数学模型简介
数学建模简介
●模型求解和分析
在模型构成中建立的数学模型可以采用解方程、推理、图 解、计算机模拟、定理证明等各种传统的和现代的数学方法对 其进行求解,其中有些可以用计算机软件来做这些工作。建模 的目的是解释自然现象、寻找规律以解决实际问题。要达到此 目的,还要对获得结果进行数学上的分析,如分析变量之间的 依赖关系和稳定状况等,这一过程称为模型求解与分析。
( x y) 30 750 ( x y) 50 750
实际上方程组就是上述航行问题的数学模型。列 出方程组,原问题已转化为纯粹的数学问题。方程的 解x=20km/h、y=5km/h,最终给出了航行问题的答案。
大家都做过数学应用题,比如说“树上有十只鸟,开枪打死一 只,还剩几只?”,这样的问题就是一道数学应用题,正确答案应 该是0只。这样的题同样是数学建模题,不过答案就不重要了,重 要是过程。 真正的数学建模选手会这样回答这道题。 “是无声手枪吗?”“您确定那只鸟真的被打死啦?” “树上的鸟里有没有聋子?”“有没有关在笼子里的?” “边上还有没有其他的树,树上还有没有其他鸟?” “有没有残疾的或饿的飞不动的鸟?”“算不算怀孕肚子里的小 鸟?”“打鸟的人眼有没有花?保证是十只?” “有没有傻的不怕死的?”“会不会一枪打死两只?” “所有的鸟都可以自由活动吗?”“如果您的问题没有骗人,打死 的鸟要是挂在树上没掉下来,那么就剩一只,如果掉下来,就一只 不剩。”
分析:设甲桶中有x个红球,乙桶中有y个蓝球,因为对
甲桶来说,甲桶中的蓝球数加上乙桶中的蓝球
数等于10000,所以
10000-x+y=10000
即 x=y
故甲桶中的红球和乙桶中的蓝球一样多。
问题2、哥哥和妹妹分别在离家2km和1km且方向相反的两 所学校上学,每天同时放学后分别以4km/h和2km/h的速度 步行回家。一小狗以6km/h的速度由男孩处奔向女孩,又 从女孩处奔向男孩,如此往返直至回到家中,问小狗奔跑 了多少路程?
数学建模
室 内 T1
d
l
d
室 外 T2
Q1
墙
室 内 T1
2d
室 外 T2
Q2
墙
Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变
数学建模简介1
数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
数学建模简介
MATLAB求解代码: x=[50,100,150,200,250,300,350,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.375,4.875,5.675,6.500,7.250,8.000,8.750]; scatter(x,y,'.') xlabel('质量') ylabel('伸长')
MATLAB求解代码: x=[50,100,150,200,250,300,35 0,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.3 75,4.875,5.675,6.500,7.250,8.0 00,8.750]; c1=polyfit(x,y,1); tp1=0:50:550; x1=polyval(c1,tp1); plot(tp1,x1,x,y,'.') xlabel('质量m') ylabel('伸长e')
建立数学模型过程
建立数学模型没有固定模式,一般大致可分为 以下几个步骤: 分析问题 合理假设(简化) 模型建立 模型求解 模型检验(包含了模型评价、推广或改进等) 模型应用
简化关系:比例性
例1 测试比例性
y k x( k 0)
y 记为:∝ x
做一个测量弹簧的伸长作为置于弹簧末端的质量(以重量计) 的函数的实验。
模型检验:数据拟合效果好,所以建立的比例模型合理。
数学建模基础
基本概念
原型(Prototype)
人们在现实世界中关心、研究、从 事的生产、管理的实际对象称为原型。 模型(Modle)为了某个特定的目的将原型的某一部分 信息进行简缩、提炼而成的原型的替代物称为模型。 模型有直观模型、物理模型、思维模型、符号模型、 计算模型、数学模型等。一个原型可以有多个不同的 模型。 数学模型(Mathematical Model)由数字、字母或其他 数学符号组成,描述实际对象的数量规律的数学公式、 图形或算法称为数学模型。即就是对于现实世界的一 个特定对象,为一个特定目的,根据特有的内在规律, 做出一些必要的简化假设,也能用适当的数学工具, 得到一个数学结构。
数学模型概论
人工智能与数学建模结合
人工智能算法和数学建模将进一步结 合,利用机器学习和深度学习技术进 行模型优化和预测。
面临的挑战与问题
模型的可解释性
多尺度建模
随着深度学习等黑箱模型的普及,模型的 可解释性成为关注焦点,如何解释模型决 策过程是亟待解决的问题。
