第3讲 金属的晶体结构Ⅲ

合集下载

无机化学第3章_晶体结构

无机化学第3章_晶体结构
图3-8哪个是氯化钠晶胞?哪个是金刚石晶胞?
[答] 图3-1中的小立方体不具有平移性,因为它与相邻的小立方体并非等 同。相反,大立方体才具有平移性,在它的上下左右前后都有无隙并置的完 全等同的立方体,只是没有画出来而已,因此大立方体才是晶胞,小立方体 不是晶胞。
(2) 晶胞具有相同的顶角、相同的平面和相同的 平行棱
图3-19 底心晶胞举例(I2) [答]将晶胞原点移至bc面心(a)和ab面心(c)均不能
使所有原子坐标不变,只有将晶胞原点移至ac面心(b) 才得到所有原子坐标不变的新晶胞,可见碘的晶胞是B底 心(正交)晶胞。
立方
边长: a=b=c
夹角: = = =900
实例: Cu , NaCl
(只有1个晶胞参数a是可变动的)
四方
边长:a=bc
夹角: = = =900
实例: Sn, SnCl2
(有2个晶胞参数a和c)
六方
边长:a= bc
夹角: = =900 =1200
实例: Mg, AgI
(有2个晶胞参数a和c)
面心晶胞的特征
可作面心平移,即所有原子均可作在其原子坐标上+ (1/2,1/2,0;0,1/2,1/2;1/2,0,1/2)的平移 而得到周围环境完全相同的原子。如晶胞顶角有一个原子, 在晶胞三对平行面的中心必有完全相同的原子(周围环境 也相同)。
[例3-5]图3-17中哪个晶胞是面心晶胞?
图3-17面心晶胞(金属铜)(左)与非面心晶胞(Cu3Au)(右)举例
3-2-4 素晶胞与复晶胞
素晶胞是晶体微观空间中的最小基本单元。 复晶胞是素晶胞的多倍体。即体心晶胞、面心晶胞、 底心晶胞。

素晶胞P
体心晶胞 I(2倍体)

33 实际金属的晶体结构 一、多晶体结构和亚结构

33 实际金属的晶体结构 一、多晶体结构和亚结构

3.3 实际金属的晶体结构一、多晶体结构和亚结构实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多彼此间位向不同的、称之为晶粒的颗粒状小晶体。

而晶粒之间的界面称为晶界。

这种实际上由许多晶粒组成的晶体结构称为多晶体结构(polycrystalline structure)。

一般金属材料都是多晶体(图3-12)。

通常测得的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。

图3—12 多晶体结构示意图实践证明,即使在一个晶粒内部,其晶格位向也并不是象理想晶体那样完全一致,而是存在着许多尺寸更小,位向差也很小的小晶块。

它们相互嵌镶成一颗晶粒。

这些小晶块称为亚结构。

可见,只有在亚结构内部,晶格的位向才是一致的。

二、晶体缺陷实际晶体还因种种原因存在着偏离理想完整点阵的部位或结构,称为晶体缺陷(crystal defect)。

晶体缺陷的存在及其多寡,是研究晶体结构、金属塑性变形的关键问题。

根据其几何特性,晶体的缺陷可分为三类:1.点缺陷——空位和间隙原子实际晶体未被原子占有的晶格结点称为空位;而不占有正常晶格位置而处于晶格空隙之间的原子则称为间隙原子。

在空位或间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的原子离开了原来的平衡位置,即产生所谓的晶格畸变。

