3传感器及成像原理

合集下载

第3章遥感传感器及其成像原理.

第3章遥感传感器及其成像原理.
❖ 经探测器输出视频信号。 ❖ 经电子放大器放大和调制。 ❖ 在阴极射线管上显示出一条相应于地面扫描视场内的
景物的图像线,这条图像线经曝光后在底片上记录下 来。 ❖ 接着第二个扫描镜面扫视地面,由于飞机向前运动, 胶片也作同步旋转,记录的第二条图像正好与第一条 衔接。依次下去,就得到一条与地面范围相应的二维 条带图像。
缝隙式摄影机
镜头转动式摄影机
3.1.1 摄影类传感器分类
➢ 全景摄影畸变:相片两端的地表景物被压缩。
3.1.1 摄影类传感器分类
3. 多光谱摄影机
多光谱摄影机指对同一地区,在同一瞬间摄取多 个波段影像的摄影机。采用多光谱摄影的目的 ,是充分利用地物在不同光谱区,有不同的反 射特征,来增加获取目标的信息量,以便提高 影像的判读和识别能力。
❖ 又由于扫描总视场为 11.56°,地面宽度为185km,因 此扫描一次每个波段获取6条扫描线图像,其地面范 围为 474m * 185km。
❖ 又因扫描周期为73.42ms,卫星速度(地速)为 6.5km/s,在扫描一次的时间里卫星往前正好移动 474m,因此扫描线恰好衔接。
❖ 自西往东对地面的有效扫描时间为33ms,即在33ms内扫描 地面的宽度为185km,按以上宽度计算,每9.958 μs内扫描 镜视轴仅在地面上移动了56m,因此采样后的MSS像元空间 分辨率为56m * 79m (Landsat为68m * 83m)。
四、 ETM+增强型专题制图仪
表3-4
波段号 类型
1
Blue-Green
波谱范围 /um 0.450-0.515
地面分辨率 30m
2
Green
0.525-0.605
30m
3
Red

第 4 章 遥感原理-遥感传感器及遥感成像原理

第 4 章 遥感原理-遥感传感器及遥感成像原理

0 :地面分辨率 a0 0 :平行于航行方向地面分辨率 a H a0 sec
:垂直于航行方向地面分辨率 a a sec a0 sec2 0
全景畸变 由于地面分辨率随扫描角发生变化,使红外扫描影像产生畸变,这 种畸变通常称之为全景畸变,形成原因是像距保持不变,总在焦面上, 而物距随扫描角发生变化所致。
采样后对每个像元(每个信道的一次采样)采用6bit进行编 码,24路输出共需144bit,都在9.958μS内生成,反算成每个字节 (6bit)所需的时间为0.3983μS(其中包括同步信号约占 0.3983μS) ,每个bit为队0.0664μS,因此,bit速率约为15Mbit/s (15MHz)。采样后的数据用脉码调制方式以 2229.5MHz或
探测器
探测器的作用是将辐射能转变成电信号输出。它的数量与成像板上 的光学纤维单元的个数相同,所使用的类型与响应波长有关,MSS 4-6采
用18个光电倍增管,MSS-7使用6个硅光电二极管,Landsat2,3的MSS8采
用2个汞钢筛热敏感探测器。其致冷方式采用辐射致冷器致冷。经探测器
检波后输出的模拟信号进入模数变换器进行数字化,再由发射机内调制
扫描线的衔接 当扫描镜的某一个反射镜面扫完一次后,第二个反射镜面接着重复扫 描,飞机的飞行使得两次扫描衔接。如何让每相邻两条带很好地衔接,可 由以下的关系式来确定。假定旋转棱镜扫描一次的时间为t,一个探测器地 面分辨率为a,若要使两条扫描带的重叠度为零,但又不能有空隙,则必须
a W t
W为飞机的地速 瞬时视场和扫描周期都为 常数,所以只要速度w与航高H 之比为一常数,就能使扫描线 正确衔接,不出现条纹图像
像面扫描
用电子枪准确地瞄准靶极上的点并对靶面进行扫描(所以又称电子扫

