七年级下册 期中数学试卷(有答案)-最新
七年级下册期中数学试卷(有答案) (4)
七年级(下)期中数学试卷一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣62.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.725.下列方程组中,不是二元一次方程组的是()A.B.C.D.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.07.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,30分)1.如果x=2是方程x+a=﹣1的根,那么a的值是()A.0B.2C.﹣2D.﹣6【分析】把x═2代入方程x+a=﹣1得出一个关于a的方程,求出方程的解即可.【解答】解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选:C.【点评】本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.根据等式性质,下列结论正确的是()A.如果2a=b﹣2,那么a=b B.如果a﹣2=2﹣b,那么a=﹣bC.如果﹣2a=2b,那么a=﹣b D.如果2a=b,那么a=b【分析】根据等式的性质,可得答案.【解答】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加﹣2,故B错误;C、两边都除以﹣2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个【分析】根据等式的性质,可得答案.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.【点评】本题考查了等式的性质,利用等式的性质是解题关键.4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.72【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】依据二元一次方程组的定义求解即可.【解答】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符号要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.【点评】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.已知是方程组的解,则(m+n)2018的值为()A.22018B.﹣1C.1D.0【分析】根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.【解答】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.二元一次方程3x+y=7的正整数解有()组.A.0B.1C.2D.无数【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程3x+y=7,解得:y=﹣3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据关键语句“若每组7人,余3人”可得方程7y+3﹣x;“若每组8人,则缺5人.”可得方程8y﹣5=x,联立两个方程可得方程组.【解答】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A.9x﹣7x=1B.9x+7x+1C.x+x=1D.x﹣x=1【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【分析】本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×﹣800≥800×5%,解出x的值即可得出打的折数.【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.【点评】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.二、填空题(共6小题,18分)11.关于x的方程(a﹣2)x|a|﹣1﹣2=0是一元一次方程,则a=﹣2.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.【解答】解:根据题意得|a|﹣1=1,且a﹣2≠0,解得:a=﹣2.故答案是:﹣2.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.若关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,则a=2.【分析】先求得方程4x+3=7的解,然后将x的值代入方程5x﹣1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1.∵关于x的方程5x﹣1=2x+a的解与方程4x+3=7的解相同,∴方程5x﹣1=2x+a的解为x=1.∴5﹣1=2+a,解得:a=2.故答案为:2.【点评】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是m>﹣2.【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.若(2x﹣4)2+(x+y)2+|4z﹣y|=0,则x+y+z等于﹣.【分析】利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.【解答】解:∵(2x﹣4)2+(x+y)2+|4z﹣y|=0,∴,解得:,则x+y+z=2﹣2﹣=﹣.故答案为:﹣.【点评】此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为375mm2.【分析】设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y﹣x=5”,联立成方程组,解方程组即可得出结论.【解答】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.【点评】本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y 的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:+=1.【分析】利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.【解答】解:方程+=1的解为x=2018.故答案为+=1.【点评】本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.三、解答题(共7小题,满分72分)17.(8分)解方程:(1)﹣=1(2)2(x﹣2)﹣3(4x﹣1)=9(1﹣x)【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:2x+6﹣3x﹣3=6,移项合并得:﹣x=3,解得:x=﹣3;(2)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10.【点评】此题考查了解一元一次方程,解方程移项时注意要变号.18.(10分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)【分析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.【解答】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①﹣②×2得:x=2,把x=2代入①得:y=﹣1,方程组的解为:.【点评】本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.(9分)阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,如=2×5﹣3×4=﹣2.如果有>0,求x的解集,并将解集在数轴上表示出来.【分析】首先看懂题目所给的运算法则,再根据法则得到2x﹣(3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【点评】本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.20.(9分)有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.【分析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.【解答】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【点评】本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.21.(12分)先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.22.(12分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为(3﹣t)或(t﹣3)个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.【分析】(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:当t≤3时,BP=3﹣t;当t>3时,BP=t﹣3,点P在数轴上表示的数为﹣2+t;(3)依题意有:4x+3x﹣8=13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.故答案为:(1)3;8;(2)(3﹣t)或(t﹣3);﹣2+t.【点评】本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.(12分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。
最新七年级下册期中数学试题(有答案)
七年级(下)期中数学试卷一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=02.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.73.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=64.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.25.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和26.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣49.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是.12.在2x+3y=3中,若用y表示x,则x=.13.不等式5x+14≥0的负整数解是.14.方程mx+ny=10有两组解和,则2m﹣n2=.15.若方程组的解也是x+y=1的一个解,则a=.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?22.(6分)解方程组:.23.(7分)满足方程组的x和y的值之和是2,求k的值.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)下列各小题均有四个答案,其中只有一个是正确的1.下列方程中,不是一元一次方程的是()A.2x﹣3=5B.3a﹣6=4a﹣8C.x=0D.+1=0【分析】根据一元一次方程的定义判断即可;【解答】解:A、该方程符合一元一次方程的定义,故本选项正确;B、该方程化简后符合一元一次方程的定义,故本选项正确;C、该方程符合一元一次方程的定义,故本选项正确;D、该方程为分式方程,故本选项错误;故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1.2.方程3x+1=m+4的解是x=2,则m的值是()A.4B.5C.6D.7【分析】由x=2为方程的解,将x=2代入方程即可求出m的值.【解答】解:将x=2代入方程得:6+1=m+4,解得:m=6.故选:C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.4.方程kx+3y=5有一组解是,则k的相反数是()A.1B.﹣1C.0D.2【分析】将x=2、y=1代入kx+3y=5求出k的值,从而得出答案.【解答】解:将x=2、y=1代入kx+3y=5,得:2k+3=5,解得:k=1,所以k的相反数为﹣1,故选:B.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.5.若单项式2a x﹣2b与﹣3a3b3﹣y是同类项,则x、y分别是()A.5和3B.5和2C.4和3D.4和2【分析】根据同类项的定义建立方程求解即可得出结论.【解答】解:∵单项式2a x﹣2b与﹣3a3b3﹣y是同类项,∴x﹣2=3,3﹣y=1,∴x=5,y=2,故选:B.【点评】此题主要考查了同类项的意义,解简单的一次方程,建立方程求解是解本题的关键.6.若a<b,则下面可能错误的变形是()A.6a<6b B.a+3<b+4C.ac+3<bc+3D.﹣【分析】根据不等式的基本性质对各选项分析后利用排除法求解.【解答】解:A、不等号的方向不变,故本选项正确;B、不等式小的一边加上3,大的一边加上4,不等号方向改变,故本选项正确;C、对不等式两边都乘以c,再加上3,不等式不一定还成立,故本选项错误;D、不等式两边都除以﹣2,不等号方向改变,故本选项正确.故选:C.【点评】主要考查不等式的基本性质,需要熟练掌握并灵活运用.7.