空位和间隙原子都处于不断的运动和变化之中,这对于热处理和化学处理过程都是极为重要的。

2.线缺陷——位错晶体中某处有一列或若干列原子发生有规律的错排现象称为位错(dislocation)。

有刃型和螺型两种位错。

刃型位错如图3-13所示。

垂直方向的原子面EFGH中断于水平晶面ABCD上的EF处,就像刀刃一样切入晶体,使得晶体中位于ABCD面的上、下两部分出现错排现象。

EF线称为刃型位错线。

在位错线附近区域,晶格发生畸变,导致ABCD晶面上、下方位错线附近的区域内,晶体分别受到压应力和拉应力。

符号“┴”和“┬”分别表示多出的原子面在晶体的上半部和下半部,分别称为正、负刃型位错。

人教版化学选修3结构与性质第三章晶体与性质金属晶体课件 .ppt

人教版化学选修3结构与性质第三章晶体与性质金属晶体课件 .ppt

金属晶体的原子空间堆积模型1
• 简单立方堆积( Po) 晶胞的形状是什么?
含几个原子?
1、简单立方堆积
钋型
金属晶体的原子空间堆积模型2
• 体心立方堆积( IA,VB,VIB)
金属晶体的堆积方式──钾型
2、体心立方堆积 钾型
配位数:8 空间占有率: 68.02%
思考:密置层的堆积方式有哪些?
三、金属晶体的结构与金属性质的内在联系
1、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电? 在金属晶体中,存在着许多自由电子,这些自由 电子的运动是没有一定方向的,但在外加电场的条件 下自由电子就会发生定向运动,因而形成电流,所以 金属容易导电。
比较离子晶体、金属晶体导电的区别:
晶体类型 导电时的状态 导电粒子 离子晶体 金属晶体
修高 3二 )化 第学 三( 章选
第四节
金属晶体
Ti
固原二中 高二年级组
zhf 09· 03· 04
金属样品
Ti
一、金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢?
二、金属的结构
金属晶体:通过金属键作用形成的单质晶体 组成粒子:金属阳离子和自由电子 作用力:金属离子和自由电子之间的较强作 用—— 金属键(电子气理论) 金属键强弱判断: 阳离子所带电荷多、 半径小-金属键强, 熔沸点高。
两种排列方式的配位数分 金属晶体的原子堆积模型
别是多少?哪种排列方式 金属原子在平面上有几种排列方式? 使一定体积内含有的原子 数目最多?
(a)非密置层 (b)密置层
思考:金属原子在形成晶体时有几种堆积方式? 活动·探究:
将乒乓球在三维空间堆积起来,有几种不同的堆积方式? 比较不同方式堆积时金属晶体的配位数、原子的空间利 用率、晶胞的区别。

金属的晶体结构

金属的晶体结构

金属的晶体结构
晶格结构
金属的晶格结构可以分为几种常见类型:
1. 立方晶格:包括面心立方晶格和体心立方晶格两种。

面心立方晶格中,每个原子占据正方形的每个面的中心和每个角的一半位置。

体心立方晶格中,每个原子位于立方体的中心。

2. 六角密排晶格:每个原子占据六边形密集堆积的每个角和每个孔的一半位置。

3. 其他晶格:还有一些金属存在其他的非常规晶格结构,如密排立方和简单立方等。

应用
金属的晶体结构对其性能和性质具有重要影响。

通过改变金属
的晶体结构,可以调节金属的硬度、强度、导电性、热导性等特性。

同时,晶体结构也决定了金属的晶界、位错等缺陷的分布和性质。

在金属加工中,了解金属的晶体结构可以帮助工程师选择合适
的加工方法和工艺参数,以获得所需的金属性能。

结论
金属的晶体结构是金属固体内原子或离子的有序排列方式。


同的晶格结构决定了金属的性能和性质。

通过了解金属的晶体结构,可以更好地设计和加工金属材料。

选修3物质结构与性质课件第03章晶体结构与性质第3节 金属晶体

选修3物质结构与性质课件第03章晶体结构与性质第3节 金属晶体

资料 金属之最
熔点最低的金属是-------- 汞 [-38.87℃]
熔点最高的金属是-------- 钨 [3410℃]
密度最小的金属是-------- 锂 [0.53g/cm3]
密度最大的金属是-------- 锇 [22.57g/cm3]
硬度最小的金属是-------- 铯 [0.2]
硬度最大的金属是-------- 铬 [9.0] 延性最好的金属是-------- 铂[铂丝直径:50100 mm] 展性最好的金属是-------- 金[金箔厚: 1001m00m] 最活泼的金属是---------- 铯 最稳定的金属是---------- 金
[2016·全国卷Ⅱ,37(3)节选]单质铜及镍都是由______键形成的晶体。
晶体熔、沸点高低的比较 [2017·全国卷Ⅰ,35(2)节选]K和Cr属于同一周期,且核外最外层电子构型相同, 但 金 属 K 的 熔 点 、 沸 点 等 都 比 金 属 Cr 低 , 原 因 是 __K__的__原__子__半__径__较__大__且__价__电___子__数__较__少__,__金__属__键__较__弱__________________。
【小结】:三种晶体类型与性质的比较
晶体类型 概念
作用力
原子晶体
分子晶体
相邻原子之间以共价 分子间以分子 键相结合而成具有空 间作用力相结 间网状结构的晶体 合而成的晶体
共价键
范德华力
构成微粒
熔沸点 物 理 硬度 性 质 导电性
原子 很高 很大
无(硅为半导体)
分子 很低 很小

金属晶体
通过金属键 形成的晶体
a
aa
a
a=2r
晶胞中平均分配的原子数:1 配位数:6 空间利用率:52% 空间利用率太低!

