常见离散信号的MATLAB产生和图形显示 实验报告
matlab离散频谱分析实验报告
matlab离散频谱分析实验报告Matlab离散频谱分析实验报告引言:离散频谱分析是一种重要的信号处理技术,用于研究信号的频域特性。
在本次实验中,我们使用Matlab软件进行离散频谱分析,旨在通过实践掌握离散频谱分析的基本原理和方法,并通过实验结果验证其有效性。
一、实验目的本次实验的主要目的是研究信号的频谱特性,具体包括以下几个方面:1. 了解离散傅里叶变换(DFT)的原理和计算方法;2. 掌握Matlab中进行离散频谱分析的基本函数和操作;3. 分析不同信号的频谱特性,并通过实验结果验证分析的准确性。
二、实验步骤1. 生成测试信号首先,我们需要生成一个测试信号,以便进行后续的频谱分析。
在Matlab中,我们可以使用randn函数生成高斯白噪声信号,或者使用sin函数生成正弦信号。
根据实验要求,我们选择生成一个正弦信号作为测试信号。
2. 离散傅里叶变换(DFT)DFT是一种将时域信号转换为频域信号的方法。
在Matlab中,我们可以使用fft 函数进行DFT计算。
通过对测试信号进行DFT计算,我们可以得到信号的频谱。
3. 频谱图绘制为了更直观地观察信号的频谱特性,我们可以使用Matlab的plot函数将频谱绘制成图形。
通过观察频谱图,我们可以分析信号的频率分布、频谱幅值等特性。
4. 频谱分析根据实验要求,我们需要对测试信号进行频谱分析。
通过分析频谱图,我们可以得到信号的主要频率成分、频率分布情况等信息。
在实际应用中,频谱分析可以用于信号识别、滤波器设计等领域。
三、实验结果与分析在本次实验中,我们生成了一个频率为f的正弦信号,并进行了离散频谱分析。
通过观察频谱图,我们可以明显看到信号在频率为f处存在一个峰值,这表明信号主要由频率为f的成分组成。
同时,我们还观察到信号的频谱幅值随频率的变化而变化,这说明信号的不同频率成分具有不同的能量。
通过对不同频率信号的频谱分析,我们可以进一步研究信号的频率特性。
例如,对于周期信号,我们可以通过分析其频谱图确定其基频和谐波成分;对于非周期信号,我们可以通过分析其频谱图了解其频率分布情况。
常见离散信号产生和实现实验报告
常见离散信号产生和实现实验报告实验1常见离散信号产生和实现学院信息科学与工程学院专业通信工程1班姓名学号一、实验目的1、加深对常用离散信号的理解;2、熟悉使用MATLAB在时域中产生一些基本的离散时间信号。
二、实验原理MATLAB语言提供了一系列函数用来产生信号,如exp,sin,cos, square,sawtooth,ones,zeros等函数。
1.基本信号序列1)单位抽样序列???=01)(nδ≠=n n在MATLAB中可以利用zeros()函数实现。
x=[1zeros(1, n-1)]程序:clear all;n=-20:20;u=[zeros(1,20)ones(1,21)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p21');axis([-20200 1.2]);图形:Request1:编写一个)(k n-δ的函数。
???=-01)(k nδ≠=n kn程序:clear all;n=-20:20;k=5;u=[zeros(1,20+k)ones(1,21-k)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p22');axis([-20200 1.2]);图形:(2)单位阶跃序列???01)(n u00<≥n n在MATLAB中可以利用ones()函数实现。
);,1(N ones x=Request2:编写一个)(k n u-的函数。
程序:clf;n=-20:20;u=[zeros(1,20)1zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence p10');axis([-20200 1.2]);图形:Request2:编写一个)(k n u-的函数。
一、基本离散信号的MATLAB产生和图形实现
n=0:n-1;a=0.6;x3=a.^n; %实指数序列
w0=pi/3; ang=pi/15; x4=sin(n*w0+ang);%正弦序列
x5=exp((a+j*w0)*n); %复指数序列
figure(1); %建立一个绘制框
subplot(3,1,1);stem(x1); %绘制单位冲激序列
ylabel('x_1(n)=\delta(n)'); %在Y轴上描述
subplot(3,1,2);stem(x2); %绘制单位阶跃序列
ylabel('x_2(n)=u(n)');
subplot(3,1,3);stem(x3); %绘制实指数序列
ylabel('x_3(n)=0.6^n');xlabel('n');
5、变量名可以由字母、数字和下划线组成。但必须以字母开头。变量名区分大小写。字符长度不超过63。
6、可以编写以.m为扩展名的文件:有两种形式,一是命令叠加;二是function定义函数形式,不需要end结尾。
3、直接表达法描述序列:
n=50; %序列长度
x1=[1,zeros(1,n-1)]; %单位冲激序列
figure(2);
subplot(2,1,1);stem(x4); %绘制正弦序列
ylabel('x_4(n)=sin(\pin/3+\pi/15)');
subplot(2,1,2);stem(abs(x5)); %绘制复指数序列
ylabel('x_5(n)=e^(^0^.^6^+^j^*^\pi^/^3^)^*^n');xlabel('n');%结果1-1和1-2
matlab离散信号频谱分析实验报告
matlab离散信号频谱分析实验报告
实验报告:Matlab离散信号频谱分析
实验目的:
本实验旨在通过Matlab软件对离散信号进行频谱分析,掌握离散信号频谱分析的基本原理和方法,以及利用Matlab实现频谱分析的操作步骤。
实验设备和软件:
1. 个人电脑
2. Matlab软件
实验原理:
离散信号频谱分析是指对离散时间信号进行频谱分析,通过计算信号的频谱特
性来了解信号的频率成分和频谱分布。
离散信号频谱分析通常包括傅里叶变换、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等方法。
实验步骤:
1. 生成离散信号:首先在Matlab中生成一个离散信号,可以是正弦信号、方波信号或者任意其他形式的离散信号。
2. 计算信号的频谱:利用Matlab中的傅里叶变换函数fft()对生成的离散信号进
行频谱分析,得到信号的频谱特性。
3. 绘制频谱图:利用Matlab绘图工具对计算得到的频谱数据进行可视化,绘制出信号的频谱图像。