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A.6个B.5个C.3个D.无数个【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【点评】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.8.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()A.7x+2=8x﹣4B.7x﹣2y=8x+4C.7x+2=8x+4D.7x﹣2y=8x﹣4【分析】等量关系为:7×组数+2=8×组数﹣4,把相关数值代入即可.【解答】解:若每组有7人,实际人数为7x+2;若每组有8人,实际人数为8x﹣4,∴可列方程为7x+2=8x﹣4.故选:A.【点评】考查列一元一次方程;根据学生的实际人数得到等量关系是解决本题的关键.9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元【分析】设1听果奶为x元,1听可乐y元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【解答】解:设1听果奶为x元,1听可乐y元,由题意得:,解得:,故选:A.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.10.在如图的2018年4月的月历表中任意框出表中竖上的三个相邻的数和横排中三个相邻的数.这六个数的和可能是()星期一星期二星期三星期四星期五星期六星期日123456789101112131415161718192021222324252627282930A.98B.99C.100D.101【分析】设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,然后对各选项进行判断.【解答】解:设竖上的三个相邻的数分别为x﹣7,x,x+7,横排中三个相邻的数分别为y﹣1,y,y+1,则这六个数的和为3x+3y,即3(x+y),99为3的整数倍,而98,100,101不是,故选:B.【点评】本题考查了一次方程(组)的应用:利用表中数据的排列规律合理设未知数是解决问题的关键.二、填空题(每小题3分,共24分)11.若代数式4x+13的值不小于代数式2x﹣1的值,则x的取值范围是x≥﹣7.【分析】先根据题意列出关于x的不等式,移项,合并同类项,把x的系数化为1即可.【解答】解:∵代数式4x+13的值不小于代数式2x﹣1的值,∴4x+13≥2x﹣1,移项得,4x﹣2x≥﹣1﹣13,合并同类项得,2x≥﹣14,把x的系数化为1得,x≥﹣7.故答案为:x≥﹣7.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.在2x+3y=3中,若用y表示x,则x=.【分析】根据移项、系数化为1,可得答案.【解答】解:2x+3y=3,移项,得2x=3﹣3y,系数化为1,得x=.故答案为:.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.13.不等式5x+14≥0的负整数解是﹣2,﹣1.【分析】先求出不等式的解集,再求出符合条件的负整数解即可.【解答】解:移项得,5x≥﹣14,系数化为1得,x≥﹣,在数轴上表示为:由数轴上x的取值范围可知,不等式5x+14≥0的负整数解是﹣2,﹣1共两个.【点评】此题比较简单,解答此题的关键是正确求出不等式的解集,借助于数轴便可直观解答.14.方程mx+ny=10有两组解和,则2m﹣n2=﹣80.【分析】把x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,代入原式计算即可.【解答】解:根据题意得:,解得:,则2m﹣n2=20﹣100=﹣80.故答案为:﹣80.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.若方程组的解也是x+y=1的一个解,则a=﹣.【分析】利用二元一次方程组的解的定义得到方程组的解也是方程组的解,然后解方程组后把x、y的值代入9﹣2a=10中可求出a的值,【解答】解:∵方程组的解也是x+y=1的一个解,∴方程组的解也是方程组的解,解方程组得,把x=3,y=﹣2代入3x+ay=10得9﹣2a=10,解得a=﹣.故答案为﹣.【点评】本题考查了解二元一次方程组:熟练掌握代入消元法和加减消元法解二元一次方程组.16.如图所示,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的周长是72cm.【分析】设小长方形的长为xcm,宽为ycm,由图形可列方程组,可求出x,y的值,即可求每块小长方形地砖的周长.【解答】解:设小长方形的长为xcm,宽为ycm根据题意可得:解得:∴小长方形地砖的周长=2(27+9)=72cm故答案为:72cm【点评】本题考查了二元一次方程组的应用,根据题意列出正确的方程组是本题的关键.17.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身可以和两个盒底可制成一个罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,根据题意,可列方程组.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.18.已知方程组和方程组有相同的解,则a2﹣b2的值为﹣5.【分析】根据方程组同解得出,解之求得x、y的值,代入另外两个方程得出a+b、a﹣b 的值,代入计算可得.【解答】解:根据题意,得:,解得:,则,∴a2﹣b2=(a+b)(a﹣b)=1×(﹣5)=﹣5,故答案为:﹣5.【点评】此题考查了二元一次方程组的解,二元一次方程组的两个方程的公共解叫做二元一次方程组的解.二元一次方程组的解必须同时满足方程组中的两个方程.三、解答题(本大题共8小题满分56分)19.(6分)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:3(1﹣3x)=2﹣6x,去括号得:3﹣9x=2﹣6x,移项合并得:﹣3x=﹣1,系数化为1得:得x=.【点评】本题考查了解带分母的一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20.(6分)解不等式3(x﹣1)<4(x﹣)﹣3,并把它的解集在数轴上表示出来.【分析】去括号、移项、合并同类项,化系数为1,依此求解不等式,再把它的解集在数轴上表示出来即可.【解答】解:3(x﹣1)<4(x﹣)﹣3,去括号:3x﹣3<4x﹣2﹣3,移项得:3x﹣4x<﹣2﹣3+3,合并同类项得﹣x<﹣2,未知数的系数化为1:x>2,所以原不等式的解是:x>2,在数轴上表示为:【点评】考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的性质解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(6分)某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】设这种书包的进价是x元,其标价是(1+60%)x元,根据“按标价8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元”,列出关于x的一元一次方程,解之即可.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【点评】本题考查一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.22.(6分)解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,②﹣①得:3y=﹣3,即y=﹣1,把y=﹣1代入②得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(7分)满足方程组的x和y的值之和是2,求k的值.【分析】方程组消去k表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,②×2﹣①得:x+y=5﹣5k,代入x+y=2得:5﹣5k=2,解得:k=.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)若不等式5(x﹣2)+8≤6(x﹣1)+7的最小整数解是方程3x﹣ax=﹣3的解,求﹣|10﹣a2|的值.【分析】解不等式求出x的范围,从而得出不等式的最小整数解,代入方程求得a的值,最后代入代数式求值即可.【解答】解:去括号,得:5x﹣10+8≤6x﹣6+7,移项,得:5x﹣6x≤﹣6+7+10﹣8,合并同类项,得:﹣x≤3,系数化为1,得:x≥﹣3,则该不等式的最小整数解为x=﹣3,根据题意,将x=﹣3代入方程3x﹣ax=﹣3,得:﹣9+3a=﹣3,解得:a=2,则原式=﹣|10﹣4|=﹣6.【点评】本题考查的是解一元一次不等式和一元一次方程及代数式的求值,正确求出每一个不等式解集是基础得出a的值是解答此题的关键.25.(8分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.26.(9分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?【分析】设人数为x,则可得10≤x≤25,从而可得甲旅行社需要花费:200x×0.75,乙旅行社:200(x﹣1)×0.8,让两式相等可求出人数x为何值时两家相等,从而据此讨论x取其他值的情况.【解答】解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.【点评】本题考查一元一次不等式的应用,与实际结合得比较紧密,解答本题需要先了解两家花费一样的人数的值,这是关键.。
七年级数学期中试卷附答案
一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -32. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b3. 下列各数中,是负数的是()A. -1/3B. 0C. √4D. -√94. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -35. 下列各数中,是无理数的是()A. √4B. πC. 0.1010010001...D. -36. 如果a = -2,b = 3,那么a + b的值是()A. 1B. -1C. 0D. 57. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 48. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 49. 下列各数中,是质数的是()A. 2B. 3C. 4D. 510. 下列各数中,是合数的是()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 1/2 + 2/3 = __________12. (-3) × (-2) × (-1) = __________13. 2 × 3 × 5 × 7 = __________14. 3^2 × 3^3 = __________15. 4^2 ÷ 2^2 = __________16. 0.5 + 0.25 = __________17. 2 - 3/4 = __________18. 5 × 3/4 = __________19. 8 ÷ 2 + 2 = __________20. 3^2 × 2^3 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1) 3a - 2b + 4a - b(2) 2x + 3y - 5x - 2y22. 解下列方程:(1) 2x - 3 = 7(2) 3y + 5 = 2y + 1023. 判断下列各数是有理数还是无理数:(1) √9(2) 0.1010010001...24. 已知a = 2,b = -3,求a + b的值。
人教版七年级数学下册期中考试卷(附答案)
人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
2023-2024学年江苏省南京市七年级(下)期中数学试卷+答案解析
2023-2024学年江苏省南京市七年级(下)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算的结果是()A. B. C. D.2.将一把直尺与一块三角板如图放置,若,则的度数是()A. B. C. D.3.在长方形ABCD中,放入5个形状大小相同的小长方形空白部分,其中,求阴影部分图形的总面积()A. B. C. D.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加B.外角和增加C.对角线增加一条D.内角和增加5.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,,当为度时,AM与CB平行.()A.16B.60C.66D.1146.如图,直线,点E在CD上,点O、点F在AB上,的角平分线OG交CD于点G,过点F作于点H,已知,则的度数为()A. B. C. D.二、填空题:本题共10小题,每小题3分,共30分。
7.若有意义,则m取值范围是___.8.如图所示,的外角等于,,则的度数是______.9.如图,直角三角形ABC的周长为2022,在其内部有5个小直角三角形,则这5个小直角三角形周长的和是_____.10.中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为______.11.比较大小:_12.已知的乘积项中不含和x项,则_____.13.将沿着平行于BC的直线折叠,点A落到点,若,,则的度数为_____.14.在一个数学九宫格中,当处于同一横行,同一竖行,同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x的值为_____.15.定义运算,下面给出了关于这种运算的四个结论:①;②;③若,则;④若,则其中正确结论的序号是__________填写你认为所有正确的结论的序号16.已知关于x,y的方程组的解为,则关于m、n的方程组的解为_____;三、计算题:本大题共3小题,共18分。