晶格结构

晶格结构
1.晶体 2.晶胞 3.点阵晶系 4.金属晶体 5.离子晶体 6.分子晶体与原子晶体
重难点
晶胞的概念;原子坐标以及体心 平移、面心平移、底心平移;晶 体结构模型;
教学方法
3-1 晶 体
1、 晶体的宏观特征 远古时期,人类从宝石开始认识晶体。红宝石、 蓝宝石、祖母绿等晶体以其晶莹剔透的外观, 棱角分明的形状和艳丽的色彩,震憾人们的感 官。名贵的宝石镶嵌在帝王的王冠上,成为权 力与财富的象征,而现代人类合成出来晶体, 如超导晶体YBaCuO、光学晶体BaB2O4、 LiNbO3、磁学晶体NdFeB等高科技产品,则推 动着人类的现代化进程。
Na原子的电子组态为1S22S22P63S1,1S,2S,2P电 子正好填满,形成满带,3s轨道形成的能带只填 一半,形成导带。Mg原子的3s 轨道虽已填满, 但它与3p轨道的能带重叠。从3s3p 总体来看, 也是导带。能带的范围是允许电子存在的区域, 而能带间的间隔,是电子不能存在的区域,叫禁 带。金属在外电场作用下能导电。导带中的电子, 受外电场作用,能量分布和运动状态发生变化, 因而导电。满带中电子已填满,能量分布固定, 没有改变的可能,不能导电,空带中没有电子, 也不能导电。若空带与满带重叠,也可形成导带。
离子半径的变化规律
1.同主族, 从上到下, 电子层增加, 具有相同电荷数的离子 半径增加. 2.同周期: 主族元素, 从左至右 离子电荷数升高, 最高价离 子, 半径减小. 3.同一元素, 不同价态的离子, 正电荷高的半径小。 4.一般负离子半径较大; 正离子半径较小 5.周期表对角线上, 左上元素和右下元素的离子半径相似. 如: Li+ 和 Mg2+, Sc3+ 和 Zr4+ 的半径相似. 6. 镧系元素离子半径,随原子序数增加,缓慢减小

材料科学基础第三章典型晶体结构(共71张PPT)

材料科学基础第三章典型晶体结构(共71张PPT)
Zn离子的位置交叉错开。
表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投

第三章晶体结构

第三章晶体结构

子晶体所释放的能量,用 U 表示。
晶格能 U 越大,则形成离子键得到离子晶体时放出的能量越多,离 子键越强。 一般而言,晶格能越高,离子晶体的熔点越高、硬度越大。晶格 能大小还影响着离子晶体在水中的溶解度、溶解热等性质。但离
子晶体在水中的溶解度与溶解热不但与晶体中离子克服晶格能进入水中 吸收的能量有关,还与进入水中的离子发生水化放出的能量(水化热) 有关。
子作周期性平移的最小集合。
复晶胞:素晶胞的多倍体;
体心晶胞(2倍体),符号I;
面心晶胞(4倍体),符号F; 底心晶胞(2倍体),符号A(B﹑C)。
二. 三种复晶胞的特征
1. 体心晶胞的特征:晶胞内的任一原子作体心平移[原子坐
标 +(1/2,1/2,1/2)]必得到与它完全相同的原子。
2. 面心晶胞的特征:可作面心平移,即所有原子均可作在其
P区的第三周期第三主族的Al3+ 也是8e-构型 ;d区第三至七副族原
素在表现族价时,恰相当于电中性原子丢失所有最外层s电子和次
外层d电子,也具有8e-构型 ;稀土元素的+3价原子也具有8e-构型 , 锕系元素情况类似。 (3)18e-构型 ds区的第一、二副族元素表现族价时,具有18e-构 型 ;p区过渡后元素表现族价时,也具有18e-构型。 (4)(9—17)e-构型 d区元素表现非族价时最外层有9—17个电
图3-6 晶体微观对称性与它的宏观外形的联系
图3-7 晶态与非晶态微观结构的对比
3-2 晶胞
3-2-1 晶胞的基本特征
1.晶体的解理性:用锤子轻敲具有整齐外形的晶体(如方解 石),会发现晶体劈裂出现的新晶面与某一原晶面是平行 的,这种现象叫晶体的解理性。 2.布拉维晶胞:多面体无隙并置地充满整个微观空间,即

第三章金属的晶体结构与结晶

第三章金属的晶体结构与结晶
第三章 金属的晶体结构与结晶
钢和铁是制造机器设备的主要材料,它们都是以铁和碳为 主而组成的合金,要了解钢和铸铁的本质,首先要了解纯铁的 晶体结构。固态物质按原子的聚集状态分为晶体和非晶体。
§3-1 金属的晶体结构 一、晶体的概念
金属在固态下一般都是晶体。 晶体:原子在空间呈规律性排列的固体物质; 注意:在固态时呈规律性排列,而在液态时金属原子的排列 并不规律。如图3-1(a) 金属的结晶就是由液态金属转变为固态金属的过程。
图3-5 实际金属晶体
在晶界上原子的排列不像晶粒内部那样有规则,这种原子 排列不规则的部位称为晶体缺陷。根据晶体缺陷的几何特点, 将晶体缺陷分为点缺陷、线缺陷和面缺陷三种。 1. 点缺陷:不规则区域在空间三个方向上的尺寸都很小, 例如空位、置换原子、间隙原子。如图3-6
空位
间隙原子
置换原子
间隙原子
图3-3 面心立方晶格Fra bibliotek 3.密排六方晶格:由两个简单六方晶胞穿插而成,晶胞为六 方柱体,柱体的12个顶角和上、下面中心上各排列一个原子, 在上、下面之间还有三个原子。如图3-4
图3-4 密排六方晶格
(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的 金属较差。
§3-2 实际金属的结构 一、多晶体结构
1.铸态晶:液态金属结晶后形成的晶体。将铸锭剖开可以 看到三个不同的晶区: 表面细小等轴晶粒层:组织致密,性能比较均匀一致,无 脆弱晶界面,有良好的热加工性能和力学性能,但易形成缩松。 柱状晶粒区:性能具有方向性;热加工性能较低;组织致 密,空隙和气孔较少,所以沿柱状晶粒的轴向强度高,韧性也 较好。 中心粗大等轴晶粒层:组织不均匀,还存在缩孔,缩松, 夹杂及偏析等缺陷。
图3-9 纯金属冷却曲线

