二元二次方程组解法(2)

合集下载

二元二次方程组的解法2

二元二次方程组的解法2

因式分解,于是有了下面的解法:
x2 9 y2 0
(1)
x
2
2xy
y2
4
(2)
解: 方程(1)可变形为 x 3yx 3y 0

x 3y 0 或 x 3y 0
方程(2)可变形为 x y2 4

x y 2 或 x y 2
原方程组化为
x 3y 0 x 3y 0 x 3y 0 x3y 0
3 ;
1
x4 y4
3 .
1
小结:
• 这节课我们学习了由两个二元二次方程组 成的特殊方程组的解法,基本思路是“消 元”和“降次”.那么请总结一下“代入消 元法”和“因式分解法”各自针对什么特 点的方程组?使用时需要注意什么?
反馈练习
解方程组:
x2 x2
2xy 3 xy y2
y2
3
0
例题讲解

解方程组:
x x
2 2
9y2 0 2xy y2
4
(1) (2)
这是一个特殊的二元二次方程组,如果采
用前面的方法将方程(1)左边因式分解,
再将分解得到的两个方程和(2)组成方程
组,这个问题是可以解答的;
但进一步观察会发现(2)左边也可以进行
21.6(2)二元二次方程组的解法
复习引入
解方程组:
x 3y 4
(1)
(1)
x2
2y2
1
; (2)
4x2 y2 4 (1)
(2)
2x y 1
(2)
观察思考
方程组
x2 3xy 2 y2 0 (1)
x
2
y2
5
(2)
(1)能直接使用“代入消元法”解答吗?

初中数学 二元二次方程组的解的表示方式有哪些

初中数学 二元二次方程组的解的表示方式有哪些

初中数学二元二次方程组的解的表示方式有哪些当我们使用各种方法求解二元二次方程组之后,我们需要将解的结果表示出来。

在不同的情况下,解的表示方式也不同。

下面将介绍二元二次方程组的解的常见表示方式。

1. 唯一解:如果二元二次方程组有唯一解,那么解可以表示为一个有序数对(x, y)。

这个有序数对是两个方程的交点,它同时满足两个方程。

例如,方程组:2x^2 - 3xy + y^2 = 0x - y = 3的唯一解可以表示为(4, 1)。

2. 无解:如果二元二次方程组无解,那么解的表示方式可以是“无解”。

这种情况下,两个方程的图像不相交,不存在交点。

例如,方程组:x^2 + y^2 = 5x^2 + y^2 = -1没有解。

3. 无穷多解:如果二元二次方程组有无穷多解,那么解的表示方式可以是参数化形式。

找到一个特殊解,然后引入参数表示其他解。

这个参数可以是任意实数。

例如,方程组:x^2 + y^2 = 1x - y = 0的通解可以表示为(cosθ, sinθ),其中θ是任意实数。

4. 部分参数化形式:有些二元二次方程组的解可以用部分参数化形式表示。

这种情况下,一个未知数可以表示为另一个未知数的函数,然后将其代入另一个方程中。

例如,方程组:x^2 - y^2 = 4xy = -3的解可以表示为(2, -1) 和(-2, 1)。

5. 用矩阵和向量表示:另一种表示二元二次方程组解的方法是用矩阵和向量表示。

将方程组的系数和常数项排列成矩阵形式,然后根据矩阵的性质和运算来求解方程组的解。

例如,方程组:x^2 - 3xy + 2y^2 = 0x - 2y = 1可以写成矩阵形式为:[1 -2; 2 -3][x; y] = [1; 0]其中,左侧的矩阵为系数矩阵,右侧的向量为常数向量。

使用矩阵运算可以求解这个方程组的解。

以上是关于二元二次方程组解的常见表示方式的介绍。

理解和掌握这些内容可以帮助我们更好地理解和应用二元二次方程组的知识。

数学解二元二次方程组的方法

数学解二元二次方程组的方法

数学解二元二次方程组的方法一、引言解二元二次方程组是初中数学中的重要内容之一,通过本课的学习,我们将掌握解二元二次方程组的方法和技巧,培养解决实际问题的能力。

二、知识梳理在开始讲解解二元二次方程组的方法之前,我们先来回顾一下二元二次方程的含义和解法。

1. 二元二次方程的定义二元二次方程是由两个含有未知数的二次方程构成的方程组,一般形式如下:{ax^2 + by^2 + cx + dy + e = 0{fx^2 + gy^2 + hx + iy + j = 0其中a、b、c、d、e、f、g、h、i、j是已知实数,且a和f不能同时为0。

2. 解二元二次方程的方法解二元二次方程组的方法有以下几种:(1)代入法:将一个方程的解代入到另一个方程中,得到一个关于一个未知数的一元二次方程,从而求出另一个未知数的值。

(2)消元法:通过消去其中一个未知数,将二元二次方程组化简成为一元二次方程,再通过一元二次方程的解法求解。

(3)配方法:将二元二次方程组中的一个方程配方后代入到另一个方程中,然后利用一元二次方程的解法求解。

三、解二元二次方程组的具体步骤下面,我们将分别介绍代入法、消元法和配方法来解二元二次方程组的具体步骤。

1. 代入法(1)选定一个方程,将其中一个未知数表示出来,如选取第一个方程中的x,将其表示为y的函数。

(2)将上一步中得到的表达式代入到另一个方程中,得到一个关于y的一元二次方程。

(3)解出y的值,然后将其代入到第一个方程中,求出x的值。

(4)最后,验证所得的x和y是否满足原方程组。

2. 消元法(1)通过系数的倍数,使得二元二次方程组中其中一个未知数的系数相等或者互为相反数。

(2)将得到的两个方程相加或相减,消去其中一个未知数。

(3)得到一元二次方程,求解该方程得到一个未知数的值。

(4)将求出的未知数代入其中一个方程,求出另一个未知数的值。

(5)最后,验证所得的解是否满足原方程组。

3. 配方法(1)选取一个方程,将其中一个未知数配方后代入到另一个方程中。

二元二次方程组的解法

二元二次方程组的解法

二元二次方程组的解法在代数学中,方程是一个等式,其中包含了未知数和常量的符号。

方程组则是由多个方程组成的集合,它们共同包含了多个未知数和常量。

二元二次方程组是指包含了两个未知数和常量的二次方程的集合。

形式如下:ax^2 + bx + c = 0dx^2 + ex + f = 0其中,a、b、c、d、e和f都是常量,x和y是未知数。

解决这个方程组的目标就是找到一组(x, y)的值,使得这两个方程都成立。

为了解决二元二次方程组,我们可以使用以下三种常见的方法:配准法、代入法和消元法。

下面将依次介绍这三种方法的步骤及示例。

一、配准法配准法又称一般解法,它的步骤如下:1. 将两个方程都转化为标准的二次方程形式。

2. 通过配准,将两个方程中的常数项相等。

3. 将两个方程相减得到一个一元二次方程。

4. 解决这个一元二次方程,得到一个未知数的值。

5. 将这个值代入其中一个方程,解决另一个未知数。

示例:假设我们有以下二元二次方程组:2x^2 - 3xy + y^2 = 10x^2 - 2xy + 3y^2 = 14根据配准法,我们可以将它们转化为标准形式:2x^2 - 3xy + y^2 - 10 = 0x^2 - 2xy + 3y^2 - 14 = 0通过对比系数,我们可以得到:a = 2,b = -3,c = 1,d = 1,e = -2,f = 3接下来,我们将两个方程相减并进行化简:(2x^2 - 3xy + y^2 - 10) - (x^2 - 2xy + 3y^2 - 14) = 0 x^2 + 4y^2 - 3xy + xy - 4 = 0x^2 + 4y^2 - 2xy - 4 = 0继续简化,得到一个一元二次方程:x^2 - 2xy + 4y^2 - 4 = 0解决这个一元二次方程,我们得到一个解 x = -1。

将 x = -1 代入其中一个方程我们得到:2(-1)^2 - 3(-1)y + y^2 - 10 = 02 + 3y + y^2 - 10 = 0y^2 + 3y - 8 = 0解决这个一元二次方程,我们得到 y = 1 或 y = -4。

二元二次方程组的解法公式法

二元二次方程组的解法公式法

二元二次方程组的解法公式法二元二次方程组是一组有两个未知数的二次方程。

解法公式法是一种使用公式求解二元二次方程组的方法。

解法步骤1. 化成标准形式:将方程组化成以下形式:```ax² + bxy + cy² + dx + ey + f = 0Ax² + Bxy + Cy² + Dx + Ey + F = 0```2. 计算判别式:计算判别式Δ,它由以下公式给出:```Δ = b² - 4acAC + 4BDF - B²CE - CD²```3. 根据判别式确定解的性质:Δ > 0:方程组有两个相异的实数解。

Δ = 0:方程组有两个相同的实数解。

Δ < 0:方程组无实数解,但可能有两个复数解。

4. 计算解:Δ > 0:使用以下公式计算两个解:```x = (-b ± √Δ) / (2a)y = (-B ± √Δ) / (2A)```Δ = 0:使用以下公式计算两个相同的解:```x = -b / (2a)y = -B / (2A)```5. 验证解:将解代入方程组中以验证它们是否满足方程。

例子求解以下方程组:```x² + 2xy + y² = 25x - y = 2```解:1. 化成标准形式:```x² + 2xy + y² - 25 = 0x - y - 2 = 0```2. 计算判别式:```Δ = (2)² - 4(1)(1)(-1) = 8 > 0```3. 方程组有两个相异的实数解。

4. 计算解:```x = (-2 ± √8) / 2 = -1 ± 2√2y = (-2 ± √8) / 2 = 1 ± 2√2```因此,方程组有两个解:(√2 - 1, √2 + 1) 和 (-√2 - 1, -√2 + 1)。

初二数学解二元二次方程组的方法与应用

初二数学解二元二次方程组的方法与应用

初二数学解二元二次方程组的方法与应用二元二次方程组是数学中常出现的问题,解决这类问题需要运用特定的方法和技巧。

本文将介绍解二元二次方程组的常见方法以及其在实际问题中的应用。

1. 消元法消元法是解二元二次方程组常用的方法之一。

首先通过操作将其中一个方程的某一个未知数消去,然后将消去后的方程代入另一个方程中求解未知数。

具体步骤如下:(示例:方程组1)①通过乘以适当的系数,使其中一个方程的两个未知数的系数相等;②将两个方程相减,消去一个未知数;③将求解得到的未知数的值代入其中一个方程,求解另一个未知数;④检验求解结果是否满足另一个方程。