实验结果:
通过Matlab离散信号频谱分析实验,我们成功生成了一个离散信号,并对其进行了频谱分析。
得到了信号的频谱特性,并通过绘制频谱图形象地展示了信号
的频谱分布情况。
实验结论:
通过本次实验,我们深入了解了离散信号频谱分析的基本原理和方法,掌握了利用Matlab进行离散信号频谱分析的操作步骤。
离散信号频谱分析在数字信号处理、通信系统等领域具有重要的应用价值,通过频谱分析可以更好地理解信号的频率成分和频谱特性,为信号处理和系统设计提供有力支持。
通过本次实验,我们对Matlab离散信号频谱分析有了更深入的了解,为今后在相关领域的研究和应用奠定了基础。
常见离散信号的MATLAB产生和图形显示实验报告
常见离散信号的MATLAB产⽣和图形显⽰实验报告实验⼀常见离散信号的MATLAB 产⽣和图形显⽰⼀实验⽬的加深对常⽤离散信号的理解⼆实验原理及实验内容1.单位抽样序列=01)(n δ 00≠=n nMATLAB 程序:%单位抽样序列t=-20:20; %产⽣⼀个-20到20的矩阵 x=zeros(1,41); %产⽣⼀个全为1的矩阵 x(21)=1; %x 的第21个元素为1 stem(t,x); %绘制x 的序列图 grid on; %画⽹格线 title('单位抽样序列') %加标题绘图:2.单位阶越序列01)(n u 00<≥n nMATLAB 程序: %单位阶越序列x=[zeros(1,20),ones(1,21)]; %产⽣⼀个前20个元素为0,后21个元素为1的数组 stem(t,x); %绘制x 的序列图 grid on; %画⽹格线title('单位阶越序列') %加标题绘图:3.正弦序列)/2sin()(?π+=Fs fn A n xMATLAB 程序: %正弦序列n=0:100; %产⽣⼀个0到100的矩阵 fai=pi/4; %相位赋值 A=2; %振幅赋值 f=1/50; %频率赋值Fs=1; %采样频率赋值 x=A*sin(2*pi*f*n/Fs+fai) ; %⽣成正弦序列x stem(n,x); %绘制x 的序列图 axis([0 50 -3 3]); %限定坐标轴范围 title('正弦序列'); %加标题绘图:4.复正弦序列jn)(=enx?MATLAB程序:%复正弦序列n=0:20;%产⽣⼀个0到20的矩阵x=exp(j*pi/20*n);%⽣成复正弦序列subplot(1,2,1),stem(n,real(x));%绘制x的实数部分title('复正弦序列实部');%加标题grid on; %画⽹格线subplot(1,2,2),stem(n,imag(x),'filled');%绘制x的虚部部分title('复正弦序列虚部');%加标题grid on%画⽹格线5.指数序列n)x=(naMATLAB程序:%指数序列n=0:10;%产⽣⼀个0到10的矩阵x=(0.6).^n;%⽣成⼀个底数为0.6的指数序列stem(n,x);%绘制x的序列图grid on%画⽹格线三.思考题1讨论复指数序列的性质(1)正交性,复指数序列⽤欧拉公式展开可得:e^jωn=cosωn+jsinωn其可表⽰⼀个余弦信号与⼀个正弦信号的叠加,这两个信号呈正交关系。
西安交通大学数字信号处理实验报告
数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。
MATLAB离散信号的产生和频谱分析实验报告
MATLAB离散信号的产⽣和频谱分析实验报告实验⼀离散信号的产⽣和频谱分析⼀、实验⽬的仿真掌握采样定理。
学会⽤FFT 进⾏数字谱分析。
掌握FFT 进⾏数字谱分析的计算机编程实现⽅法。
培养学⽣综合分析、解决问题的能⼒,加深对课堂内容的理解。
⼆、实验要求掌握采样定理和数字谱分析⽅法;编制FFT 程序;完成正弦信号、线性调频信号等模拟⽔声信号的数字谱分析;三、实验内容单频脉冲(CWP )为)2e xp()()(0t f j T t rec t t s π=。
式中,)(Ttrect 是矩形包络,T 是脉冲持续时间,0f 是中⼼频率。
矩形包络线性调频脉冲信号(LFM )为)]21(2exp[)()(20Mt t f j Ttrect t s +=π。
式中,M 是线性调频指数。
瞬时频率Mt f +0是时间的线性函数,频率调制宽度为MT B =。
设参数为kHz f 200=,ms T 50=,kHz B 10=,采样频率kHz f s 100=。
1.编程产⽣单频脉冲、矩形包络线性调频脉冲。
2.编程实现这些信号的谱分析。
3.编程实现快速傅⽴叶变换的逆变换。
四、实验原理1、采样定理所谓抽样,就是对连续信号隔⼀段时间T 抽取⼀个瞬时幅度值。
在进⾏模拟/数字信号的转换过程中,当采样频率fs ⼤于信号中最⾼频率f 的2倍时(fs>=2f),采样之后的数字信号完整地保留了原始信号中的信息,⼀般实际应⽤中保证采样频率为信号最⾼频率的5~10倍;采样定理⼜称奈奎斯特定理。
2、离散傅⾥叶变换(FFT )长度为N 的序列()x n 的离散傅⽴叶变换()X k 为:10()(),0,....,1N nkN n X k x n W k N -===-∑N 点的DFT 可以分解为两个N/2点的DFT ,每个N/2点的DFT ⼜可以分解为两个N/4点的DFT 。
依此类推,当N 为2的整数次幂时(2MN =),由于每分解⼀次降低⼀阶幂次,所以通过M 次的分解,最后全部成为⼀系列2点DFT 运算。
常见离散信号的MATLAB产生和图形显示
实验一 常见离散信号的MATLAB 产生和图形显示一、 实验目的加深对常见离散信号的理解二、实验内容及步骤编制程序产生以下信号,并绘出其图形。
1)产生64点的单位抽样序列)(n δN=64x=[1,zeros(1,N-1)]stem(x)2)产生64点并移位20位的单位抽样序列)20(-n δN=64x=[0,zeros(1,N-1)]x(20)=1stem(x)3)任意序列)5(7.0)4(9.2)3(6.5)2(8.1)1(4.3)(0.8)(-+-+-+-+-+=n n n n n n n f δδδδδδ4)产生幅度A=3,频率f=100,初始相位ϕ=1.2,点数为32 点的正弦序列。
n=0:31;x=3*exp(j*314*n)figure(1)stem(n,x)5)产生幅度A=3,角频率ω=314,点数为32 点的复正弦序列。
n=0:31A=3;w=314;x=A*exp(w*j*n)stem(x)6)产生幅度A=3,a=0.7,点数为32 点的实指数序列。
n=0:31;A=3;a=0.7;x=A*a.^nstem(x)实验二 离散系统的时域分析一、 实验目的(1)熟悉并掌握离散系统的差分方程表示方法(2)加深对冲激响应和卷积方法的理解二、 实验内容与要求编制程序求解下列两个系统的单位冲激响应和阶跃响应,并绘出其图形。