仁爱版七年级下册《数学》期中考试卷及答案【可打印】
仁爱版七年级下册《数学》期中考试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. 5C. √3D. 0.52. 下列各式中,正确的是()A. 2^3 = 8^2B. (2)^3 = 8^2C. 3^2 = 9^2D. (3)^2 =9^23. 下列关于绝对值的概念,正确的是()A. 绝对值是一个数的正数部分B. 绝对值是一个数的负数部分C. 绝对值是一个数的正数或0D. 绝对值是一个数的负数或04. 下列关于相反数的概念,正确的是()A. 相反数是一个数的相反数B. 相反数是一个数的绝对值C. 相反数是一个数的相反数的绝对值D. 相反数是一个数的相反数的相反数5. 下列关于因数和倍数的关系,正确的是()A. 一个数的因数一定小于这个数B. 一个数的倍数一定大于这个数C. 一个数的因数和倍数之间没有必然联系D. 一个数的因数和倍数之间有必然联系6. 下列关于质数和合数的关系,正确的是()A. 质数是只有1和它本身两个因数的数B. 合数是只有1和它本身两个因数的数C. 质数和合数之间没有必然联系D. 质数和合数之间有必然联系7. 下列关于分数的概念,正确的是()A. 分数是一个数除以另一个数的商B. 分数是一个数除以另一个数的余数C. 分数是一个数除以另一个数的积D. 分数是一个数除以另一个数的和8. 下列关于分数的运算,正确的是()A. 分数相加,分母不变,分子相加B. 分数相减,分母不变,分子相减C. 分数相乘,分子相乘,分母相乘D. 分数相除,分子相除,分母相除9. 下列关于分数的大小比较,正确的是()A. 分子相同,分母大的分数大B. 分母相同,分子大的分数大C. 分子分母都相同,分数相等D. 分子分母都不相同,无法比较10. 下列关于分数的化简,正确的是()A. 分子分母同时除以它们的最大公约数B. 分子分母同时除以它们的最大公倍数C. 分子分母同时除以它们的和D. 分子分母同时除以它们的差二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身的相反数,这个数是()。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
【最新】五四学制七年级下册期中数学试题附答案
七年级(下)期中数学试卷(五四学制) 题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共48.0分)1. 二元一次方程组{x −3y =−2x+y=6的解是( ) A. {y =1x=5 B. {y =2x=4 C. {y =−1x=−5 D. {y =−2x=−42. 利用加减消元法解方程组,下列做法正确的是( )A. 要消去y ,可以将①×5+②×2B. 要消去x ,可以将①×3+②×(−5)C. 要消去y ,可以将①×5+②×3D. 要消去x ,可以将①×(−5)+②×2 3. 一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. 12 B. 15 C. 310 D. 7104. 下列命题是真命题的是( )A. 同旁内角互补B. 直角三角形的两锐角互余C. 三角形的一个外角等于它的两个内角之和D. 三角形的一个外角大于内角5. 如图,AB ∥CD ,∠CED =90°,∠AEC =35°,则∠D 的大小为( )A. 65∘B. 55∘C. 45∘D. 35∘6. 如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD ( )7.8.A. ∠1=∠2B. ∠3=∠4C. ∠D =∠DCED. ∠D +∠ACD =180∘9. 关于x ,y 的二元一次方程2x +3y =18的正整数解的个数为( )A. 1B. 2C. 3D. 410. 已知直线m //n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC =30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )11.12.A. 20∘B. 30∘C. 45∘D. 50∘13. 直线y =2x -1与直线y =x +1的交点为( )A. (2,3)B. (−2,−3)C. (2,−3)D. (−2,−3)14. 如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的解析式是( )A. y =2x +3B. y =x −3C. y =2x −3D. y =−x +315. 如图,直线a //b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A. 30∘B. 32∘C. 42∘D. 58∘16. 小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m 、n 上,测得∠α=120°,则∠β的度数是( )17.18.A. 45∘B. 55∘C. 65∘D. 75∘二、填空题(本大题共5小题,共20.0分)19. 已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF =100°,则∠ABD 的度数为______.20.21.22.23. 一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,估计盒子中小球的个数n =______.24. 如图,CE 平分∠ACD ,F 为CA 延长线上一点,FG ∥CE 交AB 于点G ,∠ACD =100°,∠AGF =20°,则∠B 的度数是______.25. 如图,已知一次函数y =2x +b 与y =kx -3的图象交于点P ,则方程组{y =2x +b y=kx−3的解为______. 26.27.28.29.30.31.如图,∠1+∠2+∠3+∠4+∠5+∠6=______.32.33.34.35.36.三、计算题(本大题共1小题,共8.0分)37.已知一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.38.39.40.41.42.43.44.四、解答题(本大题共6小题,共44.0分)45.如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.46.47.48.49.50.51.52.53.解方程组:x+y=154.(1){3x−y=32x−y=455.(2){4x−5y=−756.57.58.59.60.61.62.63.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是1.2964.(1)求袋中红球的个数;65.(2)求从袋中任取一个球是黑球的概率.66.67.68.69.70.71.72.73.如图所示,点B,E分别在AC,DF上,BD,CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.74.75.76.77.如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.78.(1)当∠OCD=50°(图1),试求∠F.79.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.80.81.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.答案和解析1.【答案】B【解析】解:①-②得到y=2,把y=2代入①得到x=4,∴,故选:B.用加减消元法解方程组即可.本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.2.【答案】D【解析】解:利用加减消元法解方程组,要消元y,可以将①×3+②×5;要消去x,可以将①×(-5)+②×2,故选:D.利用加减消元法判断即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】C【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.【解答】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是.故选C.4.【答案】B【解析】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】B【解析】解:∵∠CED=90°,∠AEC=35°,∴∠BED=180°-∠CED-∠AEC=180°-90°-35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选:B.根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.本题考查了平行线的性质,平角的定义,是基础题,熟记性质是解题的关键.6.【答案】A【解析】解:A、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;B、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:A.根据平行线的判定分别进行分析可得答案.此题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.7.【答案】B【解析】解:2x+3y=18,解得:x=,当y=2时,x=6;当y=4时,x=3,则方程的正整数解有2对.故选:B.将y看做已知数求出x,即可确定出方程的正整数解.此题考查了解二元一次方程,解题的关键是将y看做已知数表示x.8.【答案】D【解析】解:∵直线m//n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.【答案】A【解析】解:联立两直线解析式得,解得,所以直线y=2x-1与直线y=x+1的交点坐标是(2,3),联立两直线的解析式得到一个二元一次方程组,求出方程组的解即为两直线的交点坐标.此题考查两直线的交点坐标的计算问题,两条直线的交点坐标就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.10.【答案】D【解析】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=-x+3,故选:D.根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.11.【答案】B【解析】解:如图,过点A作AB//b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°-∠3=32°,∵a//b,AB//b,∴AB//b,∴∠2=∠4=32°,故选:B.先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可;此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.12.【答案】D【解析】∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°-45°=75°,∴∠1=75°,∴∠β=75°.故选:D.根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°-45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质.13.【答案】50°【解析】解:∵EF∥AB,∠CEF=100°,∴∠ABC=∠CEF=100°.∵BD平分∠ABC,∴∠ABD=∠ABC=×100=50°,故答案为:50°.根据平行线的性质,可得∠ABE的度数,根据角平分线的定义,可得答案.本题考查了平行线的性质,利用了平行线的性质:两直线平行,同位角相等.14.【答案】30【解析】解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故答案为:30.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.15.【答案】30°【解析】解:∵CE平分∠ACD,∴∠ACE=×∠ACD=×100°=50°,∵FG∥CE,∴∠AFG=∠ACE=50°,在△AFG中,∠BAC=∠AFG+∠AGF=50°+20°=70°,又∵∠ACB=180°-∠ACD=180°-100°=80°,∴∠B=180°-∠BAC-∠ACB=180°-70°-80°=30°. 故答案为:30°.根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG=∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BAC ,再根据邻补角的定义求出∠ACB ,然后利用三角形的内角和定理列式计算即可得解.本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.16.【答案】{y =−6x=4【解析】解:∵一次函数y=2x+b 和y=kx-3的图象交于点P (4,-6),∴点P (4,-6)满足二元一次方程组; ∴方程组的解为. 故答案为. 两个一次函数的交点坐标为P (4,-6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.【答案】360°【解析】解:∵∠7=∠1+∠2,∠8=∠5+∠6,∠3+∠4+∠7+∠8=360°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 故答案为:360°.