23b,A→E=13A→B=13(A→C+C→B)=13(-b -a)=-13b-13a.
∴D→E=D→A+A→E=23b-13b-13a=13b-13a=13(b-a).
知识对点练
知识对点练
课时综合练
正解 因为 D 为 BC 的三等分点, 当 BD=13BC 时,如图 1,
B→D=13B→C,
知识对点练
课时综合练
答案
大儒诚信教育资源
所以A→D=A→B+B→D=A→B+13B→C =A→B+13(A→C-A→B) =23A→B+13A→C =23a+13b.
知识对点练
课时综合练
答案 C
知识对点练
课时综合练
答案
解析 找出一个非零实数 λ 使得 a=λb 即可判断 a∥b.A 项中 a=-12b; B 项中 a=4b;D 项中 a=-32b,故 A,B,D 三项中 a∥b,而 C 项中 a=e1 -2e2,b=-2e1+e2,所以 C 项 a 与 b 不一定共线,故选 C.
知识对点练
课时综合练
解析
3.(1)已知 3(x+a)+3(x-2a)-4(x-a+b)=0(其中 a,b 为已知向量), 求 x;
2019_2020学年新教材高中数学第5章统计与概率5.3.3古典概型课时21古典概型练习含解析新人教b版必修第二册
课时21 古典概型知识点一样本点个数的计算错误!未指定书签。
1.一个家庭有两个小孩,对于性别,则所有的样本点是( )A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)答案 C解析把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点是(男,男),(男,女),(女,男),(女,女).故选C.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的样本空间;(2)求出这个试验的样本点的总数;(3)写出“第1次取出的数字是2”这一事件包含的样本点.解(1)这个试验的样本空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)样本点的总数为6.(3)“第1次取出的数字是2”包含以下2个样本点:(2,0),(2,1).知识点二古典概型的判断错误!未指定书签。
3.下列问题中是古典概型的是( )A.种下一粒杨树种子,求其能长成大树的概率B.掷一个质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一个数,求这个数大于1.5的概率D.同时掷两个质地均匀的骰子,求向上的点数之和是5的概率答案 D解析A,B两项中的样本点的发生不是等可能的;C项中样本点的总数是无限的;D项中每个样本点的发生是等可能的,且样本点总数有限.故选D.4.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;②某射手射击一次,可能命中0环,1环,2环,…,10环;③某小组有男生5人,女生3人,从中任选1人做演讲;④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.答案③解析①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.知识点三古典概型概率的计算错误!未指定书签。
2019_2020学年新教材高中数学第6章平面向量初步 共线向量基本定理练习(含解析)新人教B版必修第二册
课时30 共线向量基本定理知识点一 共线向量基本定理1.已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( ) ①2a -3b =4e 且a +2b =-2e ;②存在相异实数λ,μ,使λa -μb =0; ③x a +y b =0(其中实数x ,y 满足x +y =0); ④已知梯形ABCD ,其中AB →=a ,CD →=b . A .①② B .①③ C .② D .③④ 答案 A解析 由2a -3b =-2(a +2b )得到b =-4a ,故①可以;∵λa -μb =0,∴λa =μb ,故②可以;当x =y =0时,有x a +y b =0,但b 与a 不一定共线,故③不可以;梯形ABCD 中,没有说明哪组对边平行,故④不可以.2.已知e 1,e 2不共线,若a =3e 1-4e 2,b =6e 1+k e 2,且a ∥b ,则k 的值为( ) A .8 B .-8 C .3 D .-3 答案 B解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,即3e 1-4e 2=6m e 1+mk e 2,∴⎩⎪⎨⎪⎧3=6m ,-4=mk ,即⎩⎪⎨⎪⎧m =12,k =-8.3. 如图所示,已知OA ′ →=3OA →,A ′B ′ →=3AB →,则向量OB →与OB ′ →的关系为( )A .共线B .同向C .共线且同向D .共线、同向,且OB ′ →的长度是O B →的3倍 答案 D解析 由题意,知OB →=OA →+AB →,OB ′→=OA ′→+A ′B ′→=3OA →+3AB →=3OB →,故选D.知识点二 共线向量基本定理的应用4.已知点P 是△ABC 所在平面内的一点,且3PA →+5PB →+2PC →=0,设△ABC 的面积为S ,则△PAC 的面积为( )A.34SB.23SC.12SD.25S 答案 C解析 如图,由于3PA →+5PB →+2PC →=0,则3(PA →+PB →)=-2(PB →+PC →), 3(PA →+PB →)2=-2(PB →+PC →)2. 设AB ,BC 的中点分别为M ,N ,则PM →=12(PA →+PB →),PN →=12(PB →+PC →),即3PM →=-2PN →,则点P 在中位线MN 上,则△PAC 的面积是△ABC 的面积的一半.5.设AB →=22(a +5b ),BC →=-2a +8b ,CD →=3(a -b ),则共线的三点是________.答案 A ,B ,D解析 BD →=BC →+CD →=a +5b ,AB →=22BD →,即A ,B ,D 三点共线.6.已知e 1,e 2是两个不共线的向量,a =k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2与b =2e 1+3e 2是两个平行的向量,则k =________.答案 13或-2解析 ∵a ∥b ,∴存在实数m ,使得a =m b ,∴k 2e 1+⎝ ⎛⎭⎪⎫1-52k e 2=m (2e 1+3e 2),∴⎩⎪⎨⎪⎧k 2=2m ,1-52k =3m ,即3k 2+5k -2=0,∴k =13或-2.7.设O 为△ABC 内任一点,且满足OA →+2OB →+3OC →=0,且D ,E 分别是BC ,CA 的中点,则△ABC 与△AOC 的面积之比为________.答案 3∶1解析 如图,OB →+OC →=2OD →,OA →+OC →=2OE →,∴OA →+2OB →+3OC →=(OA →+OC →)+2(OB →+OC →)=2(2OD →+OE →)=0,即2OD →+OE →=0, ∴DO →与OE →共线,即D ,E ,O 共线, ∴2|OD →|=|OE →|,∴S △AOC =2S △COE =2×23S △CDE =2×23×14S △ABC =13S △ABC ,即S △ABCS △AOC=3.8.已知梯形ABCD ,AB ∥DC ,E ,F 分别是AD ,BC 的中点.用向量法证明:EF ∥AB ,EF =12(AB +DC ).证明 如图,延长EF 到点M ,使FM =EF ,连接CM ,BM ,EC ,EB ,得平行四边形ECMB ,由平行四边形法则得EF →=12E M →=12( EB →+EC →).由于AB ∥DC ,所以AB →, DC →共线且同向,根据向量共线定理,存在正实数λ,使AB →=λDC →.由三角形法则得EB →=EA →+AB →, EC →=ED →+DC →且ED →+EA →=0,∴EF →=12(E B →+EC →)=12(E A →+AB →+ED →+DC →)=12(AB →+DC →)=1+λ2D C →, ∴EF →∥DC →.由于E ,D 不共点,∴EF ∥DC ∥AB ,又|EF →|=⎪⎪⎪⎪⎪⎪12( AB →+DC →)=12(|AB →|+|D C →|),∴EF =12(AB +DC ),所以结论得证.易错点 对共线向量基本定理理解不透致误9.如果向量a =(-k ,-1)与b =(4,k )共线且方向相反,则k =________.易错分析 出错的根本原因是对共线向量基本定理b =λa 理解不透,误认为向量反向时,参数k 的值应该为负值,实质应是λ的值为负值.答案 2正解 因为向量a =(-k ,-1)与b =(4,k )共线, 所以k 2-4=0,解得k =±2,当k =-2时,b =2a ,此时a 与b 方向相同,不符合题意,应舍去,因此k =2.一、选择题1.已知向量a =e 1+2e 2,b =2e 1-e 2,其中e 1,e 2不共线,则a +b 与c =6e 1+2e 2的关系是( )A .不共线B .共线C .相等D .不确定 答案 B解析 a +b =3e 1+e 2,∴c =6e 1+2e 2=2(a +b ). ∴c 与a +b 共线.2.下面向量a ,b 共线的有( ) ①a =2e 1,b =-2e 2;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2(e 1,e 2不共线). A .②③ B .②③④ C .①③④ D .①②③④答案 A解析 对于①,e 1与e 2不一定共线,故a 与b 不一定共线;对于②,a =-12b ,∴a ,b 共线;对于③,a =4b ,∴a ,b 共线;对于④,若a ,b 共线,则存在一实数λ,使得b =λa ,即2e 1-2e 2=λ(e 1+e 2),得(2-λ)e 1=(λ+2)e 2,当λ=2时,得e 2=0,e 1,e 2共线,矛盾,当λ≠2时,e 1=λ+22-λe 2,则e 1,e 2共线,矛盾.故a 与b 不共线.综上,选A. 3.若M 是△ABC 的重心,则下列各向量中与AB →共线的是( ) A .AB →+BC →+AC →B . AM →+MB →+BC → C . AM →+BM →+CM →D .3A M →+AC →答案 C解析 设D ,E ,F 分别为BC ,AC ,AB 的中点,根据点M 是△ABC 的重心, AM →+BM →+CM →=23( AD →+BE →+CF →)=23(AB →+B D →+BC →+CE →+CA →+AF →)=0,而零向量与任何向量共线,所以与AB →共线.4.点P 是△ABC 所在平面内一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 内部B .AC 边所在的直线上 C .AB 边所在的直线上D .BC 边所在的直线上答案 B解析 ∵CB →=λPA →+PB →,∴CB →-PB →=λPA →,即CP →=λPA →.∴点P ,A ,C 共线.∴点P 一定在AC 边所在的直线上. 二、填空题5.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 同向,则实数λ的值为________.答案 1解析 由于c 与d 同向,所以可设c =k d (k >0),于是λa +b =k [a +(2λ-1)b ], 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,所以λ=1或λ=-12.又k >0,所以λ>0,故λ=1.6.在△ABC 中,点D 在BC 边上,且CD →=4DB →,CD →=rAB →+sAC →,则3r +s 的值为________. 答案 85解析 ∵AB →+BC →=AC →,CD →=4DB →,∴CD →=45CB →,即CD →=45AB →-45AC →,∴r =45,s =-45,∴3r +s =85.7.已知△ABC 的三个顶点A ,B ,C 及平面内一点P 满足PA →+PB →+P C →=A B →,则点P 在边AC 的________等分点处.答案 三解析 由PA →+PB →+PC →=AB →,得PA →+PC →=AB →-PB →=AP →,所以PC →=2AP →,从而点P 在边AC 的三等分点处.三、解答题8.已知非零向量e 1,e 2不共线,(1)如果AB →=e 1+e 2, BC →=2e 1+8e 2, CD →=3(e 1-e 2),求证:A ,B ,D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解 (1)证明:∵AB →=e 1+e 2,B D →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →与BD →共线,且AB 与BD 有公共点B , ∴A ,B ,D 三点共线.(2)∵k e 1+e 2与e 1+k e 2共线,且此两向量均为非零向量, ∴存在λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线, 只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.9.如图,平行四边形OACB 中,BD =13BC ,OD 与BA 相交于E .求证:BE =14BA .证明 如图,设E ′是线段BA 上的一点,且BE ′=14BA ,只要证E ,E ′重合即可.设OA →=a , OB →=b ,则BD →=13a , OD →=b +13a .∵BE ′ →=OE ′ →-b ,E ′A →=a -OE ′ →,3BE ′ →=E ′A →, ∴3(OE ′ →-b )=a -OE ′ →, ∴OE ′ →=14(a +3b )=34⎝ ⎛⎭⎪⎫b +13a ,即OE ′ →=34O D →,∴O ,E ′,D 三点共线,∴E 与E ′重合.∴BE =14BA .10.已知OA →,OB →是不共线的两个向量,设OM →=λOA →+μOB →,且λ+μ=1,λ,μ∈R .求证:M ,A ,B 三点共线. 证明 ∵λ+μ=1,∴μ=1-λ. ∴OM →=λOA →+(1-λ)OB →=λOA →+OB →-λOB →. ∴OM →-OB →=λ(OA →-OB →),即BM →=λBA →(λ∈R ),∴BM →,BA →共线. 又∵BM ,BA 有公共点B , ∴M ,B ,A 三点共线.11.如图所示,点P 在直线AB 上,O 为直线外任意一点,且OP →=λOA →+μOB →(λ,μ∈R ),求证:λ+μ=1.证明 OP →=λOA →+μOB →=λ(OP →+PA →)+μ(OP →+PB →) =(λ+μ)OP →+λPA →+μPB →, 又点P 在直线AB 上,不妨设PA →=kPB →, 则(λ+μ-1)OP →+(λk +μ)PB →=0又OP →与PB →不共线,故⎩⎪⎨⎪⎧λ+μ-1=0,λk +μ=0,得λ+μ=1.12.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,且AE →=23AD →,AB →=a ,AC →=b .(1)用a ,b 表示向量AD →,AE →,AF →,BE →; (2)求证:B ,E ,F 三点共线. 解 (1)AD →=AB →+BD →=a +12BC →=a +12AC →-12AB →=12b +12a ,AE →=23AD →=13b +13a , AF →=12AC →=12b ,BE →=AE →-AB →=13b +13a -a=13b -23a . (2)证明:BF →=AF →-AB →=12AC →-AB →=12b -a ,BE →=13b -23a ,∴23BF →=BE →,故BF →∥BE →, 又BF 与BE 有公共点B ,∴B ,E ,F 三点共线.。