传感器工作原理

传感器工作原理

传感器工作原理标题:传感器工作原理引言概述:传感器是一种能够将物理量或化学量转换为电信号的设备,广泛应用于工业控制、环境监测、医疗诊断等领域。

传感器的工作原理是其能够感知外部环境的变化,并将这些变化转换为电信号输出。

本文将详细介绍传感器的工作原理。

一、传感器的感知原理1.1 传感器的感知原理是基于物理量或化学量与传感器内部元件之间的相互作用。

1.2 传感器通过感知外部环境的变化,如温度、压力、湿度等,来实现对物理量或化学量的测量。

1.3 传感器的感知原理主要包括电阻式、电容式、电感式、光电式等多种类型。

二、传感器的转换原理2.1 传感器将感知到的物理量或化学量转换为电信号的过程称为转换原理。

2.2 传感器通过内部的电路和元件将感知到的信号转换为电压、电流或频率等形式的输出信号。

2.3 转换原理的实现主要依靠传感器内部的信号处理电路和转换器。

三、传感器的输出原理3.1 传感器输出的电信号可以是模拟信号或数字信号。

3.2 模拟信号是连续变化的信号,通常通过模拟电路进行处理。

3.3 数字信号是离散的信号,通常通过模数转换器将模拟信号转换为数字信号输出。

四、传感器的应用原理4.1 传感器的应用原理是将传感器输出的信号应用于各种控制系统或监测系统中。

4.2 传感器可以通过信号输出来实现对环境的监测、对设备的控制等功能。

4.3 传感器的应用原理是实现自动化控制、智能监测等技术的基础。

五、传感器的性能原理5.1 传感器的性能原理包括灵敏度、精度、分辨率、响应时间等指标。

5.2 传感器的性能原理直接影响到传感器的测量准确性和稳定性。

5.3 传感器的性能原理是评价传感器质量和性能优劣的重要标准。

结论:传感器的工作原理是通过感知、转换、输出、应用和性能等多个方面的原理相互作用,实现对外部环境的监测和控制。

了解传感器的工作原理对于正确选择和使用传感器具有重要意义,也有助于提高传感器的性能和应用效果。

希望本文对读者对传感器的工作原理有所帮助。

传感器的原理

传感器的原理

传感器的原理
传感器是一种能够感知外部环境并将感知到的信息转化为可用信号的设备。


在现代科技和工业生产中起着至关重要的作用,广泛应用于自动化控制、环境监测、医疗设备、智能手机等领域。

传感器的原理是基于一些基本的物理现象和工作原理,下面将介绍传感器的原理及其工作过程。

首先,传感器的原理基于物理现象,比如电磁感应、压阻效应、光电效应等。

这些物理现象能够使传感器感知到外部环境的变化,并将这些变化转化为电信号或其他形式的信号。

以光电传感器为例,它利用光电效应来感知光线的强弱,当光线强度发生变化时,光电传感器就能够将这种变化转化为电信号输出。

其次,传感器的原理还与传感器内部的传感元件和信号处理电路有关。

传感元
件是传感器的核心部件,它能够将外部环境的变化转化为电信号或其他形式的信号。

而信号处理电路则能够对传感元件输出的信号进行放大、滤波、数字化等处理,使得信号能够被准确地采集和处理。

此外,传感器的原理还与传感器的工作过程密切相关。

传感器的工作过程包括
感知、转换和输出三个基本步骤。

在感知阶段,传感器能够感知外部环境的变化,比如温度、湿度、压力、光线等。

在转换阶段,传感器能够将感知到的信息转化为电信号或其他形式的信号。

在输出阶段,传感器能够将转化后的信号输出到控制系统或显示设备中,以实现对外部环境的监测和控制。

总之,传感器的原理是基于物理现象、传感元件和信号处理电路的相互作用,
它能够将外部环境的变化转化为可用信号。

通过对传感器的原理及其工作过程的深入了解,我们能够更好地应用传感器技术,提高自动化控制系统的精度和可靠性,推动科技和工业的发展。

传感器及其成像原理

传感器及其成像原理

传感器及其成像原理传感器是指能够感知和采集外界信息,并将其转化为电信号或其他形式的信号的设备。

传感器的成像原理是通过使用不同的物理原理来解释和描述传感器如何工作。

光学传感器是最常见的一类传感器。

其成像原理是利用光的散射、反射、折射等特性来获取目标物体的信息。

光学传感器包括摄像头、光电二极管、光电感光器等。

当光线照射到目标物体上时,会发生不同的光学作用,光学传感器会接收到这些光学作用产生的信号,并通过转换和处理这些信号来获得目标物体的图像信息。

声波传感器是另一类常见的传感器。

声波传感器的成像原理是利用声波在物体上的传播和反射来获取目标物体的信息。

声波传感器通常包括麦克风、声纳等设备。

当发射声波时,声波会在物体上产生反射,并返回传感器。

传感器会接收到这些反射声波,并通过转换和处理这些声波信号来获得目标物体的信息。

热传感器是一类能够感知和测量物体温度的传感器。

热传感器的成像原理是利用物体辐射的热能来获取目标物体的温度信息。

热传感器包括红外线传感器、热电偶等。

当物体的温度不同于周围环境时,物体会辐射出热能,热传感器会接收到这些热能,并通过转换和处理热能的信号来获得目标物体的温度信息。

其他常见的传感器包括压力传感器、湿度传感器、加速度传感器等。

这些不同的传感器都有各自特定的成像原理。

传感器的成像原理关键在于收集外界的物理信号并将其转换为可用的电信号或其他形式的信号。

这需要传感器具备合适的感知原理和适当的信号转换和处理装置。

传感器的设计和制造一般需要考虑信号采集的灵敏度、可靠性、精确度等指标,并利用合适的技术和方法来实现。

总结起来,传感器的成像原理是通过利用不同的物理原理来感知和采集外界信息,并将其转换为可用的电信号或其他形式的信号。

不同的传感器有不同的感知原理和特定的成像方式,但其共同之处在于将外界的物理信号转换为可用的数据信号,以实现对目标物体的感知和测量。

数码相机成像原理

数码相机成像原理

数码相机成像原理⼀镜头将被摄像⽬标反射的光线聚焦在成像元件上。

⼆对焦数码相机⾃动对焦镜头从⼯作原理上说⼤多都采⽤了间接实测物距⽅式进⾏对焦。

它是利⽤⼀些可以被利⽤的间接距离测量⽅式来获取物距,通过运算,伺服电路驱动调节焦距的微型马达,带动调焦镜⽚组进⾏轴向移动,来达到⾃动调节焦距的⽬的。

经常被利⽤来进⾏间接距离测量的⽅式有:⽆源光学基线测距、有源超声波测距、有源主动红外测距以及现代的激光技术在测量领域的应⽤等。

三感光元件~成像元件相⽐传统的胶⽚相机来说,数码相机最⼤的改变就是将感光元件从胶⽚转变为了CCD/CMOS。

相⽐传统的胶⽚相机来说,数码相机最⼤的改变就是将感光元件从胶⽚转变为了CCD/CMOS。

CCD的全称是Charge Couple Device,翻译过来就是“光电荷耦合器件”,CMOS的全称是Complementary Metal-Oxide Semiconductor,是“互补⾦属氧化物半导体”的意思。