根据三角形的外角性质可得∠7=∠1+∠2,∠8=∠5+∠6,再利用四边形中内角和为360°即可求得.本题考查了多边形的内角与外角,利用了三角形的外角性质,多边形内角和定理求解.18.【答案】解:设这个两位数的个位数字为x ,十位数字为y ,根据题意得:{x +10y +18=10x +y x+y=8,解得:{y =5x=3,答:这个两位数是35.【解析】根据关键语句“十位数字与个位数字的和是8”可得方程x+y=7,个位数字为x ,十位数字为y ,则这个两位数是x+10y ,对调后组成的两位数是10x+y ,根据关键语句“这个两位数加上18,则恰好成为个位数字与十位数字对调后组成的两位数”可得方程x+10y+18=10x+y ,联立两个方程即可得到答案.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程组.19.【答案】解:∵∠AEC =42°,∴∠AED =180°-∠AEC =138°,∵EF 平分∠AED ,∴∠DEF =12∠AED =69°,又∵AB ∥CD ,∴∠AFE =∠DEF =69°.【解析】由平角求出∠AED 的度数,由角平分线得出∠DEF 的度数,再由平行线的性质即可求出∠AFE 的度数.本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF 的度数是解决问题的关键.20.【答案】解:(1),①+②得:4x =4,解得:x =1,把x =1代入①得:1+y =1,解得:y =0,所以原方程组的解为:{y =0x=1;(2), ①×2-②得:3y =15, 解得:y =5,把y =5代入①得:2x -5=4, 解得:x =4.5,所以原方程组的解为:{y =5x=4.5.【解析】(1)①+②得出4x=4,求出x ,把x=1代入①求出y 即可;(2)①×2-②得出3y=15,求出y ,把y=5代入①求出x 即可. 本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.21.【答案】解:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个).故袋中红球的个数是200个;(2)80÷290=829. 答:从袋中任取一个球是黑球的概率是829. 【解析】(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280-40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.22.【答案】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C =∠ABD ;又∵∠C =∠D ,∴∠D =∠ABD ,∴AB ∥EF ,∴∠A =∠F .【解析】根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F . 本题考查对顶角的性质,平行线的性质以及平行线的判定条件,注意等量代换的运用,属于基础题,难度不大.23.【答案】解:(1)∵∠AOB =90°,∠OCD =50°, ∴∠CDO =40°.∵CE 是∠ACD 的平分线DF 是∠CDO 的平分线,∴∠ECD =65°,∠CDF =20°.∵∠ECD =∠F +∠CDF ,∴∠F =45°.(2)不变化,∠F =45°.∵∠AOB =90°,∴∠CDO =90°-∠OCD ,∠ACD =180°-∠OCD . ∵CE 是∠ACD 的平分线DF 是∠CDO 的平分线,∴∠ECD =90°-12∠OCD ,∠CDF =45°-12∠OCD . ∵∠ECD =∠F +∠CDF ,∴∠F =45°.【解析】(1)根据三角形的内角和是180°,可求∠CDO=40°,所以∠CDF=20°,又由平角定义,可求∠ACD=130°,所以∠ECD=65°,又根据三角形的外角等于与它不相邻的两内角之和,可求∠ECD=∠F+∠CDF ,∠F=45度.(2)同理可证,∠F=45度.本题考查了三角形的外角等于与它不相邻的两内角之和,以及三角形的内角和是180°的定理.题目难度由浅入深,由特例到一般,是学生练习提高的必备题.24.【答案】解:(1)小明骑车速度:100.5=20(km/ℎ)在甲地游玩的时间是1-0.5=0.5(h ).(2)妈妈驾车速度:20×3=60(km /h ) 设直线BC 解析式为y =20x +b 1,把点B (1,10)代入得b 1=-10∴y =20x -10设直线DE 解析式为y =60x +b 2,把点D (43,0)代入得b 2=-80∴y =60x -80∴{y =20x −10y =60x −80 解得{x =1.75y =25∴交点F (1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km .(3)方法一:设从家到乙地的路程为m (km )则点E (x 1,m ),点C (x 2,m )分别代入y =60x -80,y =20x -10得:x 1=m+8060,x 2=m+1020 ∵x 2−x 1=1060=16 ∴m+1020−m+8060=16∴m =30.方法二:设从妈妈追上小明的地点到乙地的路程为n (km ),由题意得:n 20−n 60=1060 ∴n =5∴从家到乙地的路程为5+25=30(km ).方法三:设从家到乙地的路程为n (km ),由题意得:(n /20+0.5)-(n /60+4/3)=10/60∴n =30∴从家到乙地的路程为30(km ).【解析】(1)用路程除以时间即可得到速度;在甲地游玩的时间是1-0.5=0.5小时.(2)求得线段BC 所在直线的解析式和DE 所在直线的解析式后求得交点坐标即可求得被妈妈追上的时间.(3)设从妈妈追上小明的地点到乙地的路程为n (km ),根据妈妈比小明早到10分钟列出有关n 的方程,求得n 值即可.本题考查了一次函数的应用,解题的关键是根据实际问题并结合函数的图象得到进一步解题的有关信息,并从实际问题中整理出一次函数模型.。
人教版七年级下册数学期中考试试题及答案
人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。
2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
七年级数学下册期中考试试卷(附带答案)
七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。
人教版七年级下册数学期中测试卷【含答案】
人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题1. 下列哪一个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪一个表达式是正确的?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪一个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪一个数是质数?()A. 12B. 17C. 20D. 275. 下列哪一个数是无理数?()A. √9B. √16C. √25D. √2二、判断题1. 整数包括正整数、负整数和零。
()2. 两个负数相乘的结果是正数。
()3. 两个奇数相加的结果是偶数。
()4. 两个偶数相乘的结果是偶数。
()5. 两个质数相加的结果一定是质数。
()三、填空题1. 最大的负整数是______。
2. 两个质数相乘的结果至少有______个因数。
3. 如果 a 是正数,那么 -a 是______。
4. 两个奇数相乘的结果是______。
5. 两个负数相除的结果是______。
四、简答题1. 请解释什么是质数。
2. 请解释什么是无理数。
3. 请解释什么是因数。
4. 请解释什么是偶数。
5. 请解释什么是负数。
五、应用题1. 计算下列各题的值:a. 3 + (-5)b. -2 4c. 15 / (-3)d. (-8) ^ 2e. √(-9)2. 判断下列各题的正误,并解释原因:a. 两个负数相加的结果是正数。
b. 两个偶数相乘的结果是奇数。
c. 两个质数相加的结果一定是质数。
d. 两个无理数相乘的结果是有理数。
e. 两个负数相除的结果是正数。
六、分析题1. 请分析并解释为什么两个质数相乘的结果至少有4个因数。
2. 请分析并解释为什么负数的平方是正数。
七、实践操作题1. 请用纸和剪刀剪出一个正方形,并计算其面积。
2. 请用计算器计算下列各题的值,并解释计算过程:a. 7 + (-9)b. -3 6c. 20 / (-5)d. (-4) ^ 3e. √36八、专业设计题1. 设计一个面积为24平方米的长方形花园,并计算其周长。
初一数学第二学期期中考试试卷(含答案)
初一数学第二学期期中考试试卷(含答案)试卷满分:120分考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,由AB CD ∥,能得到12∠=∠的是( )2.下列各网格中的图形是用其图形中的一部分平移得到的是-------------( )A B C D 3.下列计算正确的是( )A .a 2+a 3=a 5B .a·a 2=a 2C .(ab)3=ab 3D .(-a 2)2=a 44.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2的和的度数为( )A .220°B .210°C .140°D .120°第4题图 5.如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A 的度数为( )A .50B .40C .70D .3506. 如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中BC 边上的高是( )A. CF ;B.BE ;C.AD ;D.CD ; 7.如果,,那么三数的大小为( ) A. B. C. D. 8.若(x+5)(2x-n)=2x 2+mx-15,则( )A .m=-7,n=3B .m=7,n=-3C .m=-7,n=-3D .m=7,n=3(),990-=a ()11.0--=b 235-⎪⎭⎫ ⎝⎛-=c c b a >>b a c >>b c a >>a b c >>A CB D1 2 A CB D1 2 A .B .12 ACDC . B C AD .12 F E D CB A 第5题图 AB C D E F第6题图9. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形 内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分 别为5、6、7,四边形DHOG 面积为( )A . 5B .6C .8D .9 10.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729, 37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .7二、填空题(本大题共8小题,每空3分,共30分)11.一种细菌的半径是0.00000038厘米,用科学计数法表示为___ 厘米.12.若 ,3,6==n m a a =-n m a 2________ .若3=n x ,则=⋅n n x x )21()2(_______. 13. 二次三项式9)1(2++-x k x 是一个完全平方式,则k 的值是_________.14.一个多边形的每一个外角都是30°,则这个多边形是__ 边形,它的内角和是____°. 15.三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为________.16. 如图,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数,请写出这种做法的理由______________________.17.设m2+m −1=0,则m 3+2m 2+2014=________.18.如图a 是长方形纸带,∠DEF=22°,将纸带沿EF 折叠成图b,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是________°.三、解答题(本大题共60分.解答时应写出文字说明、证明过程或演算步骤).19.计算(每小题4分,共12分) (1)()()1331721-⎪⎭⎫ ⎝⎛--+-+-π(2)234232)3()2(x x x x --⋅+-(3) −x (2x +1)−(2x +3)(1−x ) (4)(x+1)2﹣(x+2)(x-2)20. (本题5分)先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--, 其中220120x x --=AEBCG D H F O 题9图a bD BAC P(图2)第16题第18题图A DC BE F C BG 图a图c21.(本题10分)如下图,在每个小正方形边长为1的方格纸中, △ABC 的顶点都在方格纸格点上.(1)将△ABC 经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;(2)若连接AA ',BB ',则这两条线段之间的关系是; (3)画出AC 边上的高线BD ;(4)画出△ABC 中AC 边上的中线BE ;(5)△BCE的面积为 .22.(本题5分)如图,AD ∥BE ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AB ∥CD .23.(本题6分)如图,DE ⊥AB ,EF ∥AC ,∠A=32°,①求∠DEF 的度数.②若∠F 比∠ACF大60°,求∠B 的度数..B′G FED CBA...11618141219×23...13×2323S 4=S 3×13S 3=S 2×13S 2=S 1×13S 1=13...24.