2019_2020学年新教材高中数学第五章统计与概率随机事件的独立性课后篇巩固提升新人教B版必修第二册
5.3.5随机事件的独立性课后篇巩固提升夯实基础1.掷一枚硬币两次,记事件A=“第一次出现正面”,B=“第二次出现反面”,下列结论正确的为()A.A与B相互独立B.P(A∪B)=P(A)+P(B)C.A与B互斥D.P(AB)=12A,由题意得事件A的发生与否对事件B发生的概率没有影响,所以A与B相互独立,所以A中结论正确.对于选项B,C,由于事件A与B可以同时发生,所以事件A与B不互斥,故选项B,C中结论不正确.对于选项D,由于A与B相互独立,因此P(AB)=P(A)P(B)=1,4所以D中结论不正确.故选A.2.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.28C.0.18D.0.120.6,0.7,则甲、乙考试未达到优秀的概率分别为0.4,0.3,由于两人考试相互独立,所以甲、乙两人都未达到优秀的概率为0.4×0.3=0.12.故选D.3.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则一名同学投篮得2分的概率为()A.0.5B.0.48C.0.4D.0.32A ,“第二次投进”为事件B ,则得2分的概率为P=P (A B )+P (B B )=0.4×0.6+0.6×0.4=0.48.故选B .4.在某段时间内,甲地不下雨的概率为P 1(0<P 1<1),乙地不下雨的概率为P 2(0<P 2<1),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为 ( )A.P 1P 2B.1-P 1P 2C.P 1(1-P 2)D.(1-P 1)(1-P 2)P 1,乙地不下雨的概率为P 2,且在这段时间内两地下雨相互独立,所以这段时间内两地都下雨的概率为P=(1-P 1)(1-P 2).5.甲、乙两名学生通过某种听力测试的概率分别为12和13(两人是否通过测试互不影响),两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13B.23C.12D.1A ,B ,则P (A )=12,P (B )=13,两人中有且只有一人能通过为事件B B+A B , 故所求的概率为P (B B+A B )=P (B )P (B )+P (A )P (B )=(1-12)×13+12×(1-13)=12.故选C .6.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8081,则此射手的命中率是 ,此射手恰好命中三次的概率是 .3281设此射手每次射击命中的概率为P ,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知该射手对同一目标独立地射击四次全都没有命中的概率为1-8081=181,则(1-P )4=181,解得P=23.(2)此射手恰好命中三次的概率为P 1=13×23×23×23+23×13×23×23+23×23×13×23+23×23×23×13=3281.7.一名学生骑自行车上学,从他家到学校的途中有5个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.求: (1)这名学生在途中遇到4次红灯的概率; (2)这名学生在首次停车前经过了3个路口的概率; (3)这名学生至少遇到一次红灯的概率.设事件A 为在途中遇到4次红灯,P (A )=(13)4×(1-13)×5=10243.(2)设首次停车前经过3个路口为事件B , 则P (B )=(1-13)3×13=881.(3)设至少遇到一次红灯为事件C , 则其对立事件为全遇到绿灯, 所以P (C )=1-(1-13)5=211243.能力提升1.甲骑自行车从A 地到B 地,途中要经过4个十字路口,已知甲在每个十字路口遇到红灯的概率都是13,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是( ) A.13 B.427C.49D.1127解析由题可知甲在每个十字路口遇到红灯的概率都是13,在每个十字路口没有遇到红灯的概率都是1-13=23,所以甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是23×23×13=427. 2.端午节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( ) A.5960B.12C.35D.160A ,B ,C ,至少1人回老家过节为事件D ,则P (D )=1-P (BBB )=1-P (B )P (B )P (B )=1-23×34×45=35.故选C .3.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p=( ) A.0.4 B.0.6 C.0.1 D.0.2p+p (1-p )+p (1-p )2=0.784,整理可得p (2-p+1-2p+p 2)=p (p 2-3p+3)=0.784,将各选项中的数分别代入方程可知A 项正确. 4.已知甲、乙、丙3名运动员击中目标的概率分别为12,23,23,若他们3人分别向目标各发1枪,则三枪中至少命中2枪的概率为 .A 表示“甲命中”,事件B 表示“乙命中”,事件C 表示“丙命中”,则P (A )=12,P (B )=23,P (C )=23,所以他们3人分别向目标各发1枪,则三枪中至少命中2枪的概率为p=P (AB B )+P (A B C )+P (B BC )+P (ABC )=12×23×13+12×13×23+12×23×23+12×23×23=1218=23.5.在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是34,甲、乙两人都回答错误..的概率是112,乙、丙两人都回答正确..的概率是14.设每人回答问题正确与否是相互独立的. (1)求乙答对这道题的概率;(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.记甲、乙、丙答对这道题分别为事件A ,B ,C ,设乙答对这道题的概率P (B )=x ,由于每人回答问题正确与否是相互独立的,因此A ,B ,C 是相互独立事件. 由题意,得P (BB )=P (B )P (B )=(1-34)×(1-x )=112,解得x=23, 即乙答对这道题的概率为23.(2)设“甲、乙、丙、三人中,至少有一人答对这道题”为事件M , 丙答对这道题的概率P (C )=y. 由题意得P (BC )=P (B )P (C )=23×y=14,解得y=38.甲、乙、丙三人都回答错误的概率为P (BBB )=P (B )P (B )P (B )=(1-34)(1-23)(1-38)=596.因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙三人中,至少有一人答对这道题”是对立事件,所以所求事件概率为P (M )=1-596=9196.。
2019_2020学年新教材高中数学第五章统计与概率5.3.5随机事件的独立性课件新人教B版必修第二册
方法归纳 解决此类问题要明确互斥事件和相互独立事件的意义,若 A, B 相互独立,则 A 与 B,A 与 B , A 与 B 也是相互独立的,代入相 互独立事件的概率公式求解.
跟踪训练 3 甲、乙两人组成“星队”参加猜成语活动,每轮 活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮 猜对的概率为23.在每轮活动中,甲和乙猜对与否互不影响,各轮结 果也互不影响.求“星队”在两轮活动中猜对 3 个成语的概率.
解析:设 A1,A2 分别表示甲两轮猜对 1 个,2 个成语的事件, B1,B2 分别表示乙两轮猜对 1 个,2 个成语的事件.根据独立性假 定,得 P(A1)=2×34×14=38,P(A2)=342=196.
(3)“2 人至少有 1 人射中”包括“2 人都中”和“2 人有 1 人 射中”2 种情况,其概率为 P=P(AB)十[P(A B )+P( A B)]=0.72+ 0.26=0.98.
(4)“2 人至多有 1 人射中目标”包括“有 1 人射中”和“2 人 都未射中”两种情况.
故所求概率为 P=P(A] B )+P(A B )+P( A B)
解析:(1)对同一目标射击,甲、乙两射手是否击中目标是互不 影响的,所以事件 A 与 B 相互独立;对同一目标射击,甲、乙两射 手可能同时击中目标,也就是说事件 A 与 B 可能同时发生,所以事 件 A 与 B 不是互斥事件.
甲、乙击中目标相互不影响,所以相互独立,甲击中目标、乙 击中目标,可以同时发生,所以不互斥.
题型一 相互独立事件的判断[经典例题] 例 1 从一副扑克牌(去掉大、小王)中任抽一张,设 A=“抽到 K”,B=“抽到红牌”,C=“抽到 J”,那么下列每对事件是否 相互独立?是否互斥?是否对立?为什么? (1)A 与 B;(2)C 与 A.
2019-2020学年高中数学人教B版必修2作业与测评:学期综合测评(一)Word版含解析.docx
必修 2学期综合测评(一)对应学生用书 P85 本试卷分第Ⅰ卷 (选择题 ) 和第Ⅱ卷 (非选择题 )两部分,满分 150 分,考试时间 120 分钟.第Ⅰ 卷(选择题,共 60 分)一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的 )1.已知两直线 y=ax- 2 和 y=(a+ 2)x+ 1 互相垂直,则 a 等于 ()A . 2 B. 1 C.0D.- 1答案D解析由题知 (a+ 2)a=- 1? a2+2a+1=(a+1)2= 0,∴ a=- 1,也可以代入检验..圆x 2+y2+2x-4y=0 的圆心坐标和半径分别是 ()2A . (1,- 2), 5 B.(1,- 2),5C. (-1,2), 5 D.(- 1, 2),5答案D解析圆的方程化为标准方程为(x+ 1)2+(y- 2)2=5,其圆心是 (- 1,2),半径为5.3.已知直线 l 的方程为 2x- 5y+10=0,且在 x 轴上的截距为 a,在 y 轴上的截距为 b,则 |a+b|= ()A . 3 B. 7 C.10D. 5答案A解析因为直线 l 的方程为 2x-5y+10=0,所以令 y=0,得 x=- 5,即 a =- 5,令 x=0,得 y= 2,即 b=2,所以 |a+ b|=|- 5+ 2|=3.4.某几何体的三视图如图所示,则该几何体中,最大侧面的面积为()A .1B.2C.5D.6 2222答案C解析由三视图,知该几何体的直观图如图所示.平面 AED ⊥平面 BCDE ,四棱锥A -BCDE的高为.四边形BCDE是边长为△AED=1×1×1=1,1 1 的正方形,则 S22△ ABC =S△ ABE=1×1×2=2,S△ACD=1×1×5=5,故选 C.S22225.某建筑物的上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8m,若按 1∶500 的比例用斜二测画法画出建筑物的直观图,那么在直观图中,长方体的长、宽、高和四棱锥的高应分别为()A . 4 cm, 1 cm,2 cm,1.6 cmB. 4 cm,0.5 cm,2 cm,0.8 cmC. 4 cm,0.5 cm,2 cm,1.6 cmD. 2 cm, 0. 5 cm,1 cm,0.8 cm答案C解析由比例尺,可知长方体的长、宽、高和四棱锥的高应分别为4 cm,1 cm,2 cm, 1. 6 cm,再结合斜二测画法,则在直观图中,长方体的长、宽、高和四棱锥的高应分别为 4 cm,0.5 cm,2 cm,1.6 cm.y-2 16.直线 l :y=kx- 1 与曲线x-1=2不相交,则 k 的取值是 ()111A .2或 3B.2C.3 D.2,3答案 A解析曲线y -2=1表示直线 x -2y + 3= 0(去掉点 (1,2)),则直线 l :y = kx -x -121 与曲线 y - 2= 1不相交,即直线 l 与 x -2y + 3= 0 平行或直线 l 过点 (1,2),所以x - 1 21k 的取值为 2或 3.7.如图,三棱台 ABC -A ′ B ′C ′中, AB ∶ A ′B ′= 1∶2,则三棱锥 A ′-ABC ,B -A ′ B ′ C ,C -A ′B ′C ′的体积之比为 ()A . 1∶ 1∶ 1B . 1∶ 1∶2C . 1∶ 2∶4D . 1∶ 4∶ 4答案 C解析设棱台的高为 h ,S ABC =S ,则 S A B C =4S .△△ ′ ′ ′所以 V A ′ -ABC =1△ABC ·= 1,3Sh3ShV3S3ShC - A ′ B ′ C ′=1△ A ′ B′C ′h =4,17又 V 台 =3h(S +4S + 2S)=3Sh ,2而 V B -A ′B ′ C = V 台 -V C - A ′B ′ C ′ -V A ′- ABC =3Sh ,所以 V A ′ -ABC ∶V B - A ′ B ′ C ∶V C - A ′B ′ C ′ =1∶2∶4.8.已知直三棱柱 ABC - A 1B 1C 1 的 6 个顶点都在球 O 的球面上,若 AB =3,AC =4,AB ⊥AC ,AA 1= 12,则球 O 的表面积为 ()A . 153πB . 160πC .169πD .360π答案C解析 由于直三棱柱的底面是直角三角形 ,所以可以把此三棱柱补成长方体 ,其体对角线就是外接球的直径 ,所以球 O 的半径 R = 1 32+ 42+122=13,所以球2 2132 O 的表面积 S = 4π× 2 =169π,故选 C .9.如图,三棱锥 V - ABC 中, VO ⊥平面 ABC ,O ∈ CD , VA =VB ,AD =BD ,则下列结论中不一定成立的是 ()A . AC = BCB . VC ⊥ VDC . AB ⊥ VCD . S △ VCD ·AB =S △ ABC ·VO答案B解析因为 VA =VB ,AD = BD ,所以 VD ⊥AB .因为 VO ⊥ 平面 ABC ,AB ? 平面 ABC ,所以 VO ⊥ AB .又 VO ∩VD =V ,所以 AB ⊥ 平面 VCD .又 CD? 平面 VCD ,VC? 平面 VCD ,所以 AB ⊥VC , AB ⊥ CD .又 AD =BD ,所以 AC =BC( 线段垂直平分线的性质 ).因为 VO ⊥ 平面 ABC ,1所以 V V - ABC = 3S △ ABC ·VO .因为 AB ⊥平面 VCD ,所以 V V - ABC = V B - VCD +V A -VCD1 1= 3S △ VCD ·BD +3S△VCD·AD 1= 3S △ VCD ·(BD + AD)1= 3S △ VCD ·AB ,所以1 △ 1 △3S ABC·VO =3S VCD·AB ,即 S△VCD·AB =S△ABC·VO .