3第三讲 晶体结构3

3第三讲  晶体结构3

几种典型结构型式(四) CaF2型 F-位于立方面心晶格 1个F-配位4个Ca2+ 1个Ca2+配位8个F-
F-占立方体的8个角、6个面心、12条棱和1个体心 8×(1/8)+6×(1/2)+12×(1/4)+1=8 4个Ca2+位于晶胞内 正负离子数比为1∶2
F-围成8个立方体,其中有4个立方体空隙被4个Ca2+占据 正离子数:负离子数:立方体空隙数=1∶2:2 阳离子占据空隙分数1/2
四、 晶体类型
晶体的性质由晶胞的大小、形状和质点的种类 (分子、原子、离子)及它们之间的作用力决定
组成 粒子 金属晶体 原子晶体 离子晶体 分子晶体 原子 离子 原子 离子 分子 粒子间 作用力 金属键 共价键 离子键 分子间 力 物理性质 熔沸点 高低 高 高 低 硬度 大小 大 大 小 熔融导 电性 好 差 好 差 例 Cr, K
配位数 4 6 8
构型 ZnS 型 NaCl 型 CsCl 型
几种典型结构型式(一) NaCl型 立方面心晶格 1个Na+配位6个Cl1个Cl-配位6个Na+
Cl-占立方体的8个角、6个面心 8×(1/8)+6×(1/2)=4
Na+占立方体的12条棱和体心,12×(1/4)+1=4
正负离子数比为1∶1
3、晶胞是人为划定的
金属铜的晶体结构
4、晶胞是“最小”的重复单元
从晶体的微观结构中可取出最小的重复单元, 它的基本特征是——顶角相同,不能再小。
这四种晶体的晶胞都是立方晶胞,这是指晶胞的 几何形状,不是指晶胞内部的原子的种类、数量 及排列。
同一种晶体可以取不同的晶胞,但习用晶胞有规定,是平行六面体(三维) 和平行四边形(二维)

人教版高中化学选修3课件-金属晶体

人教版高中化学选修3课件-金属晶体

知识点二
金属晶体的结构
1.金属晶体的原子堆积模型
2.晶胞中原子的空间利用率的计算方法 (1)以面心立方晶胞为例,求晶胞中原子的空间利用率
图乙是面心立方晶胞的结构剖面图,晶胞的面对角线为金 属原子半径的 4 倍。设金属原子的半径为 R,则晶胞的面对角线 为 4R,晶胞立方体的体积为(2 2R)3。每个面心立方晶胞中实际 含有 4 个金属原子,4 个金属原子的体积为 4×43πR3,因此晶胞 中原子的空间利用率为42×432πRR33×100%=74%。
Hale Waihona Puke ①该晶胞“实际”拥有的铜原子是____4____个。
②该晶胞称为_____C___(填序号)。
A.立方晶胞
B.体心立方晶胞
C.面心立方晶胞 D.简单立方晶胞
③此晶胞立方体的边长为 a cm, Cu 的相对原子质量为 64, 金属铜的密度为 ρ g·cm-3,则阿伏加德罗常数为___ρ2_·5a_63__m_o_l_-_1(用
1金属晶体在受外力作用下,各层之间发生相对滑动,但 金属键并没有被破坏。
2金属晶体中只有金属阳离子,无阴离子。 3原子晶体的熔点不一定都比金属晶体的高,如金属钨的 熔点就高于一般的原子晶体。 4分子晶体的熔点不一定都比金属晶体的低,如汞常温下 是液体,熔点很低。
1.晶体中有阳离子,一定有阴离子吗?反之, 晶体中有阴离子,一定有阳离子吗?
(4)颜色/光泽——自由电子吸收所有频率光释放一定频率光 由于金属原子以最紧密堆积状态排列,内部存在自由电子, 所以当光辐射到它的表面上时,自由电子可以吸收所有频率的 光,然后很快释放出各种频率的光,这就使得绝大多数金属呈 现银灰色以至银白色光泽,金属能反射照射到其表面的光而具 有光泽。而金属在粉末状态时,金属的晶面取向杂乱,晶格排 列不规则,吸收可见光后辐射不出去,所以金属粉末常呈暗灰 色或黑色。