CCD和CMOS的⼯作原理有⼀个共通点,那就是都是⽤光敏⼆极管来作为光-电信号的转化元件。

它们每个感光元件的像素点分别对应图像传感器中的⼀个像点,由于感光元件只能感应光的强度,⽆法捕获⾊彩信息,因此彩⾊CCD/CMOS图像传感器必须在感光元件上⽅覆盖彩⾊滤光⽚。

在这⽅⾯,不同的传感器⼚商有不同的解决⽅案,最常⽤的做法是覆盖RGB 红绿蓝三⾊滤光⽚,以1:2:1的构成由四个像点构成⼀个彩⾊像素(即红蓝滤光⽚分别覆盖⼀个像点,剩下的两个像点都覆盖绿⾊滤光⽚),这种解决⽅案就是⼤名⿍⿍的拜⽿滤镜。

在接受光照之后,感光元件产⽣对应的电流,电流⼤⼩与光强对应,因此感光元件直接输出的电信号是模拟的。

在CCD传感器中,每⼀个感光元件都不对此作进⼀步的处理,⽽是将它直接输出到下⼀个感光元件的存储单元,结合该元件⽣成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后⼀个感光元件的信号才能形成统⼀的输出。

第3章 传感器及其成像方式

第3章 传感器及其成像方式

平面上的曲线,在中心投影上的像片仍为曲线。
面状物体的中心投影相对于各种线投影的组合。水平面的投影仍 为一平面。垂直面的投影依其所处的位置而变化,当位于投影中心 时,投影所反映的是其顶部形状,呈一直线;在其他位置时,除其 顶部为一直线外,其侧面投影成不规则梯形。 返回
像片比例尺
像片比例尺:像片上两点之间的距离与地面上相应两点的实际距 离之比。
系统来说的,是衡量卫星系统成像能力和成像特点的一个重
要指标。 时间分辨率和卫星的回归周期(重访周期),是既有联 系又有区别的两个概念。 遥感卫星以一定的时间分辨率,在不同时间获取的同一 地区的一组遥感图像称之为多时相图像( Multi-Temporal Image)。多时相遥感图像对地表事物的动态监测具有重要 意义。
3.1 传感器概述 3.2 摄影成像系统
3.3 扫描成像系统
3.1 传感器概述
1 传感器的分类 2 传感器的组成 3 传感器的性能
传感器是收集、探
测、记录地物电磁波
辐射信息的装置。 它的性能决定遥感 的能力,即传感器对 电磁波段的响应能力、
传感器的空间分辨率
及图像的几何特征、 传感器获取地物信息 量的大小和可靠程度。
高,其对地物反射或发射能量的微小变化的探测能力 越强,所获取图像的层次就越丰富。
辐射分辨率一般用灰度的分级数来表示,即最暗—
最亮灰度值(亮度值)间分级的数目(量化级数)也 称为灰度分辨率。灰度一般按2n来分级。
4.时间分辨率:指卫星对同一地点重复成像的时间间隔,
即采样的时间频率。显然,时间分辨率主要是针对遥感卫星
返回
3.1.1 传感器的分类
按电磁波的 辐射来源 按成像原理
• 主动式传感器 • 被动式传感器

三代传感器的原理

三代传感器的原理

三代传感器的原理
三代传感器是指基于不同原理和技术的传感器,包括第一代结构型传感器、第二代生物传感器和第三代智能传感器。

下面是三代传感器的原理简介:
第一代结构型传感器:
第一代传感器的原理是基于结构材料的物理、化学或生物性质变化,通过结构的变形、颜色、光学、磁性等变化来检测环境参数。

例如,应变传感器可以通过检测材料的形变来测量力的大小,温度传感器可以通过材料的热膨胀或收缩来测量温度。

第二代生物传感器:
第二代传感器的原理是基于生物分子的特异性识别和反应,通过生物分子与目标物质的结合或反应来测量环境参数。

例如,生物芯片可以通过检测特定的DNA序列或蛋白质来检测疾病或病原体,生物传感器可以通过检测细胞信号来测量生物活性。

第三代智能传感器:
第三代传感器的原理是基于微机电系统(MEMS)技术和纳米技术,通过微型机械结构和纳米材料的特殊性质来测量环境参数。

例如,压力传感器可以通过微型机械结构的变形来测量压力,温度传感器可以通过纳米材料的热膨胀或收
缩来测量温度。

综上所述,三代传感器的原理各不相同,但它们都是通过检测环境参数的变化来实现对环境的监测和控制。

随着科技的不断发展,传感器技术也在不断进步,未来将会出现更加先进和智能化的传感器。

传感器及其成像原理

传感器及其成像原理
43
44
二、分辨率

距离分辨率
在脉冲发射的方向上,能分辨两个目标 的最小距离。 c c Rd Rr sec 2 2

方位分辨率
指相邻的两束脉冲之间,能分辨两个目 标的最小距离。
R R

D
R
45
46
对分辨率的讨论:

距离分辨率

Rr
c
2
sec
Rd
c
2
距离分辨率与距离并无关系 可采用减小脉冲宽度的方法改善距离向分辨率 减小脉冲宽度是有一定限度的

方位分辨率

R R

D
R

要提高方位分辨率,理论上可采用波长较短的电磁波,加大天线孔径和 缩短观测距离的方法 但三种方法,使用时均受到一定限制 可采用合成孔径技术来改善方位分辨率
47
26