综上知,A ,C,D 正确.10.如右图,定圆半径为a,圆心为 (b,c),则直线 ax+by+c=0 与直线 x-y+ 1= 0 的交点在 ()A .第四象限B.第三象限C.第二象限D.第一象限答案Bb+ cax+ by+c=0,x =-a+b,解析解方程组得x-y+1=0,a-cy=a+b.观察题设中圆的位置,可知 a>0, b<0,c>0,且a+b<0,b+c<0, a-c>0,b+ c a- c所以 x=-a+b<0,y=a+b<0..在正三棱柱11 1 中,若AB=2,AA 1=1,则点A到平面A 111ABC- A B C BC 的距离为 ()3333A .4B.2C.4D. 3答案B解析因为 ABC -A 1 1 1 是正三棱柱,AB=2,所以底面三角形ABC的面B C积为3,所以 VA1 -ABC =1×3×1=3.如图,在△ A 1中, 1 = 1 =33BC A B A C 12+22=5,所以 BC 的中点 M 到 A 1的距离为 5 2-1= 2,所以 S△A1BC=1×2×2=2.设点 A 到平面 A的距离为,所以1·△· =-,21BC h 3SA1BC h VA1ABC解得 h=23.12.若圆 C:x2+ y2+2x-4y+ 3= 0 关于直线 2ax+by+6=0 对称,则由点 (a,b)所作的圆的切线长的最小值是()A . 2 B. 3 C.4 D.6答案C解析将圆 C: x2+y2+2x-4y+ 3=0 化为标准方程为 (x+1)2+(y-2)2=2,∴圆心 C(- 1,2),半径 r= 2.∵圆 C 关于直线 2ax+ by+6=0 对称,∴直线 2ax+by+ 6= 0 过圆心,将 x=- 1, y=2 代入直线方程得- 2a+2b+6=0,即 a= b+3.∵点 (a,b)与圆心的距离 d= a+ 1 2+ b-2 2,∴ 由点 (a,b)向圆 C 所作切线长 l= d2-r2= a+ 1 2+ b-2 2- 2=b+4 2+ b-2 2-2= 2 b+1 2+16≥ 4,当且仅当 b=- 1 时切线长最小,最小值为 4.第Ⅱ卷(非选择题,共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分)13.如图,已知平面α⊥平面β,α∩β=l ,A∈l,B∈l ,AC? α,BD? β,AC ⊥l , BD ⊥l,且 AB =4,AC =3,BD = 12,则 CD=________.答案13解析连接 BC(图略 ),因为 AC ⊥l, AC= 3, AB = 4,所以 BC=5.因为 BD⊥l ,l =α∩β,α⊥β, BD? β,所以 BD ⊥α.又BC? α,所以 BD ⊥BC.在Rt△ DBC 中,CD= BD 2+BC2=13.14.四边形 ABCD 中,A(0,0),B(1,0),C(2,1),D(0,3),若四边形 ABCD绕 y 轴旋转一周,则所得旋转体的体积为________.答案5π解析如右图所示,V 圆锥=1 21=12×2=8π,V圆台=1πh22+ R2+Rr)=1π× ×2+ 12+2×1)=73πr h3π× 233 (r3 1 (23π,∴ V =V 圆锥+V 圆台=5π.15.在△ ABC 中,高 AD 与 BE 所在直线的方程分别是x +5y-3=0 和 x+ y - 1= 0, AB 边所在直线的方程是 x + 3y- 1= 0,则△ ABC的顶点坐标分别是A________;B________; C________.答案(-2,1) (1,0) (2, 5)高 AD 与边 AB 所在直线的交点即为顶点 A ,联立x+5y-3=0,解析得x+3y-1=0,A( -2,1).高 BE 与边 AB 所在直线的交点即为顶点B,联立x+y-1=0,得x+3y-1=0,B(1,0).因为直线 AC 过点 A ,且与直线 BE 垂直,所以直线 AC 的方程为 y- 1 =x +2,即y=x+3,同理,直线 BC 的方程为 y= 5(x- 1),联立两直线方程得 C(2,5).16.如图,正三角形 ABC 的中线 AF 与中位线 DE 相交于点 G,已知△ A ′ED是△ AED 绕 DE 翻折过程中的一个图形,现给出下列四个命题:①动点 A ′在平面 ABC 上的射影在线段AF 上;②恒有平面 A ′ GF⊥平面 BCED ;③三棱锥 A ′- FED 的体积有最大值;④直线 A ′E 与 BD 不可能垂直.其中正确命题的序号是 ________.答案 ①②③解析 对于命题 ①, 由题意,知 A ′ G ⊥DE ,FG ⊥ DE ,A ′G ∩ FG = G ,故 DE ⊥ 平面 A ′FG .又 DE? 平面 ABC ,所以平面 A ′FG ⊥平面 ABC ,故该命题正确;对于命题 ②, 由①可知正确;对于命题 ③, 当 A ′ G ⊥平面 ABC 时,三棱锥 A ′ -FED 的体积有最大值 ,故命题 ③正确;对于命题 ④,当 A ′E 在平面 ABC 上的射影与直线 BD 垂直时,易证 A ′E 与 BD 垂直,故该命题不正确 .三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明 、证明过程或演算步骤 )17.(本小题满分 10 分)已知直线 l :kx - y + 1- 2k =0(k ∈R ).(1)证明:直线 l 过定点;(2)若直线 l 交 x 轴正半轴于点 A ,交 y 轴正半轴于点 B ,O 为坐标原点,且 |OA|= |OB|,求 k 的值.解 (1)证法一:直线 l 的方程可化为 y - 1=k(x - 2), 故无论 k 取何值,直线 l 总过定点 (2,1).证法二:设直线过定点 (x 0, y 0),则 kx 0-y 0+1-2k =0 对任意 k ∈R 恒成立,x 0 -2=0,即(x 0-2)k - y 0+1=0 恒成立,所以 - y 0+1=0,解得 x 0= 2, y 0 =1,故直线 l 总过定点 (2, 1). (2)因直线 l 的方程为 y =kx -2k + 1,1则直线 l 在 y 轴上的截距为 1-2k ,在 x 轴上的截距为 2-k ,依题意 1- 2k =2-1,解得k =- 1或 k = 1经检验,不符合题意 ,所以所k >02()求 k =- 1.18.(本小题满分 12 分 )如图所示是一个长方体截去一个角得到的几何体的直观图及主视图和左视图 (单位: cm).(1)画出该多面体的俯视图,并标上相应的数据;(2)按照给出的数据,求该几何体的体积.解(1) 该几何体的俯视图如图所示 .1 1 284 3). (2) 该几何体的体积 V = V 长方体 -V 三棱锥 = 4× 4× 6- 3×2× 2× 2× 2= 3 (cm 19.(本小题满分 12 分)已知动点 M 到点 A(2 ,0)的距离是它到点 B(8,0)的距离的一半,求:(1)动点 M 的轨迹方程;(2)若 N 为线段 AM 的中点,试求点N 的轨迹.解(1)设动点 M(x , y)为轨迹上任意一点 ,则点 M 的轨迹就是集合 P =1M|MA| =2|MB| .由两点间距离公式 ,点 M 适合的条件可表示为x - 22+ y 2=1x -8 2+ y 2 .2平方后再整理 ,得 x 2+ y 2=16.可以验证 ,这就是动点 M 的轨迹方程 .(2)设动点 N 的坐标为 (x ,y),M 的坐标是 (x 1,y 1).由于 A(2 , 0),且 N 为线段 AM 的中点,2+x 1 0+ y 1所以 x = 2 , y = 2 .所以有 x 1=2x - 2, y 1 =2y .①由 (1)知,M 是圆 x 2+ y 2=16 上的点,22所以 M 的坐标 (x 1, y 1)满足 x 1+y 1=16.②22将 ①代入 ②整理 ,得(x - 1) +y = 4.所以 N 的轨迹是以 (1, 0)为圆心,2 为半径的圆 .20.(本小题满分 12 分 )如图,在四棱锥 P -ABCD 中,PA ⊥底面 ABCD ,∠ABC =60°,PA =AB =BC ,AC ⊥CD , E , F 分别是 PC ,AC 的中点.证明: (1)BF∥平面 PCD;(2)AE ⊥平面 PCD.证明(1)因为∠ ABC = 60°,AB =BC,所以△ABC 为等边三角形.又F 是 AC 的中点,所以 BF⊥AC .又CD⊥AC ,且 BF,CD,AC 都在平面 ABCD 内,所以 BF∥CD.因为 CD? 平面 PCD,BF?平面 PCD,所以 BF∥平面 PCD.(2)由(1)知,△ ABC 为等边三角形,且PA=AB ,所以 PA=AC .又 E 为 PC 的中点,所以 AE ⊥PC.因为 PA⊥底面 ABCD ,CD? 平面 ABCD ,所以 PA⊥CD.又CD⊥AC ,PA∩AC =A ,所以 CD⊥平面 PAC.又AE? 平面 PAC,所以 CD⊥AE .又PC∩CD=C,所以 AE ⊥平面 PCD.21.(本小题满分 12 分 )如图,在三棱台 ABC - DEF 中,平面 BCFE⊥平面 ABC ,∠ACB =90°,BE=EF=FC=1,BC=2,AC =3.(1)求证: BF ⊥平面 ACFD .(2)求三棱台 ABC - DEF 的体积.解 (1)证明:延长 AD , BE , CF 相交于一点 K ,如图所示 ,因为平面 BCFE ⊥ 平面 ABC ,且 AC ⊥BC ,所以 AC ⊥平面 BCK ,所以 BF ⊥AC ,又因为 EF ∥ BC , BE = EF =FC =1,BC =2,所以 △BCK 为等边三角形 ,且 F 为 CK 的中点,则 BF ⊥ CK ,所以 BF ⊥ 平面 ACFD .DF EF(2)由题意知 ,△ DEF 和△ABC 都是直角三角形且相似 ,所以 AC = BC ,所以 EF 1 3DF = BC ·AC =2×3=2,S △DEF = 1× EF × DF = 1×1×3=3,2 2 2 4 S △ ABC =1×AC ×BC =1×3×2=3,22过点 E 作 EH ⊥BC ,垂足为 H ,则由平面 BCFE ⊥ 平面 ABC ,可得 EH ⊥ 平面ABC ,在等腰梯形 BCFE 中,EH =2 2- 12= 31 -22 ,所以该三棱台的体积为 1 32 323 59 3 3×4 +4×3+3 × 2 = 32 .22.(本小题满分 12 分)已知圆 O :x 2+y 2=4,点 P 是直线 l :x =4 上的动点.(1)若从点 P 到圆 O 的切线长为 2 3,求点 P 的坐标以及两条切线所夹的劣弧长;(2)若点 A(- 2,0),B(2,0),直线 PA ,PB 与圆 O 的另一交点分别为 M ,N ,求证:直线 MN 经过定点 Q(1,0).解 (1)依题意,设 P(4, t).设两切点分别为 C ,D ,则 OC ⊥PC ,OD ⊥PD .由题意可知 |PO|2=|OC|2 +|PC|2,即 42+t 2= 22+(2 3)2,解得 t =0, 所以点 P 的坐标为 (4,0).在 Rt △ POC 中,可求得 ∠POC =60°,所以 ∠DOC =120°,120° 4π 所以所求两条切线所夹的劣弧长为2π×2×=.360° 3(2)证明:设 M(x 1, y 1 ),N(x 2,y 2).PA 的方程为 y = t依题意,可得直线 6(x + 2),t由 y =6 x +2, 得(t 2+36)x 2+4t 2x +4t 2-144= 0.x 2+ y 2=4,因为直线 PA 经过点 A( - 2, 0),M(x 1,y 1 ,) 所以- 2,x 1 是上述方程的两个根 ,2-144-2 则- 2x 1=4t 2+36 ,即 x 1=7222t , tt + 36t代入直线方程 y = 6(x + 2),t 72- 2t 224t得 y 1= 6 t 2+ 36 +2=t 2+ 36.t同理,可得直线 PB 的方程为 y = 2(x -2).t由y =2x -2 ,得(t 2+4)x 2-4t 2x +4t 2- 16=0.x 2+ y 2=4,因为直线 PB 经过点 B(2,0),N(x 2, y 2 ),所以 2,x 2 是上述方程的两个根 ,4t 2-162t 2-8则 2x 2= t 2+4 ,即 x 2= t 2+4 ,t代入直线方程 y = 2(x - 2),2t 2-8 -8t得 y 2= t 2-2= 2.2 t + 4t +42t 2-8=1,若 x 1=1,则 t 2=12,此时 x 2= 2t + 4显然 M ,N 在直线 x =1 上,所以直线 MN 经过定点 Q(1,0).若 x 1≠1,则 t 2≠12, x 2≠1,24t1t 2+36- 8t由 k MQ =y- 0= 2=2,x 1- 1 72-2tt -12t 2 +36 -1- 8tk NQ =y2-0=t 2+4- 8t,可知 k MQ = k NQ ,2= 2x 2-12t - 8t -12t 2+4 - 1所以 M ,Q ,N 三点共线 ,即直线 MN 经过定点 Q(1, 0).综上所述 ,直线 MN 经过定点 Q(1,0).。
2019_2020学年新教材高中数学第6章平面向量初步 向量的加法练习(含解析)新人教B版必修第二册
课时26 向量的加法知识点一 向量加法的三角形法则1.已知向量a ,b ,c ,那么下列结论中正确的是( )A .a +b =cB .b +c =aC .a +c =bD .|a |+|b |=|c |答案 B解析 根据向量加法的三角形法则可得b +c =a .故选B.2.当a ,b 满足下列哪种条件时,等式|a +b |=|a |-|b |成立?( ) A .a 与b 同向且|a |≥|b | B .a 与b 反向且|a |≤|b | C .a 与b 同向且|a |≤|b | D .a 与b 反向且|a |≥|b | 答案 D解析 当a 与b 反向且|a |≥|b |时,|a +b |=|a |-|b |.知识点二 向量加法的平行四边形法则3.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO → 答案 C解析 设a =OP →+OQ →,利用平行四边形法则作出向量OP →+OQ →,再平移即发现a =FO →. 4.如下图,在正六边形OABCDE 中,若OA →=a ,OE →=b ,试用向量a ,b 将OB →,OC →,OD →表示出来.解 由题意知四边形ABPO ,AOEP 均为平行四边形, 由向量的平行四边形法则,知OP →=OA →+OE →=a +b . ∵AB →=OP →,∴AB →=a +b .在△AOB 中,根据向量的三角形法则,知OB →=OA →+AB →=a +a +b =2a +b , ∴OC →=OB →+BC →=2a +b +b =2a +2b .OD →=OE →+ED →=OE →+AB →=b +a +b =a +2b . 知识点三 多个向量相加 5.化简下列各式:(1) AB →+MB →+BO →+OM →;(2) MB →+AC →+BM →;(3) OA →+OC →+BO →+CO →.解 (1)原式=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.(2)原式=(MB →+BM →)+AC →=AC →.(3)原式=OA →+BO →=BO →+OA →=BA →.6.向量a ,b ,c ,d ,e 如图所示,据图回答下列各题:(1)用a ,d ,e 表示DB →; (2)用a ,b ,e 表示EC →.