高中化学选修三第三章 第三节 金属晶体

高中化学选修三第三章  第三节 金属晶体

金属晶体的原子堆积模型
1.二维空间模型 堆积方式 非密置层 密置层
图示
配位数
4 __
6 __
2.三维空间模型 (1)简单立方堆积:按非密置层 (填“密置层”或“非密 置层”)方式堆积而成,其空间利用率52%,配位数为 6 , 晶胞构成:一个立方体,每个晶胞含有 1 个原子,如Po。
(2)体心立方堆积:按非密置层 (填“密置层”或“非密置 层”)方式堆积而成,配位数为 8 ,空间利用率为68%。晶胞 构成:体心立方,每个晶胞含有 2 个原子,如碱金属。
(3)已知下列金属晶体:Ti、Po、K、Fe、Ag、Mg、Zn、Au 其堆积 方式为: Po ①简单立方堆积的是________________ ; K、Fe ②体心立方堆积的是________________ ; Mg、Zn、Ti ③六方最密堆积的是________________ ; Ag、Au 解析 ④面心立方最密堆积的是________________ 。
[特别提醒] 温度越高,金属的导电能力越弱。
1.判断正误(正确的打“√”,错误的打“×”)。 (1)常温下,金属单质都以金属晶体的形式存在 ( × )
(2)金属阳离子与自由电子之间的强烈作用,在一定外力 作用下,不因形变而消失 (3)钙的熔、沸点低于钾 (4)温度越高,金属的导电性越好 (√ ) (× ) ( × )
)
解析:金属原子的半径越小,价电子数目越多,金属键就 越强,即金属阳离子与自由电子间的作用越强。Na、Mg、 Al 均位于第三周期,原子半径逐渐减小,价电子数目逐渐 增多,所以金属键逐渐增强,其中铝的金属键最强,钠的 金属键最弱,而钾和钠位于同一主族,且钾的半径比钠大, 钾的金属键比钠弱。 答案:C
金属键与金属晶体

第3章金属的晶体结构

第3章金属的晶体结构
金属的晶体结构
1.1 1.2 1.3 金属的特征 金属的晶体结构 实际金属晶体中的晶体缺陷
1.1

金属的特征
良好的导电性和导热性;
良好的延展性(塑性变形能力);
不透明,具有光泽;

具有正的电阻温度系数,即电阻随温度升 高而升高。
金属:最外层电子数少,易变 成自由电子——正电性元素
原子结合:电子逸出共有,结合 力较大,无方向性和饱和性;
原子半径: a / 2 配位数:
a
密排六方晶格的配位数
晶格常数
底面边长a 底面间距c 侧面间角120 侧面与底面夹角90
晶胞原子数:
c
1 1 12 2 3 6 6 2
原子半径: a / 2 配位数: 12
a
致密度: 0.74
表 常见晶格类型的晶格参数 BCC 常见金属 原子半径R 原子个数N 配位数CE 致密度K
例:体心立方单晶体Fe其弹性 模量在 <111>方向为290000MN/m 2, 而在<100>方向为135000MN/m 2 体心立方单晶体Fe在磁场中, 沿<100>方向磁化比沿<111>方向磁 化容易。
1.3
实际金属晶体中的晶体缺陷
实际使用的金属是多晶体,并存在晶体缺陷。
单晶体:内部晶格位向完全一致的晶体(理想晶体)。 如单晶Si半导体。 多晶体:由许多位向不同的晶粒构成的晶体。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表 示,反之为负刃型位错,用“┬”表示。立体模型
(b)平面图 刃型位错示意图
(2)螺型位错
设想在简单立方晶体右端施加一切应力,使右端ABCD滑移面上下两