辐射准确度和较高辐射分辨率是定量遥感 的基础。 扫描仪内设有一个白炽灯,用来作可见光 和近红外波段的标准源;TM6用黑体源作为 校正源。 每个像元的亮度值用8bit编码。
27
ETM+
对TM的改进:
增加了一个分辨率为15米的 PAN波段(0.5~0.9微米); 使TM6的分辨率提高到60米;
8
1、扫描成像过程
旋转棱镜横越航线方向扫视
第一个扫描镜面扫视一次, 扫描视场内的地面辐射能,由刈幅的一边到另一边依次进入传感 器; (收集器) 经探测器输出视频信号,再经电子放大器放大和调制;(探测器、 处理器) 在阴极射线管上显示出一条相应于地面扫描视场内的景物的图像 线,这条图像线经曝光后在底片上记录下来(输出器)。

传感器工作原理(1)

传感器工作原理(1)

传感器工作原理(1)引言概述:传感器是现代科技中广泛应用的一种设备,它可以将各种物理量转化为电信号,从而实现对环境的监测和控制。

本文将详细介绍传感器的工作原理。

一、传感器的基本原理1.1 物理量与电信号的转换传感器的基本原理是将感知到的物理量转换为电信号。

传感器通过内部的感知元件,如光敏元件、压力传感器或温度传感器,将物理量转化为电信号。

这些电信号可以是电压、电流或电阻等形式。

1.2 传感器的灵敏度传感器的灵敏度是指传感器对物理量变化的敏感程度。

传感器的灵敏度取决于感知元件的特性以及信号转换电路的设计。

灵敏度越高,传感器对物理量变化的响应越迅速和准确。

1.3 传感器的精度和误差传感器的精度是指传感器输出值与实际值之间的差异程度。

误差是指传感器输出值与实际值之间的偏差。

传感器的精度和误差受到多种因素的影响,如传感器的质量、环境条件和使用方式等。

二、传感器的工作原理2.1 光传感器的工作原理光传感器是一种将光信号转换为电信号的传感器。

它通过感知光的强度、波长或频率等特性,将光信号转换为电信号。

光传感器通常由光敏元件和信号转换电路组成。

2.2 压力传感器的工作原理压力传感器是一种将压力信号转换为电信号的传感器。

它通过感知物体的压力变化,将压力信号转换为电信号。

压力传感器通常由弹性元件和信号转换电路组成。

2.3 温度传感器的工作原理温度传感器是一种将温度信号转换为电信号的传感器。

它通过感知物体的温度变化,将温度信号转换为电信号。

温度传感器通常由热敏元件和信号转换电路组成。

三、传感器的应用领域3.1 工业自动化传感器在工业自动化中起着至关重要的作用。

它们可以用于监测生产线上的温度、压力、湿度等参数,实现自动控制和优化生产过程。

3.2 智能家居传感器在智能家居中被广泛应用。

它们可以用于监测室内温度、湿度、光线等参数,实现智能调控和能源管理。

3.3 医疗设备传感器在医疗设备中起着重要的作用。

它们可以用于监测患者的心率、血压、体温等参数,帮助医生进行诊断和治疗。

生物传感器与生物成像

生物传感器与生物成像

生物传感器与生物成像生物传感器是一种检测和监测生物体内或周围环境中特定分子或细胞的装置或系统。

通过利用生物分子的相互作用,生物传感器能够实现对生物样品中特定分子的定量或定性检测。

而生物成像则是利用各种成像技术对生物体内的结构、功能和代谢进行可视化观察,以提供有关生物体内生物过程的信息。

本文将探讨生物传感器和生物成像的原理、应用及未来发展前景。

一、生物传感器1. 原理简介生物传感器基于特定生物分子的识别与相应信号的传导。

常见的生物传感器包括抗体传感器、DNA传感器和酶传感器等。

抗体传感器通过蛋白质与抗原之间的特异性结合实现分子的检测;DNA传感器利用DNA片段与靶分子的互补碱基对结合,实现DNA序列或基因的检测;酶传感器则通过酶与底物之间的反应来检测特定分子。