多尺度现象在许多领域中普遍存在,如何 建立多尺度模型以描述不同尺度间的相互 作用是挑战之一。
供需关系
通过建立数学模型分析市场供需关系, 预测商品价格和供求量,为企业制定 生产和销售策略提供依据。
社会领域
人口预测
利用数学模型预测人口数量和结构变化 ,为政府制定人口政策和规划提供依据 。
VS
社会网络分析
通过建立数学模型分析社会网络结构,研 究人际关系、信息传播等社会现象。
生物领域
生态平衡
数学模型在生态学中的应用,如种群动态、生态平衡等,用于研究生态系统的行为和演化。
模型验证与修正
总结词
模型验证是确保模型准确性和可靠性的重要 步骤,而修正则是在模型出现问题时的必要 措施。
详细描述
验证方法包括对比实验、历史数据拟合等, 通过对比实际数据和模型预测结果,可以评 估模型的精度和误差。当模型出现偏差或异 常时,需要进行修正,这可能涉及到参数调 整、变量替换或模型结构修改等。修正后的 模型需要重新验证以确保其准确性和适用性
控制问题
总结词
数学模型在控制问题中起到核心作用,通过建立控制 系统的数学模型,可以实现有效的控制和调节。
详细描述
控制问题是指通过一定的控制手段,使系统达到预期的 状态或性能指标。数学模型可以建立控制系统的动态方 程和性能指标,通过分析和设计控制算法,实现系统的 稳定性和性能优化。例如,在机械系统中,数学模型可 以描述机械的运动状态和受力情况,设计控制器使得机 械系统能够稳定运行并达到预期的运动轨迹。
什么是数学模型
什么是数学模型?数学模型一般是实际事物的一种数学简化。
它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。
要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。
数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。
数学模型思想?数学模型是用数学语言概括地或近似地描述现实世界事物地特征,数量关系和空间形式的一种数学结构。
从广义角度讲,数学的概念,定理,规律,法则,公式,性质,数量关系式,图表,程序等都是数学模型。
数学的模型思想是一般化的思想方法,数学模型的主要模型形式是数学符号表达式和图表,因而它与符号化思想有很多相同之处,同样具有普遍的意义。
不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性。
即把数学模型描述为特定的事物系统的数学关系结构。
如通过数学在经济,物理,农业,生物,社会学等领域的应用,所构造的数学模型。
为了把数学模型与数学知识或是符号思想明显的区分开来,本文主要从狭义的角度讨论数学模型,即重点分析小学数学的应用及数学模型的构建。
教学中是如何渗透模型思想?例:数学的发现和发展过程,也是一个应用的过程。
常见数学建模模型
常见数学建模模型一、线性规划模型线性规划是一种常见的数学优化方法,广泛应用于工程、经济、管理等领域。
线性规划模型的目标是在给定的约束条件下,求解一个线性目标函数的最优解。
其中,约束条件通常是线性等式或不等式,而目标函数是一个线性函数。
在实际应用中,线性规划模型可以用于生产计划、资源分配、运输问题等。
例如,一个工厂的生产计划中需要确定每种产品的产量,以最大化利润为目标,并且需要满足一定的生产能力和市场需求的约束条件。
二、整数规划模型整数规划是线性规划的一种扩展形式,其目标函数和约束条件仍然是线性的,但变量需要取整数值。
整数规划模型常用于离散决策问题,如项目选择、设备配置等。
例如,一个公司需要决定购买哪些设备以满足生产需求,设备的数量必须是整数,且需要考虑成本和产能的约束。
三、动态规划模型动态规划是一种求解多阶段决策问题的数学方法。
该模型通常包含一个阶段决策序列和一个状态转移方程,通过递推求解最优解。
动态规划模型被广泛应用于资源分配、路径规划、项目管理等领域。
例如,一个工程项目需要确定每个阶段的最佳决策,以最小化总成本或最大化总效益。
在每个阶段,决策的结果会影响到下一个阶段的状态和决策空间,因此需要使用动态规划模型进行求解。
四、图论模型图论是研究图和网络的数学理论。
图论模型常用于解决网络优化、路径规划、最短路径等问题。
例如,一个物流公司需要确定最佳的送货路径,以最小化运输成本或最短时间。
可以将各个地点看作图中的节点,道路或路径看作边,利用图论模型求解最优路径。
五、回归分析模型回归分析是研究变量之间关系的一种统计方法。
回归分析模型通常用于预测和建立变量之间的数学关系。
例如,一个销售公司需要预测未来销售额与广告投入、市场份额等因素的关系。
可以通过回归分析模型建立销售额与这些因素之间的数学关系,并进行预测和决策。
六、排队论模型排队论是研究排队系统的数学理论。
排队论模型常用于优化服务质量、降低排队成本等问题。
常见的数学模型