(本题6分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠A=30°;图②中,∠D = 90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离______________;连接FC ,∠FCE 的度数_______________.(填“不变”、“逐渐变大”或“逐渐变小”)(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明; (3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?请求出∠CFE 的度数.25.(本题6分)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗? (1)如图①,边长为1的正方形,依次取正方形面积的21、41、81、…、n 21,根据图示我们可以知道:21+41+81+161+…+n21=__________.(用含有n 的式子表示)(2)如图②,边长为1的正方形,依次取剩余部分的32,根据图示: 计算:+++2729232…+n 32=__________.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:++++8182749231…+n n 321-=__________.(用含有n 的式子表示)图①图②图③26.(本题10分)如图,已知点A、B分别在∠MON的边ON、OM上(不与点O重合),AD平分∠BAN,BC平分∠ABM,直线AD,BC相交于点C.(1)如图1,若∠MON = 90°,试猜想∠ACB=________°;(2)如图2,在(1)的基础上,若∠MON每秒钟变小10°,经过了t秒(0 <t < 9),①试用含t的代数式表示∠ACB的度数;②并求出当t取何值时,∠MON与∠ACB的度数相等;(3)如图3,在(2)的条件下,若BC平分∠ABO,其它条件不改变,请直接写出∠BCD 与∠MON的关系.参考答案1. B2. C3. D4. A5. B6. C7. C8. D9. B 10. C 11. 3.8×107- 12.329 13. 5, -7 14. 十二 1800 15. 7, 9 16. 两直线平行,同位角相等 17. 2015 18. 114° 19. (1) -9 ( 2) -16x 6 (3) -3 (4) 2x+520. 化简结果是 3x 2-3x-5 (3分) 求值结果是 6031 (2分) 21. (每小题2分)(1)略 (2)平行且相等 (3)略 (4)略 (5)4 22.23. (每小题3分)① 122° ② 28° 24. (每小题2分)(1)逐渐变小,逐渐变大(2)和为定值,是45° (3)15°25.(每小题2分)(1)n 211- (2)n 311- (3)n n 321-26.(1)∠ACB = 45° .…. ….….2分 (2)∠ACB =(45+5t )°.…..…..5分 由 90-10t = 45 + 5t , 得t =3. .…..8分∴ 当t = 3时,∠MON 与∠ACB 的度数相等;(没写答不扣分)…. …. …..8分 (3)∠BCD = 21∠MON . …. …. …. …. …. …. …. ….…. ….. …. ….. …. …..10分。
人教版七年级下册期中考试数学试题及答案
人教版七年级下册期中考试数学试卷一、单选题1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD 的度数等于()A.40°B.35°C.30°D.20°2.实数-2,0.3,-5,2,-π中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,由下列条件不能得到AB∥CD的是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠5 4.已知点P位于第二象限,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是()A.(-3,4)B.(3,-4)C.(4,-3)D.(-4,3) 5.如图,数轴上表示1,3的点分别为A和B,若A为BC的中点,则点C表示的数是()A.3-1B.1-3C.3-2D.2-3 6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠E=30°,则∠ACF的度数为()A.10°B.15°C.20°D.25°7.下列说法不正确的是()A .0.3±是0.09的平方根,即0.3=±B 的平方根是8±C .正数的两个平方根的积为负数D .存在立方根和平方根相等的数8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(﹣3,4),若以A 点为原点建立直角坐标系,则B 点坐标是()A .(﹣3,﹣4)B .(﹣3,4)C .(3,﹣4)D .(3,4)9.已知a 、b +2b +1=0,则a +b 的值是()A .12B .1C .−1D .010.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC .其中正确的个数为()A .1个B .2个C .3个D .4个二、填空题11,2__________.12.已知点P 的坐标为(﹣2,3),则点P 到y 轴的距离为______13.平面直角坐标系中,若A 、B 两点的坐标分别为(-2,3),(3,3),点C 也在直线AB 上,且距B 点有5个单位长度,则点C 的坐标为__________.14.已知直线a 、b 、c 相交于点O ,∠1=30°,∠2=70°,则∠3=________.15的整数部分是a ,小数部分是b ,则2+a b =______.16.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D=65°,则∠AEC=.17.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.18.实数在数轴上的位置如图,那么化简a −b −b 2的结果是_______三、解答题19.计算:(1)|2−3|+3−8+(−2)2(2)(3)(−3)2+(−6)2−(3−0.125)3+|1−2|20.如图,已知EF ∥AD ,∠1=∠2,∠BAC =70°,求∠AGD (请填空)解:∵EF ∥AD ∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB ∥()∴∠BAC+=180°()∵∠BAC =70°()∴∠AGD =()21.如图,三角形ABC 沿x 轴正方向平移2个单位长度,再沿y 轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG 的三个顶点坐标;(2)求三角形EFG 的面积.22.如图,已知AB ∥DE ,∠ABC +∠DEF =180°,求证:BC ∥EF.23.若23(2)0x z -+-=,求x y z ++的平方根和算术平方根。
新部编版七年级数学下册期中试卷(及答案)
新部编版七年级数学下册期中试卷(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差-( )A .0.2 kgB .0.3 kgC .0.4 kgD .50.4 kg2.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为( )①a ﹣b >0 ②ab <0 ③1a >1b④a 2>b 2.A .1B .2C .3D .44.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为( )A .6.5×10﹣4B .6.5×104C .﹣6.5×104D .65×10410.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.若式子x 2-在实数范围内有意义,则x 的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.已知,|a|=﹣a ,bb =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.4.若正多边形的每一个内角为135,则这个正多边形的边数是__________.5.若一个数的平方等于5,则这个数等于________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x 一2y=0的解,则k 的值是多少?3.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、A5、C6、B7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥2、-4π3、﹣2c4、八(或8)5、6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、5k =-3、(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。
七年级数学下册期中考试卷(附答案)
七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.36的平方根是()A .6-B .6C .6±D .4±2.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个 5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根 7.一副直角三角板如图所示摆放,它们的直角顶点重合于点O ,//CO AB ,则BOD ∠=( )A .30B .45︒C .60︒D .90︒8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2021,0二、填空题9.计算:﹣9=_____.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A 1,第2次移动到点A 2…第n 次移动到点A n ,则△OA 2A 2021的面积是 __________________.三、解答题17.计算下列各式的值:(1)237)--(233(3)8318.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图①,在平面直角坐标系中,点A 、B 在x 轴上,AB BC ⊥,2AO BO ==,3BC =.(1)写出点A 、B 、C 的坐标.(2)如图②,过点B 作//BD AC 交y 轴于点D ,求CAB BDO ∠+∠的大小. (3)如图③,在图②中,作AE 、DE 分别平分CAB ∠、ODB ∠,求AED ∠的度数. 21.计算:(1)239(6)27----; (2)﹣12+(﹣2)3×31127()89--⨯-; (3)已知实数a 、b 满足1a -+|b ﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.(1)若一圆的面积与这个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆______C 正.(填“=”或“<”或“>”号)(2)如图,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由. 23.已知:直线AB ∥CD ,M ,N 分别在直线AB ,CD 上,H 为平面内一点,连HM ,HN . (1)如图1,延长HN 至G ,∠BMH 和∠GND 的角平分线相交于点E .求证:2∠MEN ﹣∠MHN =180°;(2)如图2,∠BMH 和∠HND 的角平分线相交于点E .①请直接写出∠MEN 与∠MHN 的数量关系: ;②作MP 平分∠AMH ,NQ ∥MP 交ME 的延长线于点Q ,若∠H =140°,求∠ENQ 的度数.(可直接运用①中的结论)【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义求解即可.【详解】解:∵2(6)36=±,∴36的平方根是6±,故选:C .【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,故选A.【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题,④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】由AB//CO得出∠BAO=∠AOC,即可得出∠BOD.【详解】AB CO,解://∴∠=∠=︒OAB AOC60∴∠=︒+︒=︒6090150BOC∠+∠=∠+∠=︒AOC DOA DOA BOD90∴∠=∠=︒60AOC BOD故选:C.【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题.8.B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运解析:B【分析】分析点P的运动规律找到循环规律即可.【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.【点睛】本题考查了规律型:点的坐标,是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.二、填空题9.﹣3.【详解】试题分析:根据算术平方根的定义﹣=﹣3.故答案是﹣3.考点:算术平方根.解析:﹣3.【详解】﹣3.故答案是﹣3.考点:算术平方根.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC 沿直线AC 翻折得到△ADC ,∴S △ABC =S △ADC ,BD ⊥AC ,BE =ED ,∴S 四边形ABCD =8, ∴182AC BD ⨯⨯=, ∵BE =2,AE =3,∴BD =4,∴AC =4,∴CE =AC ﹣AE =4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD 的等面积法求解是解题的关键.