解 由题图知AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e . (1)DB →=DE →+EA →+AB →=d +e +a . (2)EC →=EA →+AB →+BC →=e +a +b .一、选择题1.已知非零向量a ,b ,c ,则向量(a +c )+b ,b +(a +c ),b +(c +a ),c +(b +a ),c +(a +b )中,与向量a +b +c 相等的个数为 ( )A .2B .3C .4D .5 答案 D解析 根据向量加法的运算律解答.2. 如图,正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE → C.AD → D.CF → 答案 D解析 由于BA →=DE →,故BA →+ CD →+EF →=CD →+DE →+EF →=CF →. 3.若C 是线段AB 的中点,则AC →+BC →等于( ) A . AB →B .BA →C .0D .以上均不正确答案 C解析 AC →与BC →的模相等而方向相反,因此AC →+BC →=0.4.已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c |等于( ) A .0 B .3 C. 2 D .2 2 答案 D解析 ∵A B →+BC →=AC →,∴|a +b +c |=|2c |, ∵|c |=2,∴|a +b +c |=2 2.故选D.5.已知向量a ,b 均为非零向量,下列说法不正确的是( ) A .向量a 与b 反向,且|a |>|b |,则向量a +b 与a 的方向相同 B .向量a 与b 反向,且|a |<|b |,则向量a +b 与a 的方向相同 C .向量a 与b 同向,则向量a +b 与a 的方向相同 D .向量a 与b 同向,则向量a +b 与b 的方向相同 答案 B解析 ∵a 与b 方向相反,|a |<|b |,∴a +b 与a 的方向相反,故B 不正确. 6.已知平行四边形ABCD ,设AB →+CD →+BC →+DA →=a ,且b 是一非零向量,则下列结论: ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |.其中正确的是 ( ) A .①③ B .②③ C .②④ D .①② 答案 A解析 a =0,①③正确,②错误;|a +b |=|0+b |=|b |=|a |+|b |,④错误. 二、填空题7.设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________. 答案 20 4解析 当a ,b 共线同向时,|a +b |=|a |+|b |=8+12=20, 当a ,b 共线反向时,|a +b |=||a |-|b ||=4. 当a ,b 不共线时,||a |-|b ||<|a +b |<|a |+|b |, 即4<|a +b |<20,所以最大值为20,最小值为4.8.小李从家里出发,先到小卖部买了一瓶矿泉水,再到小区门口,这样走的路程________(填“大于”“小于”“不大于”“不小于”或“等于”)他从家里直接到小区门口的距离.(假设这几条路都是直的)答案 不小于解析 由性质|a +b |≤|a |+|b |,小李从家里出发先到小卖部再到小区门口走的路程不小于他从家里直接到小区门口的距离.9.在菱形ABCD 中,∠DAB =60°,|AB →|=2,则|BC →+DC →|=________. 答案 2 3解析 如图所示,设菱形对角线交点为O .BC →+DC →=AD →+DC →=AC →.∵∠DAB =60°, ∴△ABD 为等边三角形. 又∵|AB →|=2,∴|OB →|=1. 在Rt △AOB 中,|AO →|= |AB →|2-|OB →|2=3,∴|AC →|=2|AO →|=2 3. 三、解答题10. 如图,已知向量a ,b .(1)用平行四边形法则作出向量a +b ;(2)用三角形法则作出向量a +b .解 (1)如图,在平面内任取一点O ,作OA →=a ,OB →=b ,以OA ,OB 为邻边作平行四边形OACB ,连接OC ,则OC →=OA →+OB →=a +b .(2)如图,在平面内任取一点O ′,作O ′D →=a ,DE →=b ,连接O ′E ,则O ′E →=O ′D →+DE →=a +b .11.如图,∠AOB =∠BOC =120°,|OA →|=|OB →|=|OC →|,求OA →+OB →+OC →.解 如图所示,以OA ,OB 为邻边作平行四边形OADB ,由向量加法的平行四边形法则,易知OA →+OB →=OD →.∵∠AOB =120°,| OA →|=| OB →|, ∴∠BOD =60°,|OB →|=|OD →|. ∵∠BOC =120°,|OB →|=|OC →|, ∴OD →+OC →=0,故OA →+OB →+OC →=0.12. 已知D ,E ,F 分别为△ABC 的边BC ,AC ,AB 的中点.求证:AD →+BE →+CF →=0.证明 连接EF ,由题意知,AD →=AC →+CD →,BE →=BC →+CE →,CF →=CB →+BF →. 由D ,E ,F 分别为△ABC 的边BC ,AC ,AB 的中点可知,EF →=CD →,BF →=FA →.∴AD →+BE →+CF →=(AC →+CD →)+(BC →+CE →)+(CB →+BF →)=(AC →+CD →+CE →+BF →)+(BC →+CB →)=(AE →+EC →+CD →+CE →+BF →)+0=AE →+CD →+BF →=AE →+EF →+FA →=AF →+FA →=0.。
2019_2020学年新教材高中数学第五章统计与概率5.1.2数据的数字特征课件新人教B版必修第二册
3.1,2,3,4,5,6,7,8,9,10 的 25%分位数为________. 解析:因为数据个数为 10,而且 10×25%=2.5,故 25% 分位数为 3. 答案:3
5.1.2 数据的数字特征
1.结合实例,理解集中趋势参数平均数、中位数、众数 新课程 的统计含义,理解离散程度参数
标准差、方差、极差 标准 的统计含义,理解百分位数的统计含义.
2.通过学习,提高学生数据分析、逻辑推理的核心素养.
知识点一 最值与平均数 (一)教材梳理填空 1.最值:一组数据的最值指的是其中的最大值与 最小值 , 最值反映的是这组数最极端的情况. 一般地,最大值用 max 表 示,最小值用 min 表示.
C.标准差
D.中位数
解析:方差与标准差反映一组数据的离散程度.
答案:C
2.样本中共有五个个体,其值分别为 a,0,1,2,3,若该样本的平 均值为 1,则样本方差为________. 解析:由题意知15(a+0+1+2+3)=1,解得 a=-1. 所以样本方差为 s2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2 +(3-1)2]=2. 答案:2
2.平均数:如果给定的一组数是 x1,x2,… ,xn,则这组 数的平均数为 x =__n1_(_x_1+__x_2_+__…__+__x_n_)_.这一公式在数学中常简
记为 x =n1i=n1xi,其中的符号“∑”表示求和,读作“西格玛”,
人教版B版(2019)高中数学必修第二册:第六章 平面向量初步 综合测试(附答案与解析)
第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知平面向量(1,2)=-a ;(1,0)=b ,则向量3+a b 等于()A .(2,6)-B .(2,6)--C .(2,6)D .(2,6)-2.化简:AB DC CB --=uu u r uuu r uur()A .ADuuu rB .ACuuu r C .DA uu u r D .DBuu u r 3.下列说法中正确的是()A .若AB DC =uu u r uuu r,则,,,A B C D 四点构成一个平行四边形B .零向量与单位向量的模相等C .若a 和b 都是单位向量,则=a b 或=-a bD .零向量与任何向量都共线4.在四边形ABCD 中,设,,AB AD BC ===a b c uu u r uuu r uu u r ,则DC uuu r等于()A .-+a b cB .()-+b a cC .++a b cD .-+b a c5.已知平面内两点(2,1),(5,3)A B -,则与向量AB uu u r同向的单位向量是()A .34,55⎛⎫- ⎪⎝⎭B .34,55⎛⎫ ⎪⎝⎭C .43,55⎛⎫ ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭6.在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,则EB =uu r()A .1344AB AC -uu ur uuu r B .3144AB AC -uu ur uuu r C .1344AB AC +uu ur uuu r D .3144AB AC +uu ur uuu r 7.如图所示,P Q 、是ABC △的边BC 上的两点,且BP QC =uu r uuu r ,则化简AB AC AP AQ +--uu u r uuu r uu u r uuu r的结果为()A .0B .BP uurC .PQ uu u rD .PCuu u r 8.过ABC △内一点M 任作一条直线l ,再分别过顶点,A B C ,作l 的垂线,垂足分别为,D E F ,,若AD BE CF ++=0uuu r uur uu u r恒成立,则点M 是ABC △的()A .垂心B .重心C .外心D .内心9.已知,,O A B 是平面内的三个点,直线AB 上有一点C ,满足0AB AC +=uu u r uuu r ,则OC =uuu r()A .2OA OB -uur uu u r B .2OA OB -+uur uu u rC .2133OA OB -uu r uu ur D .1133OA OB-+uu r uu ur 10.在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB 、BC 的中点,P 为以A 为圆心,AD 为半径的圆弧DE 的中点(如图所示).若AP AF ED λμ=+uu u r uu u r uu u r,其中,λμ∈R ,则λμ-的值是()A .24B .324C D .34二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.下列命题中不正确的是()A .两个有共同始点且相等的向量,其终点可能不同B .若非零向量AB uu u r 与CD uuur 共线,则A B C D 、、、四点共线C .若非零向量a 与b 共线,则=a bD .四边形ABCD 是平行四边形,则必有AB CD=uu u r uu u r12.下列说法中正确的是()A .模相等的两个向量是相等向量B .若230OA OB OC ++=uur uu u r uuu r,,AOC ABC S S V V 分别表示AOC △,ABC △的面积,则:1:6AOC ABC S S =V V C .两个非零向量,a b ,若-=+a b a b ,则a 与b 共线且反向D .若∥a b ,则存在唯一实数入使得λ=a b三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知点O 固定,且2OA =uur,则A 点构成的图形是________.14.已知点O 为四边形ABCD 所在平面内一点,且向量,,,OA OB OC OD uu r uu u r uuu r uuu r 满足等式OA OC OB OD +=+uur uuu r uu u r uuu r,则四边形ABCD 的形状一定为________.15.设向量a ,b 不平行,向量14λ+a b 与-+a b 平行,则实数λ=________.16.如图,在长方形ABCD 中,,M N 分别为线段,BC CD 的中点,若()1212,MN AM BN λλλλ=+∈R uuu r uuu r uuu r,则12λλ+的值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量(1,2),(3,1)==-a b .(1)求与2+a b 同向的单位向量e ;(2)若向量113,3⎛⎫=-- ⎪⎝⎭c ,请以向量,a b 为基底表示向量c .18.(12分)已知平面内的三个向量(3,2),(1,2),(4,1)==-=a b c .(1)若(,)c λμλμ=+∈R a b ,求λμ+的值;(2)若向量k +a b 与向量2-b c 共线,求实数k 的值.19.(12分)如图,在OCB △中,点A 是BC 的中点,点D 是靠近点B 将OB 分成2:1的一个内分点,DC和OA 交于点E ,设OA =a uu r ,OB =b uu u r.(1)用,a b 表示向量,OC DC uuu r uuu r;(2)若OE OA λ=uu u r uu r,求λ的值.20.(12分)已知向量(,)x y =u 与向量(,2)y y x =-v 的对应关系用()f =v u 表示.(1)设(1,1),(1,0)==a b ,求向量()f a 与()f b 的坐标;(2)求使()(,)f p q =c (,p q 为常数)的向量c 的坐标;(3)证明:对任意的向量,a b 及常数,m n 恒有()()()f m n mf nf +=+a b a b 成立.21.(12分)已知(2,4),(3,1),(3,4)A B C ----,设AB =a uu u r ,BC =b uu u r ,CA =c uu r.(1)求33+-a b c 的值;(2)求满足m n =+a b c 的实数,m n 的值;(3)若线段AB 的中点为M ,线段BC 的三等分点为N (点N 靠近点B ),求MN uuu r.22.(12分)如图,已知河水自西向东流,流速为01m /s v =,设某人在静水中游泳的速度为1v ,在水中的实际速度为2v.v=,求他实际前进方向与水流方向的夹角α和2v的大小;(1)若此人朝正南方向游去,且1m/sv,求他游泳的方向与水流方向的夹角β和1v的大小.(2)若此人实际前进方向与水流垂直,且2m/s第六章综合测试答案解析一、1.【答案】A【解析】因为(1,2)=-a ,所以3(3,6)=-a ,又因为()1,0=b ,所以3(31,60)(2,6)+=-++=-a b ,故选A .2.【答案】A【解析】AB DC CB AB BC CD AD --=++=uu u r uuu r uu r uu u r uu u r uu u r uuu r,故选A .3.【答案】D【解析】对于选项A ,,,,A B C D 四点可能共线,故A 不正确;对于选项B ,零向量的模为0,单位向量的模为1,不相等,故B 不正确;对于选项C ,因为a 和b 都是单位向量,所以a b =,但它们的方向是任意的,故C 不正确;对于选项D ,零向量与任何向量都共线,故D 正确.故选D .4.【答案】A【解析】因为四边形ABCD 中,AB =a uu u r ,AD =b uuu r ,=BC c uu u r ,所以DC AC AD AB BC AD =-=+-=-+a b c uuu r uuu r uuu r uu u r uu u r uuu r,故选A .5.