解法:通过矩阵运算或迭代法 求解线性代数方程
形式:Ax=b,其中A是矩阵,x 是未知数向量,b是常数向量
应用:在物理、工程、经济等 领域有广泛应用
多项式方程
定义:多项式方程 是数学中常见的方 程形式,一般形如 ax^n + bx^(n1) + ... + z = 0
积分公式:常见 的积分公式包括 牛顿-莱布尼茨公 式、换元积分公 式、分部积分公 式等。
01
0 2
03
04
级数与无穷级数
定义:级数是无穷多个数相加的结果,无穷级数是级数的极限状态。 类型:有正项级数、交错级数、幂级数等。
应用:在数学、物理、工程等领域有广泛应用,如计算曲线的长度、求解微分方程等。 收敛与发散:级数收敛时,所有项的和是有限的;发散时,所有项的和是无穷大。
值。
特征值与特征向量 的应用:在解决实 际问题时,特征值 和特征向量可以用 于分析系统的稳定
性和动态行为。
计算方法:通过求 解矩阵的特征方程, 可以得到矩阵的特 征值和特征向量。
添加标题
添加标题
添加标题
添加标题
线性变换与矩阵运算
矩阵运算:基本的矩阵加法、 减法、乘法等运算规则
线性变换:通过矩阵表示几 何变换的过程
微分方程
定义:微分方程是 描述数学模型中变 量之间变化关系的 方程
类型:常微分方程、 偏微分方程等
解法:常用的解法 包括分离变量法、 常数变异法等
应用:在物理学、 工程学、经济学等 领域有广泛应用
线性代数模型
向量与矩阵
向量:由一组有序 数构成的数学对象, 可以表示空间中的 点或方向
数学模型的类型
数学模型的类型
1. 线性模型:用线性方程、线性规划等方法描述问题,被广泛应用于物理、经济、管理、工程等领域。
2. 非线性模型:解决非线性问题,例如非线性规划、微积分方程、动力系统等。
3. 概率模型:描述随机变量及其概率分布,包括统计推断、回归分析和假设检验等。
4. 离散模型:离散模型的主要应用领域是计算机科学,涉及图论、排队论、模拟等。
5. 运筹模型:用于优化问题,例如线性规划、整数规划、网络流问题等。
6. 贝叶斯模型:基于贝叶斯定理构建出的模型,用于概率推理、统计学习等。
7. 决策模型:描述决策过程,包括决策树、马尔可夫决策过程、多属性决策等。
8. 动态模型:描述随时间变化的系统,例如微积分方程、差分方程、系统仿真等。
9. 系统模型:将一个大型、复杂的系统分解为较小的子系统,并用数学语言来
表示它们之间的相互作用。
10. 统计学模型:可以用于描述数据集,包括回归分析、时间序列分析、聚类分析等。
1数学建模简介
数学建模与能力的培养 仅最近几年里, 仅最近几年里,我
校学生都在只参加 锻炼, ①数学建模实践的 了半年左右的学习 每一步中都 蕴含着能力上的 锻炼, 在调查研究阶段, 和实践后,就在全 要用到观察能力 分析能力和 观察能力、 在调查研究阶段,需 要用到观察能力、分析能力和数据 和实践后, 处理能力等 处理能力等。在提出假设 时,又需要用到 想象力和归纳 国大学生数学建模 开设数学建模课的主要目的为了提高学 简化能力。 生的综合素质 简化能力。 生的综合素质,增强 应用数学知识 解决实际问 综合素质, 竞赛中交出了非常 题的本领。 题的本领。 在真正开始自己的研究之前, ,夺得 ②在真正开始自己的研究之前,还应当尽可能先了解一下 出色的论文, 出色的论文 前人或别人的工作, 前人或别人的工作,使自己的工作成为别人研究工作的继 了国家奖2 了国家奖2项、省 续而不是别人工作的重复, 续而不是别人工作的重复,你可以把某些已知的研究结果 一等奖五项的好成 用作你的假设,去探索新的奥秘。 用作你的假设,去探索新的奥秘。因此我们还应当学会在 查到并学会我想应用的知识的本领 我想应用的知识的本领。 尽可能短的时间 内绩。 查到并学会我想应用的知识的本领。
数学模型竞赛与通常的数学竞赛不同之处在于它来 自实际问题或有明确的实际背景, 自实际问题或有明确的实际背景,它的宗旨是培养 大学生用数学方法解决实际问题的意识和能力, 大学生用数学方法解决实际问题的意识和能力,培 养创新意识、团队精神,鼓励参与、提倡公平竞争, 养创新意识、团队精神,鼓励参与、提倡公平竞争, 提高学生综合素质。 提高学生综合素质。 整个比赛要完成一篇包括问题的阐述分析, 整个比赛要完成一篇包括问题的阐述分析,模型的 假设和建立,计算结果及讨论的论文。 假设和建立,计算结果及讨论的论文。通过训练和 比赛,同学们不仅用数学方法解决实际问题的意识 比赛, 和能力有很大提高, 和能力有很大提高,而且在团结合作发挥集体力量 攻关, 攻关,以及撰写科技论文等方面将都会得到十分有 益的锻炼。 益的锻炼。
什么是数学模型3篇
什么是数学模型第一篇:什么是数学模型数学是一门抽象的科学,它可以用符号、公式和图形来描述事物的性质和规律。
数学模型就是采用数学方法来描述和分析现实世界的问题,从而更好地理解和控制现实世界。