2. 代入法代入法是另一种用于解二元二次方程组的常见方法。

通过将其中一个方程解出一个未知数,然后将该解代入另一个方程求解另一个未知数。

具体步骤如下:(示例:方程组2)①选择其中一个方程,将其中一个未知数表示为另一个未知数的函数;②将该函数代入另一个方程,并解得未知数;③将求解得到的未知数代入其中一个方程,求解另一个未知数;④检验求解结果是否满足另一个方程。

3. 矩阵法矩阵法是解二元二次方程组的另一种常见方法。

通过将方程组转化为矩阵形式,利用矩阵的运算方法求解未知数。

具体步骤如下:(示例:方程组3)①将方程组的系数矩阵和常数矩阵写成增广矩阵的形式;②对增广矩阵进行初等行变换,将其化为行最简形;③根据行最简形求解未知数的值;④检验求解结果是否符合所有的方程。

二元二次方程组的解法不止以上三种,还有配方法、因式分解法等等。

在实际问题中,解二元二次方程组可以帮助我们解决很多与多个未知数相关的问题,例如:1. 阶梯问题:解二元二次方程组可以用来求解楼梯的台阶数和踏步数;2. 交通问题:解二元二次方程组可以用来求解汽车、火车等交通工具的速度和时间;3. 销售问题:解二元二次方程组可以用来求解商品的进货价和售价等。

总结起来,解二元二次方程组是数学中重要的一部分,可以通过消元法、代入法和矩阵法等多种方法来解决。

二元二次方程组

二元二次方程组

二元二次方程组在数学中,二元二次方程组是由两个二次方程组成的方程组。

它的一般形式为:ax^2 + by^2 + cx + dy + e = 0fx^2 + gy^2 + hx + iy + j = 0其中,a、b、c、d、e、f、g、h、i、j为已知系数,同时x和y是未知数。

求解二元二次方程组的目标是找到满足上述两个方程的x和y的值。

二元二次方程组的解法可以使用代数方法或图形方法。

下面将介绍两种常见的解法。

一、代数方法对于二元二次方程组,我们可以通过消元或代入法来求解。

1. 消元法消元法的思路是通过消去一个未知数,将方程组转化为一元二次方程,然后再求解。

首先,我们可以通过乘法或加减运算将两个方程的系数配平,使得其中一个未知数的系数相等,然后相减或相加,消去该未知数。

举例来说,假设我们有以下方程组:2x^2 + 3y^2 + 4x + 5y + 6 = 03x^2 + 2y^2 + 5x + 4y + 7 = 0我们可以将第一个方程乘以2,第二个方程乘以3,使得x的系数相等,得到:4x^2 + 6y^2 + 8x + 10y + 12 = 09x^2 + 6y^2 + 15x + 12y + 21 = 0然后,我们将两个方程相减,消去x,得到一元二次方程:(9x^2 + 6y^2 + 15x + 12y + 21) - (4x^2 + 6y^2 + 8x + 10y + 12) = 0 5x^2 + 7x + 2y + 9 = 0这样,我们就将二元二次方程组转化为了一元二次方程,可以用一般的方法求解该方程。

2. 代入法代入法的思路是先解一个方程,然后将其解代入另一个方程,从而求得另一个未知数的值。

继续以上面的方程组为例,假设我们已经解得x的值为2,那么我们可以将x=2代入任意一个方程,得到:2(2)^2 + 3y^2 + 4(2) + 5y + 6 = 08 + 3y^2 + 8 + 5y + 6 = 03y^2 + 5y + 22 = 0然后,我们可以使用求解一元二次方程的方法来解得y的值。

二元二次方程组的解法步骤

二元二次方程组的解法步骤

二元二次方程组的解法步骤一、介绍二元二次方程组是一种由两个二次方程组成的方程组,形式一般为:a1x^2 + b1xy + c1y^2 + d1x + e1y + f1 = 0a2x^2 + b2xy + c2y^2 + d2x + e2y + f2 = 0其中,a1、b1、c1、d1、e1、f1为第一个方程的系数,a2、b2、c2、d2、e2、f2为第二个方程的系数。

在解二元二次方程组时,我们的目标是找到一组满足上述方程组的x和y的解。

二、解法步骤1. 消元法为了解二元二次方程组,我们首先需要将其中一个方程中的一个变量消去。

这可以通过两个方程的相减或相加来实现。

情况一:消去x的平方项为了消去x的平方项,我们需要使得两个方程的系数满足:a2 / a1 = b2 / b1 = c2 / c1如果上述条件满足,则我们可以将两个方程相减,消去x的平方项,得到一个新的一次方程:(b2 * c1 - b1 * c2) * y + (d2 * c1 - d1 * c2) * x + (f2 * c1 - f1 *c2) = 0这就得到了一个关于x和y的一次方程。

情况二:消去y的平方项类似地,为了消去y的平方项,我们需要使得两个方程的系数满足:a2 / a1 = b2 / b1 = c2 / c1如果上述条件满足,则我们可以将两个方程相减,消去y的平方项,得到一个新的一次方程:(a2 * d1 - a1 * d2) * x + (a2 * f1 - a1 * f2) = 0这就得到了一个关于x的一次方程。

2. 解一次方程通过消元法,我们得到了一个关于x和y的一次方程。

现在,我们需要解这个一次方程来求得x或y的值。

首先,我们可以根据方程的形式,将一次方程写成一般的标准形式,即Ax +By + C = 0,其中A、B、C为常数。

然后,我们可以使用线性代数的方法或代数方法来解这个一次方程。

如果该方程有唯一的解,则我们可以得到x或y的值。

二元二次方程组的解法技巧

二元二次方程组的解法技巧

二元二次方程组的解法技巧二元二次方程组是高中数学中比较重要的一部分,解决二元二次方程组的问题可以帮助我们更好地理解高中数学知识,同时也有助于我们在日常生活中应用数学知识。

一、方程式二元二次方程组通常可以表示为以下形式:ax^2 + bxy + cy^2 + dx + ey + f = 0gx^2 + hxy + iy^2 + jx + ky + l = 0其中,a、b、c、d、e、f、g、h、i、j、k、l均为实数。

二、解法技巧1. 消元法消元法是解决二元二次方程组的基本方法之一。

其思想是将方程组中的一些变量消除,得到一个只有一个未知数的一元二次方程。

例如,将方程组x^2 + y^2 = 25x + y = 7中的y消去,就得到一个只含有x的二次方程,从而可以求出x的值。

通过将得到的x值带入方程中,可以求出y的值。

2. 完全平方公式完全平方公式是解决二元二次方程组的重要方法之一。

对于一个一元二次方程,其一般形式为ax^2 + bx + c = 0,根据完全平方公式,可将其表示为(a x + k)^2 + p = 0,其中k和p分别为常数,根据该公式可以方便地求解一元二次方程的根。

对于二元二次方程组,我们可以尝试将其转化为一元二次方程,从而运用完全平方公式来求解。

例如,转化为一元二次方程后,方程组x^2 – y^2 = 36x^2 + y^2 = 100可表示为(x^2 + y^2) – (x^2 – y^2) = 100 – 362y^2 = 64y^2 = 32y = ±√32带入x^2 + y^2 = 100中可得出x^2 = 68,从而得出x = ±√68。

3. 消元法和完全平方公式的结合运用有时候,解决二元二次方程组需要结合运用上述两种方法。

例如,对于方程组x^2 – 4x – 5y + 18 =0y^2 + 6x + 8y + 9 = 0我们可以先使用“合并同类项”的方法,得到:(x^2 – 4x + 4) – 5y = -2y^2 + 6x + 8y + 9 = 0进一步变形后,有:(x – 2)^2 – 5y = -2 + 4y^2 + 6x + 8y + 9 = 0(x – 2)^2 = 5y + 2将上式代入第二个式子,得到:y^2 + 6x + 8y + 9 = 05y + 2 + 6x + 8y + 9 = 0从而得出y = -1,带入x –2 = ±√7,得出x = 2 ±√7。

二元二次方程的解法

二元二次方程的解法

二元二次方程的解法二元二次方程是指含有两个未知数(通常用x和y表示)的二次方程,它的一般形式可以表示为:ax^2 + bxy + cy^2 + dx + ey + f = 0其中,a、b、c、d、e、f为已知系数。

解二元二次方程的一种常见方法是分离变量法。

具体步骤如下:Step 1: 将方程整理成标准形式,即去掉系数b和e的交叉项。

先观察方程中系数b和e的符号,如果b和e同号,则可通过平移变量的方法将方程化简为标准形式。

如果b和e异号,则可通过代换变量的方法将方程化简为标准形式。

对于标准形式的方程,即无交叉项的二次方程。

Step 2: 将二元二次方程分解为两个一元二次方程。

将二元二次方程化简为两个关于x和y的一元二次方程。

假设方程为:ax^2 + bxy + cy^2 + dx + ey + f = 0我们可以将其分解为两个一元二次方程:(Ax + By + C)(Dx + Ey + F) = 0其中,A、B、C、D、E、F为待定系数。

Step 3: 解一元二次方程。

解辅助方程(Ax + By + C)(Dx + Ey + F) = 0,得到一元二次方程的解x和y。

根据一元二次方程的解法,我们可以得到x和y的值。

Step 4: 验证解的正确性。

将求得的解代入原方程,验证是否满足原方程,以确保解的正确性。

通过以上步骤,我们可以得到二元二次方程的解。

总结:二元二次方程的解法是将方程分解为两个一元二次方程,通过解一元二次方程来求得最终的解。

在解题过程中,要注意化简为标准形式、分解方程、解一元二次方程以及验证解的正确性等步骤。

掌握了二元二次方程的解法,我们就能更好地解决实际问题,提高数学问题的解题能力。

本文介绍了二元二次方程的解法,希望对您的学习和理解有所帮助。

沪教版(上海)数学八年级第二学期-21.6 二元二次方程组的解法(2) 教案

沪教版(上海)数学八年级第二学期-21.6  二元二次方程组的解法(2)  教案

§21.6二元二次方程组的解法(2)一、教学目标:1、 掌握用“因式分解法”解由两个二元二次方程组成的方程组。

2、 在学习过程中体会解此类特殊二元二次方程组的基本策略是“降次”。

3、 通过解简单的二元二次方程组,进一步理解“消元”、“降次”的数学方法,获得对事物可以相互转化的数学思想。

二、教学重点:让学生经历探索Ⅱ、Ⅱ型二元二次方程组解法的过程,学会用因式分解法来解这类特殊的方程组。

三、教学难点:能正确组合由两个二元二次方程因式分解后形成的二元一次方程组。

四、教学过程: (一)复习引入:问:1、根据二元二次方程组的意义,你可以举出哪几种不同类型的二元二次方程组?我们可以用什么方法求解?(学生举例分析)师:这些解题的过程体现了转化的数学思想,把二元转化成一元,把二次转化成一次,就可以把新问题转化成我们已有的知识来解决。