【答案】B【解析】因为两点(2,1)A -,(5,3)B ,所以()3,4AB =uu u r,所以34(3,4),55||AB AB ⎛⎫== ⎪⎝⎭uu u ruu u r ,所以与向量AB uu u r 同向的单位向量为34,55⎛⎫⎪⎝⎭,故选B .6.【答案】B【解析】因为在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,所以11131()22244EB AB AE AB AD AB AB AC AB =-=-=-⨯+=-uu r uu u r uu u r uu u r uuu r uu u r uu u r uuu r uu u r uuu r,故选B .7.【答案】A【解析】因为BP QC =uu r uuu r ,所以0PB QC +=uu r uuu r,所以()()=0AB AC AP AQ AB AP AC AQ PB QC +--=-+-=+uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu r uuu r,故选A .8.【答案】B【解析】因为过ABC △内一点M 任作一条直线l ,可将此直线特殊为过点A ,则0AD =uuu r ,则0BE CF +=uur uu u r恒成立如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点,所以点M 是ABC △的重心,故选B .9.【答案】A【解析】由向量的运算法则可得AB OB OA =-uu u r uu u r uu r ,AC OC OA =-uuu r uuu r uu r,又0AB AC +=uu u r uuu r ,则()()0OB OA OC OA -+-=uu u r uu r uuu r uu r,即2OB OC OA +=uu u r uuu r uu r ,即2OC OA OB =-uuu r uu r uu u r ,故选A .10.【答案】A【解析】因为P 为以A 为圆心,AD 为半径的圆弧DE 的中点,所以2AP AD AE ===uu u r uuu r uu u r,45DAP EAP ∠=∠=︒,所以2222AP AE AD =+uu u r u r uuur ,因为在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB BC 、的中点,所以易证得四边形BCDE 为平行四边形,故ED AD AE =-uu u r uuu r uu u r,11312222AF AB BF AB BC AB AE =+=+=+=+uuu r uu u r uu u r uu u r uu u r uu u r uu ur uu u r uuu r ,若AP AF ED λμ=+uu u r uuu r uu u r ,则3131()222222AE AD AE AD AD AE AE AD λμλμλμ⎛⎫⎛⎫⎛⎫+=++-=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uu u r uuu r uu u r uuu r uuu r uu u r uu u r uuu r ,即3,221,22λμλμ=-⎪⎪⎪=+⎪⎩解得,24λμ⎧=⎪⎪⎨⎪=⎪⎩故24λμ-=,故选A .二、11.【答案】ABC【解析】A 中,相等向量的始点相同,则终点一定也相同,所以A 中命题不正确;B 中,向量AB uu u r 与CD uu ur 共线,只能说明AB uu u r 、CD uu ur 方所在直线平行或在同一条直线上,所以B 中命题不正确;C 中,向量a 与b 共线,说明a 与b 方向相同或相反,a 与b 不一定相等,所以C 中命题不正确;D 中,因为四边形ABCD 是平行四边形,所以AB uu u r 与CD uu u r 是相反向量、所以AB CD =uu u r uu u r,所以D 中命题正确、故选ABC .12.【答案】BC【解析】相等向量是大小相等、方向相同的向量,向量的模相等,但方向不一定相同,故A 选项错误;设AC的中点为M ,BC 的中点为D ,因为230OA OB OC ++=uu r uu u r uuu r ,所以2220OM OD ⨯+=uuu r uuu r ,即2OM OD =-uuu r uuu r ,所以O 是线MD 上靠近点M 的三等分点,可知O 到AC 的距离等于D 到AC 距离的13,而B 到AC 的距离等于D 到AC 距离的2倍,故可知O 到AC 的距离等于B 到AC 距离的16,根据三角形面积公式可知B 选项正确;C 选项中,当a 与b 共线且反向时,可知-=+a b a b 成立,当a 与b 不共线或共线方向相同时,结论不成立,故C 选项正确;D 选项错误,例如0=b .故选BC .三、13.【答案】圆【解析】因为2OA =uu r,所以点A 到点O 的距离为2,故A 点构成的图形是以点O 为圆心、2为半径的圆。
2019_2020学年新教材高中数学5.4统计与概率的应用-统计与概率的应用练习(含解析)新人教B版必修第二册
课时24 统计与概率的应用知识点一 统计在实际中的应用错误!未指定书签。
1.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出第一、二、三分厂取出的产品的使用寿命平均值分别为1020小时、980小时、1030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.答案 50 1015解析 第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为1020×0.5+980×0.2+1030×0.3=1015.2.甲、乙两位同学参加数学文化知识竞赛培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85现要从中选派一人参加正式比赛,从所抽取的两组数据分析,你认为选派哪位同学参加较为合适?并说明理由.解 派甲参赛比较合适.理由如下: x -甲=18×(82+81+79+78+95+88+93+84)=85, x -乙=18×(92+95+80+75+83+80+90+85)=85,s 2甲=18×[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.因为x -甲=x -乙,s 2甲<s 2乙,所以甲的成绩较稳定,派甲参赛比较合适.(或派乙参赛比较合适.理由如下:从统计的角度看,甲获得85分以上(含85分)的频率为f 1=38,乙获得85分以上(含85分)的频率为f 2=48=12.因为f 2>f 1,所以派乙参赛比较合适.)知识点二 概率在实际中的应用错误!未指定书签。
2019版高中数学人教B版必修2:模块综合检测 含解析
1 相交、平行或异面 B.相交或平行异面D.平行或异面解析:a 与c 可以相交、平行或异面,分别如图中的①,②,③.答案:A2已知直线l 1:(k-3)x+(4-2k )y+1=0与l 2:2(k-3)x-2y+3=0平行,则k 的值是( )或3 B.1或 C.3或 D.1或252523四棱台 D.三棱台解析:由三视图知该几何体为四棱锥,其中有一侧棱垂直于底面,底面为直角梯形.答案:B4在直线3x-4y-27=0上到点P (2,1)距离最近的点的坐标为( )A .(5,-3)B .(9,0)C .(-3,5)D .(-5,3)解析:过P (2,1)向此直线引垂线,其垂足即为所求的点,过点P 作直线3x-4y-27=0的垂线方程为4x+3y+m=0.因为点P (2,1)在此垂线上,所以4×2+3×1+m=0.所以m=-11.由联立求解,得所求的点的坐标为(5,-3).{3x -4y -27=0,4x +3y -11=0,答案:A5A.216C.108 cm3D.138 cm3此几何体是由长方体与三棱柱组合而成的,其体积为答案:B7若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( B.3C.4D.62解析:圆的标准方程为(x+1)2+(y-2)2=2,则圆心为(-1,2),半径为.因为圆关于直线ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为d=+1)2+(b-2)2=(a+1)2+(a-3-2)2=2a2-8a+26=2(a-2)2+18.所以当182(32)2-(2)2=16时,d有最小值=3,此时切线长最小,为=4,故选C.答案:C8球的半径等于D.4石材为一个三棱柱(相对应的长方体的一半由题意可知主视图三角形的内切圆的半径即为球的半径=2.-10答案:B9垂直于直线y=x+1且与圆x 2+y 2=4相切于第三象限的直线方程是( )A.x+y+2=0 B.x+y+2=02x+y-2=0D.x+y-2=02解析:由题意设所求直线方程为y=-x+k (k<0),又圆心(0,0)到直线y=-x+k 的距离为2,即=2,∴k=±2,又k<0,∴k=-2.|k |1+122故直线方程为y=-x-2,即x+y+2=0.2210D 1中,AB=3,BB 1=为3R 在棱BB 1上移动11则这个球的表面积是A.16πB.20πC.12πD.8π解析:这四点可看作一个正方体的四个顶点,且该正方体的八个顶点都在球面上,即球为正方体的外接球,所以2=2R ,R=,S=4πR 2=12π,故选C .33答案:C12已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx=0上两个不同点,P 是圆x 2+y 2+kx=0上的动点,如果点M ,N 关于直线x-y-1=0对称,则△PAB 面积的最大值是( B.4C.3+D.622解析:依题意得圆x 2+y 2+kx=0的圆心位于直线x-y-1=0上,于是有--1=0,即k=-2,(-k2,0)k2此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB 的方程是=1,即x-y+2=2x-2+y21314解析:如图,因为|AB|=8,所以|OC|==2.当直线AB 的斜率存在时,设AB 所在直线方20-16程为y+3=k (x-2),即kx-y-2k-3=0,圆心O 到AB 的距离为=2,解得k=-.此时,AB所|-2k -3|k 2+(-1)2512在的直线方程为5x+12y+26=0.当直线AB 的斜率不存在时,可知AB 所在的直线方程为时,符合题意.故所求弦AB 所在直线的方程是5x+12y+26=0或x=2.答案:5x+12y+26=0或x=215设甲、乙两个圆柱的底面积分别为S ,S ,体积分别为V ,V .若它们的侧面积相等,且S 1=16锥的最大体积为距离最大时体积最大,此时平面PD=2 cm .所以V=×4×2(cm 3).23×42=63答案: cm 3263三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(本小题满分10分)过点P (1,2)的直线l 被两平行线l 1:4x+3y+1=0与l 2:4x+3y+6=0得的线段长|AB|=,求直线l 的方程.2由题意可知l 与l 1,l 2不垂直,则设直线l 的方程为y-2=k (x-1).由{y =kx +2-k ,4x +3y +1=0,解得A ;(3k -73k +4,-5k +83k +4)18是圆柱的轴截面AA 1=AB=2.求证:平面A 1AC ⊥平面BA 1C ;求的最大值.V A1-ABC 证明∵C 是底面圆周上异于A ,B 的一点,且AB 为底面圆的直径,∴BC ⊥AC.又AA 1⊥底面ABC ,∴BC ⊥AA 1,又AC ∩AA 1=A ,∴BC ⊥平面A 1AC.又BC ⊂平面BA 1C ,∴平面A 1AC ⊥平面BA 1C.解在Rt △ACB 中,设AC=x ,19在四棱锥P-ABCD 中,AP ⊥平面PCD 分别为线段AD ,PC 的中点BE ⊥平面PAC.证明(1)设AC ∩BE=O ,连接OF ,EC.因为E 为AD 的中点,AB=BC=AD ,AD ∥BC ,12所以AE ∥BC ,AE=AB=BC ,所以O 为AC 的中点.又在△PAC 中,F 为PC 的中点,所以AP ∥OF.又OF ⊂平面BEF ,AP ⊄平面BEF ,20(1)求圆{-D2-E+1=0,4-2E+F=0,10+3D+E+F=0,则有{D=-6,E=4,F=4.故圆C的方程为x2+y2-6x+4y+4=0.(2)设符合条件的实数a存在,因为l垂直平分弦AB,故圆心C(3,-2)必在l上,所以l的斜率k PC=-2.21(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.求证:PC∥平面EBD;求三棱锥C-PAD的体积V C-PAD;在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.证明设AC,BD相交于点F,连接EF,为菱形,∵四棱锥P-ABCD的底面ABCD为菱形,∴AC⊥BD,∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.∵AC∩PA=A,∴BD⊥平面PAC,∴BD⊥PC.2在△PBC内,可求PB=PC=2,BC=2,在平面PBC内,作BM⊥PC,垂足为M,2设PM=x,则有8-x2=4-(2-x)2,22轴交于点设圆C 的方程是(x-t )2+=t 2+,(y -2t )24t 2令x=0,得y 1=0,y 2=;4t 令y=0,得x 1=0,x 2=2t ,∴S △OAB =OA ·OB=×|2t|=4,1212×|4t|即△OAB 的面积为定值.解∵OM=ON ,CM=CN ,∴OC 垂直平分线段MN.∵k MN =-2,∴k OC =.12圆C与直线y=-2x+4不相交,因此,t=-2不符合题意,舍去.故圆C的方程为(x-2)2+(y-1)2=5.。
2019_2020学年新教材高中数学第五章统计与概率章末复习提升课课件新人教B版必修第二册
某射击运动员为备战奥运会,在相同条件下进行
射击训练,结果如下:
射击次数 n
10 20 50 100 200 500
击中靶心次数 m 8 19 44 92 178 455
(1)该射击运动员射击一次,击中靶心的概率大约是多少?
(2)假设该射击运动员射击了 300 次,求击中靶心的次数大约是多
少?
(3)假如该射击运动员射击了 300 次,前 270 次都击中靶心,那么
(3)由频率分布直方图及已知的语文成绩、数学成绩分布在各分
数段的人数比,可得下表:
分数段 [50,60) [60,70) [70,80) [80,90)
x
5
x∶y
1∶1
40 2∶1
30 3∶4
20 4∶5
y
5
20
40
25
所以数学成绩在[50,90)之外的人数为
100-(5+20+40+25)=10.
(2)假设这组数据按从小到大的顺序排列为 x1,x2,x3,x4,则 xx12+ +2 xx23=+4 2x3,+x4=2,所以xx12++xx43==44,, 又 s= 14[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2] =12 (x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2 =12 2[(x1-2)2+(x2-2)2]=1, 所以(x1-2)2+(x2-2)2=2.