要求分别用 filter 、conv 、impz 三种函数完成。
y [n ]+ 0.75y [n −1]+ 0.125y [n − 2] = x [n ]− x [n −1]y [n ] = 0.25{x [n −1]+ x [n − 2]+ x [n −3]+ x [n − 4]}给出理论计算结果和程序计算结果并讨论。
三、实验原理系统响应为如下的卷积计算公式:][][][*][][m n h m x n h n x n y m -==∑∞-∞=h[n]是有限长度的(n:0,M),称系统为FIR系统;反之,称系统为IIR系统。
实验一 离散信号的MATLAB实现
实验一离散信号的MATLAB实现一、目的要求1)学习典型的离散时间信号的MATLAB实现方法;2)学习离散时间序列的基本运算:相加、相乘、移位等;3)学习噪声的产生;4)掌握两个序列的卷积和相关运算5)掌握离散系统单位脉冲响应的求解。
二、实验内容1)典型的离散信号的表示方法:用matlab产生单位抽样信号δ(n) 、单位阶跃序列u(n) 、矩形序列R N(n) 、实指数序列a n u(n)、正弦序列sin(ωn)。
编写程序、并画出图形。
n=-20:20;n0=0;n1=10;w0=pi/4;x=[(n-n0)==0];x1=[(n-n0)>=0];x2=[(n-n0)>=0& (n-n1)<=0];x3=0.9.^n.*x1;x4=sin(w0*n);subplot(511);stem(n,x);axis([ -20 20 0 2]);ylabel('\sigma(n)'); subplot(512);stem(n,x1);axis([ -20 20 0 2]);ylabel('u(n)');subplot(513);stem(n,x2);axis([ -20 20 0 2]);ylabel('B N(n)');subplot(514);stem(n,x3);axis([ -20 20 0 2]);ylabel('a n u(n)');subplot(515);stem(n,x4);axis([ -20 20 -2 2]);ylabel('sin(w0n)');xlabel('n');2)离散信号的基本运算:对序列x(n)={2,3,4,1,2,5} ,n=0,1,2,3,4,5,的移位、乘法、加法、翻转及尺度变换。
编写程序、并画出图形。
n=-10:10;k=2;N=length(n);x=zeros(size(n));x1=zeros(size(n));y=zeros(size(n));y1=zeros(size(n));y2=zeros(size(n));y3=zeros(size(n));y4=zeros(size(n));x(11:16)=[2 3 4 1 2 5];x1(11:16)=[1 2 3 4 5 6];y(1+k:N)=x(1:N-k);y1(1:N-k)=x(1+k:N);y2=x.*x1;y3=x+x1;y4=fliplr(x);y5=x(1:2:N);n1=fix(n(1:2:N)/2);subplot(421);stem(n,x);xlabel('n');ylabel('x(n)');subplot(422);stem(n,x1);xlabel('n');ylabel('x1(n)');subplot(423);stem(n,y);xlabel('n');ylabel('x(n-2)');subplot(424);stem(n,y1);xlabel('n');ylabel('x(n+2)');subplot(425);stem(n,y2);xlabel('n');ylabel('x(n)*x1(n)');subplot(426);stem(n,y3);xlabel('n');ylabel('x(n)+x1(n)');subplot(427);stem(n,y4);xlabel('n');ylabel('x(-n)');subplot(428);stem(n1,y5);xlabel('n');ylabel('x(2n)');3)噪声的产生:产生方差为1,2,0.5的白噪声。
常见离散信号的MATLAB产生和图形显示
实验一 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解; 实验原理:1.单位抽样序列⎩⎨⎧=01)(n δ≠=n n 在MATLAB 中可以利用zeros()函数实现。
;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n kn2.单位阶跃序列⎩⎨⎧01)(n u00<≥n n 在MATLAB 中可以利用ones()函数实现。
);,1(N ones x =3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复正弦序列n j e n x ϖ=)(在MATLAB 中)**ex p(1:0n w j x N n =-=5.指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-=实验内容:编制程序产生上述5种信号(长度可输入确定),并绘出其图形。
实验要求:讨论复指数序列的性质。
实验过程: 1. 单位冲击序列:>> n=0:10;>> x1=[1 zeros(1,10)];>> x2=[zeros(1,8) 1 zeros(1,8)]; >> subplot(1,2,1); >> stem(n,x1);>> xlabel ('时间序列n'); >> ylabel('幅度');>> title('单位冲激序列δ(n )'); >> subplot(1,2,2); >> stem(x2);>> xlabel('时间序列n'); >> ylabel('幅度');>> title('延时了8个单位的冲激序列δ(n-8)'); >>>> n=0:10;>> u=[ones(1,11)];>> stem(n,u);>> xlabel ('时间序列n');>> ylabel('信号幅度');>> title('单位阶跃序列u(n)');>>3.正弦序列:>> n=1:30;>> x=2*sin(pi*n/6+pi/4);>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('正弦函数序列x=2*sin(pi*n/6+pi/4)'); >>>> n=1:30;>> x=5*exp(j*3*n);>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('复指数序列x=5*exp(j*3*n)');>>5.指数序列:>> n=1:30;>> x=1.8.^n;>> stem(n,x);>> xlabel ('时间序列n');>> ylabel('振幅');>> title('指数序列x=1.8.^n');>>复指数序列的周期性讨论:为了研究复指数序列的周期性质,我们分别作了正弦函数x1=1.5sin(0.3πn)和x2=sin(0.6n); 的幅度特性图像。