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a、b为两个连续的整数,15<<,a bb=,∴3a=,4a b+=+=;∴347故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题.15.【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A解析:32【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.【详解】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,-5),∴OF=5,∵S△AOB=12AO•BE=12×4×3=6,S△AOC=12AO•OF=12×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴12BC•AD=16,∴BC•AD=32,故答案为:32.【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.16.【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环解析:1009 2【分析】由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题.【详解】解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2∵2021÷4=505…1,∴A2021与A1是对应点,A2020与A0是对应点∴OA2020=505×2=1010,A1A2021=1010∴A2A2021=1010-1=1009则△OA2A2019的面积是12×1×1009=10092,故答案为:10092.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.,.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1),,;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得,则∠;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1)()2,0A -,()2,0B ,()2,3C ;(2)90°;(3)45°【分析】(1)根据图形和平面直角坐标系,可直接得出答案;(2)根据两直线平行,内错角相等可得ABD BAC ∠=∠,则∠90CAB BDO ABD BDO +∠=∠+∠=︒;(3)根据角平分线的定义可得CAE BDE ∠+∠45=︒,过点E 作//EF AC ,然后根据平行线的性质得出, 45AED CAE BDE ∠=∠+∠=︒.【详解】解:(1)依题意得:()2,0A -,()2,0B ,()2,3C ;(2)∵//BD AC ,∴ABD BAC ∠=∠,∴90CAB BDO ABD BDO +∠=∠+∠=︒;(3)∵//BD AC ,∴ABD BAC ∠=∠,∵AE ,DE 分别平分CAB ∠,ODB ∠, ∴111()()90222CAE BDE BAC BDO ABD BDO ∠+∠=∠+∠=∠+∠=⨯︒ 45=︒,过点E 作//EF AC ,则CAE AEF ∠=∠,BDE DEF ∠=∠,∴45AED AEF DEF CAE BDE ∠=∠+∠=∠+∠=︒.【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A ,B ,C 的坐标是解题的关键,(3)作出平行线是解题的关键.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键. 22.(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1)<;(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得关于a 的方程,解得a 的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案.【详解】解:(1)圆的面积与正方形的面积都是22cm π,∴)cm )cm ,)C cm ∴=圆,)C cm =正,32848ππππ=⨯>⨯, ∴C C ∴<正圆.(2)不能裁出长和宽之比为3:2的长方形,理由如下:设裁出的长方形的长为3()a cm ,宽为2()a cm ,由题意得:3212a a ⨯=,解得a =a =∴长为,宽为,正方形的面积为216cm ,∴正方形的边长为4cm , 324>,∴不能裁出长和宽之比为3:2的长方形.【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键.23.(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)①2∠MEN +∠MHN =360°;②20°【分析】(1)过点E 作EP ∥AB 交MH 于点Q ,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H 作GI ∥AB ,利用(1)中结论2∠MEN ﹣∠MHN =180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH +∠HNC =360°﹣(∠BMH +∠HND ),进而用等量代换得出2∠MEN +∠MHN =360°. ②过点H 作HT ∥MP ,由①的结论得2∠MEN +∠MHN =360°,∠H =140°,∠MEN =110°.利用平行线性质得∠ENQ +∠ENH +∠NHT =180°,由角平分线性质及邻补角可得∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.继续使用等量代换可得∠ENQ 度数.【详解】解:(1)证明:过点E 作EP ∥AB 交MH 于点Q .如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=12∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.。
山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)
试卷类型:A2023—2024学年度第二学期期中质量检测七年级数学试题注意事项:1.考试时间120分钟,试卷满分150分;2.答卷前,请将试卷密封线内和答题纸上的项目填涂清楚;3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷(选择题共52分)一、单选题(本大题共8小题,共32分.在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选均记0分)1.巨噬细胞是人体的“清道夫”,它是由单核细胞演变而来,一直在为我们的身体做清洁工作,其直径可达0.00008米.将0.00008用科学记数法可表示为()A .B .C .D .2.如图,已知OB 是内部的一条射线,下列说法一定正确的是()A .B .C .可以用表示D .与表示同一个角3.下列方程是二元一次方程的是()A .B .C .D .4.如图,从旗杆AB 的顶端A 处向地面拉一条绳子,绳子底端恰好在地面P 处,若旗杆的高度为13.8米,则绳子AP的长度不可能是()40.810-⨯50.810-⨯4810-⨯5810-⨯AOC ∠2AOC BOC ∠=∠BOC AOB∠<∠AOC ∠O ∠1∠AOB ∠20x y -=10xy +=223x x +=8y x=A .16米B .15米C .14米D .13米5.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,,则的值为()A .B .C .D .6.小亮在做“化简,并求时的值”一题时,错将看成了,但结果却和正确答案一样.由此可知k 的值是()A .2B .3C .4D .57.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是()A .B .C .D .8.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若,且,则的度数是()A .B .C .D .二、多选题(本大题共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,错选、多选均记0分)9.如图,下列说法正确的是()140,2120∠=︒∠=︒34∠+∠160︒150︒100︒90︒()()()23263516x k x x x x +⋅+-⋅+++6x =6x =6x =-()647812y x y x +=⎧⎪⎨--+=⎪⎩()64782y x y x -=⎧⎪⎨-+=⎪⎩()64782y x y x +=⎧⎪⎨-+=⎪⎩()647812y x y x-=⎧⎪⎨---=⎪⎩CD BE ∥125∠=︒2∠60︒75︒80︒85︒A .与是对顶角B .与是内错角C .与是同位角D .与是同旁内角10.下列运算正确的是()A .B .C .D .11.解方程组时,下列消元方法正确的是()A .②×3-①,消去xB .①×3+②×2,消去yC .②×2-①×3,消去yD .由②得:,然后代入①中消去x12.如图,的平分线BE 交AC 于点E ,的平分线CD 交AB 于点D ,BE ,CD 相交于点F ,,且于点G ,下列结论中正确的是()A .B .CA 平分C .D .第Ⅱ卷(非选择题共98分)三、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13.计算:________.14.如图,点O 在直线AB 上,,OE 平分,则的度数为_____°.1∠2∠1∠4∠1∠B ∠4∠D ∠2327a a a a -⋅÷=22(2)(2)222b a b a b ab a ---⋅+=2336(3)27ab a b ---=()122112323nn n n n n a a aa a a a --+⋅-+=-+3216331x y x y +=⎧⎨-=⎩①②313x y =+ABC ∠ACB ∠90,A EG BC ∠=︒∥CG EG ⊥2CEG DCB ∠=∠BCG ∠ADC GCD ∠=∠45DFB ∠=︒109287031︒'-︒'=118,AOC OC OD ∠=︒⊥BOC ∠DOE ∠15.对任意有理数x ,等式总成立,那么________.16.如图,直线,一块三角板ABC ()按如图所示放置.若,则的度数为________°.17.如图,在四边形ABCD 中,,对角线AC ,BD 交于点O ,若三角形AOB 的面积为6,且,则三角形AOD 的面积是_________.18.如图,将一个大长方形ABCD 分割成5个正方形①②③④⑤和1个小长方形⑥,若,则大长方形ABCD 的面积是_______.()()236x x n x mx -+=+-m n =a b ∥60,90A C ∠=︒∠=︒150∠=︒2∠AD BC ∥:1:2AO OC =3,4GF EF ==四、解答题(本题共7小题,满分74分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分8分)计算下列各题:(1);(2).20.(本题满分8分)解下列方程组:(1),(2)21.(本题满分9分)按下列要求画图并填空.如图,P 是的边OB 上一点,(1)过点P 作射线OA 的垂线,垂足为H ;(2)过点P 作射线OB 的垂线,交OA 于点C ;(3)过点P 作直线(点D 在点P 的右侧);(4)与的数量关系是_________.(5)线段PC ,PH ,OC 这三条线段大小关系是________(用“<”号连接),依据是________.22.(本题满分10分)我们知道,一般的数学公式,法则、定义可以正向运用,也可以逆向运用.例如,“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为:;;;其中m ,n 为正整数.结合以上材料解决下列问题.(1)已知,请把a ,b ,c 用“<”连接起来;(2)若,求的值;(3)化简:.23.(本题满分12分)如图,已知射线,连接AB ,点P 是射线AM 上的一个动点(与点A 不重合),BC ,BD 分别平分和,分别交射线AM 于点C ,D.()23155a a b ⎛⎫-⋅- ⎪⎝⎭()()21241x x x -⋅-+-21327x y x y -=⎧⎨+=⎩()111231211x y x y ⎧+=-⎪⎨⎪+-=⎩AOB ∠PD OA ∥HPC ∠DPC ∠m n m n a a a +=⋅()nmn m a a =()m mm a b ab =5544332,3,4a b c ===2,5a b x x ==32a b x +1031001021384⎛⎫⨯⨯ ⎪⎝⎭AM BN ∥ABP ∠PBN ∠(1)当时,求的度数;(2)试判断与之间的数量关系,并说明理由.24.(本题满分13分)已知用2辆A 型车和1辆B 型车载满货物—次可运货10吨;用3辆A 型车和2辆B 型车载满货物一次可运货17吨.某物流公司现有货物35吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,请选出最省钱的租车方案,并求出最少租车费.25.(本题满分14分)已知,直线,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当时,求的度数;(2)如图2,点P 在直线AB ,CD 之间,与的角平分线相交于点K ,写出与之间的数量关系,并说明理由;(3)如图3,点P 落在直线CD 的下方,与的角平分线相交于点K ,与有何数量关系?