生物传感器的原理在于特异性识别与灵敏信号转导的组合。

2. 应用领域生物传感器在医学、环境监测、食品安全等领域具有广泛应用前景。

在医学方面,生物传感器可以用于早期疾病诊断和治疗监测,如血糖、血压和血脂的检测。

在环境监测方面,生物传感器可以检测水污染、空气质量和土壤污染等。

在食品安全方面,生物传感器可以检测食品中的有害物质和微生物。

3. 发展趋势随着纳米技术和生物技术的进步,生物传感器的灵敏度和特异性将进一步提高。

另外,生物传感器在移动设备和便携式仪器上的应用也将得到推广,方便人们随时随地进行检测。

二、生物成像1. 原理概述生物成像是将生物体内的结构、功能和代谢信息转化为可视化图像的技术。

常见的生物成像技术包括X射线成像、MRI(磁共振成像)、PET(正电子发射断层扫描)和光学成像等。

这些技术通过不同的物理信号与生物体的相互作用来获取生物信息。

2. 应用领域生物成像在医学诊断、生物研究和药物研发等方面起着重要作用。

在医学诊断方面,生物成像可以用于肿瘤检测、心血管病变观察、脑功能成像等。

在生物研究方面,生物成像可以帮助科学家观察生物体内的分子过程和器官功能。

第三章(2) 传感器成像原理及其图像特征

第三章(2) 传感器成像原理及其图像特征

倾斜摄影:
航摄倾角>3°
获得倾斜航空像片
一般用于科学研究
垂直摄影像片的几何特征
1、像片投影——中心投影
用一组假想的直线将物体向几何面投射称为投影。 其投射的直线称为投射线。
正射投影:投射线都垂自于投射平面的投影,如大比
例尺地形图。 中心投影:投射线会聚于一点的投影方式。
正射投影
中心投影
(1)中心投影与正射投影的区别
用普通航空摄影机上配置多个镜头,同时选配相应的 滤光片与不同光谱感光特性的胶片组合,使各个镜头在底 片上成像的光谱限制在规定的各自的波段内。
(3)光束分离型多光谱摄影机 这种多光谱摄影机是利用单镜头进行多光谱摄影。 在摄影时,光束经过一个镜头后,经分光装置分成几个光 束,然后分别透过不同的阿滤光片,分成不同波段,在相 应的感光胶片上成像,实现多光谱摄影。其摄影方式有两 种。
正射投影中心投影11中心投影与正射投影的区别中心投影与正射投影的区别1投影距离的影响正射投影比例尺和投影距离无关中心投影焦距固定航高改变其比例尺也随之改变h1h2正射投影中心投影11中心投影与正射投影的区别中心投影与正射投影的区别2投影面倾斜的影响倾斜水平倾斜各点相对位置与形状保持不变各点相对位置与形状发生变化地形起伏对正射投影无影响对中心投影引起投影差航片各部分的比例尺不同11中心投影与正射投影的区别中心投影与正射投影的区别3地形起伏的影响22中心投影的透视规律中心投影的透视规律中心投影的成像特点
根据分类的方法不同,传感器大致有如下几种类型:
(1)按传感器工作的波段: ---可见光传感器
---红外传感器 ---微波传感器 (2)按工作方式: ---主动传感器 ---被动传感器
光学传感器
被动式传感器接收目标自身的热辐射或反射太阳辐射;

传感器工作原理

传感器工作原理

传感器工作原理引言概述:传感器是一种能够感知和测量环境中各种物理量的设备。

它们在现代科技和工业领域中起着至关重要的作用。

本文将详细介绍传感器的工作原理,包括传感器的基本概念、工作原理的分类和具体的工作原理。

一、传感器的基本概念1.1 传感器的定义和作用传感器是一种能够将环境中的物理量转化为可测量的电信号或其他形式的信号的装置。

它们广泛应用于各个领域,如工业自动化、医疗设备、汽车工程等,用于测量温度、压力、湿度、光强等各种物理量。

1.2 传感器的组成和结构传感器通常由感知元件、信号处理电路和输出装置组成。

感知元件是传感器的核心部分,它能够感知并转化物理量为电信号。

信号处理电路对感知元件输出的信号进行放大、滤波和转换等处理,以得到可用的信号。

输出装置将处理后的信号转化为人们能够理解的形式,如数字显示、声音或光信号。

1.3 传感器的特点和分类传感器具有高灵敏度、高精度、快速响应和稳定性等特点。

根据测量的物理量不同,传感器可以分为温度传感器、压力传感器、湿度传感器、光传感器等多种类型。

二、传感器工作原理的分类2.1 电阻型传感器电阻型传感器是一种将物理量转化为电阻变化的传感器。

它利用感知元件的电阻随物理量变化而变化的特性进行测量。

常见的电阻型传感器包括热敏电阻、应变片和光敏电阻等。

2.2 电容型传感器电容型传感器是一种将物理量转化为电容变化的传感器。

它利用感知元件的电容随物理量变化而变化的特性进行测量。

常见的电容型传感器包括湿度传感器和接触式位移传感器等。

2.3 磁感应型传感器磁感应型传感器是一种利用磁场的变化来感知物理量的传感器。

它通过感知元件对磁场的变化进行测量。

常见的磁感应型传感器包括磁敏电阻、霍尔元件和磁电感传感器等。

三、传感器工作原理的具体应用3.1 温度传感器的工作原理和应用温度传感器通常采用热敏电阻或热电偶作为感知元件,利用物质的热膨胀特性或热电效应来测量温度。

它广泛应用于空调、冰箱、汽车引擎等领域。

遥感卫星传感器及其成像方式

遥感卫星传感器及其成像方式

光电过程-辐射数据定量
胶片探测范围较窄
电子格式范围较广
多系统分离采集-可比性差 光谱波段同时采集-可比性强
一、多光谱扫描成像
• 根据成像方式的不同, 多光谱扫描成像系统 可分为光学机械扫描和推扫式扫描两种主 要类型。
光学机械扫描 optical- mechanical scanning
推扫式扫描 push- broom scanning
第三章 传感器及其成像方式
聊城大学 环境与规划学院
第一节 传感器的分类
• 传感器 ( sensor) , 也称敏感器或探测器, 是 收集、 探测并记录地物电磁波辐射信息的 仪器。
– 传感器探测电磁波波段的响应能力 – 传感器的空间分辨率和图像的几何特性 – 传感器获取地物电磁波信息量的大小和可靠程
输出器(扩展5)
感色性---感光片对光谱中不同波长光线敏 感的程度和范围 由乳剂中加入的光谱增感剂的性质决定
①.盲片色 只含AgBr和少量AgI 未加光谱增感剂 0.34~0.5μm
②.正色片 在色盲乳剂中加入正(绿)色增感剂 0.34~0.58μm(在0.5~0.52μm处略有下降)
③.全色片 在色盲乳剂中加入多种光谱增感剂 0.34~0.72μm(对0.5~0.52μm的绿光感光度稍低)
如何下载卫星遥感影像?
如何下载卫星遥感影像?
如何下载卫星遥感影像?
如何下载卫星遥感影像?
Landsat 8 OLI_TIRS 卫星影像
• 2013 年2月11日,美国航空航天局(NASA) 成功发射Landsat-8卫星。 Landsat-8卫星上携带两个传感器,分别是OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)。