数字信号处理实验 matlab版 时域离散信号的产生
实验2 时域离散信号的产生(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word格式会让很多部分格式错误,谢谢)XXXX学号姓名处XXXX一、实验目的(1)了解常用的时域离散信号及其特点。
(2)掌握MATLAB产生常用时域离散信号的方法。
二、实验内容(2) 编写程序,产生下列离散序列:①f(n)=δ(n) (-3<n<4)②f(n)=u(n) (-5<n<5)③f(n)=e(0.1+j1.6π)n(0<n<16)④f(n)=3sin(nπ/4) (0<n<20)⑤f(n)=sin(n/5)/ (n/5) (-20<n<20)(3) 一个连续的周期性三角波信号频率为50Hz,信号幅度在0~+2V之间,在窗口上显示2个周期信号波形,对信号的一个周期进行16点采样来获取离散信号。
试显示原连续信号和采样获得的离散信号波形。
(4) 一个连续的周期性方波信号频率为200Hz,信号幅度在-1~+1V之间,在窗口上显示2个周期信号波形,用Fs=4kHz的频率对连续信号进行采样,试显示原连续信号和采样获得的离散信号波形。
三、实验环境MA TLAB7.0四、实验原理用matlab进行程序设计,利用matlab绘图十分方便,它既可以绘制各种图形,包括二维图形和三位图形,还可以对图像进行装饰和控制。
五、实验过程(步骤、结果、分析)(2)①在matlab命令窗口中逐行输入下列语句>> n1=-3;n2=4;n0=0; %在起点n1、终点n2的范围内,于n0处产生冲激>> n=n1:n2; %生成离散信号的时间序列>> x=[n==n0]; %生成离散信号x(n)>> stem(n,x,'filled'); %绘制杆状图,且圆心处用实心圆表示>> title('单位脉冲序列');>> xlabel('时间(n)');ylabel('幅度x(n)');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了 f(n)=δ(n),(-3<n<4) 的离散序列-3-2-1012340.20.40.60.81时间(n )幅度x (n )单位脉冲序列(2) ② 在matlab 命令窗口中逐行输入下列语句>> n1=-5;n2=5;n0=0;>> n=n1:n2;>> x=[n>=n0];>> stem(n,x,'filled');>> axis([n1,n2,0,1.1*max(x)]); %限定横坐标个纵坐标的显示范围>> title('单位阶跃序列');>> xlabel('时间(n )');ylabel('幅度x (n )');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=u(n),(-5<n<5)的离散序列单位阶跃序列时间(n )幅度x (n )(2) ③在matlab命令窗口中逐行输入下列语句>> n1=16;a=0.1;w=1.6*pi;>> n=0:n1;>> x=exp((a+j*w)*n);>>subplot(2,1,1),stem(n,real(x)); %在指定位置描绘图像>> title('复指数序列的实部');>> subplot(2,1,2),stem(n,imag(x));>> title('复指数序列的虚部');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=e(0.1+j1.6π)n,(0<n<16)的离散序列复指数序列的实部复指数序列的虚部0246810121416(2) ④在matlab命令窗口中逐行输入下列语句>> Um=3;nt=20;>> n=0:nt;>> f=Um*sin(pi/4*n);>> stem(n,f);在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=3sin(nπ/4),(0<n<20)的离散序列321-1-2-3(2) ⑤在matlab命令窗口中逐行输入下列语句>> n=-20:20;>> f=sinc(n/5);>> stem(n,f);在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=sin(n/5)/ (n/5),(-20<n<20)的离散序列(3)在matlab命令窗口中逐行输入下列语句>> f=50;Um=1;nt=2; %输入信号频率、振幅、显示周期>> N=16;T=1/f; %N为信号一个采样周期的采样点数,T为信号周期>> dt=T/N; %采样时间间隔>> n=0:nt*N-1; %建立离散时间的时间序列>> tn=n*dt; %确定时间序列样点在时间轴上的位置>> f=Um*sawtooth(2*f*pi*tn)+1;>> subplot(2,1,1),stem(tn,f); %显示经采样的信号>> title('离散信号');>> subplot(2,1,2),plot(tn,f); %显示原连续信号>> title('连续信号');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,显示了原连续信号和采样获得的离散信号波形离散信号连续信号(4)在matlab命令窗口中逐行输入下列语句>> f=200;Um=1;nt=2; %输入信号频率、振幅、显示周期>> Fs=4000;N=Fs/f;T=1/f; %输入采样频率、求采样点数N、T为信号周期>> dt=T/N; %采样时间间隔>> n=0:nt*N-1; %建立离散时间的时间序列>> tn=n*dt; %确定时间序列样点在时间轴上的位置>> f=Um*sin(2*f*pi*tn);>> subplot(2,1,2),plot(tn,f); %显示原连续信号>> title('连续信号');>> subplot(2,1,1),stem(tn,f); %显示经采样的信号>> title('离散信号');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,显示了原连续信号和采样获得的离散信号波形六、实验感想通过此次实验中练习使用matlab 产生时域离散信号,更为熟悉的掌握了matlab 的功能,在实验过程中也遇到很多小问题,并通过仔细检查和查阅相关书籍解决此类问题,让我深刻认识到,细节的重要性00.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-11连续信号。