数学模型可以是一个代数方程、一个几何图形、一个时间序列、一个统计关系等等,它们通常由变量、参数、约束等元素组成,通过这些元素之间的关系来描述和解释现象。
数学模型在很多领域都有广泛的应用,比如物理学、化学、工程学、经济学、社会学等等。
以物理学为例,物理学家可以通过建立数学模型来描述宇宙中的各种现象,比如引力、电磁力、运动等等。
通过分析这些模型,他们可以进一步预测宇宙中的物理现象,或者设计出新的物理实验来验证这些模型的正确性。
数学模型还有很多其他的应用,比如在经济学和金融学中,经济学家和金融学家可以建立数学模型来描述市场的变化和趋势,以及随之而来的机会和风险。
这些模型可以帮助他们进行投资决策,或者通过政策调整来影响整个经济体系。
总的来说,数学模型是一种非常重要的工具,它可以帮助我们更好地理解和控制现实世界,促进科学技术的发展和社会进步。
第二篇:数学模型的构建和应用数学模型的构建和应用是一个复杂而繁琐的过程,需要具备一定的数学和领域知识。
一般来说,数学模型的构建包含以下几个步骤:1. 确定问题和目标。
首先要明确所要研究的问题和目标,比如要预测客户流失率、优化某个系统的运行效率、模拟自然灾害等等。
2. 收集数据和信息。
收集和整理相关的数据和信息,包括客户数据、系统运行日志、气象数据等等。
这些数据和信息可以用来验证模型的正确性和可靠性。
3. 建立变量和参数。
根据问题和目标,建立模型的变量和参数,包括独立变量、因变量、常数和参数等等。
4. 建立数学公式。
根据变量和参数之间的关系,建立数学公式,包括代数方程、微分方程、概率分布等等。
5. 验证模型的正确性。
将建立的模型与实际情况进行比较,验证模型的正确性和可靠性,通过调整模型参数等方法来提高模型的准确度。
什么是数学模型
什么是数学模型
数学模型是一种基于数学理论和科学计算方法的描述现
实世界问题的工具。
其目的是通过数学模型来对现实问题进行描述、分析和预测,以便于更好地理解和解决问题。
在实际应用中,数学模型可以分为线性模型和非线性模型。
线性模型是指函数关系为线性的模型,包括线性回归模型、线性规划模型、线性差分方程模型等。
这种模型具有简单、易于理解和求解等优点,是一些简单问题的常用解决方法。
非线性模型则是指函数关系为非线性的模型,包括非线性回归模型、非线性规划模型、非线性差分方程模型等。
这种模型具有灵活和精度高的优势,适用于解决较为复杂的问题。
数学模型的主要特点是把现实复杂问题抽象出来,通过
模拟和计算实现对问题的分析和预测。
它能很好地反映不同因素之间的相互作用和影响关系,为实际问题提供科学的解决方案。
在实际生产和社会经济领域,各种数学模型已经被广泛应用,包括大型投资决策、企业经营管理、环境保护、航空航天、交通运输、医学卫生等各个领域。
数学模型的建立需要很强的数学功底和实际应用经验。
为了开发有效的数学模型,需要对问题进行深入的分析和研究,建立数学模型时需要选择合适的数学工具和方法,进行参数的估计和求解,最后对模型进行有效性检验。
在数学领域中,为了更加深入地研究数学模型的原理和
应用,创立了数学模型理论。
数学模型理论在很大程度上促进了数学模型的发展和应用。
总的来说,数学模型是一种对复杂的现实问题进行分析和预测的重要工具。
它可以使人们更好地理解问题本质和解决途径,具有广泛的应用前景。
十大经典数学模型
十大经典数学模型十大经典数学模型是指在数学领域中具有重要意义和广泛应用的数学模型。
这些模型涵盖了不同的数学分支和应用领域,包括统计学、微积分、线性代数等。
下面将介绍十大经典数学模型。
1. 线性回归模型线性回归模型用于描述两个变量之间的线性关系。
它通过最小化观测值与模型预测值之间的差异来拟合一条直线,并用该直线来预测未知的观测值。
线性回归模型在统计学和经济学等领域有广泛应用。
2. 概率模型概率模型用于描述随机事件发生的可能性。
它通过定义事件的概率分布来描述事件之间的关系,包括离散型和连续型概率分布。
概率模型在统计学、金融学、生物学等领域中被广泛应用。
3. 微分方程模型微分方程模型用于描述物理系统、生物系统和工程系统中的变化过程。
它通过描述系统中各个变量之间的关系来解释系统的动态行为。
微分方程模型在物理学、生物学、经济学等领域中具有重要应用。
4. 矩阵模型矩阵模型用于表示线性关系和变换。
它通过矩阵和向量的乘法来描述线性变换,并用于解决线性方程组和特征值问题。
矩阵模型在线性代数、网络分析、图像处理等领域中广泛应用。
5. 图论模型图论模型用于描述物体之间的关系和连接方式。
它通过节点和边的组合来表示图形,并用于解决最短路径、网络流和图着色等问题。
图论模型在计算机科学、电信网络等领域中有广泛应用。
6. 最优化模型最优化模型用于寻找最佳解决方案。
它通过定义目标函数和约束条件来描述问题,并通过优化算法来找到使目标函数最优的变量取值。
最优化模型在运筹学、经济学、工程优化等领域中被广泛应用。