传感器工作原理

传感器工作原理

传感器工作原理传感器是一种能够感知、感应并转换物理量或化学量的设备,广泛应用于各行各业。

本文将介绍传感器的工作原理,帮助读者更好地理解传感器的运行机制。

一、传感器的基本原理传感器的工作原理基于物理或化学现象的变化,通过转换这种变化来获得相应的电信号输出。

传感器分为许多种类,如温度传感器、压力传感器、光敏传感器等,每种传感器都有其独特的原理。

1. 温度传感器温度传感器利用物体的热膨胀原理进行温度测量。

当物体受热时,温度传感器内部的材料也会随之热膨胀,从而改变其电阻、电容或电压等特性,通过检测这些特性的变化,可以确定物体的温度。

2. 压力传感器压力传感器使用压力对传感器内部材料的压缩或拉伸作用进行测量。

当外部施加压力时,传感器内部的弹性元件会发生形变,从而改变电阻、电容或电压等特性,通过测量这些特性的变化,可以确定压力的大小。

3. 光敏传感器光敏传感器利用光辐射对半导体材料电导率的影响进行测量。

当光照射在光敏传感器上时,光子与半导体材料发生相互作用,导致导电能力的改变,通过测量电阻或电流的变化,可以确定光照强度。

二、传感器的工作流程传感器的工作流程可以分为感知、转换和输出三个阶段。

1. 感知阶段传感器的感知阶段是通过感知元件来感知外部环境的变化。

感知元件对于不同的传感器而言有所不同,它可以是温度敏感材料、倾斜开关、光敏元件等。

感知元件的选择与被测量的物理量相关。

2. 转换阶段当感知元件感知到环境变化后,传感器内部会进行相应的物理或化学转换,将外部的变化转化成可测量的电信号。

转换过程中会利用一定的电路设计和工作原理,使信号的变化得以准确地转化为电信号。

3. 输出阶段传感器输出阶段是将转换后的电信号输出给后续系统进行处理或分析。

输出信号可以是电压、电流或数字信号等形式。

传感器的输出通常需要经过放大、滤波等处理,以确保输出信号的准确性和可靠性。

三、传感器的应用领域传感器广泛应用于各个领域,包括工业、农业、医疗、环境监测等。

第3章 遥感传感器及其成像原理3.1

第3章 遥感传感器及其成像原理3.1

第3章遥感传感器及其成像原理§3.1 扫描成像类传感器遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器;(2)扫描成像类型的传感器;(3)雷达成像类型的传感器;(4)非图像类型的传感器。

无论哪种类型遥感传感器,它们都由如图3-1所示的基本部分组成:图3-1遥感传感器的一般结构1、收集器:收集地物辐射来的能量。

具体的元件如透镜组、反射镜组、天线等。

2、探测器:将收集的辐射能转变成化学能或电能。

具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。

3、处理器:对收集的信号进行处理。

如显影、定影、信号放大、变换、校正和编码等。

具体的处理器类型有摄影处理装置和电子处理装置。

4、输出器:输出获取的数据。

输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。

§3.1扫描成像类传感器扫描成像类型的传感器是逐点逐行地以时序方式获取二维图像,有两种主要的形式,一是对物面扫描的成像仪,它的特点是对地面直接扫描成像,这类仪器如红外扫描仪、多光谱扫描仪、成像光谱仪、自旋和步进式成像仪及多频段频谱仪等;二是瞬间在像面上先形成一条线图像,甚至是一幅二维影像,然后对影像进行扫描成像,这类仪器有线阵列CCD推扫式成像仪,电视摄像机等。

3.1.1 对物面扫描的成像仪一、红外扫描仪(一)红外扫描仪一种典型的机载红外扫描仪的结构如图3-2所示。

它由本节前言中所叙述的几个部件组成。

具体结构元件有一个旋转扫描镜,一个反射镜系统,一个探测器,一个制冷设备,一个电子处理装置和一个输出装置。

旋转扫描镜的作用是实现对地面横越航线方向的扫描,并将地面辐射来的电磁波反射到反射镜组。

反射镜组的作用是将地面辐射来的电磁波聚焦在探测器上。

探测器则是将辐射能转变成电能。

传感器及其工作原理完整版课件

传感器及其工作原理完整版课件

●考纲须知 实验十一:传感器的简单应用
第六章 第一节 传感器及其工作原理
课堂情景切入 知识自主梳理 重点难点突破
方知法识警体示系探构究建 考点题型设计 课后强化作业
学习目标定位
※ 知道什么是传感器 知道什么是光敏电阻,热敏电阻,金
※ 属热电阻以及霍尔元件
※ 了解传感器的工作原理
课堂情景切入
解析:当照射光强度增大时,R3 阻值减小,外电路电阻随 R3 的减小而减小,R1 两端电压因干路电流增大而增大,同时内 电压增大,故电路路端电压减小,电压表的示数增大,A 项正 确,D 项错误;由路端电压减小,R1 两端电压增大知,R2 两端 电压必减小,则 R2 中电流减小,故 B 项正确;结合干路电流 增大知流过小灯泡的电流必增大,则小灯泡的功率增大,故 C 项正确。
解析:将刚从冰箱中取出的雪糕靠近并接触热敏电阻, NTC 热敏电阻是负温度系数的,降低温度,其电阻变大,表 针向左偏转;将一杯热水靠近并接触热敏电阻,热敏电阻的温 度升高,其电阻变小,指针将向右偏转。
答案:左 右
点评:此类问题一定要弄清热敏电阻是负温度系数还是正 温度系数的。另外金属热电阻都是正温度系数的。
A.置入热水中与不置入热水中相比,欧姆表示数变化较 大,这只元件一定是热敏电阻
B.置入热水中与不置入热水中相比,欧姆表示数不变化, 这只元件一定是定值电阻
C.用黑纸包住元件与不用黑纸包住元件相比,欧姆表示 数变化较大,这只元件一定是光敏电阻
D.用黑纸包住元件与不用黑纸包住元件相比,欧姆表示 数相同,这只元件一定是定值电阻
答案:ABC
利用光敏电阻制作的光传感器,记录传送带上工作的输送 情况,如图甲所示为某工厂成品包装车间的光传感记录器,光 传感器 B 能接收到发光元件 A 发出的光,每当工件挡住 A 发 出的光时,光传感器输出一个电信号,并在屏幕上显示出电信 号与时间的关系,如图乙所示,若传送带始终匀速运动,每两 个工件间的距离为 0.2m,则下述说法正确的是( )