高中化学课件:《金属晶体》PPT课件

高中化学课件:《金属晶体》PPT课件
(1)延展性 当金属受到外力作用时,晶体中的各原子层就会发生相对滑动, 但不会改变原来的排列方式,而且弥漫在金属原子间的电子气可 以起到类似轴承中滚珠之间润滑剂的作用,所以金属有良好的延 展性。 外力
一、金属键与金属晶体
(2)导热性 自由电子在运动时与金属阳离子碰撞,引起两者能量的交换。当金属 某部分受热时,那个区域里的自由电子能量增加,运动速度加快,通 过碰撞,把能量传递给金属阳离子。自由电子与金属阳离子频繁碰撞, 把能量从温度高的部分传递到温度低的部分,从而使整块金属达到相 同的温度。
晶体中各 原子层相 对滑动仍 保持相互 作用
一、金属键与金属晶体
①金属晶体具有导电性,但能导电的物质不一定是金属 ②石墨具有导电性,属于非金属。 还有一大类能导电的有机高分子化合物(如聚乙炔),也不属于金属。 ③金属导电的粒子是自由电子,导电过程是物理变化。 而电解质溶液导电的粒子是自由移动的阴阳离子,导电过程是化学变 化
一、金属键与金属晶体
(3)金属光泽 由于金属内部原子以最紧密堆积状态排列,且存在自由电子,所以 当光线照射到金属表面时,自由电子可以吸收所有频率的光并很快 放出,使金属不透明且具有金属光泽。而金属在粉末状态时,晶格 排列不规则,吸收可见光后反射不出去,所以金属粉末常呈暗灰色 或黑色。
一、金属键与金属晶体
多,相互作用就越大, 熔点就会越高。
阅读《资料卡片》并掌握 1、金属晶体的四种堆积模型对比
2、石墨是层状结构的混合型晶体
晶体具有规则的几何外形,晶体中最基本的重复单位称为是晶 胞。NaCl晶体结构如图所示,已知FexO晶体晶胞结构为NaCl 型,由于晶体缺陷,x值小于1,测知FexO晶体密度为 5.71g/cm3,晶胞边长为4.28×10-10m 。

第三章晶体结构

第三章晶体结构
设按六方密堆的O2-分别为OA层与OB层,则-Al2O3中氧与铝 的排列可写成:OAAlDOBAlEOAAlFOBAlDOAAlEOBAlF∥OAAlD…, 从第十三层开始才出现重复。
三.其它晶体结构 1.金刚石结构
金刚石结构为面心立方格 子,碳原子位于面心立方的所 有结点位置和交替分布在立方 体内的四个小立方体的中心, 每个碳原子周围都有四个碳, 碳原子之间形成共价键。
一.面心立方紧密堆积结构
4. CaTiO3(钙钛矿)型结构 钙钛矿结构的通式为ABO3,其中,A2+ 、B4+或A1+ 、B5+金
属离子。CaTiO3在高温时为立方晶系,O2-和较大的Ca2+作面心 立方密堆,Ti4+填充于1/4的八面体空隙。Ca2+占据面心立方的 角顶位置。O2-居立方体六个面中心,Ti4+位于立方体中心。Z=1, CNCa2+=12 CNTi4+=6 ,O2-的配位数为6 (2个Ti4+和 4个Ca2+)。
一.面心立方紧密堆积结构 1. NaCl型结构
Cl-呈面心立方最紧密堆积,Na+则填充于全部的八面体空隙
中,(即阴离子位于立方体顶点和六个面的中心,阳离位于立
方 体 的 中 心 和 各 棱 的 中 央 ) 。 两 者 CN 均 为 6 , 单 位 晶 胞 中 含 NaCl的个数Z=4 ,四面体空隙未填充。
一.面心立方紧密堆积结构 2. β-ZnS(闪锌矿)型结构
S2-位于面心立方的结点位置,Zn2+交错地分布于立方体内 的1/8小立方体的中心,即S2-作面心立方密堆,Zn2+填充于1/2的 四面体空隙之中,CN均为4,Z=4。β -ZnS是由[ZnS4]四面体以 共顶的方式相连而成。

2021_2022学年高中化学第三章晶体结构与性质第三节金属晶体课件新人教版选修3

2021_2022学年高中化学第三章晶体结构与性质第三节金属晶体课件新人教版选修3
电性、导热性和延展性等。
答案:C
重点难点探究
重要考向探究
随堂检测
考向二 金属晶体的堆积模型及熔点的比较
【例题2】 下列说法正确的是(
)
A.金属钙的熔点低于金属钾的熔点
B.如果金属晶体失去自由电子,金属晶体将不复存在
C.金属晶体中Fe、Ag等为面心立方最密堆积
D.金属晶体中W、Ti等为体心立方堆积
解析:Ca原子的半径小于K原子,且Ca的价电子数大于K原子,所
积,Mg、Zn、Ti等属于六方最密堆积。
重点难点探究
重要考向探究
随堂检测
成功体验2下列有关金属的说法正确的是(
)
A.金属原子的核外电子在金属晶体中都是自由电子
B.钠型和铜型的原子堆积方式空间利用率最高
C.金属晶体中大量自由电子的高速运动使金属具有良好的导热

D.金属具有光泽,是因为金属阳离子堆积精密对光的反射
自主检测
3.用电子气理论解释为什么金属具有优良的延展性、导电性和
导热性?
提示:(1)当金属受到外力作用时,晶体中的各原子层就会发生相
对滑动,但排列方式不变,金属离子与自由电子形成的金属键没有
被破坏,所以金属具有良好的延展性。(2)在外加电场的作用下,金
属晶体中的自由电子做定向移动形成”?
提示:“电子气理论”的内容为金属原子脱落下来的价电子形成遍
布整块晶体的“电子气”,被所有原子所共用,从而把所有的金属原子
维系在一起。
2.金属原子是通过何种键型形成的晶体?有哪些优良性质?
提示:金属原子通过金属键形成的晶体叫金属晶体。其具有优良
的导电性、导热性和延展性。
阅读思考
重点难点探究
重要考向探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(0, 1, 1) (1, 0, 1)
(1, 1, 0)
倍数化为最小整数u,v,w,
则[ u v w ]为该晶向的指数 。
图1-30 确定晶向指数
如图1-30所示。
11/23/2013
16


