不等式10课时作业
高中数学 第二章 一元二次函数方程和不等式 课件 新人教A版必修第一册
B.P≥Q
C.P<Q
D.P≤Q
解析:P-Q=a2+b2+c2+3-2a-2b-2c=(a-1)2+(b-1)2 +(c-1)2≥0.∵a,b,c不全相等,∴P-Q>0,∴P>Q.
二、填空题(每小题5分,共20分) 8.已知两实数a=-2x2+2x-10,b=-x2+3x-9,a,b分 别对应数轴上两点A,B,则点A在点B的__左__边__ (填“左边”或 “右边”).
甲乙丙
维生素A(单位/kg) 600 700 400
维生素B(单位/kg) 800 400 500
成本(元/kg)
11 9 4
若用甲、乙、丙三种食物各x kg、y kg、z kg配成100 kg的混
合食物,并使混合食物内至少含有56 000单位维生素A和63 000单
位维生素B.试用x、y表示混合食物的成本c(单位:元),并写出x、
——基础巩固——
一、选择题(每小题5分,共35分)
1.若某高速公路对行驶的各种车辆的最大限速为120 km/h,
行驶过程中,同一车道上的车间距d不得小于10 m,则用不等式
表示为( B )
A.v≤120 km/h或d≥10 m C.v≤120 km/h
v≤120 km/h, B.d≥10 m D.d≥10 m
解析:∵a-b=-2x2+2x-10-(-x2+3x-9)
=-2x2+2x-10+x2-3x+9=-x2-x-1=-(x+
1 2
)2-
3 4
<0,
∴a<b,∴点A在点B的左边.
9.一辆汽车原来每天行驶x km,如果该辆汽车每天行驶的路 程比原来多19 km,那么在8天内它的行程就超过2 200km,写成 不等式为___8_(x_+__1_9_)_>_2_2_0_0__;如果它每天行驶的路程比原来少12 km,那么它原8x来行驶8天的路程就得花9天多的时间,用不等式表 示为____9_<_x_-__1_2_<_1_0__.
红对勾·讲与练高中数学北师大必修五:课时作业 基本不等式 含解析
课时作业20 基本不等式时间:45分钟 满分:100分一、选择题(每小题5分,共35分)1.a +b ≥2ab (a >0,b >0)中等号成立的条件是( ) A .a =b B .a =-b C .a =|b | D .|a |=b【答案】 A【解析】 由基本不等式成立的条件易知. 2.x 2+y 2=4,则xy 的最大值是( ) A.12 B .1 C .2 D .4【答案】 C【解析】 xy ≤x 2+y 22=2,当且仅当x =y =2或x =y =-2时,等号成立,∴xy 的最大值为2.3.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q【答案】 B【解析】 ∵a >b >1,∴lg a ·lg b <lg a +lg b 2. ∵a ≠b ,∴“=”不成立.又∵lg a +lg b =lg ab <lg ⎝ ⎛⎭⎪⎪⎫a +b 22=2lg a +b 2, ∴lg a +b 2>12(lg a +lg b ),故选B. 4.下列不等式一定成立的是( ) A .x +1x ≥2 B.x 2+2x 2+2≥ 2C.x 2+3x 2+4≥2D .2-3x -4x ≥2【答案】 B【解析】 A 项中当x <0时,x +1x <0<2,∴A 错误. B 项中,x 2+2x 2+2=x 2+2≥2,∴B 正确.而对于C ,x 2+3x 2+4=x 2+4-1x 2+4, 当x =0时,x 2+3x 2+4=32<2,显然选项C 不正确.D 项中取x =1,2-3x -4x <2,∴D 错误. 5.设0<a <b ,则下列不等式中正确的是( ) A .a <b <ab <a +b2 B .a <ab <a +b2<b C .a <ab <b <a +b2 D.ab <a <a +b2<b【答案】 B【解析】 ∵0<a <b ,∴a ·a <ab .∴a <ab .由基本不等式知ab <a +b2(a ≠b ),又∵0<a <b ,a +b <b +b ,∴a +b 2<b . ∴a <ab <a +b2<b .6.下列选项中正确的是( ) A .当a ,b ∈R 时,a b +ba ≥2a b ×b a =2B .当a >1,b >1时,lg a +lg b ≥2lg a lg bC .当a ∈R 时,a +9a ≥2a ×9a =6D .当ab <0时,-ab -1ab ≤-2 【答案】 B【解析】 选项A 中,可能ba <0,所以A 不正确; 选项C 中,当a <0时,a +9a <0,所以C 不正确; 选项D 中,当ab <0时,-ab >0,-1ab >0, 则-ab -1ab ≥2,当且仅当-ab =-1ab ,即ab =-1时取等号,所以D 不正确; 很明显,选项B 中当a >1,b >1时,lg a >0,lg b >0, 则lg a +lg b ≥2lg a lg b 成立,所以B 正确.7.若两个正实数x ,y 满足2x +1y =1,并且x +2y >m +1恒成立,则实数m 的取值范围是( )A .(-∞,7]B .(-∞,7)C .(7,+∞)D .[7,+∞)【答案】 B【解析】 x +2y =(x +2y )(2x +1y )=2+4y x +xy +2≥8, 当且仅当4y x =xy ,即4y 2=x 2时,等号成立, ∴m +1<8,∴m <7.二、填空题(每小题5分,共20分)8.对于任意正数a ,b ,设A =a +b2,G =ab ,则A 与G 的大小关系是________.【答案】 A ≥G【解析】 ∵a >0,b >0,∴a +b2≥ab >0,∴A ≥G .9.已知a >0,b >0,且a +b =1,则ab 的取值范围是________. 【答案】 (0,14]【解析】 ∵a >0,b >0,a +b =1,∴ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=14. 当且仅当a =b =12时,等号成立. ∴ab 的最大值为14.10.已知0<α<π,则2sin α+12sin α的取值范围是________. 【答案】 [2,+∞) 【解析】 ∵0<α<π,∴sin α>0. ∴2sin α+12sin α≥22sin α×12sin α=2,当且仅当2sin α=12sin α,即sin α=12时,等号成立. ∴2sin α+12sin α的最小值为2.11.函数y =log a (x -1)+1(a >0,且a ≠1)的图像恒过定点A ,若点A 在一次函数y =mx +n 的图像上,其中m ,n >0,则1m +2n 的取值范围为________.【答案】 [8,+∞)【解析】 由题意,得点A (2,1),则1=2m +n , 又m ,n >0,所以1m +2n =2m +n m +2(2m +n )n =4+n m +4m n ≥4+24=8. 当且仅当n m =4m n ,即m =14,n =12时取等号,则1m +2n 的最小值为8.三、解答题(共45分,解答应写出必要的文字说明、证明过程或演算步骤)12.(14分)设实数a 使a 2+a -2>0成立,t >0,比较12log a t 与log a t +12的大小.【解析】 ∵a 2+a -2>0,∴a <-2或a >1, 又a >0且a ≠1,∴a >1,∵t >0,∴t +12≥t ,∴log a t +12≥log a t =12log a t , ∴12log a t ≤log a t +12.13.(15分)已知y =x +9x (x ≠0),试比较|y |与6的大小.【解析】 (1)当x >0时,由基本不等式,得y =x +9x ≥6,(当且仅当x =3取等号),即y ≥6,∴|y |≥6;(2)当x <0时,-x >0,y =x +9x =-[(-x )+9-x ]≤-6(当且仅当x=-3时取等号),即y ≤-6,∴|y |≥6.综上所述,|y |≥6.14.(16分)已知a ,b ,c 为正实数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8. 【解析】 ∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=a +b +c a -1=b +c a ≥2bc a >0. 同理,1b -1≥2ac b >0,1c -1≥2ab c >0.∴⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8ab ac bc abc =8.。
2020版高考数学一轮复习第七章不等式第2讲一元二次不等式的解法配套课时作业(理)(含解析)新人教A版
第2讲 一元二次不等式的解法配套课时作业1.(2019·潍坊模拟)函数f (x )=1ln -x 2+4x -3的定义域是( )A .(-∞,1)∪(3,+∞)B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x 2+4x -3>0,-x 2+4x -3≠1,即⎩⎪⎨⎪⎧1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).故选D.2.若集合A ={x |x 2-x <0},B ={x |(x -a )(x +1)<0},则“a >1”是“A ∩B ≠∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若A ∩B ≠∅,则只需要满足条件a >0即可, ∴“a >1”是“A ∩B ≠∅”的充分不必要条件.3.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1.故选B. 4.(2019·郑州模拟)已知关于x 的不等式ax -1x +1>0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞,则a 的值为( )A .-1B .12C .1D .2答案 D解析 由题意可得a ≠0且不等式等价于a (x +1)( x - ⎭⎪⎫1a>0,由解集的特点可得a >0且1a =12,故a =2.故选D. 5.(2019·江西九江模拟)不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的范围为( )A.⎝⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65 C.