7. 离散事件模型离散事件模型用于描述在离散时间点上发生的事件和状态变化。
它通过定义事件的发生规则和状态转移规则来模拟系统的动态行为。
离散事件模型在排队论、供应链管理等领域中有重要应用。
8. 数理统计模型数理统计模型用于从样本数据中推断总体特征和进行决策。
它通过概率分布和统计推断方法来描述数据的分布和抽样误差,包括参数估计和假设检验等方法。
第一讲 数学模型与数学建模 简介
国31个省和特区的 个省和特区的19000名大中学学生中,只有4.7% 名大中学学生中,只有 个省和特区的 名大中学学生中
数学建模是培养学生的观察能力,抽象能力 创造 数学建模是培养学生的观察能力 抽象能力,创造 、对 抽象能力 像力;只有14.9%的学生认为培养自己的探索能力 的学生认为培养自己的探索能力、 像力;只有 的学生认为培养自己的探索能力 思维能力,逻辑推理能力 动手能力,数学语言表达 逻辑推理能力,动手能力 思维能力 逻辑推理能力 动手能力 数学语言表达 新事物的想像力和收集信息的能力;只有33%的学生参 新事物的想像力和收集信息的能力;只有 的学生参 能力,计算机使用 数学软件使以及科学计算能力. 计算机使用,数学软件使以及科学计算能力 能力 计算机使用 数学软件使以及科学计算能力
黔南民族师范学院数学系2010数学建模素质培训 黔南民族师范学院数学系2010数学建模素质培训 2010
严忠权
数学建模与能力的培养 最近几年里, 最近几年里,我校学
生都在只参加了半年 左右的学习和实践后, 左右的学习和实践后, 锻炼, ①数学建模实践的 每一步中都 蕴含着能力上的 锻炼,在 在全国大学生数学建 调查研究阶段,需 要用到观察能力、分析能力和数据处理 调查研究阶段, 要用到观察能力、分析能力和 观察能力 模竞赛取得了优异成 能力等 能力等。在提出假设 时,又需要用到 想象力和归纳 简化 开设数学建模课的主要目的为了提高学 2002年开始获 绩,从2002年开始获 能力。 能力。 综合素质, 生的综合素质 生的综合素质,增强 应用数学知识 解决实际问 得国家一等奖1 得国家一等奖1项国家 题的本领。 题的本领。 在真正开始自己的研究之前, . ②在真正开始自己的研究之前,还应当尽可能先了解一下 二等奖十三奖. 二等奖十三奖 前人或别人的工作, 前人或别人的工作,使自己的工 作成为别人研究工作 的 继续而不是别人工作的重复, 继续而不是别人工作的重复,你可以把某些已知的研究结 果用作你的假设,去探索新的奥秘。 果用作你的假设,去探索新的奥秘。因此我们还应当学会 在尽可能短的时间 内查到并学会我想应用的知识的本领。 查到并学会我想应用的知识的本领。 我想应用的知识的本领 创新的能力。 ③还需要你多少要有点 创新的能力。这种能力不是生来就 有的,建模实践就为你提供了一个培养创新能力的机会。 有的,建模实践就为你提供了一个培养创新能力的机会。
数学模型概述
在高维数据中提取有意义的特征是数学模型的重 要任务,可以通过特征选择、特征提取等方法实 现。
高维数据的可视化
将高维数据可视化是理解数据的重要手段,数学 模型需要借助可视化技术,如散点图、平行坐标 系等,以直观地展示数据。
不确定性量化与优化
01 02
不确定性量化
在许多实际应用中,由于数据的不完备性和模型的复杂性,数学模型往 往存在不确定性。不确定性量化是数学模型的重要方向,旨在评估模型 预测的不确定性。
数学模型概述
目录
• 数学模型的基本概念 • 建立数学模型的方法 • 数学模型的应用领域 • 数学模型的发展趋势与挑战 • 数学模型的实际案例
01
数学模型的基本概念
定义与特点
定义
数学模型是对现实世界中某个现象或 系统的抽象描述,通过数学语言和符 号表示其内在规律和属性。
特点
数学模型通常具有形式化、精确化和 可量化等特征,能够揭示事物的本质 和内在联系,帮助人们更好地理解和 预测现象的发展趋势。
概率统计模型
基于概率论和统计学原理,描述随机现象和 不确定性问题。
微分方程模型
通过微分方程描述系统随时间变化的动态过 程。
线性规划模型
通过线性规划方法,优化资源配置和决策问 题。
02
建立数学模型的方法
理论建模
总结词
基于数学原理和逻辑推理,构建描述系统内在规律的数学模型。
详细描述
理论建模是通过数学符号、公式和方程来描述一个系统的内在规律和机制。它基于对系统深入的理论分析和逻辑 推理,通过数学公式和方程来表达系统的行为和特征。理论建模的优点在于能够揭示系统的本质规律,具有普适 性和通用性。
优化算法
数学模型简介
评注和思考:
建模的关键 : 和 f(), g()的确定 考察四脚呈长方形的椅子,是否还有相同的结论
2、商人安全过河问题
问题(智力游戏) 随从们秘密约定, 在河的任一岸, 一旦随从 的人数比商人多, 就杀人越货。但是乘船渡河的 方案由商人决定。商人们怎样才能安全过河?