其中根据茎叶图能得到正确的统计结论的编号为( )
A.①③
B.①④
C.②③
D.②④
解析:选 B.法一:因为-x 甲=26+28+259+31+31=29,
-x 乙=28+29+350+31+32=30,所以-x 甲<-x 乙,
高一上学期数学人教B版(2019)必修第二册综合测试题(新高考模式)
综合测试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算lg 4+lg 25=( ) A .2 B .3 C .4D .102.下列等式中正确的是( ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD → 3.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13B .14C .15D .164.设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +15.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( )A .23B .-23C .25D .136.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .157.质点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)8.设函数f (x )=⎩⎨⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A .AD →与AB → B .DA →与BC → C .CA →与DC →D .OD →与OB →10.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),当f (x )=2-x 时,下列结论中正确的是( )A .f (x 1+x 2)=f (x 1)f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2)C .(x 1-x 2)[f (x 1)-f (x 2)]<0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)211.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半12.若把定义域不同,但值域相同的函数叫作“同族函数”,其中与函数g(x)=x+1x,x∈(0,+∞)为“同族函数”的是()A.f(x)=2x-1x,x∈(1,+∞)B.f(x)=11+x2,x∈RC.f(x)=log2(2|x|+1),x∈RD.f(x)=4x+2x+1+1,x∈R三、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.13.已知函数f(x)=log2(x2+a).若f(3)=1,则a=________.14.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.15.已知定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,且2f(x)-e x-m≥0在x∈[1,2]上恒成立,则实数m的取值范围为________.16.已知平面向量a,b,c满足|a|=|b|=|a-b|=|a+b-c|=1,则|c|的最大值M=________,|c|的最小值m=________.(本题第一空2分,第二空3分)四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知向量a =(2,0),b =(1,4). (1)求2a +3b ,a -2b ;(2)若向量k a +b 与a +2b 平行,求k 的值.18.(本小题满分12分)为了了解中学生的体能情况,抽取了某校七年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如图,已知第1组的频数为5.(1)求第4组的频率;(2)参加这次测试的学生有多少人?(3)若次数在75以上(含75次)为达标,试估计该年级跳绳测试的达标率是多少?19.(本小题满分12分)已知函数f (x )=a x +b (a >0,a ≠1).(1)若f (x )的图像如图①所示,求a ,b 的值; (2)若f (x )的图像如图②所示,求a ,b 的取值范围;(3)在①中,若|f (x )|=m 有且仅有一个实数解,求出m 的取值范围. 20.(本小题满分12分)如图所示,在△ABC 中,BC =4BD ,AC =3CE .(1)用AB →,AC →表示AD →,BE →;(2)M 为△ABC 内一点,且AM →=23AB →+29AC →,证明:B ,M ,E 三点共线. 21.(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A ,B 两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B 组一同学的分数已被污损,但知道B 组学生的平均分比A 组学生的平均分高1分.(1)若在B 组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求|m -n |≤8的概率.22.(本小题满分12分)已知a ∈R ,函数f (x )=log 2⎝ ⎛⎭⎪⎫1x +a .(1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值; (3)设a >0,若对任意t ∈⎣⎢⎡⎦⎥⎤12,1,函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算lg 4+lg 25=( ) A .2 B .3 C .4D .10A [lg 4+lg 25=lg(4×25)=lg 100=2.] 2.下列等式中正确的是( ) A .OA →-OB →=AB →B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →D [起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0才对,故选D .]3.甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A .13 B .14 C .15D .16A [因为甲、乙两人参加学习小组的所有事件有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9个,其中两人参加同一个小组事件有(A ,A ),(B ,B ),(C ,C ),共3个,所以两人参加同一个小组的概率为39=13.选A .]4.设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1D [当x <0时,-x >0,∵当x ≥0时,f (x )=e x -1,∴f (-x )=e -x -1. 又∵f (x )为奇函数,∴f (x )=-f (-x )=-e -x +1. 故选D .]5.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=( )A .23B .-23C .25D .13 A [由题意知CD →=CA →+AD →,① CD →=CB →+BD →,② 且AD →+2BD →=0.①+②×2得3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.]6.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15B [设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.故选B .] 7.质点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)C [设(-10,10)为A ,设5秒后P 点的坐标为A 1(x ,y ),则AA 1→=(x +10,y -10),由题意有AA 1→=5v .即(x +10,y -10)=(20,-15), 所以⎩⎨⎧ x +10=20,y -10=-15⇒⎩⎨⎧x =10,y =-5.]8.设函数f (x )=⎩⎨⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图像如图所示,结合图像可知,要使f (x +1)<f (2x ),则需⎩⎨⎧x +1<0,2x <0,2x <x +1或⎩⎨⎧x +1≥0,2x <0,所以x <0,故选D .]二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A .AD →与AB → B .DA →与BC → C .CA →与DC →D .OD →与OB →AC [平面内任意两个不共线的向量都可以作为基底,如图: 对于A ,AD →与AB →不共线,可作为基底; 对于B ,DA →与BC →为共线向量,不可作为基底; 对于C ,CA →与DC →是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一条直线上,是共线向量,不可作为基底.] 10.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),当f (x )=2-x 时,下列结论中正确的是( )A .f (x 1+x 2)=f (x 1)f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2)C .(x 1-x 2)[f (x 1)-f (x 2)]<0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2ACD [f (x )=2-x ,f (x 1+x 2)=2-(x 1+x 2),f (x 1)f (x 2)=2-x 1·2-x 2=2-(x 1+x 2),故A 对; f (x 1·x 2)=2-(x 1+x 2)≠2-x 1+2-x 2=f (x 1)+f (x 2),故B 错; ∵f (x )=2-x=⎝ ⎛⎭⎪⎫12x为减函数,所以(x 1-x 2)[f (x 1)-f (x 2)]<0,故C 对;f ⎝⎛⎭⎪⎫x 1+x 22=2-(x 1+x 2),f (x 1)+f (x 2)2=2-x 1+2-x 22,由基本不等式,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2,故D 对.故选ACD .]11.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如图所示的饼图:则下面结论中正确的是( ) A .建设后,种植收入减少B .建设后,其他收入增加了一倍以上C .建设后,养殖收入增加了一倍D .建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 BCD [设建设前经济收入为a ,则建设后经济收入为2a ,则由饼图可得建设前种植收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以建设后,种植收入减少是错误的.故选BCD .]12.若把定义域不同,但值域相同的函数叫作“同族函数”,其中与函数g(x)=x+1x,x∈(0,+∞)为“同族函数”的是()A.f(x)=2x-1x,x∈(1,+∞)B.f(x)=11+x2,x∈RC.f(x)=log2(2|x|+1),x∈R D.f(x)=4x+2x+1+1,x∈RAD[函数g(x)=x+1x=1+1x,定义域是(0,+∞),值域是(1,+∞).对于A,f(x)=2x-1x,当x∈(1,+∞)时,f(x)是单调增函数,且f(x)>2-1=1,∴f(x)的值域是(1,+∞),值域相同,是“同族函数”;对于B,f(x)=11+x2,当x∈R时,f(x)的值域是(0,1],值域不同,∴不是“同族函数”;对于C,f(x)=log2(2|x|+1),当x∈R时,2|x|≥1,∴log2(2|x|+1)≥1,∴f(x)的值域是[1,+∞),值域不同,不是“同族函数”;对于D,f(x)=4x+2x+1+1=(2x+1)2,当x∈R 时,f(x)的值域是(1,+∞),值域相同,是“同族函数”.]三、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.13.已知函数f(x)=log2(x2+a).若f(3)=1,则a=________.-7[由f(3)=1得log2(32+a)=1,所以9+a=2,解得a=-7.]14.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.100[成绩优秀的频率为1-(0.005+0.025+0.045)×10=0.25,所以成绩优秀的学生有0.25×400=100(名).]15.已知定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,且2f(x)-e x-m≥0在x∈[1,2]上恒成立,则实数m的取值范围为________.(-∞,e-2][由f(x)+g(x)=e x,①可得f(-x)+g(-x)=e-x,即f(x)-g(x)=e-x,②由①②,解得f(x)=e x+e-x2.2f(x)-e x-m≥0在x∈[1,2]上恒成立,即m≤2f(x)-e x=e-x在x∈[1,2]上恒成立.又函数y=e-x在[1,2]上单调递减,所以y min=e-2,所以m≤e-2,即实数m的取值范围为(-∞,e-2].]16.已知平面向量a,b,c满足|a|=|b|=|a-b|=|a+b-c|=1,则|c|的最大值M=________,|c|的最小值m=________.(本题第一空2分,第二空3分) 3+13-1[因为|a|=|b|=|a-b|=1.所以a,b,a-b可构成等边三角形,且|a+b|=3,因为|a+b-c|=1,所以如图所示,c的终点在以a+b的终点为圆心、半径为1的圆上,故M=3+1,m=3-1.]四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知向量a=(2,0),b=(1,4).(1)求2a+3b,a-2b;(2)若向量k a+b与a+2b平行,求k的值.[解](1)∵a=(2,0),b=(1,4),∴2a+3b=2(2,0)+3(1,4)=(4,0)+(3,12)=(7,12),a-2b=(2,0)-2(1,4)=(2,0)-(2,8)=(0,-8).(2)依题意得k a+b=(2k,0)+(1,4)=(2k+1,4),a+2b=(2,0)+(2,8)=(4,8).∵向量k a+b与a+2b平行,∴8(2k+1)-4×4=0,解得k=1 2.18.(本小题满分12分)为了了解中学生的体能情况,抽取了某校七年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如图,已知第1组的频数为5.(1)求第4组的频率;(2)参加这次测试的学生有多少人?(3)若次数在75以上(含75次)为达标,试估计该年级跳绳测试的达标率是多少?[解](1)第4组频率为0.008×(149.5-124.5)=0.2.(2)设参加这次测试的人数为x,则5x=0.004×(74.5-49.5)=0.1,∴x=50,故参加这次测试的学生有50人.(3)估计这次跳绳测试的达标率为[1-0.004×(74.5-49.5)]×100%=90%. 19.(本小题满分12分)已知函数f(x)=a x+b(a>0,a≠1).(1)若f(x)的图像如图①所示,求a,b的值;(2)若f(x)的图像如图②所示,求a,b的取值范围;(3)在①中,若|f(x)|=m有且仅有一个实数解,求出m的取值范围.[解](1)由图像知,f(0)=1+b=-2,所以b=-3.又f(2)=a2-3=0,所以a=3(负值舍去),因此a=3,b=-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0,即a 0+b <0,所以b <-1.(3)由(1)得f (x )=(3)x -3,在同一坐标系中画出函数y =|f (x )|和y =m 的图像.观察图像可知,当m =0或m ≥3时,两图像仅有一个交点,故|f (x )|=m 有且仅有一个实数解时,m 的取值范围是{m |m =0或m ≥3}.20.(本小题满分12分)如图所示,在△ABC 中,BC =4BD ,AC =3CE .(1)用AB →,AC →表示AD →,BE →;(2)M 为△ABC 内一点,且AM →=23AB →+29AC →,证明:B ,M ,E 三点共线.[解] (1)因为BC =4BD ,所以BD →=14BC →=14(AC →-AB →)=14AC →-14AB →,所以AD →=AB →+BD →=AB →+14AC →-14AB →=34AB →+14AC →.因为AC =3CE ,所以AE →=23AC →,所以BE →=AE →-AB →=23AC →-AB →.(2)证明:因为AM →=23AB →+29AC →,所以BM →=AM →-AB →=-13AB →+29AC →.因为BE →=23AC →-AB →=3⎝ ⎛⎭⎪⎫-13AB →+29AC →, 所以BE →=3BM →,即BE →与BM →共线.又因为BE →与BM →有公共点B ,所以B ,M ,E 三点共线.21.(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A ,B 两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B 组一同学的分数已被污损,但知道B 组学生的平均分比A 组学生的平均分高1分.(1)若在B 组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A 组这5名学生中随机抽取2名同学,设其分数分别为m ,n ,求|m -n |≤8的概率.[解] (1)A 组学生的平均分为94+88+86+80+775=85(分), ∴B 组学生平均分为86分.设被污损的分数为x ,则91+93+83+x +755=86,解得x =88, ∴B 组学生的分数分别为93,91,88,83,75,其中有3人的分数超过85分,∴在B 组学生随机选1人,其所得分超过85分的概率为35.(2)A 组学生的分数分别是94,88,86,80,77,在A 组学生中随机抽取2名同学,其分数组成的基本事件(m ,n )有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77),共10个.随机抽取2名同学的分数m ,n 满足|m -n |≤8的基本事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77),共6个.∴|m -n |≤8的概率为610=35.22.(本小题满分12分)已知a ∈R ,函数f (x )=log 2⎝ ⎛⎭⎪⎫1x +a . (1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈⎣⎢⎡⎦⎥⎤12,1,函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.[解] (1)由log 2⎝ ⎛⎭⎪⎫1x +1>1,得1x +1>2,解得{x |0<x <1}. (2)log 2⎝ ⎛⎭⎪⎫1x +a +log 2(x 2)=0有且仅有一解, 等价于⎝ ⎛⎭⎪⎫1x +a x 2=1有且仅有一解,等价于ax 2+x -1=0有且仅有一解. 当a =0时,x =1,符合题意;当a ≠0时,Δ=1+4a =0,a =-14.综上,a =0或a =-14.(3)当0<x 1<x 2时,1x 1+a >1x 2+a , log 2⎝ ⎛⎭⎪⎫1x 1+a >log 2⎝ ⎛⎭⎪⎫1x 2+a , 所以f (x )在(0,+∞)上单调递减.函数f (x )在区间[t ,t +1]上的最大值与最小值分别为f (t ),f (t +1).f (t )-f (t +1)=log 2⎝ ⎛⎭⎪⎫1t +a -log 2⎝ ⎛⎭⎪⎫1t +1+a ≤1, 即at 2+(a +1)t -1≥0对任意t ∈⎣⎢⎡⎦⎥⎤12,1成立. 因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,所以t =12时,y 有最小值34a -12,由34a -12≥0,得a ≥23.故a 的取值范围为⎣⎢⎡⎭⎪⎫23,+∞.。