⎣⎢⎡⎦⎥⎤-2,65 D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a =-2时,不等式解集为空集;当a ≠-2时,不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,即(a 2-4)x 2+(a +2)x -1<0恒成立.∴⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65综上可知a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65.故选B. 6.若关于x 的不等式x 2-ax +1≤0的解集中只有一个整数,且该整数为1,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫2,52B.⎝ ⎛⎦⎥⎤2,52C.⎣⎢⎡⎦⎥⎤2,52 D.⎝ ⎛⎭⎪⎫2,52 答案 A解析 令f (x )=x 2-ax +1,由题意可得⎩⎪⎨⎪⎧f1≤0,f 2>0,解得2≤a <52.7.(2019·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]答案 C解析 函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16a -12-12a 2+4a -5<0,解得1<a <19.综上1≤a <19.故选C.8.设实数a ∈(1,2),关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为( )A .(3a ,a 2+2) B .(a 2+2,3a ) C .(3,4) D .(3,6)答案 B解析 由x 2-(a 2+3a +2)x +3a (a 2+2)<0,得(x -3a )(x -a 2-2)<0,∵a ∈(1,2),∴3a >a 2+2,∴关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为(a 2+2,3a ).故选B.9.(2019·云南模拟)若关于x 的不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]答案 B解析 原不等式等价于(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.故选B.10.(2019·山东临沂模拟)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞) 答案 C解析 ∵关于x 的不等式ax -b <0的解集为(1,+∞),∴a <0且ba=1,即a =b ,∴不等式(ax +b )(x -3)>0可转化为(x +1)(x -3)<0.解得-1<x <3,故选C.11.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 答案 A解析 依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,即x 2-5x +6<0,解得2<x <3.故选A.12.(2019·广西陆川中学月考)关于x 的不等式ax 2-2x +1 <0的解集非空的一个必要不充分条件是( )A .a <1B .a ≤1C .0<a <1D .a <0答案 B解析 由题意得,当a =0时,原不等式化为-2x +1<0,原不等式的解集为{x ⎪⎪⎪⎭⎬⎫x >12;当a >0时,要使得关于x 的不等式的解集非空,则Δ=4-4a >0⇒a <1,即0<a <1;当a <0时,不等式的解集非空恒成立.所以关于x 的不等式ax 2-2x +1<0的解集非空时,实数a 的取值范围是a <1.所以关于x 的不等式ax 2-2x +1<0的解集非空的一个必要不充分条件是a ≤1,故选B.13.若不等式x 2+ax -2<0在区间[1,5]上有解,则a 的取值范围是________. 答案 (-∞,1)解析 不等式x 2+ax -2<0在区间[1,5]上有解,a <2x -x ,x ∈[1,5]有解,显然g (x )=2x-x 在[1,5]上递减,g max (x )=g (1)=1,∴a <1.14.若关于x 的不等式-12x 2+2x >mx 的解集是{x |0<x <2},则实数m 的值是________.答案 1解析 将原不等式化为12x 2+(m -2)x <0,即x (x +2m -4)<0,故0,2是对应方程x (x +2m -4)=0的两个根,代入得m =1.15.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是________. 答案 [-5,+∞)解析 由题意得,a ≥-⎝⎛⎭⎪⎫x +4x ,设f (x )=-⎝ ⎛⎭⎪⎫x +4x ,x ∈(0,1],则只要a ≥[f (x )]max ,由于函数f (x )在(0,1]上单调递增,所以[f (x )]max =f (1)=-5,故a ≥-5.16.关于x的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+2k +5x +5k <0的整数解的集合为{-2},则实数k的取值范围是________.答案 [-3,2)解析 由x 2-x -2>0,可得x >2或x <-1,又由2x 2+(2k +5)x +5k <0,可得(2x +5)(x +k )<0,如图所示,由已知条件可得⎩⎪⎨⎪⎧-k >-52,-2<-k ≤3,解得-3≤k <2.17.(2019·日照模拟)已知x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立,且关于x 的不等式ax 2+2x -1>0 有解,求实数a 的取值范围.解 ∵x 1,x 2是方程x 2-mx -2=0的两个实根, ∴x 1+x 2=m ,x 1x 2=-2, ∴|x 1-x 2|=x 1+x 22-4x 1x 2=m 2+8,∴当m ∈[-1,1]时,|x 1-x 2|max =3.由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立, 可得a 2-5a -3≥3,∴a ≥6或a ≤-1.① 又不等式ax 2+2x -1>0有解,则 当a >0时,ax 2+2x -1>0显然有解; 当a =0时,ax 2+2x -1>0有解; 当a <0时,由Δ=4+4a >0,得-1<a <0. ∴不等式ax 2+2x -1>0有解时a >-1,② 由①②可得实数a 的取值范围为[6,+∞). 18.解关于x 的不等式:ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1.②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1; 当2a<-1,即a >-2,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1; 当a =-2时,不等式的解集为{x |x =-1};当a <-2时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a . 19.已知关于x 的不等式2x -1>m (x 2-1).(1)是否存在实数m ,使不等式对任意x ∈R 恒成立?并说明理由; (2)若对于m ∈[-2,2]不等式恒成立,求实数x 的取值范围.解 (1)原不等式等价于mx 2-2x +(1-m )<0, 若对于任意实数x 恒成立,当且仅当m <0且Δ=4-4m (1-m )<0,不等式解集为∅,所以不存在实数m ,使不等式恒成立. (2)设f (m )=(x 2-1)m -(2x -1), 当m ∈[-2,2]时,f (m )<0恒成立. 而f (m )在m ∈[-2,2]时表示线段,当且仅当⎩⎪⎨⎪⎧f 2<0,f-2<0⇔⎩⎪⎨⎪⎧2x 2-2x -1<0,①-2x 2-2x +3<0.②由①,得1-32<x <1+32.由②,得x <-1-72或x >-1+72.取交集,得-1+72<x <1+32.所以x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1+72<x <1+32. 20.(2019·兰州模拟)已如函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 (1)由题意,可得m =0或⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0, 故m 的取值范围是(-4,0].(2)解法一:要使f (x )<5-m 在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0, 所以m <67,则0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,则m <0.综上所述,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.解法二:因为f (x )<5-m ⇔m (x 2-x +1)<6, 又因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立.只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67,即m 的取值范围是⎝ ⎛⎭⎪⎫-∞,67.。
2020高考文科数学总复习:不等式课时作业 (3)
答案:B
7.(20xx年福建省××市闽侯第六中学高二上学期期中考试)若不等式x2+2x< + 对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是 ( )
A.(-2,0)B.(-∞,-2)∪(0,+∞)
C.(-4,2)D.(-∞,-4)∪(2,+∞)
解析:因为a,b∈(0,+∞),所以 + ≥2 =8,(当且仅当a=4b时等号成立)
A.(38-3 )m3B.16 m3
C.4 m3D.14 m3
解析:设长方体车厢的长为xm,高为hm,则2x+2×2h+2xh=32,即x+2h+xh=16,
∴16=x+2h+xh≥2 +xh,
即xh+2 -16≤0,
解得0< ≤2 ,
∴0<xh≤8.