用数学语言把椅子位臵和四只脚着地的关系表示出来
椅子位臵: 利用正方形(椅脚连线)的对称性 B B´ 用表示对角线与x轴的夹角
两个距离: A,C 两脚与地面距离之和为f() B,D 两脚与地面距离之和为g()
C´
A´
C
O
D´
A
x
D
正方形ABCD 绕O点旋转
地面为连续曲面 椅子在任意位臵 至少三只脚着地
1、尽量使用实数优化模型,减少整数约束和整 数变量的个数。因为求解离散优化问题比连续优 化问题难得多 2、尽量使用光滑优化,避免使用非光滑函数( 是指存在不可微点的函数)。如绝对值函数、符 号函数、多个变量求最大(小)值、四舍五入、 取整函数等,通常采用连续、可微问题处理起来 比较简单。
3、尽量使用线性模型,减少非线性约束和线性 x 变量的个数。如: 5 改为 x 5 y 。
3、席位公平的数学建模问题
三个系的学生共有200名(甲系100,乙系60, 丙系40),代表会议共20席,按比例分配,三个 系分别为10,6,4席。 1、由于学生转系,三个系的学生人数分别为 103、 63、 34, 问20席又该如何分配? 2、若代表增加为21席,又如何分配?
(1)问题提出
系别 学生 比例
p1/n1– p2/n2=5 p1/n1– p2/n2=5
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
数学模型的优势和作用
数学模型在小学数学教学中的作用结构一、数学模型的简介。
二、建立数学模型的基本原则三、建立数学模型的基本方法四、小学数学中基本模型五、模型在小学数学小数学习中的体现六、小学数学教学中的小学教学中的实录正文一、数学模型的简介。
1 什么是数学模型?数学模型,一般是指用数学语言、符号或图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。
小学数学中的数学模型,主要的是确定性数学模型,广义地讲,一般表现为数学的概念、法则、公式、性质、数量关系等。
数学模型具有一般化、典型化和精确化的特点。
2 数学模型的意义(1)建立数学模型是数学教学本质特征的反映。
①数学模型是对客观事物的一般关系的反映,也是人们以数学方式认识具体事物、描述客观现象的最基本的形式。
例如,舍去一切具体情景,行程问题的基本模型是:路程=速度×时间(s=vt),只不过在具体问题解决时,需要对这个模型进行一次构建还是多次构建的问题。
因此,数学模型有效地反映了思维的过程,是将思维过程用语言符号外化的结果。
显然,学生对数学模型的理解、把握与构建的能力,在很大程度上反映了他的数学思维能力、数学观念及意识。
②人们在以数学方式研究具体问题时,是通过分析、比较、判断、推理等思维活动,来探究、挖掘具体事物的本质及关系的,而最终以符号、模型等方式将其间的规律揭示出来,使复杂的问题本质化、简洁化,甚至将其一般化,使某类问题的解决有了共同的程序与方法。
因此,可以说,数学模型不仅反映了数学思维的过程,而且是高级的、高效的数学思维的反映。
2建立数学模型是数学问题解决的有效形式。
①数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程。
并且,建立模型更为重要的是,学生能体会到从实际情景中发展数学,获得再创造数学的绝好机会,在建立模型,形成新的数学知识的过程中,学生能更加体会到数学与大自然和社会的天然联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 获奖情况: • 2008年获广州中医药大学第三届“学生心目中的好老师”奖; • 2007年指导学生项目《布雷图指数影响下DF模型的构建及相关 防御对策的量化评估》获第十届“挑战杯”全国大学生课外学术 科技作品竞赛三等奖; • 2007年指导学生项目《中国人口增长预测》全国大学生数学建 模竞赛广东赛区二等奖; • 2007年“公立医院发展方向与建设规模关系研究”获中国卫生 经济学会第七批招标课题三等奖; • 2006年指导学生项目《易拉罐形状和尺寸的最优设计》全国大 学生数学建模竞赛全国二等奖暨广东赛区一等奖; • 2005年指导学项目《广东中药产品出口香港的现状及对策探讨-AHP模型在产品出口决策中的运用》获第八届“挑战杯”广东省 大学课外学术科技作品竞赛三等奖; • 2004年获广州中医药大学第二届“学生心目中的好老师”提名 奖 • 2004年“数学研究式教学中的MM方法探讨”获“现代教育理论