教师板书:2、你觉得还有什么类型的二元二次方程组问题你没有解决?你可以尝试举个例子吗? 师:今天我们就来解决两个都是二元二次方程的二元二次方程组的解法。

引出课题 (二)学习新课:1、出示: ⎪⎩⎪⎨⎧=+-=+065202222y xy x y x 这个方程组你能不能先办法解决?请同学们试着解解看。

解:将方程②的左边因式分解变形为0)3)(2(=--y x y x ,方程②可变形为02=-y x 或03=-y x二、一型方程组消元降次一元整式方程二元一次方程组将它们与方程①组合分别组成方程组,得(Ⅰ) ⎩⎨⎧=-=+022022y x y x 或 (Ⅱ)⎩⎨⎧=-=+032022y x y x解方程组(Ⅰ)得⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x 解方程组(Ⅱ)得⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x 所以原方程组的解为⎩⎨⎧==2411y x⎩⎨⎧-=-=2422y x ⎪⎩⎪⎨⎧==22333y x ⎪⎩⎪⎨⎧-=-=22344y x反馈练习:(1)⎪⎩⎪⎨⎧=+-=-0404222xy x y x (2)⎪⎩⎪⎨⎧=+=++516442222y x y xy x 先请学生分析解题思路,再写出解题过程。

21.6二元二次方程及方程组解法(二)

21.6二元二次方程及方程组解法(二)

① ②
① + ②×3 得 x2 + 2x – 35 = 0
‹# ›

展3
求两个未知数的和与积
x y 25 xy 12
2 2

① ②
②×2 + ① 得 x + y = ±7 原方程组可化为
x y 7 x y 7 , xy 12 xy 12
如果二元二次方程组中有一个方程可以变形为两个 一次方程的形式,那么解这个方程组的问题可以转化 为解由一个二元一次方程和一个二元二次方程所组成 的两个方程组,像这样解二元二次方程组的方法叫做 因式分解法
‹# ›
转化举例
2 2 x xy 2 y 2 x 2 xy 2 y 2 2 x 2 xy 2 y 2 2 , 2 2 x 3y 0 x 4 y 0 x 7 xy 12 y 0
②×2 - ①×3
得 4x + 9y – 6 = 0
原方程组可化为
2 x 2 4 xy 2 x y 2 0 4 x 9 y 6 0
‹# ›

展2
消去一个未知数得到一元方程
2 2 x 15 xy 3 y 2 x 9 y 98 0 2 5 xy y 3 y 21 0
其中有一个方程可以分解成一次方程
2 2 x 2 xy 3 y 0 2 2 x 4 xy 4 y 1
x 2 y 1 x 2 y 1 , x 3y 0 x y 0 x 2 y 1 x 2 y 1 , x 3y 0 x y 0

展5

新初中数学方程与不等式之二元二次方程组解析含答案(2)

新初中数学方程与不等式之二元二次方程组解析含答案(2)