∴车厢的容积为V=2xh≤16(m3).当且仅当x=2h且x+2h+xh=16,即x=4,h=2时等号成立.
答案:
三、解答题
17.(20xx年陕西省××市汉台中学西乡中学高二上学期期末联考)(1)若x>0,y>0,x+y=1,求证: + ≥4.
(2)已知实数a>0,b>0,且ab=1,若不等式(x+y)· >m,对任意的正实数x,y恒成立,求实数m的取值范围.
解:(1)证明:∵x+y=1,x>0,y>0,∴ >0, >0,
答案:B
4.(20xx年高考数学)已知点M是△ABC内的一点,且 · =2 ,∠BAC= ,若△MBC,△MCA,△MAB的面积分别为 ,x,y,则 的最小值为 ( )
A.16B.18C.20D.27
解析:由已知得 · =bccos∠BAC=2 ,∴bc=4,
故S△ABC=x+y+ = bcsinA=1,∴x+y= ,
解析:依题意,得3x2+4xy≤3x2+[x2+(2y)2]=4(x2+y2)(当且仅当x=2y时等号成立).
高中数学课时作业十二基本不等式的应用湘教版必修第一册
课时作业(十二) 基本不等式的应用[练基础]1.已知a >0,b >0,a +b =1,则1a +1b的最小值是( )A .3B .4C .5D .62.已知a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .63.某工厂过去的年产量为a ,技术革新后,第一年的年产量增长率为p ()p >0,第二年的年产量增长率为q ()q >0,p ≠q ,这两年的年产量平均增长率为x ,则( )A .x =p +q2 B .x =pqC .x >p +q2D .x <p +q24.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .55.某人要用铁管做一个形状为直角三角形且面积为1 m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m6.(多选)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v <abB .v =abC .ab <v <a +b2D .v =2aba +b7.已知x >0,y >0,若2y x +8xy>m +2恒成立,则实数m 的取值范围是________.8.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.9.已知x >0,y >0,且x +4y =40. (1)求xy 的最大值;(2)求1x +1y的最小值.10.某公司今年3月欲抽调一批销售员推销A 产品,根据过去的经验,每月A 产品销售数量y (万件)与销售员的数量x (人)之间的函数关系式为y =920xx 2+3x +1 600(x >0).在该月内,销售员数量为多少时,销售的数量最大?最大销售量为多少?(精确到0.1万件)[提能力]11.(多选)若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 可能的值为( )A .0B .15C .1D .212.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8 13.若两个正实数x ,y 满足4x+1y=1,且不等式x +4y >m 2-6m 恒成立,则实数m的取值范围是________.14.在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________.15.某单位决定用18.8万元把一会展中心(长方体状,高度恒定)改造成方舱医院,假设方舱医院的后墙利用原墙不花钱,正面用一种复合板隔离,每米造价40元,两侧用砖砌墙,每米造价45元,顶部每平方米造价20元.问:(1)改造后方舱医院的面积S 的最大值是多少?(2)为使S 达到最大,且实际造价又不超过预算,那么正面复合板应设计为多长?[培优生]16.我们学习了二元基本不等式:设a >0,b >0,a +b2≥ab ,当且仅当a =b 时,等号成立,利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.(1)对于三元基本不等式请猜想:设a >0,b >0,c >0,a +b +c3≥________,当且仅当a=b =c 时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设a >0,b >0,c >0,求证:(a 2+b 2+c 2)(a +b +c )≥9abc . (3)利用(1)猜想的三元基本不等式求最值:设a >0,b >0,c >0,a +b +c =1,求(1-a )(1-b )(1-c )的最大值.课时作业(十二) 基本不等式的应用1.解析:因为a >0,b >0,a +b =1, 所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =12时等号成立,故选B. 答案:B2.解析:∵a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n =a +1a +b +1b ≥2a ·1a+2b ·1b=4, 当且仅当a =1a,b =1b即a =1,b =1时取等号. 故选B. 答案:B3.解析:由题意,可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2,因为(1+p )(1+q )≤⎝ ⎛⎭⎪⎫1+p +1+q 22,当且仅当p =q 时取等号,p ≠q ,所以(1+p )(1+q )<⎝ ⎛⎭⎪⎫1+p +1+q 22, 则1+x <2+p +q 2=1+p +q 2,即x <p +q 2,故选D. 答案:D4.解析:可得6⎝ ⎛⎭⎪⎫2a +1b =1,所以2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54,当且仅当2a b=2ba时等号成立,所以9m ≤54,即m ≤6,故选C.答案:C5.解析:设直角三角形两直角边长分别为x m ,y m ,则12xy =1,即xy =2.周长l =x +y +x 2+y 2≥2xy +2xy =22+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C. 故选C. 答案:C6.解析:设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b, ∴v =2ss a +s b=2aba +b .∵b >a >0,由基本不等式可得ab <a +b2,∴v =2ab a +b <2ab2ab=ab , 另一方面v =2ab a +b <2·⎝ ⎛⎭⎪⎫a +b 22a +b =a +b2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,∴v >a ,则a <v <ab . 故选AD. 答案:AD7.解析:因为x >0,y >0,所以2y x +8x y ≥8,当且仅当2y x =8x y时,“=”成立.所以m +2<8,解得m <6.答案:m <68.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:89.解析:(1)因为x >0,y >0,∴40=x +4y ≥24xy =4xy (当且仅当x =4y ,即x =20,y =5时等号成立) 所以xy ≤100, 因此xy 的最大值为100.(2)因为x +4y =40,即140(x +4y )=1,所以1x +1y =140(x +4y )⎝ ⎛⎭⎪⎫1x +1y =140⎝ ⎛⎭⎪⎫5+4y x +x y ≥140⎝ ⎛⎭⎪⎫5+24y x ·x y =940, (当且仅当x =2y ,即x =403,y =203时等号成立)所以1x +1y 的最小值为940.10.解析:依题意得y =920x +3+1 600x(x ∈N *). 因为x +1 600x≥2x ·1 600x=80,当且仅当x =1 600x,即x =40时上式等号成立,所以y max =92083≈11.1(万件).所以当销售员为40人时,销售量最大,最大销售量约为11.1万件. 11.解析:对于∀x >0,不等式xx 2+3x +1≤a 恒成立.即对∀x >0,不等式1x +1x+3≤a 恒成立.∵x +1x+3≥3+2x ·1x =5.当且仅当x =1时,取等号,所以1x +1x+3的最大值为15.所以a ≥15. 故选BCD. 答案:BCD12.解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2y x ·axy=1+a +2a , 当且仅当y x =axy,即y =ax 时取等号. 依题意得1+a +2a ≥9,即(a -2)(a +4)≥0,又a +4>0, ∴a ≥2,解得a ≥4,故a 的最小值为4. 故选B. 答案:B 13.解析:∵4x+1y=1,∴x +4y =(x +4y )⎝ ⎛⎭⎪⎫4x +1y =4+16y x +x y+4≥8+216y x ·xy=16.当且仅当x =16y ,即y =4且x =64时取等号.∵x +4y >m 2-6m 恒成立,则16>m 2-6m ,解得-2<m <8.答案:-2<m <814.解析:设两数分别为x ,y (x ,y ∈N *),即4x +9y =60,1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60 =160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9yx,且4x +9y =60,即x =6且y =4时,等号成立,故应分别填上6,4. 答案:6 415.解析:(1)设正面复合板长为x m ,侧面长为y m ,总造价为z 元,则方舱医院的面积S =xy ,总造价z =40x +2×45y +20xy =40x +90y +20xy .由条件知z ≤188 000,即4x +9y +2xy ≤18 800. ∵x >0,y >0, ∴y ≤18 800-4x 9+2x .