试确定正交晶系中OD和BC的晶向指数
1/2 D c 1/4 C
O
b
a
A B
11/23/2013
1/3
17
图1-31 确定晶向指数
+(1 1 2)+(1 1 2)+(1 2 1)+
(1 2 1)+(1 2 1)+(2 1 1)+(2 1 1)
+(2 1 1)
11/23/2013 27
Z
Z
Z
Y
Y
Y
X
X
X
图1-36 立方晶系{1 0 0}晶面族
Z Z Z Z Z Z
X
Y X
YX
YX
Y X
Y
X
Y
图1-37 立方晶系{1 1 0}晶面族
[ u v w ]即为AB晶向的晶向指数。如u、v、w中某一数为负值,
则将负号标注在该数的上方。
11/23/2013 15
待标晶向不经过原点时,也
可以选取该晶向上两点的坐
标:起点P(x1,y1,z1)和 终点Q(x2,y2,z2),然后 将(x2-x1),(y2-y1), (z2-z1)三个数乘以最小公
晶向指数的确定步骤
⑴ 以晶胞某一阵点为原点,三棱边为 坐标轴X、Y、Z,并以晶格常数的 长度作为三个坐标的单位长度。 ⑵ 过原点作一直线 OP,使其平行于待 标志的晶向 AB(图 1-29),这一 直线必定会通过某些阵点。
图1-29 确定晶向指数示意图
⑶ 在直线OP上选距原点O最近的一个阵点P,确定P点的坐标值。 ⑷ 将此值乘以最小公倍数化为最小整数u、v、w,加上方括号,
为晶向。用晶向指数[ u v w ]表示。
晶面:晶体中由一系列原子组成的平面称为晶面。
用晶面指数(h k l)表示。
不同的晶面和晶向具有不同的原子排列和不同的取
向。材料的许多性质和行为(如各种物理性质、力
学行为、相变、X光和电子衍射特性等)都和晶面、 晶向有密切的关系。
11/23/2013 13
为了区分不同的晶面和晶向,需要有一个统一
<111>, 称为密排方向。 在面心立方晶格中, 密排面为{111}, 密排方向为 <110>。
11/23/2013
返 回
32
5. 晶面间距
一组平行晶面中,相邻两 个平行晶面之间的距离叫 晶面间距。 两近邻平行晶面间的垂直 距离,用 dhkl 表示。 低指数晶面的面间距较大, 高指数晶面的面间距较小。
第三讲
金属的晶体结构Ⅲ
11/23/2013
1
上讲内容回顾
晶系
布拉菲点阵
三种典型的金属晶体结构:bcc、fcc、hcp
● 原子排列方式
● 原子半径
● 原子个数
● 配位数和致密度
晶体中的原子堆垛方式及间隙
11/23/2013
2
第一章 金属的晶体结构
§1-1 金属 §1-2 金属的晶体结构
§1-3 实际金属的晶体结构
11/23/2013
返 回
5
6. 晶体中的原子堆垛方式及间隙
⑴ 晶体中的原子堆垛方式 ⑵ 晶体中的间隙
11/23/2013
返 回
6
⑵ 晶体中的间隙
bcc晶格中的间隙 fcc晶格中的间隙
hcp晶格中的间隙
11/23/2和hcp都是密排结构,而bcc则是比较“开 放”的结构,因为它的间隙较多。因此,C、
z
y
x
正交点阵中几个晶向的晶向
指数如图1-32所示。
11/23/2013
图1-32 正交点阵中几个晶 向的晶向指数
20
晶向族
概念:指的是原子排列相同而空间位向不同的所有
晶 向称为晶向族,用<u v w> 表示。 在立方晶系中,<111>共有8个晶向组成: [111]、[111]、[ 111]、[111] [111]、[111]、[ 111]、[111]
由于bcc的八面体间隙是不对称的,即使上述间
隙原子占据八面体间隙位臵,也只引起距间隙中
心为的两个原子显著地偏离平衡位臵,其余4个 原子则不会显著地偏离其平衡位臵,因而总的点 阵畸变不大。因此,在有些bcc金属中,间隙原 子占据四面体间隙位臵(如C在Mo中),在另
一些bcc晶体中,间隙原子占据八面体间隙位臵
11/23/2013 25
晶面族
在同一种晶体结构中,原子排列情况完全相同,只
是空间位向不同的晶面属于一个晶面族,用{ h k l } 表示。
晶面族不仅包括了相互平行的一组晶面,而且也包
括了位向不同,但晶面间距相等、原子排列相同的
若干组平行晶面。
11/23/2013
26
立方晶系中(只有在立方系中,才有如此排列组合)
(如碳在α-铁中)。
11/23/2013 9
fcc和hcp中的八面体间隙远大于bcc中的八 面体或四面体间隙,因而间隙原子在fcc和
hcp中的固溶度往往比在bcc中大得多。
fcc晶格在八面体间隙和四面体间隙的形状
与hcp晶格的完全相似,当原子半径相等时,
间隙大小完全相等,只是间隙中心在晶胞 中的位臵不同。
18
确定BC的晶向指数 建立坐标系,如图1-31所示。 ⑴ 确定坐标:B (a, b/3, 0) C(0, b, c/4) 取数值B (1, 1/3, 0) C(0, 1, 1/4) ⑵ 求坐标差:(0-1),(1-1/3),
c
O a B 1/3 图1-31 确定晶向指数 b 1/2 D Z
(1/4 -0)。即-1,2/3,1/4
Z Z Z Z Y X X Y X Y X Y
图1-38 立方晶系{1 1 1}晶面族
11/23/2013
返 回
28
3. 六方晶格是晶向指数和晶面指数
上述指数表示方法,原则上适 用于任意晶系。
对六方晶系,取a,b,c为晶 轴,而a轴与b轴的夹角为 120°,c轴与a,b轴相垂直, 如图1-39所示。
11/23/2013 22
Y
举 例
⑴ 建立坐标系:如图1-34所示;
⑵ 量截距 x = 3a/4,y = b/4, z= c/3
Z