新初中数学方程与不等式之二元二次方程组解析含答案(2)一、选择题1.解方程组22222()08x y x y x y ⎧-++=⎨+=⎩【答案】12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【解析】【分析】首先把①式利用因式分式化为两个一元一次方程,和②式组成两个方程组,分别求解即可.【详解】22222()08x y x y x y ⎧-++=⎨+=⎩①②, ①式左边分解因式得,()20x y x y -++=(),∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i )22208x y x y -+=⎧⎨+=⎩或(ii )22+08x y x y =⎧⎨+=⎩ 解方程组(i )得,12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩,解方程组(ii )得,3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩, 所以,原方程组的解是:12121111x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 3322x y =-⎧⎨=⎩ 4422x y =⎧⎨=-⎩ 【点睛】本题考查了二元二次方程组的解法,掌握代入消元法的一般步骤是解题的关键.2.解方程组2210260x y x x y -+=⎧⎨--+=⎩【答案】1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.【解析】【分析】由(1)得21y x =+,代入到(2)中整理为关于x 的一元二次方程,求出x 的值,并分别求出对应的y 值即可.【详解】解: ()()221012602x y x x y ⎧-+=⎪⎨--+=⎪⎩, 由(1),得21y x =+(3),把(3)代入(2),整理,得2540x x -+=,解这个方程,得121,4x x ==,把11x =代入(3),得13y =,把24x =代入(3),得29y =,所以原方程组的解是1113x y =⎧⎨=⎩,2249x y =⎧⎨=⎩.. 【点睛】本题考查了二元二次方程组的解法,用代入消元法消去一个未知数,转化为解一元二次方程是解题关键.3.解方程组:2223,44 1.x y x xy y +=⎧⎨-+=⎩【答案】111,1;x y =⎧⎨=⎩221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】分析:对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组,解方程即可.详解:2223441x y x xy y ①②+=⎧⎨-+=⎩ 由②得:()221x y -=即:21x y -=或21x y -=-所以原方程组可化为两个二元一次方程组:23,21;x y x y +=⎧⎨-=⎩ 23,21;x y x y +=⎧⎨-=-⎩分别解这两个方程组,得原方程组的解是111,1;x y =⎧⎨=⎩ 221,57.5x y ⎧=⎪⎪⎨⎪=⎪⎩. 点睛:考查二元二次方程,对②中的式子进行变形,把原来的二元二次方程转化为两个二元一次方程组是解题的关键,需要学生掌握加减消元法.4.解方程组:22+2-0110x y x y ⎧=⎨-+=⎩ 【答案】:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【解析】【分析】把(2)変形后代入(1)便可解得答案【详解】22+2-1010x y x y ⎧=⎪⎨-+=⎪⎩①②由②得:x=y-1代入①得:12023y y =⎧⎪⎨=⎪⎩, 分别代入②得:12113x x =-⎧⎪⎨=-⎪⎩, 故原方程组的解为:2112113,023x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=⎪⎩【点睛】此题考查高次方程,解题关键在于掌握运算法则5.解方程组:226021x xy y x y ⎧+-=⎨+=⎩【答案】2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩. 【解析】【分析】先将原方程组化为两个二元一次方程组,然后求解即可.【详解】原方程组变形为(3)(2)021x y x y x y +-=⎧⎨+=⎩, ∴3021x y x y +=⎧⎨+=⎩或2021x y x y -=⎧⎨+=⎩∴原方程组的解为2515x y ⎧=⎪⎪⎨⎪=⎪⎩或3515x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了二次方程组的解,将二次方程组化为一次方程组是解题的关键.6.解方程组:(1)4{526y x x y =-+= ;(2) 358{32x y x y +=-= 【答案】(1)22x y =⎧⎨=-⎩;(2) 【解析】方程组利用加减消元法求出解即可.解:(1) ①代入②得x =2把x =2代入①得y =-2∴(2) ①-②得y =1把y =1代入①得x =1∴“点睛”本题通过“代入”“加减”达到消元的目的,将解二元一次方程组的问题转化为解一元一次方程的问题.7.解方程组:223020x y x y -=⎧⎨+=⎩.【答案】1212x x y y ⎧⎧==-⎪⎪⎨⎨==⎪⎪⎩⎩ 【解析】【分析】把第一个方程化为x=3y ,代入第二个方程,即可求解.【详解】由方程①,得x =3y③,将③代入②,得(3y )2+y 2=20,整理,得y 2=2,解这个方程,得y 1,y 2④,将④代入③,得x 1=,2x =﹣所以,原方程组的解是11x y ⎧=⎪⎨=⎪⎩11x y ⎧=-⎪⎨=⎪⎩【点睛】该题主要考查了代入法解二元二次方程组,代入的目的是为了消元,化二元为一元方程,从而得解.8.解方程组:224490x xy y x y ⎧++=⎨+=⎩ 【答案】1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【解析】【分析】先将第1个方程变形为x +2y =3,x +2y =﹣3,从而得到两个二元一次方程组,再分别求解即可.【详解】解:224490x xy y x y ⎧++=⎨+=⎩①②方程①可变形为()229x y +=得:23x y +=,23x y +=-它们与方程②分别组成方程组,得; 230x y x y +=⎧⎨+=⎩或230x y x y +=-⎧⎨+=⎩解得1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 所以,原方程组的解是1133x y =⎧⎨=-⎩,2233x y =-⎧⎨=⎩ 【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.9.有一批机器零件共400个,若甲先单独做1天,然后甲、乙两人再合做2天,则还有60个未完成;若甲、乙两人合做3天,则可超产20个. 问甲、乙两人每天各做多少个零件?【答案】甲每天做60个零件,乙每天做80个零件.【解析】试题分析:根据题意,设甲每天做x 个零件,乙每天做y 个零件,然后根据根据题目中的两种工作方式列出方程组,解答即可.试题解析:设甲每天做x 个零件,乙每天做y 个零件. 根据题意,得解这个方程组,得 答:甲每天做60个零件,乙每天做80个零件.10.解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩【答案】121214,12x x y y ==⎧⎧⎨⎨=-=⎩⎩ 【解析】【分析】先由②得x +y =0或x−2y =0,再把原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩,然后解这两个方程组即可.【详解】222(1)20(2)x y x xy y -=⎧⎨--=⎩, 由②得:(x +y )(x−2y )=0,x +y =0或x−2y =0,原方程组可变形为:20x y x y -=⎧⎨+=⎩或220x y x y -=⎧⎨-=⎩, 解得:12121412x x y y ==⎧⎧⎨⎨=-=⎩⎩,. 【点睛】此题考查了高次方程,关键是通过把原方程分解,由高次方程转化成两个二元一次方程,用到的知识点是消元法解方程组.11.解方程组:231437xy y y x ⎧-=⎨-=⎩①② 【答案】32x y =-⎧⎨=-⎩. 【解析】【分析】由②得出y=7+3x③,把③代入①得出3x(7+3x)-(7+3x)2=14,求出x ,把x=-3代入③求出y 即可.【详解】解:由②得:y=7+3x(3),把③代入①得:3x(7+3x)-(7+3x)2=14,解得:x=-3,把x=-3代入③得:y=-2, 所以原方程组的解为32x y =-⎧⎨=-⎩. 【点睛】本题考查了解高次方程组,能把高次方程组转化成一元二次方程或一元一次方程是解此题的关键.12.解方程组:248x y x xy +=⎧⎨-=⎩.【答案】1113x y ⎧=+⎪⎨=⎪⎩2213x y ⎧=⎪⎨=+⎪⎩【解析】【分析】把4x y +=变形为用含x 的代数式表示y ,把变形后的方程代入另一个方程,解一元二次方程求出x 的值,得方程组的解.【详解】解:248x y x xy +=⎧⎨-=⎩①② 由①得,4y x =﹣③ 把③代入①,得248x x x ﹣(﹣)=整理,得2240x x ﹣﹣=解得:1211x x ==,把1x =③,得1413y =﹣(把1x ③,得2413y =﹣(所以原方程组的解为:1113x y ⎧=⎪⎨=-⎪⎩2213x y ⎧=-⎪⎨=⎪⎩. 【点睛】本题考查了方程组的解法和一元二次方程的解法,代入法是解决本题的关键.13.2222340441x xy y x xy y ⎧--=⎨++=⎩【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ 【解析】【分析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先分解组中的两个二元二次方程,得到四个二元一次方程,重新组合成四个二元一次方程组,再解答即可.【详解】解:2222340441x xy y x xy y ⎧--=⎨++=⎩①②将①因式分解得:(4)()0x y x y -+=,∴40x y -=或0x y +=将②因式分解得:2(2)1x y +=∴21x y +=或21x y +=-∴原方程化为:4021x y x y -=⎧⎨+=⎩,4021x y x y -=⎧⎨+=-⎩,021x y x y +=⎧⎨+=⎩,021x y x y +=⎧⎨+=-⎩解这些方程组得:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩ ∴原方程组的解为:112316x y ⎧=⎪⎪⎨⎪=⎪⎩,222316x y ⎧=-⎪⎪⎨⎪=-⎪⎩,3311x y =-⎧⎨=⎩,4411x y =⎧⎨=-⎩. 【点睛】本题考查了二元二次方程组的解法,解题的关键是利用因式分解法将原方程组转化为四个方程组.14.前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?【答案】前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%.【解析】【分析】根据题意,设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,则甲厂前年的产值为(x+12)万元,利用甲厂和乙厂的产值关系列出二元二次方程组,解得即可.【详解】设前年乙厂全年的产值为x 万元,乙厂每年比上一年递增的百分数为y ,根据题意得 ()()()()21210161210101 3.2x x y x x y ++-+=⎧⎪⎨+++=+-⎪⎩ 解得8020%x y =⎧⎨=⎩ 80+12=92(万元),答:前年甲厂全年的产值为92万元,乙厂全年的产值为80万元,乙厂每年的产值递增的百分数是20%,故答案为:92,80,20%.【点睛】本题考查了方程组的列式求解问题,二元二次方程组的求解,根据等量关系列出方程组是解题的关键.15.解下列方程组:(1)222220560x y x xy y ⎧+=⎨-+=⎩ (2)217,11 1.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩【答案】(1)3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩2)112512x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)把原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩再分别解这两个方程组可得答案. (2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案. 【详解】解:(1)因为222220560x y x xy y ⎧+=⎨-+=⎩把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ⎧+=⎨-=⎩或222030x y x y ⎧+=⎨-=⎩因为222020x y x y ⎧+=⎨-=⎩ 把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =⎧⎨=⎩ 或42x y =-⎧⎨=-⎩ 同理解222030x y x y ⎧+=⎨-=⎩得方程组的解是x y ⎧=⎪⎨=⎪⎩或x y ⎧=-⎪⎨=⎪⎩所以原方程组的解是:3124123444,,22x x x x y y y y ⎧⎧⎧⎧===-=-⎪⎪⎪⎪⎨⎨⎨⎨==-==⎪⎪⎪⎪⎩⎩⎩⎩(2)因为217,111.x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=-⎪+-⎩①② 所以①+②得:36x y=+,所以12x y +=,把12x y +=代入② 得:13x y -=-, 所以1213x y x y ⎧+=⎪⎪⎨⎪-=-⎪⎩,解得:112512x y ⎧=⎪⎪⎨⎪=⎪⎩ 经检验112512x y ⎧=⎪⎪⎨⎪=⎪⎩是原方程组的解,所以原方程的解是112512x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.16.解方程组:22x y 2{x xy 2y 0-=---=. 【答案】 11x 1y 1=-⎧⎨=⎩,22x 4y 2=-⎧⎨=-⎩ 【解析】【分析】 注意到22x xy 2y --可分解为,从而将原高次方程组转换为两个二元一次方程组求解.【详解】 解:由22x xy 2y 0--=得()()x y x 2y 0+-=,即x y 0+=或x 2y 0-=, ∴原方程组可化为x y 2x y 0-=-⎧⎨+=⎩或x y 2x 2y 0-=-⎧⎨-=⎩. 解x y 2x y 0-=-⎧⎨+=⎩得x 1y 1=-⎧⎨=⎩;解x y 2x 2y 0-=-⎧⎨-=⎩得x 4y 2=-⎧⎨=-⎩. ∴原方程组的解为11x 1y 1=-⎧⎨=⎩,22x 4y 2=-⎧⎨=-⎩.17.解方程组22()()08x y x y x y +-=⎧⎨+=⎩【答案】1122x y =⎧⎨=-⎩; 2222x y =-⎧⎨=⎩;3322x y =⎧⎨=⎩;4422x y =⎧⎨=⎩. 【解析】试题分析:方程整理为:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩解方程组即可. 试题解析:由原方程组变形得:2208x y x y +=⎧⎨+=⎩ 或2208x y x y -=⎧⎨+=⎩ 解得1122x y =⎧⎨=-⎩,2222x y =-⎧⎨=⎩ ,3322x y =⎧⎨=⎩,4422x y =-⎧⎨=-⎩.18.解方程组:22444{10x xy y x y -+=++=①②. 【答案】110{1x y ==-,2243{13x y =-=.【解析】试题分析:由①得出x ﹣2y=2或x ﹣2y=﹣2,原方程组转化成两个二元一次方程组,求出方程组的解即可.试题解析:由①得:x ﹣2y=2或x ﹣2y=﹣2.原方程可化为:22{1x y x y -=+=-,22{1x y x y -=-+=-. 解得,原方程的解是110{1x y ==-,2243{13x y =-=.考点:高次方程.19.△ABC 中,BC >AC ,CD 平分∠ACB 交于AB 于D ,E ,F 分别是AC ,BC 边上的两点,EF 交于CD 于H ,(1)如图1,若∠EFC=∠A ,求证:CE•CD=CH •BC ;(2)如图2,若BH 平分∠ABC ,CE=CF ,BF=3,AE=2,求EF 的长;(3)如图3,若CE≠CF ,∠CEF=∠B ,∠ACB=60°,CH=5,3,求AC BC的值.【答案】(1)见解析;(2)26 ; (3)5 7 .【解析】【分析】(1)只要证明△ECH∽△BCD,可得ECBC=CHCD,即可推出CE•CD=CH•BC;(2)如图2中,连接AH.只要证明△AEH∽△HFB,可得AEHF=EHFB,推出FH2=6,推出HE=HF=6,即可解决问题.(3)只要证明△ECF∽△BCA,求出CF即可解决问题.【详解】(1)证明:如图1中,∵∠EFC+∠FEC+∠ECF=180°,∠A+∠B+∠ACB=180°,又∵∠EFC=∠A,∠ECF=∠ACB,∴∠CEF=∠B,∵∠ECH=∠DCB,∴△ECH∽△BCD,∴EC CH BC CD,∴CE•CD=CH•BC.(2)解:如图2中,连接AH.∵BH、CH都是△ABC的角平分线,∴AH是△ABC的角平分线,∴∠BHC=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠BAC)=90°+12BAC=90°+∠HAE,∵CE=CF,∠HCE=∠HCF,∴CH⊥EF,HF=HE,∴∠CHF=90°,∵∠BHC=∠BHF+∠CHF=∠BHF+90°,∴∠HAE=∠BHF,∵∠CFE=∠CEF,∴∠AEH=∠BFH,∴△AEH∽△HFB,∴AE EH HF FB=,∴FH2=6,∴HE=HF=6,∴EF=26.(3)解:如图3中,作HM⊥AC于M,HN⊥BC于N.设HF=x,FN=y.∵∠HCM=∠HCN=30°,HC=5,∴HM=HN=52,53,∵3∴3322213EM HM+∵S△HCF:S△HCE=FH:EH=FC:EC,∴x13(53):3,又∵x2=y2+(52)2,解得y=5314或332(舍弃),∴CF=37,∵∠CEF=∠B,∠ECF=∠ACB,∴△ECF∽△BCA,∴EC CF BC AC=,∴203743AC CFBC EC===57.【点睛】本题考查三角形综合题、相似三角形的判定和性质、角平分线的性质、二元二次方程组等知识,解题的关键是正确寻找相似三角形解决问题,学会构建方程组解决问题,属于中考压轴题.20.解方程组:2234021x xy y x y ⎧--=⎨+=⎩. 【答案】112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【解析】【分析】方程组中第一个方程可因式分解为两个二元一次方程,这两个方程与组中的另一个方程组成两个二元一次方程组,解这两个二元一次方程组即可求得原方程组的解.【详解】解:2234021x xy y x y ①②⎧--=⎨+=⎩, 由①得:(x ﹣4y )(x +y )=0,∴x ﹣4y =0或x +y =0.原方程组可化为4021x y x y -=⎧⎨+=⎩,021x y x y +=⎧⎨+=⎩. 解4021x y x y -=⎧⎨+=⎩,得112316x y ⎧=⎪⎪⎨⎪=⎪⎩;解021x y x y +=⎧⎨+=⎩,得,2211x y =-⎧⎨=⎩. ∴原方程组的解为112316x y ⎧=⎪⎪⎨⎪=⎪⎩,2211x y =-⎧⎨=⎩ 【点睛】本题考查了二元二次方程组的解法,熟练掌握解法是求解的关键.。

(完整版)二元二次方程组的解法

(完整版)二元二次方程组的解法

二元二次方程的解法一、内容综述:1.解二元二次方程组的基本思想和方法解二元二次方程组的基本思想是“转化”,这种转化包含“消元”和“降次”将二元转化为一元是消元,将二次转化为一次是降次,这是转化的基本方法。

因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键。

2.二元二次方程组通常按照两个方程的组成分为“二·一”型和“二·二”型,又分别成为Ⅰ型和Ⅱ型。

“二·一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二·二”型是由两个二元二次方程组成的方程组。

“二·一”型方程组的解法(1)代入消元法(即代入法)代入法是解“二·一”型方程组的一般方法,具体步骤是:①把二元一次方程中的一个未知数用另一个未知数的代数式表示;②把这个代数式代入二元二次方程,得到一个一元二次方程;③解这个一元二次方程,求得一个未知数的值;④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值;如果代入二元二次方程求另一个未知数,就会出现“增解”的问题;⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解。

(2)逆用根与系数的关系对“二·一”型二元二次方程组中形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看做一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x、y的值。