令t =9+2x ,则x =t -92(t >9),∴S =xy ≤t -92·18 800-(2t -18)t=-t 2+9 418t -9×9 409t=-⎝⎛⎭⎪⎫t +9×9 409t+9 418 ≤-2t ·9×9 409t+9 418=-2×3×97+9 418 =8 836,当且仅当t =9×9 409t,即t =291时等号成立.故S 的最大值为8 836 m 2.(2)由(1)知,当S =8 836 m 2时,t =291,t =9+2x ,∴x =141,则y =8 836141=1883.∴方舱医院的面积S 达到最大值8 836 m 2,实际造价又不超过预算时,正面复合板的长应设计为141 m .16.解析:(1)对于三元基本不等式猜想:设a >0,b >0,c >0,a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.(2)因为a >0,b >0,c >0,又因为a +b +c ≥33abc >0,a 2+b 2+c 2≥ 33a 2b 2c 2>0,所以(a 2+b 2+c 2)(a +b +c )≥93a 3b 3c 3=9abc , 当且仅当a =b =c 时,等号成立. 即(a 2+b 2+c 2)(a +b +c )≥9abc , (3)因为a >0,b >0,c >0,a +b +c3≥3abc ,所以abc ≤⎝ ⎛⎭⎪⎫a +b +c 33,又因为a +b +c =1,0<1-a <1,0<1-b <1,0<1-c <1,所以(1-a )(1-b )(1-c )≤⎝ ⎛⎭⎪⎫1-a +1-b +1-c 33=827,当且仅当a =b =c =13时,等号成立.所以(1-a )(1-b )(1-c )的最大值为827.。
最新人教A版高中数学必修一培优课时作业(十二)基本不等式
课时作业(十二) 基本不等式[练基础]1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =02.若a ≥0,b ≥0且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤33.“a ,b 为正数”是“a +b >2ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设x >0,则y =3-3x -1x的最大值是( ) A .3 B .3-2 2 C .3-2 3 D .-15.已知x >0,y >0,且2x +y =1,则xy 的最大值是( )A.14 B .4 C.18D .8 6.(多选)设a ,b ∈R ,则下列不等式一定成立的是( )A .a 2+b 2≥2abB .a +1a≥2 C .b 2+1≥2b D.⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥27.若a <1,则a +1a -1与-1的大小关系是________. 8.已知正数x ,y 满足x +2y =2,则1y +8x的最小值为________. 9.已知a >b >c ,你能比较出4与⎝⎛⎭⎫1a -b +1b -c (a -c )的大小吗?10.(1)若x <3,求y =2x +1+1x -3的最大值; (2)已知x >0,求y =2x x 2+1的最大值.[提能力]11.(多选)下列命题中正确的是( )A .y =x +1x()x <0的最大值是-2 B .y =x 2+3x 2+2的最小值是2 C .y =2-3x -4x()x >0的最大值是2-43 D .y =x +4x -1()x >1最小值是5 12.(多选)下列结论正确的是( ) A .若x <0,则y =x +1x的最大值为-2 B .若a >0,b >0,则ab ≤⎝⎛⎭⎫a +b 22C .若a >0,b >0,且a +4b =1,则1a +1b的最大值为9 D .若x ∈[]0,2,则y =x 4-x 2的最大值为213.已知x >0,y >0,且x +2y =3,则xy 的最大值为________,3x +y xy的最小值为________. 14.已知5x 2y 2+y 4=1()x ,y ∈R ,则x 2+2y 2的最小值是________.15.已知正常数a ,b 和正变数x ,y 满足a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b 的值.[培优生]16.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图,在AB 上取一点C ,使得AC =a ,BC =b ,过点C 作CD ⊥AB 交半圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E .由CD ≥DE 可以直接证明的不等式为( )A.ab ≥2ab a +b (a >0,b >0)B.a +b 2≥ab (a >0,b >0)C. a 2+b 22≥a +b 2(a >0,b >0) D .a 2+b 2≥2ab (a >0,b >0)课时作业(十二) 基本不等式1.解析:当a 2+1=2a ,即(a -1)2=0,即a =1时,等号成立.故选B.答案:B2.解析:因为a 2+b 2≥2ab ,所以(a 2+b 2)+(a 2+b 2)≥(a 2+b 2)+2ab ,即2(a 2+b 2)≥(a +b )2=4,所以a 2+b 2≥2.故选C.答案:C3.解析:若a ,b 为正数,取a =1,b =1,则a +b =2ab ,则“a ,b 为正数”不是“a +b >2ab ”的充分条件;若a +b >2ab ,取a =1,b =0,则b 不是正数,则“a ,b 为正数”不是“a +b >2ab ”的必要条件.故“a ,b 为正数”是“a +b >2ab ”的既不充分也不必要条件.故选D.答案:D4.解析:y =3-3x -1x =3-⎝⎛⎭⎫3x +1x ≤3-23x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号.故选C.答案:C5.解析:由题意得,xy =12×2xy ≤12×⎝⎛⎭⎫2x +y 22=12×⎝⎛⎭⎫122=18, 当且仅当x =14,y =12时等号成立,所以xy 的最大值是18.故选C. 答案:C6.解析:当a ,b ∈R 时,a 2+b 2≥2ab 成立,故A 正确;当a >0时,a +1a≥2,等号成立的条件是a =1,当a <0时,a +1a≤-2,等号成立的条件是a =-1,故B 不正确;当b ∈R 时,b 2+1-2b =(b -1)2≥0,所以b 2+1≥2b ,故C 正确;⎪⎪⎪⎪b a >0,⎪⎪⎪⎪a b >0,所以⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥2⎪⎪⎪⎪b a ×⎪⎪⎪⎪a b =2,等号成立的条件是当且仅当⎪⎪⎪⎪b a =⎪⎪⎪⎪a b ,即a 2=b 2时,故D 正确.故选ACD.答案:ACD7.解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a ≥2(1-a )·11-a=2.即a +1a -1≤-1. 答案:a +1a -1≤-1 8.解析:因为x >0,y >0且x +2y =2,所以1y +8x =x +2y 2y +4x +8y x=5+x 2y +8y x ≥5+2x 2y ·8y x =9(当且仅当x 2y =8y x ,即x =4y =43时取等号),即1y +8x的最小值为9.答案:99.解析:⎝⎛⎭⎫1a -b +1b -c (a -c )≥4,理由如下: 因为a -c =(a -b )+(b -c ), 所以⎝⎛⎭⎫1a -b +1b -c [(a -b )+(b -c )] =2+b -c a -b +a -b b -c, 又a >b >c ,所以b -c a -b +a -b b -c≥2, 故⎝⎛⎭⎫1a -b +1b -c (a -c )≥4, 当且仅当b -c a -b =a -b b -c时,取“=”. 10.解析:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x ≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x.因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1. 11.解析:对于A ,y =x +1x =-⎝⎛⎭⎫-x -1x ≤-2-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立,所以y =x +1x ()x <0的最大值是-2,故A 正确;对于B ,y =x 2+3x 2+2=x 2+2+1x 2+2>2,因为x 2+2=1x 2+2,即x 2+2=1无解,即等号不成立,所以y =x 2+3x 2+2取不到最小值2,故B 错误;对于C ,y =2-3x -4x (x >0)=2-(3x +4x )≤2-23x ·4x =2-43,当且仅当3x =4x ,即x =233时,等号成立,所以y =2-3x -4x(x >0)的最大值是2-43,故C 正确;对于D ,y =x +4x -1=x -1+4x -1+1≥2()x -1·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立,所以y =x +4x -1()x >1最小值是5,故D 正确;故选ACD.答案:ACD 12.解析:A 选项,由x <0可得y =x +1x =-⎣⎡⎦⎤()-x +⎝⎛⎭⎫-1x ≤-2()-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立;即y =x +1x 的最大值为-2;A 正确;B 选项,由a >0,b >0,可得⎝⎛⎭⎫a +b 22-ab =a 2+b 2-2ab 4=⎝⎛⎭⎫a -b 22≥0,即ab ≤⎝⎛⎭⎫a +b 22,故B 正确;C 选项,若a >0,b >0,且a +4b =1,则1a +1b =⎝⎛⎭⎫1a +1b ()a +4b =1+4b a +a b +4≥5+24b a ·a b =9,当且仅当4b a =a b,即⎩⎨⎧a =13b =16时,等号成立;即1a +1b 的最小值为9,故C 错;D 选项,因为0≤x ≤2,所以y =x 4-x 2≤x 2+()4-x 22=2,当且仅当x =4-x 2,即x =2时,等号成立,故D 正确.