3片式摄像机成像原理

3片式摄像机成像原理

3片式摄像机成像原理
三片式摄像机是一种特殊的摄像机,它采用了三片不同颜色的传感器来捕捉图像。

这种摄像机的成像原理涉及到颜色分离、光学传感器和图像处理等多个方面。

首先,让我们来看颜色分离的原理。

在三片式摄像机中,每个传感器都只能捕捉一种颜色的光,通常是红色、绿色和蓝色。

这是基于人眼对颜色的感知,通过组合这三种颜色,摄像机能够捕捉到全彩色的图像。

其次,光学传感器起着关键作用。

每个传感器都由数百万个光敏元件组成,当光线照射到传感器上时,每个元件会产生一个电信号,这些信号被转换成数字信号,最终形成图像。

另外,图像处理也是成像原理中的重要环节。

摄像机会将三个传感器捕捉到的图像信号进行处理,合成为最终的彩色图像。

这个过程包括色彩校正、白平衡调节等步骤,以确保最终的图像色彩准确。

此外,三片式摄像机还涉及到对光线的控制和滤波,以及对传
感器的灵敏度和分辨率的要求等方面。

总的来说,三片式摄像机的成像原理是基于颜色分离、光学传感器和图像处理等多个方面的相互作用,通过精密的技术和算法,实现了高质量的彩色图像捕捉和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描完成对地面覆盖的。有代表性的航天光机扫描仪是
搭载在美国陆地卫星的多光谱扫描仪(MSS)、专题制
图仪(TM)和增强型专题制图仪(ETM)。我国研制的
红外扫描仪,属于典型的机载型光机扫描仪。
1 光机扫描仪的组成
光机扫描仪主要由收集器、分光器、探测器、处理
器和记录与输出装置等组成。
遥感
2 光/机扫描仪的成像原理
面状态,像片四周印有井字形细线称为 压平线。如果底片没有压平,则压平线 的影像为曲线或虚影。
此外,有些像片上还注明了航摄机的型号、焦距、机号 及底片号等。
近年来的像片已不在标注气泡、时表、压平线等,框标 则标记在像片的四个角上 ,两条对角线的交点即为像片的 中心点。
遥感
与摄影测量交叉部分
A 摄影像片的特征
S D
几何特性、物理特性、信息量大小和可靠程度。
A
U Q
3.1.1 传感器分类
I

⎧ 画幅式 ( 分幅式,框幅式 )

⎪ ⎪
摄影成像


⎪⎪ 缝隙式,全景式
⎨ ⎪
多光谱
⎪⎩ 数码式
成像传感器
⎪⎪ ⎨
扫描成像

⎧ 掸扫式 ( 光机扫描
⎨ ⎩
推扫式
( 固体扫描
, 物面扫描 , 像面扫描
) )
⎪ ⎪ 微波成像 ⎪
遥感
4 、时间分辨率
●指同一地点进行遥感采样的时间间隔,即采
样的时间频率,也称重访周期。
S D
●如:静止气象卫星0.5小时,CBERS 26天
A U
●时间分辨率对动态监测意义重大,如天气和
Q
I
气候变化、自然灾害监测、土地利用监测等;
合适的时间分辨率是进行遥感信息挖掘的基础
或保障。
5.视场角(FOV)
遥感
5
遥感
S D A U Q I
给你的3D
泰安市数字航空摄影
sdaurs@
简介
sdaurs123
实验: 航空像片的认识
遥感
3.3 扫描成像传感器
扫描成像传感器根据扫描方式分为
1 掸扫式(光/机扫描,物面扫描 )
S 2 推扫式(固体扫描,像面扫描)
D
A
U Q
3.3.1 光/机扫描仪
I
光机扫描传仪是借助平台的飞行运动和自身的横向
第9章 遥感技术应用
遥感
遥感
3.1 传感器概述
第3章 遥感传感器及成像原理
S
D
A
U
3.1 传感器概述
Q
I
3.2 摄影成像传感器
3.3 扫描成像传感器
3.4 雷达成像传感器
复习题
传感器是收集、探测、记录地物电磁波辐射信息的装
置,是遥感对地观测的技术基础。传感器性能决定了获取
图像信息的电磁波波段范围、光谱分辨率、空间分辨率、
要由摄影机、滤光片和感光材料组成。不同类型的摄影
S
D A
机、滤光片和感光材料的组合,将产生几何特性和物理特
U Q
性各异的摄影图像。(——数码摄影)
I
3.2.1 摄影机分类
A 按结构分 a. 画幅式 b. 缝隙式 c. 多光谱 d. 数码式
B 按像场角分 a. 狭角 b. 常角 c. 宽角
C 按镜头焦距分 a. 长焦距 b. 中焦距 c. 短焦距
S D
标。传感器的分辨率除受制造时的技术条件限制外,还
A
U 要适合其设计目的和应用领域,因此,不宜单纯用分辨
Q
I
率指标的高低来评价不同传感器性能的优劣。
一般应用遥感图像获取三个方面的信息: ◆目标地物的大小、形状及空间分布信息→几何特征 ◆目标地物的属性信息→物理特征 ◆目标地物的变化信息→时间特征 这三方面信息特征表现为空间分辨率、波谱分辨率和辐 射分辨率、时间分辨率。
1
遥感
1 、空间分辨率
空间分辨率是指遥感影像能区分的最小单元的尺寸或大
小,是表征传感器分辨空间目标细节能力的指标。
S
表述方式有: 直接的和间接的
D
A
U
Q
I
地面分辨率
像素分辨率
瞬时视场角 影像分辨率
地面采样间隔
地面分辨率是指遥感影像能分辨的最小地面尺寸,是空 间分辨率最常用也是最基本的表述方法。其它各种表述 方式都可以归化为地面分辨率。 如IKONOS,1m, Geoeye-1,0.41m
遥感
3.2.7 像片标志
A.像片编号
S D A U Q I
B.水准气泡
■为了便于像片拼接,每张像片上均编有 号码。包括摄区代号、摄影年月日,以及 像片号码等。航线为东西向时,像片编号在 像片的北边缘,航线为南北向时,编号在 东边缘。因此,用像片的编号的位置能大致 确定像片的方位。
■说明摄影瞬间像片的倾斜情况, 气泡在最里面的小圈内(气泡居中), 表示像片水平,若偏出一圈说明倾斜 面1°,通常要求像片的倾斜不超过3°。
⎧ 真实孔径雷达
⎨ ⎩
合成孔径雷达
(RAR) (SAR)