一《数学模型》课程简介
我们的目的: • 1 开拓学生的视野,增进对世界的 认识,了解专业以外的世界与经济 社会; • 2 准备选一部分同学参加每年一次 的全国大学生数学建模竞赛;
一《数学模型》课程简介
• “数学模型”课程是我校公共选修课程 之一。2002年开始,我校开设数学模型 课程,并同年参加了全国大学生数学建模 竞赛,同时取得优异的成绩。我们不断总 结这门课的经验,深入探索新的教学思 路,努力寻求适合综合性大学数学建模 的教学方法,积极采用现代化教学手段, 编写了适合我校的选修课教材,使得这门 课的教学趋于成熟。
二《数学模型》教师队伍
三《数学模型》教学大钢
• 一、课程性质、目的与任务 • 《数学模型》是一门全校公共选修课程,以物理、 生态、环境、医学、管理、经济、信息技术等领 域的一些典型实例为背景,阐述如何通过建立数 学模型的方法来研究、解决实际问题的基本方法 和技能。开设本课程的目的是,在传授知识的同 时,通过典型建模实例的分析和参加建模实践活 动,培养和增强学生自学能力、创新素质。参加 数学建模课的学习,应自己动手解决一、二个实 际问题,以求在实际参与中获取真知。
一《数学模型》课程简介
国家奖 年
广东奖 三 等 1
一等 二等 一等 二等 2006 1 1 2 2
2007
2008 1
3
3
3
2 2
4
4
二《数学模型》教师队伍
• 五位教师均是数学专业教师,其中有两 位教师主讲本科生和全校公共选修“数 学模型”课多遍,全体教师均指导本科 生参加每年一度的全国大学生数学建模 竞赛,多次获得全国一等奖、二等奖和 广东赛区一等奖,积累了丰富的课程建 设工作经验。组成人员的职称结构为: 副教授 1 人,讲师 3 人,助教1 人。
三《数学模型》教学大钢
• 本课程包括一定学时的讨论班,学生可利 用课外时间自己参与建模实践活动并自愿 参加由指导教师组织的讨论班、年度校大 学生数学建模竞赛活动。选修本课程的本 科生经双向选择还有机会参加全国大学生 数学建模竞赛。
三《数学模型》教学大钢
课程内容提纲及学时安排(总课时:36学时)
第一章 数学模型概论 第二章 初等数学模型的理论与方法 9学时 6学时
三《数学模型》教学大钢
• 第二章 初等数学模型的理论与方法
• • • • • • 一.课程内容 1.比例方法建模。 2.类比方法建模。 3.定性分析方法建模。 4.量纲分析方法建模。 5.初等模型举例。
• 二.基本要求 • 1.掌握比例方法,类比方法,定性分析方法及量纲分析方 法建模的基本特点。 • 2.能运用所学知识建立数学模型,并对模型进行综合分析。
一《数学模型》课程简介
• “数学模型”是一门实践性极强的课程。 在教学实践中,我们总结出了 • “传统教学与现代化手段(特别是多媒体 教学手段)教学相结合; • 数学知识与其他专业知识相结合; • 课内教学与课外实习相结合” • 的三个结合教学方式,引导学生学习数学 建模的基本思路方法,提高学生应用数学 解决实际问题的综合能力,努力达到预期 的教学效果。
二《数学模型》教师队伍
• 教材: • 田振明,《数学模型》,广州中医药大学公共选修课教材 (2006年) • 田振明,《医药高等数学》,高等教育出版社,(2009 年) • 科研项目: • 广州中医药大学人文社科类研究项目: 我校搬迁大学城后 两校区资源优化模型的实证研究(sk0626,2006-2007年, 主持). • 国家卫生经济学会研究项目:公立医院发展方向与建设规 模关系研究(2006-2007,参与). • 广州中医药大学社科类研究项目:广州高校大学生心理健 康状况统计学分析(sk020424,2004-2005年,参与). • 国家自然科学基金资助项目:二阶段随机优化的并行方法 (No.10161002,A01020208,2002-2005年,参与).