请说明理由.40A ∠=︒CBD ∠APB ∠ADB ∠AB CD ∥56,24BAP DCP ∠=︒∠=︒APC ∠BAP ∠DCP ∠AKC ∠APC ∠BAP ∠DCP ∠AKC ∠APC ∠2023-2024学年度第二学期期中学情诊断七年级数学试题参考答案及评分标准一、单选题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)题号12345678答案DDADCBAC二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)题号9101112答案ADADABDACD三、填空题(本大题共6小题,每小题4分,共24分.只填写最后结果)13.14.15.16.17.318.99四、解答题(本题共6小题,共74分.请写出必要的文字说明、证明过程或演算步骤)19.解:(本题8分,1、2小题每题4分)(1) 4分(2)6分8分20.解:(本题8分,1、2小题每题4分)(1)①+②得:1分解得:2分将代入①得:3分解得:,所以4分(4)化简方程组得:①×2得:③③-②得: 6分将代入①得:3857︒'59︒12110︒()()23627211525555a a b a a b a b ⎛⎫⎛⎫-⋅-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()()2322124124241x x x x x x x x --+-=-+-+-+⋅322651x x x =-+-+48x =2x =2x =221y -=12y =212x y =⎧⎪⎨=⎪⎩24328x y x y -=-⎧⎨-=⎩①②428x y -=-16x =-16x =-()2164y ⨯--=-解得:7分所以 8分21.解:(本题9分)(1)如图所示 1分(2)如图所示 2分(3)如图所示3分(4)互余5分(5),垂线段最短9分22.解:(本题10分)(1)∵3分∴ 4分(2 6分∵∴原式7分(3)10分23.解:(本题12分)(1)∵∴,1分28y =-6281x y =-=-⎧⎨⎩PH PC OC <<()55511112232a ===44411113(3)81b ===()13331114464c ===a c b <<()()323232a baba b xx x xx +=⋅=⋅2,5a b x x ==3225200=⨯=1031003100102100100211138388444⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯⨯⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭100310010010021001113883816444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯=⨯⨯⨯=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,40AM BN A ∠=︒∥180140ABN A ∠=︒-∠=︒∵BC ,BD 分别平分和,∴,3分∴5分(2),7分∵BD 平分,∴,9分∵,∴,∴.12分24.解:(本题13分)(1)设每辆A 型车、B 型车都载满货物一次可以分别运货x 吨、y 吨,根据题意,得,2分解得,3分经检验,方程组的解符合题意.答:1辆A 型车载满货物一次可运3吨,1辆B 型车载满货物一次可运4吨.(2)由(1),得,5分∴,∵a ,b 都是正整数,∴,或,或,∴有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆:8分方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,∴方案一需租金:(元);方案二需租金:(元);方案三需租金:(元). 11分∵12分∴最省钱的租车方案是方案三答:租A 型车1辆,B 型车8辆,最少租车费为1140元.25.解:(本题14分)(1)如图1,过P 作,ABP ∠PBN ∠11,22CBP ABP DBP PBN ∠=∠∠=∠1111140702222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=⨯︒=︒2APB ADB ∠=∠PBN ∠2PBN DBN ∠=∠AM BN ∥,APB PBN BDP DBN ∠=∠∠=∠2APB ADB ∠=∠2103217x y x y +=⎧⎨+=⎩34x y =⎧⎨=⎩3435a b +=3543ba -=92a b =⎧⎨=⎩55a b =⎧⎨=⎩ 1 8a b =⎧⎨=⎩910021301160⨯+⨯=510051301150⨯+⨯=110081301140⨯+⨯=116011501140>>PE AB ∥∵,∴,∴, 2分∵∴4分(2).理由如下: 5分如图2,过K 作,∵,∴,∴,∴,过P 作,同理可得,,∵与的角平分线相交于点K ,∴, 8分∴,∴;9分(3).理由如下:10分如图3,过K 作,AB CD ∥PE AB CD ∥∥,APE BAP CPE DCP ∠=∠∠=∠56,24BAP DCP ∠=︒∠=︒562480APC APE CPE BAP DCP ∠=∠+∠=∠+∠=︒+︒=︒2AKC APC ∠=∠KE AB ∥AB CD ∥KE AB CD ∥∥,AKE BAK CKE DCK ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠+∠=∠+∠PF AB ∥APC BAP DCP ∠=∠+∠BAP ∠DCP ∠11,22DCK DCP BAK BAP ∠=∠∠=∠11112222()BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠2AKC APC ∠=∠2AKC APC ∠=∠KE AB ∥∵,∴,∴,∴,…分过P 作同理可得,,12分∵与的角平分线相交于点K ,∴,3分∴,∴.14分AB CD ∥KE AB CD ∥∥,BAK AKE DCK CKE ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠-∠=∠-∠PF AB∥APC BAP DCP ∠=∠-∠BAP ∠DCP ∠11,22BAK BAP DCK DCP ∠=∠∠=∠()11112222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠2AKC APC ∠=∠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a•a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C.∠AOD和∠DOC互补D.∠AOE和∠BOC互补3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°4.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)5.若多项式(2x﹣1)(x﹣m)中不含x的一次项,则m的值为()A.2B.﹣2C.D.﹣6.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在OB上有一点C,从C点射出一束光线经OA上的D点反射后,反射光线DE恰好与OB平行,则∠DCB的度数是()A.60°B.80°C.100°D.120°7.如图,已知AD⊥BC于D,DE∥AB,若∠B=48°,则∠ADE的度数为()A.32°B.42°C.48°D.52°8.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0B.2C.﹣2D.﹣2a49.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B.C.D.10.已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3二、填空题(每小题3分,共24分)11.计算:(﹣x2)3÷(x2•x)=.12.计算:=.13.已知100张某种型号的纸厚度约为1cm,则一张这样的纸厚度约为m(用科学记数法表示).14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.15.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=°.16.某城市公园原有一个边长为am的正方形花坛,现在把花坛的边长增加2m,则这个花坛的面积增加了m2.17.已知(x+2)(x﹣3)=x2+mx+n,则n m=.18.我国宋朝数学家杨辉在他的著作《详解九章算术》中提出下表,此表揭示了(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)6展开式共有项,各项系数的和等于.19.(4分)已知:∠AOB.求作:点P,使点P与B在OA同侧,且AP∥OB,AP=AB.三、解答题(本题共有7个小题,满分62分)20.(14分)计算:(1)(﹣2x2y)2﹣2xy•x3y;(2)(2x﹣3)(x+1);(3)20172﹣2016×2018(利用乘法公式计算);(4)[(x+1)(x+2)﹣2]÷x.21.(6分)先化简再求值:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)(a+2b),其中a=﹣,b=﹣3.22.(6分)研究发现,地表以下岩层的温度与它所处的深度有表中的关系:123456…岩层的深度h/km5590125160195230…岩层的温度t/℃根据以上信息,回答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1km,温度t是怎样变化的?(3)估计岩层10km深处的温度是多少?23.(8分)如图,AC⊥BC于C,CD⊥AB于D,点E在AC上,EF⊥AB于F,且∠1=∠2.(1)试判断CD与EF是否平行并说明理由.(2)试判断DG与BC是否垂直并说明理由.24.(8分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?25.(8分)(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=;第2个:(a﹣b)(a2+ab+b2)=;第3个:(a﹣b)(a3+a2b+ab2+b3)=;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.26.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a•a2=a2B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a5【分析】根据同底数幂乘法、积的乘方、幂的乘方、同底数幂的除法计算后利用排除法求解.【解答】解:A、应为a•a2=a3,故A选项错误;B、应为(ab)3=a3b3,故B选项错误;C、(a2)3=a6,故C选项正确;D、应为a10÷a2=a8,故D选项错误.故选:C.【点评】本题主要考查幂的运算性质,熟练掌握性质是解题的关键.2.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C.∠AOD和∠DOC互补D.∠AOE和∠BOC互补【分析】根据角平分线的性质,可得∠AOD=∠COD,∠COE=∠BOE,再根据余角和补角的定义求解即可.【解答】解:∵OD平分∠BOC,OE平分∠AOC,∴∠BOD=∠COD=∠BOC,∠AOE=∠COE=∠AOC,∵∠AOC+∠COB=180°,∴∠COE+∠COD=90°,A、∠DOE为直角,说法正确;B、∠DOC和∠AOE互余,说法正确;C、∠AOD和∠DOC互补,说法正确;D、∠AOE和∠BOC互补,说法错误;故选:D.【点评】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】本题主要利用两直线平行,内错角相等作答.【解答】解:根据题意可知,两直线平行,内错角相等,∴∠1=∠3,∵∠3+∠2=45°,∴∠1+∠2=45°∵∠1=20°,∴∠2=25°.故选:B.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.4.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.5.若多项式(2x﹣1)(x﹣m)中不含x的一次项,则m的值为()A.2B.﹣2C.D.﹣【分析】根据多项式与多项式相乘的法则把原式变形,根据题意得出关于m的方程,解之可得.【解答】解:∵(2x﹣1)(x﹣m)=2x2﹣2mx﹣x+m=2x2﹣(2m+1)x+m,∴2m+1=0,解得:m=﹣,故选:D.【点评】本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.6.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在OB上有一点C,从C点射出一束光线经OA上的D点反射后,反射光线DE恰好与OB平行,则∠DCB的度数是()A.60°B.80°C.100°D.120°【分析】由DE∥OB,∠AOB=40°,根据两直线平行,同位角相等,即可求得∠ADE的度数,又由∠AOB的两边OA,OB都为平面反光镜,根据反射的性质,可得∠ODC=∠ADE=40°,然后由三角形外角的性质,求得∠DCB的度数.【解答】解:∵DE∥OB,∠AOB=40°,∴∠ADE=∠AOB=40°,∵∠AOB的两边OA,OB都为平面反光镜,∴∠ODC=∠ADE=40°,∴∠DCB=∠AOB+∠ODC=40°+40°=80°.故选:B.【点评】此题考查了平行线的性质、三角形外角的性质以及反射的性质.此题难度不大,注意掌握两直线平行,同位角相等定理的应用.7.如图,已知AD⊥BC于D,DE∥AB,若∠B=48°,则∠ADE的度数为()A.32°B.42°C.48°D.52°【分析】根据平行线的性质和互余解答即可.【解答】解:∵DE∥AB,∴∠EDC=∠B=48°,∵AD⊥BC,∴∠ADE=90°﹣48°=42°,故选:B.【点评】本题主要考查了平行线的性质,熟练掌握平行线的性质是解决问题的关键.8.