故选ABD.答案:ABD13.解析:∵x >0,y >0∴x +2y =3≥22xy ,解之得:xy ≤98. 当且仅当x =2y ,即x =32,y =34时,等号成立. ∴xy 的最大值为98. 3x +y xy =3y +1x =13()x +2y ⎝⎛⎭⎫3y +1x =73+13⎝⎛⎭⎫3x y +2y x ≥73+233x y ·2y x =7+263. 当且仅当3x y =2y x ,即x =36-35,y =18-3610时,等号成立. ∴3x +y xy 的最小值为7+263. 另解: ∵x >0,y >0,且x +2y =3∴x =3-2y >0,∴0<y <32. ∴xy =y ()3-2y =-2y 2+3y =-2⎝⎛⎭⎫y -342+98. ∵0<y <32, ∴当y =34时,()xy max =98,此时x =32. 答案:98 7+26314.解析:∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y2 ∴x 2+2y 2=1-y 45y 2+2y 2=15y 2+9y 25≥215y 2·9y 25=65, 当且仅当15y 2=9y 25,即x 2=815,y 2=13时取等号. ∴x 2+y 2的最小值为65. 答案:6515.解析:因为x +y =(x +y )·1=(x +y )·⎝⎛⎭⎫a x +b y=a +b +ay x +bx y≥a +b +2ab =(a +b )2, 当且仅当ay x =bx y, 即y x =b a时,等号成立, 所以x +y 的最小值为(a +b )2=18, 又a +b =10,所以ab =16.所以a ,b 是方程x 2-10x +16=0的两根, 所以a =2,b =8或a =8,b =2.16.解析:由三角形相似,知CD 2=DE ·OD =AC ·BC ,即DE =DC 2OD =ab a +b 2=2ab a +b, 由CD ≥DE ,得ab ≥2ab a +b,故选A. 答案:A。
课时作业(四) 基本不等式
课时作业(四) 基本不等式[基础保分练]1.(2023·广州揭阳模拟)设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba ≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B2.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎡⎦⎤12,3 上的最小值为( ) A .12 B .43 C .-1 D .0答案:D3.(2022·黑龙江哈九中三模)已知x ,y 都是正数,且x ≠y ,则下列选项不恒成立的是( ) A .x +y 2 >xyB .x y +yx >2C .2xy x +y <xyD .xy +1xy >2答案:D4.若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|P A |+|PB |的最大值为( )A .2B .22C .4D .42 答案:B5.(2022·湖北十堰三模)函数f (x )=16x +14x +12x -1 的最小值为( )A .4B .22C .3D .42 答案:A6.(2022·江苏南京调研)设a >0,b >0,且2a +b =1,则1a +2aa +b 的最小值为( )A .22 +1B .2 +1C .143 D .4答案:A7.(多选)已知x 2+y 2=4(xy ≠0),则下列结论正确的是( ) A .|x +y |≤22 B .|xy |≤2 C .log 2|x |+log 2|y |<2 D .1|x | +1|y | >2答案:ABC8.(多选)已知a >b >0,a +b +1a +1b =5,则下列不等式成立的是( )A .1<a +b <4B .⎝⎛⎭⎫1a +b ⎝⎛⎭⎫1b +a ≥4C .⎝⎛⎭⎫1a +b 2>⎝⎛⎭⎫1b +a 2D .⎝⎛⎭⎫1a +a 2>⎝⎛⎭⎫1b +b 2答案:AB9.函数y =x -1x +3+x -1的最大值为________.答案:15解析:y =x -1x -1+4+x -1,当x -1=0时,y =0,当x -1>0时,y =1x -1+4x -1+1 ≤14+1 =15 ,当且仅当x -1 =4x -1 ,即x =5时等号成立,y max =15. 10.(2023·浙江模拟)已知xy >0,x +2y -2x -4y =7,则x +2y 的最小值是________.答案:9 解析:由题意得, x +2y =7+2x +4y ,①2x +4y =2x +82y,② 所以⎝⎛⎭⎫2x +82y ()x +2y =2+4y x +8x 2y +8≥10+216 =18⇒2x +82y ≥18x +2y⇒2x +4y ≥18x +2y, 所以①式x +2y =7+2x +4y ≥7+18x +2y ,令t =x +2y ,t >0,所以t ≥7+18t⇒t 2≥7t +18⇒t 2-7t -18≥0⇒t ≥9,即(x +2y )min =9.[技能提分练]11.(2023·辽宁模拟)已知正实数x ,y 满足2x +1y =1,则4xy -3x -6y 的最小值为( )A .2B .4C .8D .12 答案:C12.(2022·天津红桥二模)设a >0,b >0,若a +2b =5,则()a +1()2b +1ab的最小值为( )A . 3B .2C .2 2D .4 3D 解析:因为a >0,b >0,且a +2b =5,所以ab >0, 所以()a +1()2b +1ab=2ab +a +2b +1ab=2ab +6ab=2ab +6ab≥22ab ·6ab=43 ,当且仅当2ab =6ab ,即⎩⎪⎨⎪⎧b =1a =3 或⎩⎪⎨⎪⎧b =32a =2 时取等号.即(a +1)(2b +1)ab 的最小值为43 .13.司机甲、乙加油习惯不同,甲每次加定量的油,乙每次加固定钱数的油,恰有两次甲、乙同时加同单价的油,但这两次的油价不同,则从这两次加油的均价角度分析( )A .甲合适B .乙合适C .油价先高后低甲合适D .油价先低后高甲合适答案:B14.(多选)已知a >0,b >0,且2a +b =ab ,则( ) A .ab ≥8 B .a +b ≤3+22 C .2b >4D .log 2(a -1)·log 2(b -2)≤14答案:ACD15.(2023·山东枣庄模拟)已知a >b >0,则a +4a +b +1a -b 的最小值为________.答案:32 解析:因为a >b >0,所以a +b >0,a -b >0,a +4a +b +1a -b =a +b 2 +4a +b+a -b 2 +1a -b≥2a +b 2×4a +b+2a -b 2×1a -b=22 +2×22 =32 当且仅当⎩⎪⎨⎪⎧a +b =22a -b =2,即a =322,b =2 时等号成立. 16.(2023·浙江模拟)已知正实数x ,y 满足:x 2+xy +2x y =2,则3x +2y +2y 的最小值为________.答案:42 解析:因为x 2+xy +2x y =2,所以x 2+xy +2xy +2=4,所以x (x +y )+2y (x +y )=4,所以(x +y )⎝⎛⎭⎫x +2y =4, 令⎩⎪⎨⎪⎧x +y =mx +2y =4m, 则3x +2y +2y =2(x +y )+⎝⎛⎭⎫x +2y =2m +4m ≥22m ·4m=42 , 当且仅当2m =4m ,即m =2 时取等号,所以3x +2y +2y 的最小值为42 .。
3.4《不等式的实际应用》课时作业(人教B版必修5)
3.4不等式的实际应用一、选择题(每题5分,共20分)1.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处【解析】 设仓库建在离车站x km 处,则土地费用y 1=k 1x,运输费用y 2=k 2x 把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45, 故总费用y =20x +45x ≥220x ·45x =8, 当且仅当20x =45x 即x =5时等号成立. 【答案】 A2.银行计划将某资金给项目M 和N 投资一年,其中40%的资金给项目M,60%的资金给项目N ,项目M 能获得10%的年利润,项目N 能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户,为了使银行年利润不小于给M 、N 总投资的10%而又不大于总投资的15%,则给储户的回扣率最小值为( )A .5%B .10%C .15%D .20% 【解析】 设给储户的回扣率为x ,由题意:⎩⎪⎨⎪⎧0.4×0.1+0.6×0.35-x ≥0.10.4×0.1+0.6×0.35-x ≤0.15, 解得0.1≤x ≤0.15,故x 的最小值是0.1=10%.【答案】 B3.天文台用3.2万元买一台观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的日平均耗资最少)为止,一共使用了( )A .600天B .800天C .1 000天D .1 200天【解析】 日平均耗资为3 2000+n ·12·⎝⎛⎭⎫5+n +4910n=3 2000n +n 20+9920≥2 3 2000n ·n 20+9920=80+9920,当且仅当3 2000n =n 20,即n =800时取等号. 【答案】 B4.用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A .85 cm 2B .610 cm 2C .355 cm 2D .20 cm 2【解析】 设三角形各边长为x 、y 、z ,且x 、y 、z ∈N +,则x +y +z =20.由于在周长一定的三角形中,各边长越接近的三角形面积越大,于是当三边长为7 cm 、7 cm 、6 cm 时面积最大,则S △=12×6×72-32=610(cm 2),故选B.【答案】 B二、填空题(每题5分,共10分)5.建造一个容积为8 m 2,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元.