MATLAB实验报告二
实验二 常见离散信号的MATLAB 表示及运算一、实验目的1. 熟悉常见离散信号的意义、特性及波形2.进一步熟悉使用MATLAB 表示离散信号的方法并绘制信号波形3. 学习使用MATLAB 进行离散信号基本运算的指令4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理1、离散时间信号又叫离散时间序列,一般用 表示,其中变量k 为整数,代表离散的采样时间点(采样次数)。
在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem()函数,而不能用plot()函数。
2、信号的卷积是数学上的一种积分运算,两个信号的卷积定义为:1212()()()()()y t f t f t f f t d τττ∞-∞=*∆-⎰信号的卷积运算在系统分析中主要用于求解系统的零状态响应。
一般情况,卷积积分的运算比较困难,但在MATLAB 中则变得十分简单,MATLAB 中是利用conv 函数来实现卷积的。
功能:实现两个函数1()f t 和2()f t 的卷积。
格式:g=conv(f1,f2)说明:f1=f 1(t),f2=f 2(t) 表示两个函数,g=g(t)表示两个函数的卷积结果。
三、实验内容1.分别用MATLAB 表示并绘出下列离散时间信号的波形:⑴ ()12()()k f k k ε=- ⑵ []()()(8)f t k k k εε=--⑶ ()sin()()4k f k k πε= ⑷ ()(2)f k k ε=-+程序:函数 e.mfunctiony=e(k)y=(k>=0);指令clear;clf;k=-10:10;f1=(-1/2).^k.*e(k);f2=k.*(e(k)-e(k-8));f3=sin(k*pi/4).*e(k);f4=e(-k+2);subplot(411);stem(k,f1,'.','r' );%各种颜色和线型subplot(412); stem (k,f2, '--','k');subplot(413); stem (k,f3, '*','m');subplot(414); stem (k,f4 ,'p');2.已知两信号1()(1)()f t t t εε=+-,2()()(1)f t t t εε=--,求卷积积分12()()()g t f t f t =*,并与例题比较。
实验1 常见离散信号的MATLAB产生和图形显示
/p-267512371.html实验1 常见离散信号的MATLAB 产生和图形显示一、实验目的:1、加深对常用离散信号的理解;2、掌握matlab 中一些基本函数的建立方法。
二、实验原理:1.单位抽样序列⎩⎨⎧=01)(n δ 00≠=n n 在MATLAB 中可以利用zeros()函数实现。
;1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n 2.单位阶越序列⎩⎨⎧01)(n u 00<≥n n 在MATLAB 中可以利用ones()函数实现。
);,1(N ones x =3.正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-= 4.复指数序列n j e r n x ϖ⋅=)(在MATLAB 中)**exp(1:0n w j r x N n ⋅=-= 5.指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-= 三、实验内容实现和图形生成1、五种基本函数的生成程序如下:(1)、单位抽样序列% 单位抽样序列和延时的单位抽样序列clf;n=0:10;x1=[1 zeros(1,10)];x2=[zeros(1,5) 1 zeros(1,5)];subplot(1,2,1);stem(n,x1);xlabel ('时间序列n');ylabel('振幅');title('单位抽样序列x1');subplot(1,2,2);stem(n,x2); xlabel('时间序列n');ylabel('振幅');title('延时了5的单位抽样序列');(2)、单位阶越序列clf;n=0:10;u=[ones(1,11)];stem(n,u);xlabel ('时间序列n');ylabel('振幅');title('单位阶越序列');所得的图形如下所示:(3)正弦函数clf;n=1:30;x=2*sin(pi*n/6+pi/3);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列x=2*sin(pi*n/6+pi/3)');(4)、复指数序列clf;n=1:30;x=2*exp(j*3*n);stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('复指数序列x=2*exp(j*3*n)');图形如下:(5)指数序列clf;n=1:30;x=1.2.^n;stem(n,x); xlabel ('时间序列n');ylabel('振幅');title('指数序列x=1.2.^n');2、绘出信号zn e n x =)(,当6)12/1(πj z +-=、6)12/1(πj z +=时、121=z 、62πj z +=、6πj z =时的信号实部和虚部图;程序如下:clf;z1=-1/12+j*pi/6;z2=1/12+j*pi/6;z3=1/12;z4=2+j*pi/6;z5=j*pi/6;n=0:20;x1=exp(z1*n);x2=exp(z2*n); x3=exp(z3*n);x4=exp(z4*n); x5=exp(z5*n);subplot(5,2,1);stem(n,real(x1)); xlabel ('时间序列n');ylabel('实部');title('复指数z1=-1/12+j*pi/6时序列实部'); subplot(5,2,2);stem(n,imag(x1)); xlabel ('时间序列n');ylabel('虚部');title('复指数z1=-1/12+j*pi/6时序列虚部'); subplot(5,2,3);stem(n,real(x2)); xlabel ('时间序列n');ylabel('实部');title('复指数z2=1/12+j*pi/6时序列实部'); subplot(5,2,4);stem(n,imag(x2)); xlabel ('时间序列n');ylabel('虚部');title('复指数z2=1/12+j*pi/6时序列虚部'); subplot(5,2,5);stem(n,real(x3)); xlabel ('时间序列n');ylabel('实部');title('复指数z3=1/12时序列实部'); subplot(5,2,6);stem(n,imag(x3)); xlabel ('时间序列n');ylabel('虚部');title('复指数z3=1/12时序列虚部'); subplot(5,2,7);stem(n,real(x4)); xlabel ('时间序列n');ylabel('实部');title('复指数z4=2+j*pi/6时序列实部'); subplot(5,2,8);stem(n,imag(x4)); xlabel ('时间序列n');ylabel('虚部');title('复指数z4=2+j*pi/6时序列虚部'); subplot(5,2,9);stem(n,real(x5)); xlabel ('时间序列n');ylabel('实部');title('复指数z5=j*pi/6时序列实部'); subplot(5,2,10);stem(n,imag(x5)); xlabel ('时间序列n');ylabel('虚部');title('复指数z5=j*pi/6时序列虚部');由上图的实部部分可以看出,Z=pi/6时,序列周期为12。
【免费下载】常见离散信号的Matlab产生和图形显示
实验一 实验名称:常见离散信号的Matlab 产生和图形显示一、实验目的1、加深对常用离散信号的理解;2、掌握matlab 中一些基本函数的建立方法。
二、实验步骤(附源代码及仿真结果图)1、使用状况1)创建M 文件File-→New-→M-file 2)运行Debug->run 2、实验原理1)单位抽样序列 ⎩⎨⎧=01)(n δ00≠=n n 在MATLAB 中可以利用zeros()函数实现。
%创建一个1行N 列的0矩阵,将第一个值重新赋值为1;1)1();,1(==x N zeros x 如果在时间轴上延迟了k 个单位,得到即:)(n δ)(k n -δ ⎩⎨⎧=-01)(k n δ0≠=n k n 2)单位阶越序列⎩⎨⎧01)(n u 00<≥n n 在MATLAB 中可以利用ones()函数实现。
%一个长度为N 的零矩阵);,1(N ones x =3)正弦序列)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=4)复指数序列nj e r n x ϖ⋅=)(在MATLAB 中)**exp(1:0n w j r x N n ⋅=-=5)指数序列n a n x =)(在MATLAB 中n a x N n .^1:0=-=3、实验内容(1)、单位抽样序列(2)、单位阶越序列)正弦函数(3(4)2、绘出信号,当、时、、zn e n x =)(6)12/1(πj z +-=6)12/1(πj z +=121=z 、时的信号实部和虚部图;62πj z +=6πj z =程序如下: 由上图的实部部分可以看出,Z=pi/6时,序列周期为12。
计算序列周期为2*6=12。
实验和理论相符。
3、绘出信号的频率是多少?周期是多少?产生一个数)1.0*2sin(5.1)(n n x π=字频率为0.9的正弦序列,并显示该信号,说明其周期?程序如下:由上图看出:x1=1.5*sin(2*pi*0.1*n)的周期是10,而x2=sin(0.9*n)是非周期的。
实验一 常见离散信号的MATLAB产生和图形显示
实验一 常见离散信号的MATLAB 产生和图形显示授课课时:2学时一、实验目的:(1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。
(2)掌握MATLAB 在时域内产生常用离散时间信号的方法。
(3)掌握离散信号的基本运算。
(4)掌握简单的绘图命令。
二、实验原理:(一)信号的表示和产生① 单位抽样序列⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n k n 参考程序:例1-1:)2010(()(<<-=n n n x )δclear all n1=-10;n2=20;n0=0;%在起点为n1,终点为n2的范围内,于n0处产生冲激。
n=n1:n2;%生成离散信号的时间序列x=[n==n0];%生成离散信号x(n)stem(n,x);%绘制脉冲杆图xlabel(' n');ylabel('x(n)');%横坐标和纵坐标的标注说明。
title('Unit Sample Sequence');%图形上方标注图名axis([-10 20 0 1.2]);%确定横坐标和纵坐标的取值范围② 单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n 例1-2:)202((u )(<<-=n n n x )clear alln1=-2;n2=20;n0=0;n=n1:n2;%生成离散信号的时间序列x=[n>=n0];%生成离散信号x(n)stem(n,x,'filled');xlabel('n');ylabel('x(n)');title('Unit step Sequence');axis([-2 20 0 1.2]);③ 正弦序列)sin()(ϕ+=wn A n x例1-3:一正弦信号的频率为1HZ ,振幅值幅度A 为1V ,在窗口显示2个周期的信号波形,并对该信号的一个周期进行32点采样获得离散信号并显示该连续信号和离散信号的波形。
matlab 离散信号频谱分析实验报告
matlab 离散信号频谱分析实验报告实验目的:本实验旨在通过使用MATLAB软件对离散信号进行频谱分析,探究信号的频谱特性,并通过实验结果验证频谱分析的有效性和准确性。
实验原理:频谱分析是一种将信号从时域转换到频域的方法,通过分析信号的频谱特性可以了解信号的频率分布情况。
离散信号频谱分析主要基于离散傅里叶变换(DFT)和快速傅里叶变换(FFT)算法。
实验步骤:1. 生成离散信号:使用MATLAB中的函数生成一个离散信号,可以选择正弦信号、方波信号或其他类型的信号。
2. 绘制时域波形:将生成的离散信号在时域上进行绘制,观察信号的波形特征。
3. 进行频谱分析:使用MATLAB中的DFT或FFT函数对离散信号进行频谱分析,得到信号的频谱图像。
4. 绘制频谱图像:将频谱分析得到的结果进行绘制,观察信号在频域上的频率分布情况。