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0B.2C.﹣2D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选:C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B.C.D.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.10.已知a﹣b=3,则a2﹣b2﹣6b的值为()A.9B.6C.3D.﹣3【分析】由已知得a=b+3,代入所求代数式,利用完全平方公式计算.【解答】解:∵a﹣b=3,∴a=b+3,∴a2﹣b2﹣6b=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9.故选:A.【点评】本题考查了完全平方公式的运用,关键是利用换元法消去所求代数式中的a.二、填空题(每小题3分,共24分)11.计算:(﹣x2)3÷(x2•x)=﹣x3.【分析】直接利用积的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:(﹣x2)3÷(x2•x)=﹣x6÷x3=﹣x3.故答案为:﹣x3.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.12.计算:=﹣8.【分析】根据同底数幂的乘法和积的乘方可以解答本题.【解答】解:====8×(﹣1)=﹣8,故答案为:﹣8.【点评】本题考查幂的乘方与积的乘方,解答本题的关键是明确它们各自的计算方法.13.已知100张某种型号的纸厚度约为1cm,则一张这样的纸厚度约为1×10﹣4m(用科学记数法表示).【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,得出答案.【解答】解:由题意可得,一张这样的纸厚度约为:1÷100÷100=10﹣4(m).故答案为:1×10﹣4.【点评】此题考查科学记数法表示较小的数的方法,准确确定a与n值是关键.14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.【分析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.15.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=36°.【分析】直接利用平行线的性质得出∠BEC=108°,再利用角平分线的定义得出答案.【解答】解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=36°.故答案为:36.【点评】此题主要考查了平行线的性质以及垂线的定义,正确得出∠BEC的度数是解题关键.16.某城市公园原有一个边长为am的正方形花坛,现在把花坛的边长增加2m,则这个花坛的面积增加了4a+4m2.【分析】根据题意,分别把花坛原来和现在的面积用a表示出来,即可得到答案.【解答】解:根据题意得:原来花坛的面积:S1=a2,现在正方形花坛的边长为:(a+2),现在花坛的面积为:S2=(a+2)2,花坛增加的面积为:S=S2﹣S1=(a+2)2﹣a2=a2+4a+4﹣a2=4a+4.【点评】本题考查了完全平方公式的几何背景,根据题意将花坛原来和现在的面积用a表示出来是解题的关键.17.已知(x+2)(x﹣3)=x2+mx+n,则n m=﹣.【分析】根据多项式乘多项式法则计算(x+2)(x﹣3),再根据已知等式得出m、n的值,代入计算可得.【解答】解:(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x﹣6,∵(x+2)(x﹣3)=x2+mx+n,∴m=﹣1、n=﹣6,则n m=(﹣6)﹣1=﹣,故答案为:﹣.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及负整数指数幂.18.我国宋朝数学家杨辉在他的著作《详解九章算术》中提出下表,此表揭示了(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)6展开式共有7项,各项系数的和等于64.【分析】根据已知算式得出规律,再求出即可.【解答】解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4,(a+b)5=a5+5a4b+10a3b2+10a2b+5ab4+b5,(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6,1+6+15+20+15+6+1=64,故答案为:7,64.【点评】本题考查了完全平方公式的应用,能根据已知算式得出规律是解此题的关键.19.(4分)已知:∠AOB.求作:点P,使点P与B在OA同侧,且AP∥OB,AP=AB.【分析】根据平行线和已知线段的作图画出图形即可.【解答】解:如图所示:点P即为所求:【点评】此题考查的是作图﹣基本作图,熟知平行线和已知线段的作图是关键.三、解答题(本题共有7个小题,满分62分)20.(14分)计算:(1)(﹣2x2y)2﹣2xy•x3y;(2)(2x﹣3)(x+1);(3)20172﹣2016×2018(利用乘法公式计算);(4)[(x+1)(x+2)﹣2]÷x.【分析】(1)原式利用幂的乘方与积的乘方,单项式乘以单项式法则计算,合并即可得到结果;(2)原式利用多项式乘以多项式法则计算即可求出值;(3)原式变形后,利用平方差公式计算即可求出值;(4)原式中括号中利用多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算即可求出值.【解答】解:(1)原式=4x4y2﹣2x4y2=2x4y2;(2)原式=2x2+2x﹣3x﹣3=2x2﹣x﹣3;(3)原式=20172﹣(2017﹣1)×(2017+1)=20172﹣20172+1=1;(4)原式=(x2+3x)÷x=x+3.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.21.(6分)先化简再求值:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)(a+2b),其中a=﹣,b=﹣3.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)(a+2b)=2a2﹣ab+4ab﹣2b2﹣a2﹣4ab﹣4b2﹣a2+4b2=﹣ab﹣2b2,当a =﹣,b=﹣3时,原式=﹣1﹣18=﹣19.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.22.(6分)研究发现,地表以下岩层的温度与它所处的深度有表中的关系:123456…岩层的深度h/km5590125160195230…岩层的温度t/℃根据以上信息,回答下列问题:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)岩层的深度h每增加1km,温度t是怎样变化的?(3)估计岩层10km深处的温度是多少?【分析】(1)直接利用常量与变量的关系得出自变量和因变量;(2)利用表格中数据进而得出答案;(3)直接利用(2)中函数关系式得出t的值.【解答】解:(1)上表反映了岩层的深度h(km)与岩层的温度t(℃)之间的关系;其中岩层深度h(km)是自变量,岩层的温度t(℃)是因变量;(2)岩层的深度h每增加1km,温度t上升35℃,关系式:t=55+35(h﹣1)=35h+20;(3)当h=10km时,t=35×10+20=370(℃).【点评】此题主要考查了函数关系式以及常量与变量,正确得出函数关系式是解题关键.23.(8分)如图,AC⊥BC于C,CD⊥AB于D,点E在AC上,EF⊥AB于F,且∠1=∠2.(1)试判断CD与EF是否平行并说明理由.(2)试判断DG与BC是否垂直并说明理由.【分析】(1)根据平行线的判定推出即可;(2)根据平行线的性质得出∠1=∠ACD,求出∠2=∠ACD,根据平行线的判定得出DG∥AC,即可求出答案.【解答】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠EFA=∠CDA=90°,∴CD∥EF;(2)DG⊥BC,理由是:∵EF∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠2=∠ACD,∴DG∥AC,∴∠DGB=∠ACB,∵AC⊥BC,∴∠ACB=90°,∴∠DGB=90°,∴DG⊥BC.【点评】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.24.(8分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由图象得:体育场离陈欢家2.5千米,小刚在体育场锻炼了10分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷(125﹣55)=(千米/分).【点评】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.25.(8分)(1)计算并观察下列各式:第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;……这些等式反映出多项式乘法的某种运算规律.(2)猜想:若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n;(3)利用(2)的猜想计算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=2n﹣1.(4)拓广与应用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=.【分析】(1)根据多项式乘多项式的乘法计算可得;(2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;(3)将原式变形为2n﹣1+2n﹣2+2n﹣3+……+23+22+1═(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1),再利用所得规律计算可得;(4)将原式变形为3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1),再利用所得规律计算可得.【解答】解:(1)第1个:(a﹣b)(a+b)=a2﹣b2;第2个:(a﹣b)(a2+ab+b2)=a3﹣b3;第3个:(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;故答案为:a2﹣b2、a3﹣b3、a4﹣b4;(2)若n为大于1的正整数,则(a﹣b)(a n﹣1+a n﹣2b+a n﹣3b2+……+a2b n﹣3+ab n﹣2+b n﹣1)=a n﹣b n,故答案为:a n﹣b n;(3)2n﹣1+2n﹣2+2n﹣3+……+23+22+1==(2﹣1)(2n﹣1+2n﹣2+2n﹣3+……+23+22+1)=2n﹣1n=2n﹣1,故答案为:2n﹣1.(4)3n﹣1+3n﹣2+3n﹣3+……+33+32+1=×(3﹣1)(3n﹣1+3n﹣2+3n﹣3+……+33+32+1)=×(3n﹣1n)=,故答案为:.【点评】本题考查了多项式乘以多项式,观察等式发现规律是解题关键.26.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).【分析】(1)过E作EF∥AB,依据平行线的性质,即可得到∠ABE+∠BED+∠CDE=360°,再根据∠BED=100°,BP、DP分别平分∠ABE、∠CDE,即可得到∠P的度数.(2)过E作EF∥AB,依据平行线的性质,即可得到∠ABE+∠CDE=360°﹣∠BED,再根据∠ABP=∠ABE,∠CDP=∠CDE,即可得到∠PBE+∠PDE=(∠ABE+∠CDE)=240°﹣∠BED,再根据四边形内角和得出∠P与∠E的数量关系;(3)利用平行线的性质可得∠ABE+∠CDE=360°﹣∠BED=360°﹣m°,再根据∠ABP=∠ABE,∠CDP=∠CDE,即可得到∠PBE+∠PDE=(∠ABE+∠CDE)=(360°﹣m°),再根据四边形PDEB内角和,即可得到∠P=360°﹣(360°﹣m°)﹣m°=.【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠ABE+∠BEF=180°,∠CDE+∠DEF=180°,∴∠ABE+∠BED+∠CDE=360°,又∵∠BED=100°,∴∠ABE+∠CDE=360°﹣100°=260°,又∵BP、DP分别平分∠ABE、∠CDE,∴∠PBE+∠PDE=(∠ABE+∠CDE)=×260°=130°,∴∠P=360°﹣130°﹣100°=130°;(2)3∠P+∠BED=360°;如图②,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠ABE+∠BEF=180°,∠CDE+∠DEF=180°,∴∠ABE+∠BED+∠CDE=360°,∴∠ABE+∠CDE=360°﹣∠BED,又∵∠ABP=∠ABE,∠CDP=∠CDE,∴∠PBE+∠PDE=(∠ABE+∠CDE)=×(360°﹣∠BED)=240°﹣∠BED,∴∠P=360°﹣∠BED﹣(240°﹣∠BED)=120°﹣∠BED,即3∠P+∠BED=360°;(3)∠P=.如图③,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,同理可得,∠ABE+∠CDE=360°﹣∠BED=360°﹣m°,又∵∠ABP=∠ABE,∠CDP=∠CDE,∴∠PBE+∠PDE=(∠ABE+∠CDE)=(360°﹣m°),∴四边形PDEB中,∠P=360°﹣(360°﹣m°)﹣m°=.【点评】此题主要考查了平行线的性质和应用,解答此题的关键是要明确:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.。