【解析】 设池底长x m ,则宽4xm , 总造价y =(4x +16x)×80+4×120 ≥24x ·16x×80+480=1 760, 当且仅当4x =16x即x =2时等号成立. 【答案】 1 7606.某省每年损失耕地20万亩,每亩耕地价格24 000元,为了减少耕地损失,决定以每年损失耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围是____. 【解析】 由题意得(20-52t )×2 4000×t %≥9 000, 化简得t 2-8t +15≤0解得3≤t ≤5.【答案】 3≤t ≤5三、解答题(每题10分,共20分)7.某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元,如果墙高为3 m ,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?【解析】 设房子的长为x m ,宽为y m ,总造价为t 元,则xy =12.t =3x ·1 200+3y ·800·2+5 800=1 200(3x +4y )+5 800≥1 200·212xy +5 800=34600(当且仅当3x =4y 时取等号).故最低总造价是34 600元.8.一批救灾物资随26辆汽车从某市以v km/h 的速度匀速直达灾区,已知两地公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v 20)2 km ,那么这批物资全部安全到达灾区,最少需要多少小时? 【解析】 第一辆汽车到达用400v h ,由题意每隔(v 20)2v h 到达一辆汽车, ∴400v +25×(v 20)2v =400v +v 16≥2400v ×v 16=10(h), 当且仅当400v =v 16,v =80 km/h 时取等号. ∴每辆汽车以80 km/h 的速度行驶,最少需10 h 这批物资全部安全到达灾区.9.(10分)工厂对某种原料的全年需要量是Q 吨.为保证生产,又节省开支,打算全年分若干次等量订购,且每次用完后可立即购买.已知每次订购费用是a 元.又年保管费用率是p ,它与每次购进的数量(x 吨)及全年保管费(S 元)之间的关系是S =12px .问全年订购多少次才能使订购费与保管费用之和最少?并求这个最少费用的和(为简便计算,不必讨论订购次数是否为整数).【解析】 设每次购进的数量为x 吨,则全年定购费用=a ·Q x ,全年保管费S =12px , 定购费与保管费之和y =a ·Q x +12px . 由于a ·Q x +12px ≥212paQ =2paQ , 当且仅当a ·Q x =12px ,即x =2aQp p时取等号, 即最优批量订购数为x 0=2aQp p(吨), 最小费用数为y min =2paQ (元),全年最佳定购次数n =Q x 0=2paQ 2a(次). 故全年订购2paQ 2a次,才能使全年的订购费用与保管费用之和最少,最少费用为2paQ 元.高$考じ试(题╬库。
高中数学同步练习 课时分层作业1 不等式的基本性质
课时分层作业(一) 不等式的基本性质(建议用时:45分钟)[基础达标练]一、选择题1.设a,b,c,d∈R ,且a>b,c>d,则下列结论正确的是( )A .a +c>b +dB .a -c>b -dC .ac>bdD .a d >b cA [∵a>b ,c>d,∴a+c>b +d.]2.设a,b∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a 3+b 3<0C .b +a>0D .a 2-b 2<0 C [a -|b|>0⇒|b|<a ⇒-a<b<a ⇒a +b>0.故选C.]3.若a<b<0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a|>|b|>0D .⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b B [考查不等式的基本性质及其应用.取a =-2,b =-1验证即可求解.]4.已知a <0,-1<b <0,那么( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a D [ab 2-ab =ab(b -1),∵a<0,-1<b <0,∴b-1<0,ab >0,∴ab 2-ab <0,即ab 2<ab ;又ab 2-a =a(b 2-1),∵-1<b <0,∴b 2<1,即b 2-1<0.又a <0,∴ab 2-a >0,即ab 2>a.故ab >ab 2>a.]5.设a,b 为实数,则“0<ab <1”是“b<1a”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D [∵0<ab <1,当a <0且b <0时可推得b >1a, 所以“0<ab <1”不是“b<1a”的充分条件, ① 反过来,若b <1a, 当b <0且a >0时,有ab <0,推不出“0<ab <1”,所以“0<ab <1”也不是“b<1a”的必要条件, ②由①②知,应选D.]二、填空题6.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是f(x)________g(x).[解析] f(x)-g(x)=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f(x)>g(x).[答案] >7.给出四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0.能得出1a <1b成立的有________.(填序号) [解析] 1a <1b ⇔1a -1b <0⇔b -a ab<0, ∴①②④可推出1a <1b成立. [答案] ①②④8.已知α,β满足-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.[解析] 设α+3β=λ(α+β)+μ(α+2β),可解得λ=-1,μ=2,∴α+3β=-(α+β)+2(α+2β).又-1≤α+β≤1,1≤α+2β≤3,∴1≤α+3β≤7.[答案] [1,7]三、解答题9.(1)已知a >b >0,c <d <0,求证:3a d <3b c;(2)若a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. [证明] (1)∵c<d <0,∴-c >-d >0.∴0<-1c <-1d.又a >b >0, ∴-a d >-b c>0, ∴ 3-a d >3-b c ,即-3a d >-3b c. 两边同乘以-1,得3a d <3b c. (2)∵c<d <0,∴-c >-d >0.∵a>b >0,∴a-c >b -d >0,∴(a-c)2>(b -d)2>0,∴1(a -c )2<1(b -d )2. 又∵e<0,∴e (a -c )2>e (b -d )2. 10.设x,y 为实数,且3≤xy 2≤8,4≤x 2y ≤9,求x 3y 4的取值范围. [解] 由4≤x 2y ≤9,得16≤x 4y2≤81.① 又3≤xy 2≤8,∴18≤1xy 2≤13.② 由①×②得18×16≤x 4y 2·1xy 2≤81×13, 即2≤x 3y 4≤27,因此x 3y4的取值范围是[2,27]. [能力提升练]1.若a,b 为实数,则“0<ab <1”是“a<1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A [对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a<1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a<1b或 b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a<1b 或b >1a”的必要条件,即“0<ab <1”是“a<1b 或b >1a”的充分而不必要条件.] 2.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c)>log a (b -c). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③D [由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c ;因为a -c >b -c,所以log b (a -c)>log a (a -c)>log a (b -c),①②③均正确.]3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b.其中能推出log b 1b <log a 1b<log a b 成立的条件的序号是________.(填所有可能的条件的序号)[解析] ∵log b 1b=-1, 若1<a <b,则1b <1a<1<b, ∴log a 1b <log a 1a=-1,故条件①不可以; 若0<a <b <1,则b <1<1b <1a, ∴log a b >log a 1b >log a 1a =-1=log b 1b, 故条件②可以;若0<a <1<b,则0<1b<1, ∴log a 1b>0,log a b <0,条件③不可以.故应填②. [答案] ②4.已知f(x)=ax 2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.[解] 由-4≤f(1)≤-1,-1≤f(2)≤5,得⎩⎪⎨⎪⎧ -4≤a+c≤-1,-1≤4a+c≤5.设u =a +c,v =4a +c,则有a =v -u 3,c =4u -v 3, ∴f(3)=9a +c =-53u +83v. 又⎩⎪⎨⎪⎧ -4≤u≤-1,-1≤v≤5,∴⎩⎪⎨⎪⎧ 53≤-53u ≤203,-83≤83v ≤403, ∴-1≤-53u +83v≤20,即-1≤f(3)≤20.∴f(3)的取值范围为[-1,20].。
新人教版高中数学必修第一册基本不等式在实际问题中的应用PPT课件及课时作业
(2)求△ADP面积的最大值及此时x的值.