当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”。

注意:不要丢掉一个解。

此方法是解“二·一”型方程组的一种特殊方法,它适用于解“和积形式”的方程组。

以上两种是比较常用的解法。

除此之外,还有加减消元法、分解降次法、换元法等,解题时要注意分析方程的结构特征,灵活选用恰当的方法。

注意:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组。

二元二次方程组的解法

二元二次方程组的解法

二元二次方程组的解法二元二次方程组是由两个二次方程组成的方程组。

解决这种方程组的关键是找到方程组的解。

一、一般形式的二元二次方程组一般情况下,二元二次方程组的一般形式如下:1. 假设方程组为:a₁x² + b₁xy + c₁y² + d₁x + e₁y + f₁ = 0a₂x² + b₂xy + c₂y² + d₂x + e₂y + f₂ = 02. 设变量:X = x², Y = y², XY = xy3. 将方程组转化为四元二次方程组:a₁X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0a₂X + b₂XY + c₂Y + d₂x + e₂y + f₂ = 04. 用消元法将X、Y消去:例:通过第一个方程将X消去令 A = a₁/a₂则 a₁X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0变为: Aa₂X + b₁XY + c₁Y + d₁x + e₁y + f₁ = 0再通过第二个方程将X消去,得到一个只包含Y、x、y的方程。

5. 解出Y,并将其代入剩下的方程中,解出x和y,即得到方程组的解。

二、例题解析以一道例题来说明解决二元二次方程组的方法。

例题:解方程组:x² + y² - 4 = 02x² + 3y² - 13 = 0解答:1. 设 X = x², Y = y²则方程组可化为:X + Y - 4 = 02X + 3Y - 13 = 02. 通过第一个方程将 X 消去:2(X + Y - 4) + 3Y - 13 = 0简化后得到:2X + 5Y - 21 = 03. 解得:Y = (21 - 2X)/54. 将 Y 代入第一个方程:X + (21 - 2X)/5 - 4 = 0简化后得到:3X - 19/5 = 05. 解得:X = 19/156. 将 X 代入 Y 的表达式:Y = (21 - 2*(19/15))/5简化后得到:Y = 16/157. 根据 X 和 Y 的值,可以求出 x 和 y 的值:对 X 和 Y 开平方根即可得到 x 和 y。