5. 分析频谱特性:根据频谱图像,分析信号的主要频率成分、频谱密度等特性。
实验结果与分析:通过实验我们选择了一个正弦信号作为实验对象,其频率为100Hz,幅值为1。
首先,我们绘制了该正弦信号的时域波形,观察到信号呈现出周期性的振荡特征。
接下来,我们使用MATLAB中的FFT函数对该离散信号进行频谱分析。
得到的频谱图像显示,信号的主要频率成分为100Hz,且幅值为1。
此外,频谱图像还显示了信号在其他频率上的幅值衰减情况,表明信号在频域上存在多个频率成分。
根据频谱图像,我们可以进一步分析信号的频谱特性。
首先,信号的主要频率成分为100Hz,这意味着信号的主要周期为0.01秒。
其次,频谱图像显示了信号在其他频率上的幅值衰减情况,说明信号在频域上存在多个频率成分,这可能与信号的采样率和信号源本身的特性有关。
实验结论:通过本次实验,我们成功地使用MATLAB对离散信号进行了频谱分析,并得到了信号的频谱图像。
实验结果表明,频谱分析是一种有效的信号分析方法,可以揭示信号的频率分布情况和频谱特性。
常见离散信号的MATLAB产生和图形显示的实验报告
常见离散信号的MATLAB产生和图形显示的实验报告作者:一,实验目的加深对常用离散信号的理解二,实验过程:1,单位抽样序列>> n=[-20:20]; %位置向量>> x1=[zeros(1,20),1,zeros(1,20)]; %生成单位抽样函数>> stem(n,x1) %画图>>2,单位阶跃序列>> n=[-4:4]; %位置向量>> x2=[(n+1)>=0]; %生成单位阶跃序列>> stem(n,x2) %画图>>3,正弦序列>> n=[0:1:20]; %位置向量>> x=3*sin(0.1*pi*n+pi/3); %生成正弦序列>> stem(n,x) %画图>>4,复正弦序列>> n=[-2:10]; %位置向量>> x3=exp((2j)*n); %生成复正弦序列>> subplot(1,2,1); %生成第一行第一列的图表>> stem(n,real(x3)); %画图,用空心圆表示>> subplot(1,2,2); %生成第一行第二列的图表>> stem(n,imag(x3),'filled'); %画图,用实心点表示>>5 指数序列>> n=[0:10]; %位置向量>> x4=(0.6).^n; %生成指数序列>> stem(n,x4); %画图>>三,实验总结通过该实验,了解MATLAB的基本用法和基本函数,会用基本函数编程生成常见离散信号图像。
常见离散信号产生和实现实验
实验1 常见离散信号产生和实现一、实验目的1、加深对常用离散信号的理解;2、熟悉使用MATLAB 在时域中产生一些基本的离散时间信号。
二、实验原理MATLAB 语言提供了一系列函数用来产生信号,如exp, sin, cos, square, sawtooth ,ones, zeros 等函数。
1. 基本信号序列 1) 单位抽样序列⎩⎨⎧=01)(n δ 00≠=n n 程序:n=-10:20; %生成一个从-10到20的序列u=[zeros(1,10) 1 zeros(1,20)]; %生成一个前10位为0,第十一位为1,后20位为0的矩阵stem(n,u); %画出n 为横轴,u 为纵轴的序列xlabel('Time indexn');ylabel('Amplitude'); %添上x y 轴的标签title('Unit Sample Sequence'); %图表的标签axis([-10 20 0 1.2]); %规定横轴,纵轴的显示范围图形:如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n程序:n=-10:20;u=[zeros(1,15) 1 zeros(1,15)];stem(n,u);xlabel('Time indexn');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);图形:2) 单位阶跃序列⎩⎨⎧01)(n u 00<≥n n 程序:n=-10:20;x=[zeros(1,10),ones(1,21)];stem(n,x);图形:3) 实指数序列 R a n a n x n∈∀=,)(程序:a1=1.1;a2=0.9;a3=-1.1;a4=-0.9;n=[-5:15];x1=(a1.^n);x2=(a2.^n);x3=(a3.^n);x4=(a4.^n); subplot(2,2,1);stem(n,x1,'.k');title('a>1');axis([-5,15,-0.5,5]);subplot(2,2,2);stem(n,x2,'.k');title('0<a<1');axis([-5,15,-0.2,1.2]);subplot(2,2,3);stem(n,x3,'.k');title('a<-1');axis([-5,15,-6,4]);subplot(2,2,4);stem(n,x4,'.k');title('<-1a<0');axis([-5,15,-1,1.2]);图形:4) 复指数序列n e n x nj ∀=+)()(ωσ程序:n=0:10;lu=0.2;w0=pi;x=exp((lu+j*w0)*n);stem(n,x);xlabel('Time indexn');ylabel('Amplitude');title('Unit Sample Sequence'); axis tight图形:5)随机序列程序:x=rand(1,20);stem(x);xlabel('Time indexn');ylabel('Amplitude');title('Unit Sample Sequence');axis tight图形:基本周期波形1)方波程序:t=0:0.1*pi:6*pi; %定义t为从0开始,间距为0.1pi,截止为6pi的序列y=square(t); %由函数生成方波axis([0 7*pi -1.5 1.5]); %规定尺度距离plot(t,y); %画出横轴为t 纵轴为y 的方波函数xlabel(‘时间 t’); % 为x 轴添加标签ylabe l(‘幅度y’); % 为y 轴添加标签axis([0 20 0 2])图形:2) 正弦波)/2sin()(ϕπ+=Fs fn A n x程序:t=0:0.1:15;A=2;x=A*sin(0.7*pi*t+0.5);plot(t,x);xlabel('Time index t');ylabel('Amplitude x');axis([0 2*pi -3 3])title('正弦波')图形:3)锯齿波程序:Fs=10000;t=0:1/Fs:2;x=sawtooth(2*pi*40*t);plot(t,x);xlabel('Time index t');ylabel('Amplitude x');axis([0 0.2 -2 2])title('锯齿波')图形:2.基本非周期波形程序:t=0:1/1000:2;x=chirp(t,0.1,80);plot(t,x);xlabel('Time index t');ylabel('Amplitude x'); specgram(x,256,100,256,250); title('基本非周期波形')图形:3.sinc信号程序:t=linspace(-5,5);x=sinc(t);plot(t,x);xlabel('Time index t');ylabel('Amplitude x');title('sinc信号')图形:4.序列的操作1)信号加x(n)=x1(n)+x2(n)MATLAB实现:x=x1+x2;注意:x1和x2序列应该具有相同的长度,位置对应,才能相加。