在Rt△ADP中,
S△ADP=12AD·DP=12(12-x)12-7x2=108-6x+43x 2
(6<x<12). ∵6<x<12,∴6x+43x2≥2
6x·43x2=72 2,当且仅当 6x=43x2,即 x=
6 2时,等号成立. ∴S△ADP=108-6x+43x2≤108-72 2,∴当 x=6 2时,△ADP 的面积
1234
4. 在如图所示的锐角三角形空地中,欲建一个内接矩形花园(阴影部分), 矩形花园面积的最大值为__4_0_0__.
1234
由题意设矩形花园的长为x>0,宽为y>0,矩形花园 的面积为xy,根据题意作图,如图,因为花园是矩 形,则△ADE与△ABC相似,所以 AAGF=DBCE ,又因 为AG=BC=40, 所以AF=DE=x,FG=y,所以x+y=40, 由基本不等式 x+y≥2 xy,得 xy≤400, 当且仅当x=y=20时,矩形花园面积最大,最大值为400.
内容索引
一、基本不等式在生活中的应用 二、基本不等式在几何中的应用
随堂演练 课时对点练
一
基本不等式在生活中的应用
问题 利用基本不等式求最大(小)值时,应注意哪些问题?
提示 一正:x,y都得是正数; 二定:积定和最小,和定积最大; 三相等:检验等号成立的条件是否满足实际需要.
例1 (教材46页例3改编)小明的爸爸要在家用围栏做一个面积为16m2的矩 形游乐园,当这个矩形的边长为多少时,所用围栏最省,并求所需围栏 的长度.
1234
设矩形模型的长和宽分别为x,y,则x>0,y>0, 由题意可得2(x+y)=8, 所以x+y=4, 所以矩形模型的面积 S=xy≤x+4y2=442=4, 当且仅当x=y=2时,等号成立, 所以当矩形模型的长和宽都为2 cm时,面积最大,为4 cm2.
人教版七年级下数学下不等式的应用教案教学设计教学案课时作业同步练习试卷含试题答案解析
不等式组的应用3【目标导航】经历从实际问题中抽象出数学模型的过程,积累利用一元一次不等式组解决实际问题的经验,体会分类思想,感知方程与不等式的内在联系【课堂操练】1.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.2.初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.4.“六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如右表所示,⑴用含x、y的代数式表示购进C种玩具的套数;⑵求y与x之间的关系式;⑶假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套.批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示).(2)初三(1)班至少有多少名同学?最多有多少名?5.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.6.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.7.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【课后盘点】1.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下2.某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.⑴求工程队A原来平均每天维修课桌张数;⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.3.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?5.星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?6.为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?7.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?答案【课堂操练】解:(1)设每支钢笔和每本笔记本的价格分别为x ,y ,则⎩⎨⎧x+3y=182x+5y=31 解得⎩⎨⎧x=3y=5答:每支钢笔的价格是3元,每本笔记本的价格5元。
学年高中数学第三章不等式.一元二次不等式及其解法第课时一元二次不等式的解法优化练习新人教A版必修
第1课时 一元二次不等式的解法[课时作业][A 组 根底稳固]1.设集合M ={x |x 2-x <0},N ={x |x 2<4},那么( )A .M ∩N =∅B .M ∩N =MC .M ∪N =MD .M ∪N =R 解析:M ={x |0<x <1},N ={x |-2<x <2},∴M ∩N =M .应选B.答案:B2.不等式x 2-2x -5>2x 的解集是( )A .{x |x ≥5或x ≤-1}B .{x |x >5或x <-1}C .{x |-1<x <5}D .{x |-1≤x ≤5} 解析:由x 2-2x -5>2x ,得x 2-4x -5>0.因为x 2-4x -5=0的两根为-1,5,故x 2-4x -5>0的解集为{x |x <-1或x >5}.答案:B3.不等式x (2-x )>3的解集是( )A .{x |-1<x <3}B .{x |-3<x <1}C .{x |x <-3或x >1}D .∅ 解析:将不等式化为标准形式x 2-2x +3<0,由于对应方程的判别式Δ<0,所以不等式x (2-x )>3的解集为∅.答案:D4.集合M ={x |x 2-3x -28≤0},N ={x |x 2-x -6>0},那么M ∩N 为( )A .{x |-4≤x <-2或3<x ≤7}B .{x |-4<x ≤-2或3≤x <7}C .{x |x ≤-2或x >3}D .{x |x <-2或x ≥3}解析:∵M ={x |x 2-3x -28≤0}={x |-4≤x ≤7}, N ={x |x 2-x -6>0}={x |x <-2或x >3},∴M ∩N ={x |-4≤x <-2或3<x ≤7}.答案:A5.假设0<t <1,那么不等式(x -t )(x -1t)<0的解集为( )A .{x |1t <x <t }B .{x |x >1t或x <t } C .{x |x <1t 或x >t } D .{x |t <x <1t} 解析:∵0<t <1,∴1t >1,∴t <1t, ∴(x -t )(x -1t )<0⇔t <x <1t. 答案:D6.假设不等式ax 2+bx +2>0的解集是(-12,13),那么a +b 的值是________. 解析:由⎩⎪⎨⎪⎧ -12+13=-b a ,-12×13=2a ,∴a =-12,b =-2,∴a +b =-14.答案:-147.方程x 2+(m -3)x +m =0有两个实根,那么实数m 的取值范围是________. 解析:由Δ=(m -3)2-4m ≥0可得m ≥9或m ≤1.答案:m ≤1或m ≥98.设函数f (x )=⎩⎪⎨⎪⎧ x 2-4x +6,x ≥0x +6,x <0,,那么不等式f (x )>f (1)的解集是________.解析:当x ≥0时,f (x )>f (1)=3,即x 2-4x +6>3,解得0≤x <1或x >3;当x <0时,f (x )>f (1)=3,即x +6>3,解得-3<x <0.故f (x )>f (1)的解集是(-3,1)∪(3,+∞) 答案:(-3,1)∪(3,+∞)9.解不等式0≤x 2-x -2≤4.解析:原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2≥0,x 2-x -2≤4, 解x 2-x -2≥0,得x ≤-1或x ≥2;解x 2-x -2≤4,得-2≤x ≤3.所以原不等式的解集为{x |-2≤x ≤-1或2≤x ≤3}.10.关于x 的不等式ax 2+bx +c <0的解集是⎩⎨⎧⎭⎬⎫x |x <-2或x >-12,求ax 2-bx +c >0的解集.解析:由题意,-2,-12是方程ax 2+bx +c =0的两个根,。
2023版新教材高中数学第二章等式与不等式-不等式及其性质课时作业新人教B版必修第一册
2.2.1 不等式及其性质必备知识基础练1.完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x人,瓦工y人,则工人满足的关系式是( ) A.5x+4y<200 B.5x+4y≥200C.5x+4y=200 D.5x+4y≤2002.下列结论中正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a>b D.若<,则a>b3.设M=3x2-x+1,N=x2+x-1,则( )A.M>NB.M<NC.M=ND.M与N的大小关系与x有关4.已知c>a>b>0,则________.(填“>”“<”或“=”)5.若1<a<3,-4<b<2,那么a-|b|的取值范围是( )A.(-3,3] B.(-3,5)C.(-3,3) D.(1,4)6.(1)比较x2+3与2x的大小;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.关键能力综合练7.下列不等式中,正确的是( )A.若a-c>b-d且c>d,则a>bB.若a>b且k∈N+,则a k>b kC.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc28.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为( )A.①②③ B.①③②C.②③① D.③①②9.要证明+<2 可选择的方法有以下几种,其中最合理的为( )A.综合法 B.分析法C.反证法 D.归纳法10.已知α∈(0,),β∈[0,],则2α-的取值范围是( )A.(0,) B.(-,)C.(0,1) D.(-,1)11.(多选)已知a,b,c,d均为实数,则下列命题正确的是( )A.若ab<0,bc-ad>0,则->0B.若ab>0,->0,则bc-ad>0C.若bc-ad>0,->0,则ab>0D.若<<0,则<12.已知1<a<6,3<b<4,求a-b,的取值范围.核心素养升级练13.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.14.已知a>0,b>0,试比较+与+的大小.2.2.1 不等式及其性质必备知识基础练1.