二元二次方程和方程组及其解法

二元二次方程和方程组及其解法

21.5-21.6二元二次方程和方程组及其解法知识梳理+九大例题分析+经典同步练习知识梳理一、二元二次方程1. 定义:仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫做二元二次方程.要点:(a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不为零),其中叫做这个方程的二次项,a 、b 、c 分别叫做二次项系数,叫做这个方程的一次项,d 、e 分别叫做一次项系数,f 叫做这个方程的常数项.2.二元二次方程的解能使二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解.要点:二元二次方程有无数个解;二元二次方程的实数解的个数有多种情况.二、二元二次方程组1.概念:仅含有两个未知数,各方程都是整式方程,并且含有未知数的项的最高次数为2,这样的方程组叫做二元二次方程组.要点:不能认为由两个二元二次方程组成的方程组才叫二元二次方程组,由一个二元一次方程和一个二元二次方程组成的方程组,也是二元二次方程组.2. 二元二次方程组的解:方程组中所含各方程的公共解叫做这个方程组的解.22ax bxy cy dx ey f o +++++=22,,ax bxy cy ,dx ey三、二元二次方程组的解法1.代入消元法代入消元法解“二·一”型二元二次方程组的一般步骤:①把二元一次方程中的一个未知数用另一个未知数的代数式表示; ②把这个代数式代入二元二次方程,得到一个一元二次方程; ③解这个一元二次方程,求得未知数的值; ④把所求得的未知数的值分别代入二元一次方程,求得另一个未知数的值; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组在一起,就是原方程组的解;⑥写出原方程组的解.要点:(1)解一元二次方程、分式方程和无理方程的知识都可以运用于解“二·一”型方程组;(2)“二·一”型方程组最多有两个解,要防止漏解和增解的错误.2、因式分解法 (1) 当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解得这两个“二·一”型方程组,所得的解都是原方程组的解. (2) 当方程组中两个二元二次方程都可以分解为两个二元一次方程时,将第一个二元二次方程分解所得到的每一个二元一次方程与第二个二元二次方程分解所得的每一个二元一次方程组成新的方程组,可得到四个二元一次方程组,解这四个二元一次方程组,所得的解都是原方程组的解.典型例题例题1.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C例题2.下列方程组中,属于二元二次方程组的为( )A.2x yx y+=ìí-=îB.123234x yx yì+=ïïíï-=-ïîC.11xx yì+=ïí+=ïîD.324xxy=ìí=î【答案】D【解析】根据一元一次方程组的定义对A进行判断;根据整式方程组的定义对B、C进行判断;根据二元二次方程组的定义对D进行判断.解:A、两个方程都是二元一次方程,所组成的方程组为二元一次方程组,所以A 选项不正确;B、两个方程都是分式方程,所组成的方程组为分式方程组,所以B选项不正确;C、有一个方程是无理方程,所组成的方程组不是二元二次方程组,所以C选项不正确;D、有一个方程是二元二次方程,另一个是一元一次方程,所组成的方程组为二元二次方程组,所以D选项正确.例题3.已知:方程组îíì-==+)2(1)1(122x y y x ,把(2)代入(1),得到正确的方程是( )x 2+2(1﹣x )=1B .x 2+2(x ﹣1)=1C .x 2+(1﹣x )2=0D .x 2+(1﹣x )2=1【答案】D【解析】运用代入消元法解方程组即可.解:把(2)代入(1)得x 2+(1﹣x )2=1四个答案中只有D 合题意.故选D .例题4.二元二次方程组îíì=-=+1522y x y x 的一个解是( )îíì-=-=21y xB .îíì=-=21y xC .îíì-==21y xD .îíì==21y x 【答案】A【解析】用代入法即可解答,把②化为x=1+y ,代入①得(1+y )2+y 2=求解即可.解:把②化为x=1+y ,代入①得(1+y )2+y 2=5,整理得,2y 2+2y ﹣4=0解得y 1=﹣2,y 2=1,分别代入②得当y 1=﹣2时,x 1=﹣1,当,y 2=1时,x 2=2,故原方程组的解为îíì-=-=2111y x ,îíì==1222y x .故选A .例题5.方程组 îíì-=--=-12122x y x y x 的实数解个数为( )A .0B .1C .2D .4【答案】C 【解析】把方程①变形成x=y+1,代入②即可求得y 的值,进而求得方程组的解,从而判断.解:îíì-=--=-)()(2121122x y x y x 由①得:x=y+1代入方程②得:2(y+1)2﹣y 2﹣(y+1)=﹣1即:y 2+3y+2=0解得:y 1=﹣1,y 2=﹣2把y=﹣1代入①得:x=0把y=﹣2代入①得:x=﹣1则方程组的解是:îíì-==10y x ,和îíì-=-=21y x 只两个解.故选C .例题6.方程组îíì==+022xy y x 的解是( )îíì==0011y x ,ïîïíì==12122y x B .îíì==2011y x ,îíì==0122y x C .îíì==2011y x ,îíì=-=0122y x D .îíì-==2011y x ,îíì==0122y x 【答案】B 【解析】由①得出y=2﹣2x ③,把③代入②得出x (2﹣2x )=0,求出x ,把x 的值分别代入③求出y 即可.解:îíì==+)(20)1(22xy y x ,由①得:y=2﹣2x ③,把③代入②得:x (2﹣2x )=0,x=0,2﹣2x=0,解得:x 1=0,x 2=1,把x 1=0,x 2=1分别代入③得:y 1=2,y 2=0,即原方程组的解为:îíì==2011y x ,îíì==0122y x .故选B .例题7.方程ïîïíì+-=-++=+yx a y x y x a y x 2)(2)(22有解但无不同的解时,a=( )A .1 B .0 C .﹣21 D .﹣1【答案】D【解析】由题意知,原方程组有解,并且有相同的解,由一元二次方程根的判别式可以知道△=0,将原方程组转化成一元二次方程就利用△=0就可以求出a=的值.解:ïîïíì+-=-++=+)2(2)()1(2)(22y x a y x y x a y x 由①﹣②,得4xy=2x4xy ﹣2x=02x (2y ﹣1)=0∴x=0或y=21(与条件不符合,∵y=21时方程①、②不相等)∴当x=0时y 2=a+2y∴y 2﹣2y ﹣a=0∴△=(﹣2)2﹣4(﹣a )=0∴4+4a=0∴a=﹣1.故D 答案正确.故选D .例题8.方程组ïîïíì=+-=+-0||||40||||422x y y y x x 在实数范围内( )1.有1组解B .有2组解C .有4组解D .有多于4组的解【答案】D【解析】根据题意,分析分别就a 、当x≥0、y≥0时;b 、当x≥0、y≤0时;c 、当x≤0、y≥0时;当x≤0、y≤0时四种情况,去掉决定值符号,分解因式联立方程,利用根据与系数的关系即是否符号题意,来判断方程组的解.解:a 、当x≥0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=+-=+-)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或 x=y+5 ③当x=﹣y 时,解得x=0,y=0,当x=y+5时,②③联立得y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.b 、当x≥0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=++=--)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2﹣5(x+y )=0⇒(x+y )(x ﹣y ﹣5)=0,即x=﹣y 或x=y+5 ③当x=﹣y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x 当x=y+5时,②③联立得 y 2﹣3y+5=0∵△=9﹣20=﹣11<0,∴无解.c 、当x≤0、y≥0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=--=++)2(04)1(0422x y y y x x ïîïíì=--=++)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x+y )=0⇒(x+y )(x ﹣y+5)=0,即x=﹣y 或x=y ﹣5 ③当x=﹣y 时,②③联立得 y 2﹣3y=0解得 îíì==00y x 或îíì=-=33y x ,当x=y ﹣5时,②③联立得 y 2﹣5y+5=0∵△=25﹣20=5>0,∴方程有两解.d 、当x≤0、y≤0时,ïîïíì=+-=+-0||||40||||422x y y y x x ⇒ïîïíì=-+=-+)2(04)1(0422x y y y x x 由①﹣②得 x 2﹣y 2+5(x ﹣y )=0⇒(x ﹣y )(x+y ﹣5)=0,即x=y 或x=﹣y+5③当x=y 时,②③联立得 y 2+3y=0解得 îíì==00y x 或îíì-==33y x (不合题意,舍去)当x=﹣y+5时,②③联立得 y 2+5y ﹣5=0∵△=25+20=45>0,∴方程有两解.综上所述,方程有7个解.故选D .例题9.已知,实数x ,y ,z 满足,则x 4+y 4+z 4=( )A .4B .C .D .以上都不对【答案】C【解析】根据已知条件先求出xy+xz+yz=,再求出xyz=,根据完全平方公式即可求解.解:∵,∴由(1)代入上式得:xy+xz+yz=(4),而x 3+y 3+z 3﹣3xyz=(x+y+z )(x 2+y 2+z 2﹣xy ﹣xz ﹣yz ),把(3)(4)代入上式得:xyz=(5),由(4)平方得:;把(5)代入上式得:,∴.故选C .一、单选题1.下列方程中,判断中错误的是()A .方程20316x x x +-=+是分式方程B .方程3210xy x ++=是二元二次方程C 20+=是无理方程D .方程()()226x x +-=-是一元二次方程【答案】C逐一进行判断即可.A. 方程20316x x x +-=+是分式方程,正确,故该选项不符合题意; B. 方程3210xy x ++=是二元二次方程,正确,故该选项不符合题意;C.20+=是一元二次方程,错误,故该选项符合题意;D. 方程()()226x x +-=-是一元二次方程,正确,故该选项不符合题意;故选:C .【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.2.下列方程组中,是二元二次方程组的是( )A .12x y x y +=ìí-=îB .22231310x y x y ì-=ïïíï+=ïîC .21x y xy -=ìí=îD .313x y xy y xì+=í=-î【答案】C【解析】根据二元二次方程组的定义依次判断即可.A 、是二元一次方程组,不是二元二次方程组,故本选项不符合题意;B 、是分式方程组,不是二元二次方程组,故本选项不符合题意;C 、是二元二次方程组,故本选项符合题意;D 、是二元三次方程组,不是二元二次方程组,故本选项不符合题意;故选:C.此题考查二元二次方程组的定义,熟记定义是解题的关键.3.在方程①57x y +=;②240-+=x y ;③70+=xy ;④22191+=x y ;⑤2253370+++=x xy y x 中,是二元二次方程的有()A .1个B .2个C .3个D .4个【答案】C【解析】化简后看含有两个未知数,且未知数的最高次数是2的整式方程有几个即可.解:①含有两个未知数但未知数最高次数是1,是二元一次方程;②含有两个未知数,且未知数的最高次数是2,是二元二次方程;③含有两个未知数,且未知数的最高次数是2,是二元二次方程;④未知数在分母中,是分式方程,不是二元二次方程;⑤含有两个未知数,且未知数的最高次数是2,是二元二次方程.综上所述,有3个二元二次方程.故选:C【点睛】本题考查了对二元二次方程的定义的应用,解题的关键是掌握二元二次方程的定义:含有两个未知数,且未知数的最高次数是2的整式方程是二元二次方程.4.解方程组2222129x y x xy y ì-=í++=î①②的可行方法是( )A .将①式分解因式B .将②式分解因式C .将①②式分解因式D .加减消元【答案】C【解析】由于组中的两个二元二次方程都可以分解为两个二元一次方程,所以先因式分解组中的两个二元二次方程,再解答即可.解:∵因式分解①得: ()()1x y x y +-=,因式分解②得:()29x y +=∴3x y +=或3x y +=-,将3x y +=或3x y +=-代入()()1x y x y +-=中得到13x y -=或13x y -=-,得到方程组313x y x y +=ìïí-=ïî或313x y x y +=-ìïí-=-ïî,解得:115343x y ì=ïïíï=ïî,225343x y ì=-ïïíï=-ïî故答案为:C .【点睛】本题考查了二元二次方程组的解法,解题的关键是根据二元二次方程组的特点,进行因式分解.5.方程组2y x y x mì=í=+î有两组不同的实数解,则( )A .m ≥14-B .m >14-C .14-<m <14D .以上答案都不对【答案】B【解析】将y=x²与y=x+m 函数联立,根据解的个数求解即可.方程组2y x y x mì=í=+î有两组不同的实数解,两个方程消去y 得,20x x m --=,需要△>0,即1+4m >0,所以m >14-,故选B.【点睛】本题考查了二元二次方程,用到的知识点是加减消元法解方程组,根的判别式、解一元二次方程等知识,关键是根据根的判别式求出m 的值.6.方程组2211x y ì=í=î的实数解的个数是 ( )A .1B .2C .3D .4【答案】D【解析】根据平方根的性质,正数的平方根有两个,互为相反数即可求解.解:解21x =得1x =±,解21y =得1y =±,∴方程组的解为:11111111x x x x y y y y ===-=-ììììíííí==-==-îîîî,,,,故选D.【点睛】本题考查解二元二次方程组,二元二次方程组通常按照两个方程的组成分为“二•一”型和“二•二”型,又分别成为Ⅰ型和Ⅱ型.“二•一”型是由一个二元二次方程和一个二元一次方程组成的方程组;“二•二”型是由两个二元二次方程组成的方程.7.二元二次方程组的解是A.B.C.D.【答案】C本题可将选项中的四组答案代入检验看是否符合二元二次方程组.也可根据第一个式子,得出与的关系,代入第二个式子求解依题意得=3-∴y=(3-)=-10-2+3+10=02-3-10=0(-5)(+2)=0=5,2=-21∴方程的解为:,故选C8.已知下列四对数值不是方程的解是():A.B.C.D.【答案】A【解析】将各选项代入方程进行验证即可.解:A、当x=-5,y=-2时,左边=(-5)²+(-2)² =29≠13,左边≠右边,故A错误;B、当x=-2,y=3时,左边=(-2)²+3² =13,左边=右边,故B正确;C、当x=2,y=3时,左边=2²+3² =13,左边=右边,故C正确;D、当x=-3,y=2时,左边=(-3)²+2² =13,左边=右边,故D正确;【点睛】本题考查了二元二次方程的解的定义,掌握二元二次方程的解得定义是解题的关键.9.方程组20230x y x x y +=ìí++-=î的解的情况是( )A .有两组相同的实数解B .有两组不同的实数解C .没有实数解D .不能确定【答案】B【解析】首先运用代入法,将方程组进行变形,然后利用根的判别式即可判定.20230x y x x y +=ìí++-=î①②将①代入②,得2230x -=240423240b ac =-=+´´=△>故方程有两组不同的实数解,故选:B.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.10.如果14x y =ìí=î 是方程组x y a xy b +=ìí=î的一组解,那么这个方程组的另一组解是( )A .41x y =ìí=îB .14x y =-ìí=-îC .41x y =-ìí=-îD .41x y =ìí=-î【答案】A将14x y =ìí=î代入方程组x y a xy b +=ìí=î求得54a b =ìí=î,再解方程组54x y xy +=ìí=î即可得解.将14x y =ìí=î代入方程组x y a xy b +=ìí=î中得:1414a b +=ìí´=î,解得:54a b =ìí=î,则方程组变形为:54x y xy +=ìí=î,由x+y=5得:x=5-y ,将x=5-y 代入方程xy=4中可得:y 2-5y+4=0,解得y=4或y=1,将y=1代入xy=4中可得:x=4,所以方程的另一组解为:41x y =ìí=î.故选A .【点睛】本题考查了高次方程,二元一次方程组的解法,熟记解二元一次方程的解法是解题的关键.11.方程组2220x y m y x ì-=í-=î有四组不同的实数解,则m 的取值范围是( )A .14m <-B .14m >-C .104m -<>D .14m >-,且0m ¹【答案】D首先运用代入法将方程组变形,然后利用根的判别式即可得解.2220x y m y x ì-=í-=î①②由②,得2x y =③将③代入①,得420y y m --=∵方程组有四组不同的实数解,∴()()224141140b ac m m =-=--´´-=+△>且0m ¹∴14m >-,且0m ¹故选:D.【点睛】此题主要考查根据二元二次方程组的解求参数的取值范围,解题关键的利用根的判别式.12.二元二次方程组22220,4 2.x xy y x y ì+-=í+=-î的解的个数是( )A .1B .2C .3D .4【答案】B【解析】由①得x-y=0或x+2y=0,原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,然后用代入消元法求解即可.2222042x xy y x y ì+-=í+=-î①②,由①得(x-y)(x+2y)=0,∴x-y=0或x+2y=0,∴原方程组可变为:2042x y x y -=ìí+=-î③④或22042x y x y +=ìí+=-î⑤⑥,由③得x=y ,把x=y 代入④得y 2+4y=-2,解得,∴1122x y ì=-ïí=-ïî2222x y ì=-+ïí=-ïî;由⑤得x=-2y ,把x=-2y 代入⑥得4y 2+4y+2=0,即2y 2+2y+1=0,∆=4-8=-4<0,∴此时方程无实数根,综上可知,方程组有两组解:1122x y ì=--ïí=-ïî,2222x y ì=-+ïí=-ïî.