三《数学模型》教学大钢
• 第三章 优化数学的应用模型
• 一、课程内容 · 优化模型的一般意义。 · 线性规划的单纯形方法简介。 · 优化模型举例。 · 线性规划模型。 • • • • • 二、基本要求 1.理解优化模型的一般意义。 2.深刻理解线性规划模型的基本特点。 3.熟练掌握单纯形方法。 4.能结合计算机软件解决优化模型和线性规划模型。
二《数学模型》教师队伍
• 论文:
[1]田振明.投入产出模型若干性质的研究[J].经济数学,2008,25(3):283-288. [2]田振明,刘华辉.“医药分业”模式的专业化经济实证分析框架[J].医院管 理论坛,2008,25(4):31-35. [3]田振明.Markowitz's证券组合投资决策模型的有效集解法[J].价值工程, 2007,26(12):160-163. [4]田振明.有效集法在确定Markowitz's证券组合投资模型权系数中的应用[J]. 经济数学,2007,24(3):239-243. [5]田振明.数学模型方法在研究式教学中的探讨[J].科学技术与工 程,2007,7(18):4704-4707. [6]田振明,刘华辉,黎东生.基于AHP方法研究广州地区15所三甲医院的规模评 价模型[J].数理医药学杂志,2007,20(5):594-597. [7]田振明,屠新曙.效用函数意义下证券组合投资问题的改进决策树方法[J]. 技术经济,2007,26(2):46-49. [8]田振明.数学研究式教学中的MM方法探讨[J] 现代教育管理理论与实践指 导全书,2004,2(1):1005-1008 [9]田振明,刘华辉.运用AHP方法确定医药产品竞争力排序的数理决策模型[J] 数理医药学杂志,2006,19(4):346-349. [10]田振明.奇异方差矩阵的Markowitz’s证券组合投资决策模型的最优化解 法[J].数量经济技术经济研究2005,22(10):135-141.
第三章 优化数学的应用模型
第四章 代数模型的理论与方法
6学时
6学时
第五章 离散数学模型
第六章 微分方程的数学模型
6学数学模型概论
• 一、课程内容 · 学习数学建模课程的意义。 · 数学模型的定义及分类。 · 建立数学模型的方法及步骤。 · 数学建模示例。
• 二、基本要求 1.初步了解数学建模的基本概念,及学习数学建 模课程的目的。 • 2.了解数学模型的意义及分类,理解建立数学模 型的方法及步骤。
二《数学模型》教师队伍
• 主讲教师:田振明(讲师) • 基础数学学士,应用数学硕士。主讲高等数学、数学 模型、国际贸易理论等课程。指导学生参加每年一度 的全国大学生数学建模竞赛,获得国家教育部高等教 育司与中国工业与应用数学学会(CSIAM)与广东省教 育厅颁发的一等奖与二、三等奖多项。指导学生参加 广东省与国家大学生课外“挑战杯”科技作品竞赛并 获得广东省一等奖与国家二等奖多项。在国家级核心 期刊《数量经济技术经济研究》、《运筹与管理》、 《技术经济》、《经济数学》等学术期刊上发表学术 论文十余篇;编写教材《数学模型》供公共选修课使 用;主持广州中医药大学社科类研究课题一项,参加 国家级自然科学基金科研课题一项,国家卫生经济学 会研究项目一项,校级课题两项。
三《数学模型》教学大钢
• 第四章 代数模型的理论与方法
• 一、课程内容 · 线性代数模型举例。 · 线性代数方程解空间、特征值、矩阵等性质的运 用。 二.基本要求 • · 深刻理解线性代数方法建模的基本特点。 · 熟练掌握用线性代数知识解决实际问题。 能结合计算机软件解决线性代数模型
三《数学模型》教学大钢
• 第五章 离散数学模型
• 一、课程内容 1、差分法建模。 • 2、层次分析法建模。 • 3、图论方法建模。 • 4、逻辑方法建模。 • 二.基本要求 • 1、了解差分法,层次分析法,图论方法及逻辑方法的基 本理论。 2、深刻理解差分法,层次分析法,图论方法及逻辑方法 建模的基本特点。 3、熟练掌握差分法,层次分析法,图论方法及逻辑方法 建模方法。能运用本章方法分析解决实际问题
三《数学模型》教学大钢
• 第六章 微分方程的数学模型
• 一、课程内容 · 微分方程建模。 · 微分方程定性与稳定性理论建模。 · 变分法建模。 · 微分方程模型举例。 • 二.基本要求 • · 了解微分方程定性与稳定性基本理论及变分法的基本理论。 · 深刻理解微分法,微分方程,微分方程定性与稳定性及变分 法建模的基本特点。 · 熟练掌握微分法,微分方程,微分方程定性与稳定性理论及 变分法建模方法。 · 能运用本章方法分析解决问题。 能结合计算机软件解决一些微分方程模型
四《数学模型》对学生的要求
• 1 不限专业,不限年级。 • 2 想学, 好学, 敢学, 能学。 • 3 考试方式: 开卷考试