实验一离散时间信号在MATLAB中的表示
实验一离散时间信号的表示及运算一、实验目的1、学会运用MATLAB 表示的常用离散时间信号;2、学会运用MATLAB 实现离散时间信号的基本运算。
二、实验原理及实例分析2.1 离散时间信号在MATLAB中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散序列通常用x(n)来表示,自变量n 必须是整数。
离散时间信号的波形绘制在MA TLAB 中一般用stem( )函数(注释:stem中文意思是茎、干、柄)。
stem( )函数的基本用法和plot( )函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。
如果要实心,需使用参数“ fill ”、“ filled ”,或者参数“ .”。
由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。
类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。
0、判断n 是否为整数function y = isInt(n)y = (n==fix(n)); % fix(n) 为取整运算end1、单位取样序列单位取样序列(n) ,也称为单位冲激序列,定义为1 (n 0)1)0 (n 0)要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n=0 处是取确定的值1。
在MA TLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即function y=impDT(n)y=(n==0); %当参数n 为0 时冲激为1,否则为0end调用该函数时n 必须为整数或整数向量。
【实例1】利用MA TLAB 的impDT 函数绘出单位冲激序列的波形图。
解:MATLAB 源程序为>>n=-3:3; % n=[-3,-2,-1,0,1,2,3]>>x=impDT(n);>>stem(n,x,'fill'), xlabel('n'), grid on>>title(' 单位冲激序列')>>axis([-3 3 -0.1 1.1])程序运行结果如图 1 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 常见离散信号的MATLAB 产生和图形显示
一 实验目的
加深对常用离散信号的理解
二 实验原理及实验内容
1.单位抽样序列
⎩⎨⎧=0
1)(n δ
≠=n n
MATLAB 程序:
%单位抽样序列
t=-20:20; %产生一个-20到20的矩阵 x=zeros(1,41); %产生一个全为1的矩阵 x(21)=1; %x 的第21个元素为1 stem(t,x); %绘制x 的序列图 grid on; %画网格线 title('单位抽样序列') %加标题 绘图:
2.单位阶越序列
⎩⎨⎧0
1
)(n u
00<≥n n
MATLAB 程序: %单位阶越序列
x=[zeros(1,20),ones(1,21)]; %产生一个前20个元素为0,后21个元素为1的数组 stem(t,x); %绘制x 的序列图 grid on; %画网格线 title('单位阶越序列') %加标题 绘图:
3.正弦序列
)/2sin()(ϕπ+=Fs fn A n x
MATLAB 程序: %正弦序列
n=0:100; %产生一个0到100的矩阵 fai=pi/4; %相位赋值 A=2; %振幅赋值 f=1/50; %频率赋值
Fs=1; %采样频率赋值 x=A*sin(2*pi*f*n/Fs+fai) ; %生成正弦序列x stem(n,x); %绘制x 的序列图 axis([0 50 -3 3]); %限定坐标轴范围 title('正弦序列'); %加标题
绘图:
4.复正弦序列
j
n
)
(
=
n
e
xϖ
MATLAB程序:
%复正弦序列
n=0:20;%产生一个0到20的矩阵x=exp(j*pi/20*n);%生成复正弦序列subplot(1,2,1),stem(n,real(x));%绘制x的实数部分
title('复正弦序列实部');%加标题
grid on; %画网格线
subplot(1,2,2),stem(n,imag(x),'filled');%绘制x的虚部部分
title('复正弦序列虚部');%加标题
grid on%画网格线
5.指数序列
n
)
x=
(
n
a
MATLAB程序:
%指数序列
n=0:10;%产生一个0到10的矩阵
x=(0.6).^n;%生成一个底数为0.6的指数序列stem(n,x);%绘制x的序列图
grid on%画网格线
三.思考题
1讨论复指数序列的性质
(1)正交性,复指数序列用欧拉公式展开可得:
e^jωn=cosωn+jsinωn
其可表示一个余弦信号与一个正弦信号的叠加,这两个信号呈正交关系。
(2)周期性质,由序列图可知,复指数序列为周期序列,其实部,虚部信号各自组成的序列也为周期序列.
2正弦序列中f/Fs的取值与波形
令int等于f/Fs的整数部分,令float等于f/Fs的小数部分,则
f/Fs= int +float, 则正弦序列x(n)=Asin(2πfn/Fs +fai)
= Asin[2πn(int + float) +fai]
= Asin[2πn*int +2πn* float) +fai]
由于n*int为整数,所以可化简为x(n)=Asin(2πn* float +fai)
所以复正弦序列的序列图形取决于f/Fs的小数部分,所以当f/Fs为整数时,x=Asin(fai)为定值,所以此时得到的序列为恒等序列.。