故选B .【点睛】本题考查了二元二次方程组的解法,熟练掌握代入消元法是解答本题的关键.二、填空题13.12x y =ìí=-î_______方程组22245x y x y -=ìí-=î的解(填“是”或“不是”).【答案】不是【解析】把12x y =ìí=-î代入原方程组的两个方程即可得到答案.解:把12x y =ìí=-î代入原方程组22245x y x y -=ìí-=î中的225x y -=中,方程左边=221(2)143--=-=-¹右边,所以12x y =ìí=-î不是原方程组的解.故答案为:不是.【点睛】本题考查的是方程组的解的含义,掌握方程组的解满足方程组的每一个方程是解题的关键.14.像22121x y x y ì+=-í+=î这样的二元二次方程组,是由一个________方程和一个_________方程组成,可以用________法解这个方程.【答案】二元二次二元一次 代入 【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,可以用代入法求解.由题意,得该方程组是由一个二元二次方程和一个二元一次方程组成,可以用代入法求解,故答案为:二元二次;二元一次;代入.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.15.已知12x y =ìí=-î是方程组x y m x y n +=ìí×=î的一个解,那么这个方程组的另一个解是__________.【答案】21x y =-ìí=î.【解析】将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,所以原方程组是12x y xy +=-ìí=-î,再解此方程组即可.解:将12x y =ìí=-î代入原方程组求得12m n =-ìí=-î,∴原方程组是12x y xy +=-ìí=-î①②,由①,得x=-y-1③,把③代入②式,化简得y 2+y-2=0,解之,得y 1= -2,y 2= 1.把y 1=-2代入x=-y-1,得x 1=1,把y 2=1代入x=-y-1,得x 2=-2.∴原方程组的解为:121212,21x x y y ==-ììíí=-=îî.故答案为:21x y =-ìí=î.【点睛】本题考查了解二元二次方程组,熟练掌握运算法则是解题的关键.16.解方程组24221x y xy +=ìí=-î①② 的解为_______________【答案】121237,7322x x y y =-=ììïïíí==-ïïîî【解析】由①得出x=4-2y ③,把③代入②得:2(4-2y )y=-21,求出y 1 = 72 ,y 2 = - 32,分别代入③,求出x 即可.解: 24221x y xy +=ìí=-î①②由①得:x=4-2y ③,把③代入②得:2(4-2y )y=-21,解得:y 1 =72 ,y 2 = - 32 , 把y 1 = 72代入③得:x 1 =-3, 把y 2 =- 32代入③得:x 2 =7, 即原方程组的解是 121237,7322x x y y =-=ììïïíí==-ïïîî .【点睛】本题考查了解高次方程组的应用,解此题的关键是能正确消元,即把二元变成一元.17.解方程组224422032110x xy y x y x y ì-++--=í+-=î的解为_______________【答案】21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【解析】首先把方程②变形为y=1132x -,然后利用代入法消去y ,得到关于x 的一元二次方程,解方程求出x ,然后就可以求出y ,从而求解.解:224422032110x xy y x y x y ì-++--=í+-=î①②,由②得:y=1132x -③ 把③代入①得:x 2-4(113)2x x -+4(1132x -)2+x-2(113)2x --2=0. 整理得:4x 2-21x+27=0∴x 1=3 x 2=94. 把x=3代入③ 得:y=1把x=94代入④ 得:y=178. ∴原方程组的解为: 21129341178x x y y ìì=ïï=ïïíí=ïï=ïïîî【点睛】本题考查了二元二次方程组的解法,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.18.二元二次方程()()23320x y +-=有__________个解.【答案】无数【解析】根据()()23320x y +-=可得230x +=或320y -=,从而得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,确定方程有无数个解.解:∵()()23320x y +-=∴230x +=或320y -=∴32x =-或23y =,当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数,∴方程有无数个解,故答案为:无数.【点睛】本题考查了方程的因式分解解法,解题的关键是得出当32x =-时,y 可以取任意实数,当23y =,时,x 可以取任意实数.19.解方程组224915235x y x y ì-=í-=î时,采用“_________”的方法,将二元二次方程224915x y -=化为_________方程,这是一种“__________”的策略.【答案】因式分解二元一次 消元降次【解析】观察方程组,由一个二元二次方程和一个二元一次方程组成,其中二元二次方程可以进行因式分解化为二元一次方程,这是采用了“消元降次”的策略.由题意,得该方程组可采用因式分解的方法,将二元二次方程224915x y -=化为二元一次方程,这是一种消元降次策略,故答案为:因式分解;二元一次;消元降次.【点睛】此题主要考查二元二次方程组的求解,熟练掌握,即可解题.20.如果222461461,461a a b c b b c a c c a b ì++=+ï++=+íï++=+î,那么a b c ++的值为_________________.【答案】32-【解析】方程组的三个方程轮循环对称,可把组中的三个方程相加,利用完全平方公式和非负数的和先求出a 、b 、c 的值,再计算a b c ++.解:222461461461a a b c b b a c c c a b ì++=+ï++=+íï++=+î①②③①+②+③,得222461461461a a b b c c b c a c a b ++++++++=+++++,整理,得2224414414410a ab bc c ++++++++=所以222(441)(441)(441)0a ab bc c ++++++++=即222(21)(21)(21)0a b c +++++=因为2(21)0a +…,2(21)0b +…,2(21)0c +…,所以210a +=,210b +=,210c +=所以12a =-,12b =-,12c =-,所以32a b c ++=-.故答案为:32-【点睛】本题考查了完全平方公式、非负数的和等知识点.观察题目,发现三个方程的特点是解决本题的关键.三、解答题21.解方程组:22449(1)6(2)x xy y x y ì++=í-=î.【答案】33x y =ìí=-î或51x y =ìí=-î【解析】先降次转化成两个一次方程组,解方程组即可求解.解:224496x xy y x y ì++=í-=î①②,由方程①可得x +2y =﹣3或x +2y =3,则方程组可变为236x y x y +=-ìí-=î或236x y x y +=ìí-=î,解得33x y =ìí=-î或51x y =ìí=-î.【点睛】本题考查的是高次方程,关键是通过分解,把高次方程降次,得到二元一次方程组,用到的知识点是因式分解、加减法.22.解方程组:222220560x y x xy y ì+=í-+=î.【答案】1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî【解析】由22560x xy y -+=得()()230x y x y --=,从而得到20x y -=或30x y -=,即2x y =或3x y =;再将2x y =或3x y =分别代入到2220x y +=,通过求解即可得到答案.由22560x xy y -+=得:()()230x y x y --=∴20x y -=或30x y -=∴2x y =或3x y=将2x y =代入2220x y +=,得:22420y y +=∴2y =±∴1142x y =ìí=î,2242x y =-ìí=-î将3x y =代入2220x y +=,得:22920y y +=∴y =∴33x y ì=ïí=ïî,44x y ì=ïí=ïî∴方程组的解是:1142x y =ìí=î,2242x y =-ìí=-î,33x y ì=ïí=ïî,44x y ì=ïí=ïî.【点睛】本题考查了二元二次方程、因式分解、二次根式的知识;解题的关键是熟练掌握因式分解、二元二次方程的性质,从而完成求解.23.解方程组:2220326x xy x xy y ì+=í-+=î①②【答案】11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î【解析】解①,用含y 的代数式表示x ,然后代入②求出y ,再求出方程组的解.解:2220326x xy x xy y ì+=í-+=î①②,由①,得()0x x y +=,所以0x =或x y =-.把0x =代入②,得226y =,解得y =.把x y =-代入②,得222326y y y ++=,整理,得21y =,所以1y =±.所以1x =-或1.故原方程组的解为:11x y ìïí=ïî22x y =ìïí=ïî,3311x y =-ìí=î,4411x y =ìí=-î.【点睛】本题考查了高次方程组的解法.变形①用代入法把二元二次方程组转化为一元二次方程,是解决本题的关键.24.2222560112x xy y x x y y ì-+=í++-=î【答案】112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î【解析】根据二元二次方程组的解法进行求解即可.解:2222560112x xy y x x y y ì-+=í++-=î①②,由①得:23x y x y=ìí=î,当x=2y 时,代入②可得:25920y y --=,解得:121,25y y =-=,∴122,45x x =-=;当x=3y 时,代入②可得:210820y y --=,解得:341,15y y =-=,∴343,35x x =-=,综上所述:方程组的解为112515x y ì=-ïïíï=-ïî,2242x y =ìí=î,333515x y ì=-ïïíï=-ïî,4431x y =ìí=î.【点睛】本题主要考查二元二次方程方程组的解法,熟练掌握二元二次方程组的解法是解题的关键.25.解方程组:22312230x y x xy y +=ìí--=î【答案】1162x y =ìí=î;2266x y =-ìí=î【解析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.解:22312230x y x xy y +=ìí--=î①②由②得()()30x y x y -+=30x y -=或0x y +=原方程组可化为31230x y x y +=ìí-=î;3120x y x y +=ìí+=î解得1162x y =ìí=î;2266x y =-ìí=î所以原方程组的解是1162x y =ìí=î;2266x y =-ìí=î【点睛】本题考查高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.26.解下列方程(组)(1)33(2019)(2018)1x x -+-=;(2)22222293,19293,19293.192x y xy z yz x z ì=ï+ïï=í+ïï=ï+î【答案】(1)2019或2018;(2)111(,,)333或(0,0,0)【解析】(1)运用换元法的思想令2019,2018m x n x =-=-,联立方程组可得m 和n 的等式,再利用完全平方公式的变形即可得出答案;(2)根据条件易得x=0,y=0,z=0时方程成立,当,,x y z 不为0时,把三个方程相加222111(1)(1)(1)0333x y z-+-+-=,然后根据平方数的非负性可得三个式子分别为零,即可求出结果.解:(1)令2019,2018m x n x =-=-;则3311m n m n +=ìí+=î;∴222()31-+=+-=m mn n m n mn ;∴0mn =即0m =或n=0;∴2019x =或2018;(2)易知(,,)(0,0,0)x y z = 为一组解;若,,x y z 不为0;则222121,93121,93121.93x y yz zx ì+=ïïï+=íïï+=ïî相加得222111(1)(1)(1)0333x y z -+-+-=;∴111(,,)(,,333x y z =;综上:111(,,)(,,333x y z =或()0,0,0.【点睛】本题主要考查方程的解法,灵活利用换元法、乘法公式变形及分类讨论思想是解题的重要环节.27.解下列方程组:(1)222220560x y x xy y ì+=í-+=î(2)217,11 1.x y x y x y x yì-=ï+-ïíï+=-ï+-î 【答案】(1)3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)112512x y ì=ïïíï=ïî【解析】(1)把原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î再分别解这两个方程组可得答案.(2)把两个方程相加得12x y +=,再代入求得13x y -=-,联立求解并检验可得答案.解:(1)因为222220560x y x xy y ì+=í-+=î把22560x xy y -+=化为:(2)(3)0x y x y --=,即20x y -=或30x y -=原方程组化为:222020x y x y ì+=í-=î或222030x y x y ì+=í-=î因为222020x y x y ì+=í-=î把20x y -=化为2x y =,把2x y =代入2220x y +=中,得24y =,所以2y =± ,所以方程组的解是42x y =ìí=î 或42x y =-ìí=-î同理解222030x y x y ì+=í-=î得方程组的解是x y ì=ïí=ïî或x y ì=ïí=ïî所以原方程组的解是:3124123444,,22x x x x y y y y ìììì===-=-ïïïïíííí==-==ïïïïîîîî(2)因为217,111.x y x y x y x yì-=ï+-ïíï+=-ï+-î①②所以①+②得:36x y=+,所以12x y +=,把12x y +=代入②得:13x y -=-,所以1213x y x y ì+=ïïíï-=-ïî,解得:112512x y ì=ïïíï=ïî 经检验112512x y ì=ïïíï=ïî是原方程组的解,所以原方程的解是112512x y ì=ïïíï=ïî【点睛】本题考查的是二元二次方程组与分式方程组,掌握降次与消元是解题关键,分式方程检验是必须步骤.28.某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如下表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)若某货主共有20吨货物,计划租用该公司的货车,正好(每辆货车都满载)把这批货物运完,则该货主有________种租车方案?(3)王先生要租用该公可的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?【答案】(1)甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物;(2)4种租车方案;(3)甲种货车每辆需运费100元,乙种货车每辆需运费140元【解析】(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,根据第一、二次两种货车运货情况表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用a辆甲种货车,b辆乙种货车,根据货物的总重量为20吨且每辆货车都满载,即可得出关于a,b的二元一次方程,结合a,b均为非负整数,即可得出各租车方案;(3)设甲种货车每辆需运费m元,租用甲种货车n辆,则乙种货车每辆需运费1.4m元,租用乙种货车(n)1-辆,根据总费用=每辆车所需费用´租用该种车的辆数,即可得出关于m,n的二元二次方程组,解之即可得出结论.解:(1)设甲种货车每辆可装x吨货物,乙种货车每辆可装y吨货物,依题意,得:2313 5628 x yx y+=ìí+=î,解得:23 xy=ìí=î.答:甲种货车每辆可装2吨货物,乙种货车每辆可装3吨货物.(2)设租用a 辆甲种货车,b 辆乙种货车,依题意,得:2320a b +=,3102a b \=-.a Q ,b 均为非负整数,b \为偶数,\当0b =时,10a =;当2b =时,7a =;当4b =时,4a =;当6b =时,1a =.\共有4种租车方案,方案1:租用10辆甲种货车;方案2:租用7辆甲种货车,2辆乙种货车;方案3:租用4辆甲种货车,4辆乙种货车;方案4:租用1辆甲种货车,6辆乙种货车.(3)设甲种货车每辆需运费m 元,租用甲种货车n 辆,则乙种货车每辆需运费1.4m 元,租用乙种货车(n )1-辆,依题意,得:8001.4(1)980mn m n =ìí-=î,解得:1008m n =ìí=î,1.4140m \=.答:甲种货车每辆需运费100元,乙种货车每辆需运费140元.【点睛】本题考查了二元一次方程组的应用、二元一次方程的应用以及二元二次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)找准等量关系,正确列出二元二次方程组.。