⎪⎩
遥感
3.1.2 传感器组成
无论何种传感器,一般都由收集器、探测器、处理 器、输出器等四部分组成。

S D A U Q I


波 辐


探测器
处理器
记录 输出

收集器:收集来自目标物体的电磁波辐射能量。 探测器:通过光化学反应或光电效应将收集到的地物电磁波
230×230
RMK (有FMC)
230×230
焦距 mm 303 213 153 610 305 210 153
分辨率 lp/mm 70~80
40~50
遥感
2. 缝隙式摄影机
缝隙式摄影机又称航带式或推扫式摄影机,摄影瞬间获取 的影像是与航向垂直、且与缝隙等宽的一条影像带。(推扫)
全景摄影机又称全景扫描像机,成像与缝隙扫描像机类似
S D
也是一条很窄的条带,条带方向平行于平台移动方向。(摆扫)
A
U
Q
I
遥感
3.多光谱摄影机 多光谱摄影机可在同一瞬间摄取同一地区多个波段影像。
常见的有单镜箱、多镜箱、光束分离型三种形式。
S D A U Q I
a.多镜箱
b.单镜箱
c.光束分离型
遥感
4.数码摄影机
与普通摄影机结构和成像原理一样,只是记录介质 不是感光胶片,而是光敏电子器件,如CCD.(分幅式、 扫描式)
S D
遥感
A
U Q
Remote Sensing(RS)
I
主讲教师:齐建国
遥感
遥感原理与应用
第0章 绪论
S
D A
第1章 电磁波及遥感物理基础
U Q
第2章 遥感平台及运行特点
I
第3章 遥感传感器及成像原理
第4章 遥感图像处理基础
第5章 遥感图像几何处理 第6章 遥感图像辐射处理
第7章 遥感图像目视判读
第8章 遥感图像自动识别分类
S
S
D
D
A
A
U
Uபைடு நூலகம்
Q
Q
I
I
DMC(Digital Mapping Camera)航摄仪,美国产
SWDC数字航摄仪,国产
遥感
3
遥感
S
S
D
D
A
A
U
U
Q
Q
I
I
ADS40航摄仪,徕卡产
遥感
奥林巴斯数码相机 (OLYMPUS)
遥感
3.2.2 摄影分类
A 按航摄倾角(像片倾角)分
(主光轴与铅垂线的夹角称为航摄倾角)
S
a. 垂直摄影
α=0 °
D A
b. 近似垂直摄影 0 ° <α≤3 °
U Q
c. 倾斜摄影
α>3°
I
B 按实施方式分
a. 单片摄影(点状地区)
b. 航线摄影(线状地区)
c. 面积摄影(面状地区)
C 按感光胶片分 a. 黑白全色摄影
b. 黑白红外摄影
c. 天然彩色摄影
d. 彩色红外摄影
遥感
3.2.3 对航线的要求
决于平台的高度。
如:CBERS CCD 总8.32 °,瞬时视场角约5″。
影像分辨率用于描述摄影型传感器的空间分辨能力,是
指区分最小影像单元的能力,一般用影像上单位长度能
区分明暗相间的线对数来表示。
遥感
Rg
=
Rs ⋅ f H
=
RS M
式中 Rs − 系统分辨率(包括镜头 和胶片的综合影响)
f − 摄影焦距
A
A
U Q
U Q
相邻两摄影站间的距离(B)
I
I ●重叠:
相邻两像片上具有同一地面影 像的部分
像片重叠示意图
●航向重叠:同一条航线上相邻两张像片的重叠 p ≥60 % ,规范:53-75%
●旁向重叠:相邻航线上相邻两张像片的重叠 q ≥30% ,规范:15-35%
●航摄漏洞:重叠度不足的部分
4
遥感
遥感
C.时表
■记录摄影瞬间的时刻,有助于判明 像片上地物明暗部位大致对向摄影时的 太阳方向。
遥感
A.像片编号 B.水准气泡 C.时表
D.框标
S D A U Q I
E.压平线
■在像片四周锯齿形、三角形、圆形的 标记称为框标。左右框标中点的连线,为 单张像片坐标系统的横轴,上下框标中点 的连线为纵轴,两轴的交点为像片坐标原 点,■即为像了片检中查心底点片,贴通压常在和承像片片框主上点的重平合。
相关文档
最新文档