2019_2020学年高中数学模块综合检测新人教B版必修2
模块综合检测[学生用书P137(单独成册)](时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若点P在y轴上,且到点(2,5,-6)的距离为7,则点P的坐标为( )A.(0,8,0) B.(0,2,0)C.(0,8,0)或(0,2,0) D.(0,-2,0)解析:选C.设P(0,y,0),由22+(y-5)2+62=7,得(y-5)2=9,解得y=8或y =2.故选C.2.与直线2x-y+1=0平行,且与圆x2+y2=5相切的直线的方程是( )A.2x-y+5=0B.2x-y+5=0或2x-y-5=0C.2x-y-5=0D.2x+y+5=0或2x+y-5=0解析:选B.因为该切线与直线2x-y+1=0平行,所以可设切线方程为2x-y+C=0,则圆心到切线的距离d=|C|22+12=5,解得C=±5,所以切线方程为2x-y±5=0,故选B.3.已知球的表面积为64π,用一个平面截球,使截面圆的半径为2,则截面与球心的距离是( )A.1 B.2 3C.2 D. 3解析:选B.由球的表面积为64π,得球的半径为4.用一个平面截球,使截面圆的半径为2,则截面与球心的距离是42-22=23.故选B.4.已知圆C:x2+y2-4x=0,则圆C在点P(1,3)处的切线方程为( )A.x-3y+2=0 B.x-3y+4=0C.x+3y-4=0 D.x+3y-2=0解析:选A.圆C的方程为(x-2)2+y2=4,圆心为C(2,0),点P(1,3)在圆上,k PC=3-01-2=-3,所以切线的斜率为-1k PC=13,故在点P(1,3)处的切线方程为y-3=13(x-1),即x-3y+2=0,故选A.5.设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是( ) A .若m ⊥n ,n ∥α,则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α解析:选C .A 中,由m ⊥n ,n ∥α可得m ∥α或m 与α相交或m ⊂α,错误; B 中,由m ∥β,β⊥α可得m ∥α或m 与α相交或m ⊂α,错误; C 中,由m ⊥β,n ⊥β可得m ∥n ,又n ⊥α,所以m ⊥α,正确; D 中,由m ⊥n ,n ⊥β,β⊥α可得m ∥α或m 与α相交或m ⊂α,错误. 6.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是M (1,2),则直线PQ 的方程是( ) A .x +2y -3=0 B .x +2y -5=0 C .2x -y +4=0D .2x -y =0解析:选B .由题意知k OM =2-01-0=2, 所以k PQ =-12,所以直线PQ 的方程为y -2=-12(x -1),即x +2y -5=0.故选B .7.某棱锥的三视图如图所示,则其侧面积为( )A .8+413B .20C .122+413D .8+12 2解析:选C .由三视图可知,该几何体为四棱锥,且四棱锥的顶点在底面的投影为底面矩形的中心.四棱锥的高为2,底面矩形的相邻两个边长分别为4、6,两相邻侧面的斜高分别为22+32=13、22+22=8=22.所以侧面积为2⎝ ⎛⎭⎪⎫12×4×13+12×6×22 =413+122.8.直线l 通过两直线7x +5y -24=0和x -y =0的交点,且点(5,1)到l 的距离为10,则l 的方程是( )A .3x +y +4=0B .3x -y +4=0C .3x -y -4=0D .x -3y -4=0解析:选C .由⎩⎪⎨⎪⎧7x +5y -24=0x -y =0,得交点(2,2),设l 的方程为y -2=k (x -2), 即kx -y +2-2k =0,所以|5k -1+2-2k |k 2+(-1)2=10,解得k =3.所以l 的方程为3x -y -4=0.故选C .9.如图,一个几何体的三视图的轮廓均为边长为a 的正方形,则这个几何体的体积等于( )A .16a 3B .12a 3C .23a 3D .56a 3 解析:选D .由三视图,知几何体为棱长为a 的正方体截去一个三棱锥得到的,如图所示,它的体积为a 3-13×12a 2×a =56a 3.故选D .10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离解析:选B .由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,故两圆相交.11.若圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称,过点C (-a ,a )的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .y 2-4x +4y +8=0 B .y 2+2x -2y +2=0 C .y 2+4x -4y +8=0D .y 2-2x -y -1=0解析:选C .由圆x 2+y 2-ax +2y +1=0与圆x 2+y 2=1关于直线y =x -1对称可知两圆半径相等且两圆圆心连线的中点在直线y =x -1上,故可得a =2,即点C (-2,2),所以过点C (-2,2)且与y 轴相切的圆P 的圆心的轨迹方程为(x +2)2+(y -2)2=x 2,整理即得y 2+4x -4y +8=0.故选C .12.在△ABC 中,∠C =90°,∠B =30°,AC =1,M 为AB 的中点,将△ACM 沿CM 折起,使A ,B 间的距离为2,则M 到平面ABC 的距离为( )A .12B .32C .1D .32解析:选A .由已知得AB =2,AM =MB =MC =1,BC =3,△AMC 为等边三角形. 在△ABC 中,取CM 的中点D ,连接AD , 则AD ⊥CM ,AD 交BC 于点E , 则AD =32,DE =36,CE =33. 折起后,由BC 2=AC 2+AB 2,知∠BAC =90°,又AC CE =BCAC=3,∠ACE =∠BCA , 所以△ACE ∽△BCA , 所以∠AEC =∠BAC =90°, 所以AE =63,AE ⊥CE , 因为AD 2=AE 2+ED 2, 所以AE ⊥ED , 所以AE ⊥平面BCM , 即AE 是三棱锥A BCM 的高. 设M 到平面ABC 的距离为h ,由等体积法得13×12×1×2×h =13×12×3×12×63,得h =12,故选A .二、填空题:本题共4小题,每小题5分.13.若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =________.解析:直线y =ax +8关于y =x 对称的直线方程为x =ay +8, 所以x =ay +8与y =-12x +b 为同一直线,故得⎩⎪⎨⎪⎧a =-2b =4,所以a +b =2.答案:214.圆x 2+(y +1)2=3绕直线kx -y -1=0旋转一周所得的几何体的表面积为________. 解析:由题意,圆心为(0,-1),又直线kx -y -1=0恒过点(0,-1),所以旋转一周所得的几何体为球,球心即为圆心,球的半径即是圆的半径,所以S =4π(3)2=12π. 答案:12π15.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.解析:若直线m 的斜率不存在,则直线m 的方程为x =2,其与直线l 、x 轴围成的三角形面积为2,符合题意.若直线m 的斜率k =0时,则直线m 与x 轴没有交点,不符合题意;若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12⎪⎪⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上,知直线m 的方程为x -2y +2=0或x =2.答案:x -2y +2=0或x =216.如图,三棱柱ABC -A 1B 1C 1中,侧棱AA 1垂直于底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 的中点,则下列叙述正确的是__________.①CC 1与B 1E 是异面直线; ②AC ⊥平面ABB 1A 1;③AE 与B 1C 1为异面直线,且AE ⊥B 1C 1;④A1C1∥平面AB1E.解析:①中,直线CC1与B1E都在平面BCC1B1中,不是异面直线;②中,平面ABC⊥平面ABB1A1,而AC与AB不垂直,则AC与平面ABB1A1不垂直;③中,AE与B1C1不平行也不相交,是异面直线,又由已知得平面ABC⊥平面BCC1B1,由△ABC为正三角形,且E为BC的中点知AE⊥BC,所以AE⊥平面BCC1B1,则AE⊥B1C1;④中,A1C1与平面AB1E相交,故错误.答案:③三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平行四边形ABCD中,边AB所在的直线方程为2x-y -2=0,点C(2,0).(1)求直线CD的方程;(2)求AB边上的高CE所在的直线方程.解:(1)因为四边形ABCD为平行四边形,所以AB∥CD.所以k CD=k AB=2.所以直线CD的方程为y=2(x-2),即2x-y-4=0.(2)因为CE⊥AB,所以k CE=-1k AB =-12.所以直线CE的方程为y=-12(x-2),即x+2y-2=0.18.(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C1.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.证明:(1)因为E ,F 分别是A 1B ,A 1C 的中点, 所以EF ∥BC .又EF ⊄平面ABC ,BC ⊂平面ABC , 所以EF ∥平面ABC .(2)在直三棱柱ABC -A 1B 1C 1中, 因为BB 1⊥平面A 1B 1C 1,所以BB 1⊥A 1D . 又A 1D ⊥B 1C 1,所以A 1D ⊥平面BB 1C 1C . 又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)已知圆C 的圆心在直线l 1:2x -y +1=0上,与直线3x -4y +9=0相切,且截直线l 2:4x -3y +3=0所得的弦长为2,求圆C 的方程.解:设圆C 的方程为(x -a )2+(y -b )2=r 2(r >0),则⎩⎪⎨⎪⎧2a -b +1=0,|3a -4b +9|5=r ,⎝ ⎛⎭⎪⎫4a -3b +352+1=r 2,即⎩⎪⎨⎪⎧b =2a +1,|3a -4(2a +1)+9|=5r ,[4a -3(2a +1)+3]2+25=25r 2,即⎩⎪⎨⎪⎧b =2a +1,|a -1|=r ,4a 2+25=25r 2.化简,得4a 2+25=25(a -1)2. 解得a =0或a =5021.因此⎩⎪⎨⎪⎧a =0b =1r =1或⎩⎪⎨⎪⎧a =5021,b =12121,r =2921.故所求圆C 的方程为x 2+(y -1)2=1或⎝ ⎛⎭⎪⎫x -50212+⎝⎛⎭⎪⎫y -121212=⎝ ⎛⎭⎪⎫29212.20.(本小题满分12分)如图1,在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图2.(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.又A1D∩CD=D,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,PD,QE,DQ,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP.由上述可知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A 1C ⊥DP . 又DP ∩DE =D , 所以A 1C ⊥平面DEQP . 即A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .21.(本小题满分12分)已知圆C 过点A (1,2)和B (1,10),且与直线x -2y -1=0相切.(1)求圆C 的方程;(2)设P 为圆C 上的任意一点,定点Q (-3,-6),当点P 在圆C 上运动时,求线段PQ 中点M 的轨迹方程.解:(1)圆心显然在线段AB 的垂直平分线y =6上,设圆心为(a ,6),半径为r ,则圆C 的标准方程为(x -a )2+(y -6)2=r 2, 由点B 在圆上得 (1-a )2+(10-6)2=r 2,又圆C 与直线x -2y -1=0相切, 则r =|a -13|5.于是(a -1)2+16=(a -13)25,解得a =3,r =25,或a =-7,r =45.所以圆C 的标准方程为(x -3)2+(y -6)2=20或(x +7)2+(y -6)2=80. (2)设M 点坐标为(x ,y ),P 点坐标为(x 0,y 0),由M 为PQ 的中点,则⎩⎪⎨⎪⎧x =x 0-32,y =y 0-62,即⎩⎪⎨⎪⎧x 0=2x +3,y 0=2y +6, 又点P (x 0,y 0)在圆C 上,若圆C 的方程为(x -3)2+(y -6)2=20, 有(x 0-3)2+(y 0-6)2=20, 则(2x +3-3)2+(2y +6-6)2=20, 整理得x 2+y 2=5,此时点M 的轨迹方程为x 2+y 2=5.若圆C 的方程为(x +7)2+(y -6)2=80, 有(x 0+7)2+(y 0-6)2=80, 则(2x +3+7)2+(2y +6-6)2=80, 整理得(x +5)2+y 2=20,此时点M 的轨迹方程为(x +5)2+y 2=20. 综上所述,点M 的轨迹方程为x 2+y 2=5或(x +5)2+y 2=20.22.(本小题满分12分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.解:(1)证明:如图所示,连接AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE ,因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD ,而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于点F ,G ,连接PF .由上述CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AF ,BG ⊥PF .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. 由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BF PB, 所以PA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD=BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P ABCD 的体积为 V =13×S ×PA =13×16×855=128515.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2019_2020学年新教材高中数学单元质量测评(含解析)新人教B版必修第二册
第四章 指数、对数函数与幂函数单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =log 12(3x -2)的定义域是( )A .[1,+∞)B.⎝ ⎛⎭⎪⎫23,+∞C.⎣⎢⎡⎦⎥⎤23,1 D.⎝ ⎛⎦⎥⎤23,1 答案 D解析 若使函数有意义,则必有log 12 (3x -2)≥0,3x -2>0,即0<3x -2≤1⇒23<x ≤1.故选D.2.下列幂函数中过点(0,0),(1,1)的奇函数是( ) A .y =x -12B .y =x 4C .y =x -3D .y =x 13答案 D解析 函数过点(0,0),排除A ,C ;函数为奇函数,排除B ,故选D. 3.已知a >0且a ≠1,下列四组函数中表示相等函数的是( ) A .y =log a x 与y =(log x a )-1B .y =alog ax与y =xC .y =2x 与y =log a a 2xD .y =log a x 2与y =2log a x 答案 C解析 选项A 中函数y =log a x 的定义域为(0,+∞),函数y =(log x a )-1的定义域为(0,1)∪(1,+∞),故不选;选项B 中函数y =alog ax的定义域为(0,+∞),函数y =x 的定义域为R ,故不选;选项C 中,函数y =2x 的定义域为R ,函数y =log a a 2x可化为y =2x ,且定义域也为R ,选C ;选项D 中函数y =log a x 2的定义域为{x |x ≠0},函数y =2log a x 的定义域为(0,+∞),故不选,所以本题应选C.4.函数f (x )=x 3-1在区间[1,m ]上的平均变化率为7,则m 的值为( ) A .2 B .3 C .4 D .5 答案 A解析 根据题意,函数f (x )=x 3-1在区间[1,m ]上的平均变化率为Δf Δx =(m 3-1)-(13-1)m -1=m 2+m +1,则有m 2+m +1=7,即m 2+m -6=0,解得m =-3或m =2,又由m >1,则m =2.故选A.5.已知f (x n)=ln x ,则f (2)的值是( ) A .ln 2 B.1nln 2C.12ln 2 D .2ln 2答案 B解析 令x n=2,则x =21n ,∴f (2)=ln 21n =1nln 2.6.二次函数y =ax 2+bx +c 与函数y =⎝ ⎛⎭⎪⎫a bx 的图像可能是下图中的( )答案 C解析 由选项知0<a b <1,则-b 2a <-12.故选C. 7.函数f (x )=1x-ln x 的零点个数为( )A .0B .1C .2D .3 答案 B解析 如图,在同一坐标系中作出y =1x与y =ln x 的图像,由图像可知f (x )=1x-ln x 只有一个零点.8.设9a =4b=6,则1a +1b=( )A .2B .log 65C .log 56 D.56答案 A解析 由9a =4b=6,得a =log 96,b =log 46,所以1a +1b =1log 96+1log 46=log 69+log 64=log 636=2.9.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24) 答案 C解析 设a <b <c ,由f (a )=f (b )=f (c ),得|lg a |=|lg b |.