二元二次方程组解题步骤

二元二次方程组解题步骤

二元二次方程组解题步骤1. 二元二次方程组的基本概念首先,二元二次方程组可不是那么可怕,咱们可以把它理解成两个方程,里面有两个未知数,通常用 (x) 和 (y) 表示。

比如说,你可能遇到这样的方程组:begin{casesy = ax^2 + bx + cy = dx^2 + ex + fend{cases听起来很复杂,其实就是把一个曲线和一个抛物线放在一起,看看它们的交点在哪里。

没错,就是那种“缘分”让它们相遇的地方。

咱们的目标就是找出这些交点,简单吧?1.1 理解方程的构成每个二元二次方程都有个标准的格式,咱们得先把它们理解透。

第一个方程的 (a), (b), 和 (c) 就是系数,分别代表二次项、一次项和常数项。

二次方程就是“抛物线”的老大,这玩意儿开口朝上还是朝下,全靠 (a) 的符号。

注意了,如果 (a > 0),开口朝上;如果(a < 0),那就是朝下,跟人的情绪似的,时而阳光明媚,时而阴云密布。

1.2 设置方程好了,知道了这些基本概念之后,我们就要进入解题的阶段。

首先,我们得把这两个方程都化为 (y) 的形式,便于比较。

这就像咱们先把食材准备齐全,再开始做菜。

接下来,咱们要做的就是把两个方程相等,设定一个新的方程,这样一来,二元二次方程组就化身为一元二次方程。

简直是“化腐朽为神奇”啊!2. 解一元二次方程有了新方程,接下来就是找根了。

咱们可以用求根公式:x = frac{b pm sqrt{b^2 4ac{2a。

哎呀,听起来有点复杂,但其实只要好好算,一切都不是问题。

我们得先算判别式(b^2 4ac)。

如果判别式大于零,说明方程有两个不相等的实根;如果等于零,只有一个实根;小于零,那就得准备好安慰剂了,因为没有实根。

2.1 代入找 (y) 值算出 (x) 的值后,别急着高兴,接下来得把这个 (x) 代回任一方程中,找到对应的(y) 值。

这样一来,你就可以获得每一个交点的坐标了。

二元二次方程的解法

二元二次方程的解法

二元二次方程的解法二元二次方程是指含有两个未知数的二次方程,通常形式为ax^2 + by^2 + cxy+ dx + ey + f = 0。

解二元二次方程是初中数学中的重要内容,掌握解题方法对于学生来说至关重要。

本文将介绍几种常见的解二元二次方程的方法,并通过实例进行说明。

一、配方法配方法是解二元二次方程的常用方法之一。

它的基本思想是通过将方程中的某些项配成完全平方的形式,从而将方程化简为两个一元二次方程。

下面通过一个例子来说明配方法的具体步骤。

例题:解方程组{ x^2 + y^2 + 2xy = 9{ x^2 - y^2 = 1解析:首先,我们可以将第一个方程中的2xy项配成完全平方的形式。

具体来说,我们可以将其改写为(x+y)^2。

然后,将这个改写后的表达式代入第一个方程,得到:(x+y)^2 = 9解这个方程,我们可以得到两个解:x+y=3或x+y=-3。

接下来,我们将这两个解分别代入第二个方程,得到两个一元二次方程:x^2 - y^2 = 1x^2 - y^2 = -7分别解这两个方程,我们可以得到四个解:(x,y)=(2,1),(x,y)=(-2,-1),(x,y)=(2,-1),(x,y)=(-2,1)。

综上所述,方程组的解为{(2,1), (-2,-1), (2,-1), (-2,1)}。

二、代入法代入法是解二元二次方程的另一种常用方法。

它的基本思想是通过将一个方程中的一个未知数表示成另一个方程中的未知数的函数,然后代入另一个方程,从而将方程化简为一个一元二次方程。

下面通过一个例子来说明代入法的具体步骤。

例题:解方程组{ x^2 + y^2 = 9{ x + y = 3解析:首先,我们可以将第二个方程改写为y = 3 - x。

然后,将这个表达式代入第一个方程,得到:x^2 + (3 - x)^2 = 9化简这个方程,我们可以得到一个一元二次方程:2x^2 - 6x = 0。

解这个方程,我们可以得到两个解:x=0或x=3。

学习指南如何解决二元二次方程组

学习指南如何解决二元二次方程组

学习指南如何解决二元二次方程组在数学学习中,二元二次方程组是一个重要的内容。

解决二元二次方程组的方法多种多样,本文将介绍一些常见的解决方法,并给出详细的步骤,以帮助学生更好地掌握解决二元二次方程组的技巧。

一、二元二次方程组的概念和表示方法二元二次方程组是由两个二次方程组成的方程组。

一般可以表示为:\[\begin{cases}ax^2+by^2+cx+dy+e=0 \\fx^2+gy^2+hx+iy+j=0\end{cases}\]其中a、b、c、d、e、f、g、h、i、j都是已知的实数。

二、方法一:代入法解决二元二次方程组代入法是解决二元二次方程组的最常见方法之一。

具体步骤如下:步骤1:从一个方程中解出一个变量,然后将该变量的表达式代入另一个方程,并进行整理,得到一个只含一个变量的一次方程。

步骤2:解决这个一次方程,得到一个变量的值。

步骤3:将步骤2中得到的变量的值代入步骤1中解出的变量的表达式,得到另一个变量的值。

步骤4:检验求得的解是否满足原方程组,若满足,则得到方程组的解;若不满足,则说明无解。

三、方法二:消元法解决二元二次方程组消元法是另一种解决二元二次方程组的常见方法。

具体步骤如下:步骤1:通过消元法将方程组中的某个变量消去,从而得到一个只含有一个变量的一次方程。

步骤2:解决这个一次方程,得到一个变量的值。

步骤3:将步骤2中得到的变量的值代入其中一个原方程中,解出另一个变量的值。

步骤4:检验求得的解是否满足原方程组,若满足,则得到方程组的解;若不满足,则说明无解。

四、方法三:配方法解决二元二次方程组配方法是解决二元二次方程组的另一种方法。

具体步骤如下:步骤1:通过将系数恰当的乘以适当的常数,使得两个方程中的$x^2$项和$y^2$项的系数相等,将两个方程组成新的方程。

步骤2:将得到的新方程转化为完全平方式,求出完全平方。

步骤3:通过完全平方的形式解得变量的值。

步骤4:检验求得的解是否满足原方程组,若满足,则得到方程组的解;若不满足,则说明无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原方程组可化为
2 x 2 4 xy 2 x y 2 0 4 x 9 y 6 0
新课讲解
5、可消去一个未知数得到一元方程
2 2 x 15 xy 3 y 2 x 9 y 98 0 2 5 xy y 3 y 21 0
由二个二元二次方程
组成的方程组
1、二元二次方程组有哪几种类型?
二、一型和二、二型
2、解二元二次方程组的基本思想是什么?
消元和降次
3、解由一个二元一次方程和一个二元二次方程 组成的方程组的方法有哪些?
代入消元法和利用一元二次方程的根 与系数的关系解对称性方程组
新课引入
x y 20 例1、解方程组 2 2 x 5 xy 6 y 0
新课讲解
3、两个方程都不含一次项
2 2 x 2 xy 3 y 9 2 2 4 x 5 xy 6 y 30
① ②
②×3 - ①×10 得 2x2 + 5xy – 12y2 = 0
原方程组可化为
x 2 xy 3 y 9 x 4 y 0
① ②
① + ②×3 得 x2 + 2x – 35 = 0
新课讲解
6、可以求得两个未知数的和与积
x 2 y 2 25 xy 12
②×2 + ① 得 x + y = ±7


原方程组可化为
x y 7 x y 7 , xy 12 x 9 2 x 3 y 0
2 2
新课讲解
4、可消去二次项
2 2 x 4 xy 2 x y 2 0 2 3 x 6 xy x 3 y 0


②×2 - ①×3 得 4x + 9y – 6 = 0
2、两个方程都可以分解成一次方程
x 2 xy 3 y 0 2 2 x 4 xy 4 y 1
2 2
x 2 y 1 x 2 y 1 , x 3y 0 x y 0 x 2 y 1 x 2 y 1 , x 3y 0 x y 0
新课讲解
1、其中有一个方程可以分解成一次方程
2 2 2 2 2 2 x xy 2 y 2 x xy 2 y 2 x xy 2 y 2 , 2 x 3y 0 x 4y 0 2 x 7 xy 12 y 0
小结
1、解二元二次方程组的思路:
消元或降次;
2、解由两个二元二次方程组成的
方程组,根据方程组的特点,
导出一个一元方程或一次方程
3、七种不同类型的方程组解法
• 学习永远是件快乐而有 趣的事!
• 方程(组)及其变换的 魅力将把你引入一个奇 妙的境界!
轻轻的, 我走了, 正如我轻轻的来, 我轻轻地点击鼠标,
2 2
① ②
解:由②得 (x – 2y)(x – 3y) = 0
原方程组可化为 x 2 y 2 20 x 2 y 2 20 x 2 y 0 x 3y 0

x4 3 2 x1 4 x2 4 x3 3 2 原方程组的解为 , , , y1 2 y2 2 y4 2 y3 2
新课讲解
7、可以用除法降低次数 2 2 x y 3 ( x y)( x y) 3 ① 2 2 ② x 4 xy 3 y 1 ( x 3 y )( x y ) 1
x y 3 ① ÷② 得 x 3y
即 x = 2y
相关文档
最新文档