x = 3/4,y = 1/4, z= 1/3;
1/3
⑶ 求倒数: 4/3,4, 3 ⑷ 乘最小公倍数3得最小的整数 4,12,9 ⑸ 放入圆括号内:(4 12 9 )
11/23/2013
3
§1-2 金属的晶体结构
一、晶体的特性(基础) 二、晶格与晶胞(基础) 三、三种典型的金属晶体结构(重点) 四、晶向指数与晶面指数(重点) 五、多晶型性
作 业
11/23/2013
返 回
4
三、三种典型的金属晶体结构
1. 晶系 2. 布拉菲点阵 3. 体心立方晶格(bcc) 4. 面心立方晶格(fcc) 5. 密排六方晶格(hcp) 6. 晶体中的原子堆垛方式及间隙
至间隙中心的距离都是
6 a 如图1-28所示。 4
, 6
4
a
间隙半径:
rx =
6
a 1 2 a ≈0.112a 4
间隙位臵:如图所示。
间隙数量:
1×8+1/3×12=12 个
11/23/2013
图1-28 hcp晶格的四面体间隙
返 回
12
四、晶向指数与晶面指数
晶向:晶体中任意两个原子之间连线所指的方向称
Z
X3 O A
(0 1 1 0) X2 [1120]
六方晶格的晶向指数[u v t w], 其中,u+v+t = 0。
六方晶格的晶面指数(h k i l), h+k+i = 0。 确定方法于立方晶系相同。
X1
图1-40 六方晶格晶面 晶向确定方法
立方晶系中判断晶向与晶面垂直或平行关系式仍然适 用于六方晶系。如[0 0 0 1]⊥(0 0 0 1),[1 1 2 0]位
{1 0 0}=(1 0 0)+(0 1 0)+(0 0 1)
{1 1 1}=(1 1 1)+(1 1 1)+(1 1 1)+(1 1 1)
{1 1 0}=(1 1 0)+(1 0 1)+(0 1 1)+(1 1 0)
+(1 0 1)+(0 1 1)
{1 1 2}=(1 1 2)+(1 2 1)+(2 1 1)+(1 1 2)
平行晶面:指数相同,或数字相同但正负号相反。
0的意义:晶面与对应的轴平行。
立方晶体中,当一晶向[ h k l ]位于或平行于某一晶 面( u v w )时,必须满足关系式:hu+kv+lw = 0。 若一晶向[ h k l ]与某一晶面( u v w ) 垂直时,则其晶 向指数和晶面指数必须完全相同,即u = h,k = v, w = l。如 [1 0 0]⊥(1 0 0), [1 1 0]⊥(1 1 0)
X
o
3/4 b 1/4
c a Y
图1-34 确定晶面指数
⑹ 待求的晶面指数为(4 12 9 )
11/23/2013 23
立方系常用晶面指数
图1-35 立方系常用晶面指数
11/23/2013
24
关于晶面指数
晶面指数意义:晶面指数代表着一组相互平行的晶
面,即所有相互平行的晶面具有相同的晶面指数。
图1-39 六方晶格晶面 晶向确定方法
用三指数表示六方晶系的晶面和晶向有很大的缺点, 即晶体学上等价的晶面和晶向不具有类似的指数。如 图等价晶面(1 1 0)、(1 0 0),等价晶向 [1 0 0] 和
相关文档
最新文档