∵a ,b ,c 互不相等,∴lg a =-lg b . ∴ab =1.作出函数f (x )的图像如图所示, 由图像可知10<c <12,∴10<abc <12.10.下列函数中,随着x 的增长,增长速度最快的是( ) A .y =50 B .y =1000xC .y =0.4·2x -1D .y =11000e x答案 D解析 指数函数y =a x在a >1时呈爆炸式增长,而且底数a 越大,增长速度越快.故选D.11.设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 答案 A解析 函数f (x )的定义域为(-1,1),f (-x )=ln (1-x )-ln (1+x )=-f (x ),故f (x )为奇函数.当0<x <1时,y =ln (1+x )是增函数,y =ln (1-x )是减函数,故f (x )=ln (1+x )-ln (1-x )在(0,1)上是增函数.故选A.12.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 因为y =2x与y =3x -1在(-∞,1)上没有公共点,故由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a≥1,解得a 的取值范围是⎣⎢⎡⎭⎪⎫23,+∞.故选C.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.若a =log 43,则2a+2-a=________. 答案433解析 由a =log 43得4a=3⇒2a=3,则2a+2-a=3+13=433. 14.若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.答案 (1,2]解析 当x ≤2时,y =-x +6≥4,依题意得⎩⎪⎨⎪⎧3+log a 2≥4,a >1,解得1<a ≤2,即实数a 的取值范围是(1,2].15.有以下结论:①函数y =log 2(1-x )的增区间是(-∞,1);②若幂函数y =f (x )的图像经过点(2,2),则该函数为偶函数;③函数y =3|x |的值域是[1,+∞).其中正确结论的序号是________(把所有正确结论的序号都填上). 答案 ③解析 ①中令u =1-x ,则y =log 2u ,根据复合函数的单调性可判断①错误;②∵2=2α,∴α=12,∴y =x 12,x ∈[0,+∞),不具有奇偶性,故②错误; ③中|x |≥0, ∴3|x |≥1,∴y =3|x |的值域为[1,+∞),故③正确.16.已知y =log 4(-ax +3)在[0,1]上是关于x 的减函数,则实数a 的取值范围是________. 答案 (0,3)解析 ⎩⎪⎨⎪⎧-a <0,-a +3>0⇒0<a <3.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设0<x <1,a >0且a ≠1.试比较|log a (1-x )|与|log a (1+x )|的大小.解|log a (1-x )||log a (1+x )|=|log (1+x )(1-x )|,∵0<x <1,∴0<1-x <1,1<1+x <2,0<1-x 2<1, ∴|log (1+x )(1-x )|=-log (1+x )(1-x ) =log (1+x )11-x =log (1+x )1+x1-x 2>log (1+x )(1+x )=1.∴|log a (1-x )|>|log a (1+x )|.18.(本小题满分12分)已知函数f (x )=3x,且f (a )=2,g (x )=3ax-4x. (1)求g (x )的解析式;(2)当x ∈[-2,1]时,求g (x )的值域. 解 (1)由f (a )=2,得3a=2,a =log 32, ∴g (x )=(3a )x-4x=(3log 32)x-4x=2x-4x=-(2x )2+2x.∴g (x )=-(2x )2+2x.(2)设2x=t ,∵x ∈[-2,1],∴14≤t ≤2.g (t )=-t 2+t =-⎝⎛⎭⎪⎫t -122+14,由g (t )在t ∈⎣⎢⎡⎦⎥⎤14,2上的图像可得, 当t =12,即x =-1时,g (x )有最大值14;当t =2,即x =1时,g (x )有最小值-2. 故g (x )的值域是⎣⎢⎡⎦⎥⎤-2,14.19.(本小题满分12分)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )的和,如果f (x )=lg (10x +1),x ∈R ,求g (x )和h (x ).解 由已知f (x )=g (x )+h (x ),且f (-x )=g (-x )+h (-x ), 又g (x )是奇函数,h (x )是偶函数, ∴g (x )=-g (-x ),h (-x )=h (x ). ∴⎩⎪⎨⎪⎧f (x )=g (x )+h (x ),f (-x )=-g (x )+h (x ).∴g (x )=12[f (x )-f (-x )]=12lg 10x+110-x +1=x2,h (x )=12[f (x )+f (-x )]=12[lg (10x +1)+lg (10-x+1)] =12lg (10x+1)210x=lg (1+10x )-x 2. 20.(本小题满分12分)已知函数f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求实数a 的值.解 (1)由题意,得⎩⎪⎨⎪⎧1+x >0,3-x >0.解得-1<x <3.∴函数f (x )的定义域为(-1,3).(2)∵f (x )=log a [(1+x )(3-x )]=log a (-x 2+2x +3)=log a [-(x -1)2+4], 若0<a <1,则当x =1时,f (x )有最小值log a 4, ∴log a 4=-2,a -2=4,又0<a <1,∴a =12.若a >1,则当x =1时,f (x )有最大值log a 4,f (x )无最小值. 综上可知,a =12.21.(本小题满分12分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n,P 2:y 2=bx +c ,如图所示.(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资额?解 (1)由图知P 1:y 1=ax n过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,∴⎩⎪⎨⎪⎧ 54=a ·1n ,52=a ·4n,∴⎩⎪⎨⎪⎧a =54,n =12,∴y 1=54x 12,x ∈[0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1),∴⎩⎪⎨⎪⎧0=0+c ,1=4b +c ,∴⎩⎪⎨⎪⎧c =0,b =14,∴y 2=14x ,x ∈[0,+∞).(2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,总利润为y 万元. 则y =54x +14(10-x )=-14x +54x +52=-14⎝⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52,即x =254=6.25时,y max =6516,此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润.22.(本小题满分12分)f (x )是定义在R 上的奇函数,当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在(-1,0)上的解析式; (2)证明:f (x )在(0,1)上是减函数. 解 (1)设x ∈(-1,0),则-x ∈(0,1), 则f (-x )=2-x 4-x +1=2x4x +1.由f (x )是奇函数,知-f (x )=2x4x +1.即f (x )=-2x4x +1.故当x ∈(-1,0)时,f (x )=-2x4x +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全册综合检测(时间:120分钟 满分:150分)一、选择题(本大题共13小题,每小题4分,共52分.在每小题所给的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的不得分)1.已知函数f (x )=log 2(x +1),若f (a )=1,则a 的值为( ) A .0 B .1 C .2D .3解析:选B 由题意知log 2(a +1)=1,∴a +1=2,∴a =1. 2.函数y =x -1·ln(2-x )的定义域为( ) A .(1,2) B .[1,2) C .(1,2]D .[1,2]解析:选B 要使解析式有意义,则⎩⎪⎨⎪⎧x -1≥0,2-x >0,解得1≤x <2,所以所求函数的定义域为[1,2).3.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( )A .2OA ―→-OB ―→B .-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→,故选A.4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个黑球与都是红球B .至少有一个黑球与都是黑球C .至少有一个黑球与至少有一个红球D .恰有1个黑球与恰有2个黑球解析:选D A 中的两个事件是对立事件,不符合要求;B 中的两个事件是包含关系,不是互斥事件,不符合要求;C 中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D 中是互斥而不对立的两个事件.故选D.5.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为( ) A.193 B.192C.191 D.190解析:选B 1 000×n200+1 200+1 000=80,求得n=192.6.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数解析:选B 统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.7.已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A.1 B.1.8C.2.4 D.3解析:选B 5×0+20×1+10×2+10×3+5×450=1.8.9.甲、乙、丙三人在3天节目中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( )A.16B.14C.13D.12解析:选C 甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.10.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=( ) A.26 B .3 2 C.10D. 6解析:选B ∵a =(1,2),b =(-1,1),∴c =2a -b =(3,3),∴|c|=9+9=32,故选B.11.下列函数中,在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg|x |解析:选ABC 易知y =1x;y =e -x ,y =-x 2+1在(0,+∞)上是减函数,y =lg |x |在(0,+∞)上是增函数.故选ABC.12.在△ABC 中,下列四个选项正确的是( ) A .AB ―→-AC ―→=BC ―→ B .AB ―→+BC ―→+CA ―→=0C .若(AB ―→+AC ―→)·(AB ―→-AC ―→)=0,则△ABC 为等腰三角形 D .若AC ―→·AB ―→>0,则△ABC 为锐角三角形解析:选BC ∵AB ―→-AC ―→=CB ―→=-BC ―→≠BC ―→,∴A 错误.AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=AC ―→-AC ―→=0,∴B 正确.由(AB ―→+AC ―→)·(AB ―→-AC ―→)=AB 2―→-AC 2―→=0,得|AB ―→|=|AC ―→|,∴△ABC 为等腰三角形,C 正确.AC ―→·AB ―→>0⇒cos 〈AC ―→,AB ―→〉>0,即cos A >0,∴A 为锐角,但不能确定B ,C 的大小,∴不能判定△ABC 是否为锐角三角形,∴D 错误,故选BC.13.图1为某省2019年1~4月份快递业务量统计图,图2为该省2019年1~4月份快递业务收入统计图,则下列选项中对统计图理解正确的是( )A .2019年1~4月份快递业务量中3月份最高,2月份最低,差值接近2 000万件B .2019年1~4月份快递业务量同比增长率均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关C .从两图中看,增量与增长速度并不完全一致,但业务量与业务收入变化高度一致D .从1~4月份来看,业务量与业务收入有波动,但整体保持高速增长解析:选ABC 对于A,2019年1~4月份快递业务量中3月份最高,有4 397万件,2月份最低,有2 411万件,其差值接近2 000万件,所以A 正确;对于B,2019年1~4月份快递业务量的同比增长率分别为55%,53%,62%,58%,均超过50%,在3月份最高,和春节蛰伏后网购迎来喷涨有关,所以B 正确;对于C ,由题中两图易知增量与增长速度并不完全一致,其业务量从高到低变化是3月→4月→1月→2月,业务收入从高到低变化是3月→4月→1月→2月,保持高度一致,所以C 正确;对于D ,由题图知业务收入2月相对1月减少,4月相对3月减少,整体不具备高速增长之说,所以D 不正确.综上,选ABC.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在答题卡上的横线上)14.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19的值为________.解析:因为19>0,所以f ⎝ ⎛⎭⎪⎫19=log 319=log 33-2=-2,所以f (-2)=2-2=14.答案:1415.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.解析:由平均数为10,得(x +y +10+11+9)×15=10,则x +y =20;又方差为2,∴[(x-10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x 2+y 2=208,2xy =192,∴|x -y |=(x -y )2=x 2+y 2-2xy =4.答案:416.甲、乙、丙三人参加一次考试,他们合格的概率分别为23,34,25,那么三人中恰有两人合格的概率是________.解析:三人中恰有两人合格的概率P =23×34×⎝ ⎛⎭⎪⎫1-25+23×⎝ ⎛⎭⎪⎫1-34×25+⎝ ⎛⎭⎪⎫1-23×34×25=715.答案:71517.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________(一空2分).解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共82分.解答应写出必要的文字说明、证明过程或演算步骤)18.(12分)已知a =AB ―→,B 点坐标为(1,0),b =(-3,4),c =(-1,1),且a =3b -2c ,求点A 的坐标.解:∵b =(-3,4),c =(-1,1),∴3b -2c =3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),即a =(-7,10)=AB ―→.又B (1,0),设A 点坐标为(x ,y ), 则AB ―→=(1-x,0-y )=(-7,10),∴⎩⎪⎨⎪⎧1-x =-7,0-y =10⇒⎩⎪⎨⎪⎧x =8,y =-10,即A 点坐标为(8,-10).1 7 92 0 1 5 319.(14分)某车间共有12所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.20.(14分)已知f (x )=|log 3x |. (1)画出函数f (x )的图象;(2)讨论关于x 的方程|log 3x |=a (a ∈R)的解的个数.解:(1)函数f (x )=⎩⎪⎨⎪⎧log 3x ,x ≥1,-log 3x ,0<x <1,对应的函数f (x )的图象如图所示.(2)设函数y =|log 3x |和y =a .当a <0时,两图象无交点,原方程解的个数为0个. 当a =0时,两图象只有1个交点,原方程只有1解. 当a >0时,两图象有2个交点,原方程有2解. 21.(14分)已知函数f (x )=log a (3-ax )(a >0,且a ≠1). (1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a ,∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a 的取值范围为(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)由(1)知函数t (x )=3-ax 为减函数. ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 在[1,2]上为增函数,∴a >1,当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1. 22.(14分)今年西南一地区遭遇严重干旱,某乡计划向上级申请支援,为上报需水量,乡长事先抽样调查了100户村民的月均用水量,得到这100户村民月均用水量的频率分布表如表:(月均用水量的单位:吨)(1) (2)估计样本的中位数是多少;(3)已知上级将按每户月均用水量向该乡调水,若该乡共有1 200户,请估计上级支援该乡的月调水量是多少吨?解:(1)频率分布表与相应的频率分布直方图和频率分布折线图如下:[0.5,2.5)120.12[2.5,4.5)240.24[4.5,6.5)400.40[6.5,8.5)180.18[8.5,10.5]60.06合计100 1.00(2)设中位数为x,因为月均用水量在[0.5,4.5)内的频率是0.12+0.24=0.36,月均用水量在[0.5,6.5)内的频率是0.12+0.24+0.40=0.76,所以x∈[4.5,6.5),则(x-4.5)×0.2=0.5-0.36,解得x=5.2.故中位数是5.2.(3)该乡每户月均用水量估计为1.5×0.12+3.5×0.24+5.5×0.40+7.5×0.18+9.5×0.06=5.14,由5.14×1 200=6 168,知上级支援该乡的月调水量是6 168吨.23.(14分)(2019·北京高考)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于2 000元大于2 000元仅使用A27人3人仅使用B24人1人(1)(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.故样本中A,B两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。