解析:由题意可得,总的工资为50x+40y,又因为现有工人工资预算2 000元,故50x+40y≤2 000,化简可得5x+4y≤200.答案:D2.解析:对于A,c>0时,结论成立,故A不正确;对于B,a=-2,b=-1,满足a2>b2,但a<b,故B不正确;对于C,利用不等式的性质,可得结论成立;对于D,a=-1,b=2,满足<,但a<b,故D不正确.答案:C3.解析:因为M-N=3x2-x+1-(x2+x-1)=2x2-2x+2=2(x-)2+>0,所以M>N.答案:A4.解析:因为c>a,所以c-a>0,又因为a>b,所以>.答案:>5.解析:∵-4<b<2,∴0≤|b|<4,∴-4<-|b|≤0.又∵1<a<3,∴-3<a-|b|<3.答案:C6.解析:(1)(x2+3)-2x=x2-2x+3=(x-1)2+2≥2>0,所以x2+3>2x.(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),因为a>0,b>0,且a≠b,所以(a-b)2>0,a+b>0.所以(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.关键能力综合练7.解析:若a-c>b-d且c>d,则a>b,故A正确;当a=1,b=-2,k=2时,命题不成立,故B错误;令a=2,b=1,c=-2,d=-3,满足a>b>0,c>d,但推不出ac>bd,故C错误;令c=0可知D错误.答案:A8.解析:根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.答案:D9.解析:要证明+<2最合理的方法是分析法.答案:B10.解析:因为α∈(0,),β∈[0,],所以2α∈(0,1),∈[0,],则-∈[-,0],所以2α-∈(-,1).答案:D11.解析:对于A,若ab<0,bc-ad>0,不等式两边同时除以ab得-<0,所以A不正确;对于B,若ab>0,->0,不等式两边同时乘以ab得bc-ad>0,所以B正确;对于C,若->0,当两边同时乘以ab时可得bc-ad>0,所以ab>0,所以C正确;对于D,由<<0,可知b<a<0,所以a+b<0,ab>0,所以<成立,所以D正确.答案:BCD12.解析:∵3<b<4,∴-4<-b<-3.∴1-4<a-b<6-3,即-3<a-b<3.又<<,∴<<,即<<2.综上,a-b的取值范围为(-3,3),的取值范围为(,2).核心素养升级练13.解析:设男学生、女学生、教师人数分别为x,y,z,则x>y>z.(1)若教师人数为4,则4<y<x<8,当x=7时,y取得最大值6.(2)当z=1时,1=z<y<x<2,不满足条件;当z=2时,2=z<y<x<4,不满足条件;当z=3时,3=z<y<x<6,y=4,x=5,满足条件.所以该小组人数的最小值为3+4+5=12.答案:(1)6 (2)1214.解析:方法一 作差法(+)-(+)=(-)+(-)=+==.∵a>0,b>0,∴+>0,>0,(-)2≥0,∴≥0,∴+≥+.方法二 作商法=====1+≥1.∵a>0,b>0,∴+>0,+>0,∴+≥+.方法三 平方法∵(+)2=++2,(+)2=a+b+2,∴(+)2-(+)2=.∵a>0,b>0,∴≥0,∵+>0,+>0,∴+≥+.。
课时作业15:第1课时 基本不等式
§3.4 基本不等式:ab ≤a +b 2第1课时 基本不等式一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A.a 2+b 2≥2|ab |B.a 2+b 2=2|ab |C.a 2+b 2≤2|ab |D.a 2+b 2>2|ab |考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( )A.a 2+b 2>2abB.a +b ≥2abC.1a +1b >2abD.b a +a b ≥2 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +a b≥2 b a ·a b =2, 当且仅当a =b 时,等号成立.3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( )A.1x +y ≥14B.1x +1y ≥1C.xy ≥2D.1xy ≥1 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 若x >0,y >0,由x +y =4,得x +y 4=1, ∴1x +1y =14(x +y )⎝⎛⎭⎫1x +1y =14⎝⎛⎭⎫2+y x +x y ≥14(2+2)=1, 当且仅当x =y =2时,等号成立.4.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一考点 基本不等式的理解题点 基本不等式的理解答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4.又因为cd ≤(c +d )24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立.5.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 因为0<a <b ,所以a +b 2>ab . 又因为f (x )=ln x 在(0,+∞)上单调递增,所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q . 而r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.6.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( )A.a +b +1ab ≥2 2B.(a +b )⎝⎛⎭⎫1a +1b ≥4C.a 2+b 2ab≥2ab D.2ab a +b >ab 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 a +b +1ab ≥2ab +1ab≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab =4, 当且仅当a =b 时,等号成立,B 成立;∵a 2+b 2≥2ab >0, ∴a 2+b 2ab≥2ab ,当且仅当a =b 时,等号成立,C 成立; ∵a +b ≥2ab ,且a ,b ∈(0,+∞),∴2ab a +b ≤1,2ab a +b≤ab . 当且仅当a =b 时,等号成立,D 不成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12.(填“>”“≥”“≤”或“<”)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍),∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b;④a b +b a ≥2.其中恒成立的不等式是________.考点 基本不等式的理解题点 基本不等式的理解答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确;当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b=-12,可知③不正确;当a =1,b =-1时,可知④不正确. 9.已知a >b >c ,则(a -b )(b -c )与a -c 2的大小关系是______________________________. 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 (a -b )(b -c )≤a -c 2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立. 10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是________.(用“>”连接)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n .三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +ab c≥a +b +c . 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 ∵a ,b ,c 都是正数,∴bc a ,ca b ,ab c也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +ab c≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c≥a +b +c , 当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立. 四、探究与拓展13.设0<a <1<b ,则一定有( )A.log a b +log b a ≥2B.log a b +log b a ≥-2C.log a b +log b a ≤-2D.log a b +log b a >2考点 基本不等式的理解题点 基本不等式的理解答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A.x +y ≥2(2+1)B.xy ≤2+1C.x +y ≤(2+1)2D.xy ≥2(2+1) 考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。
数学一轮复习第六章第2讲基本不等式课时作业含解析
第2讲基本不等式组基础关1.设非零实数a,b,则“a2+b2≥2ab”是“错误!+错误!≥2”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析因为a,b∈R时,都有a2+b2-2ab=(a-b)2≥0,即a2+b2≥2ab,而错误!+错误!≥2成立的条件是ab>0,所以“a2+b2≥2ab”是“错误!+错误!≥2"成立的必要不充分条件.2.已知a>0,b〉0,a,b的等比中项是1,且m=b+错误!,n=a+错误!,则m+n的最小值是()A.3 B.4C.5 D.6答案B解析由题意知ab=1,∴m=b+1a=2b,n=a+错误!=2a,∴m+n=2(a+b)≥4错误!=4,当且仅当a=b=1时取等号,故m +n的最小值为4.3.已知p=a+错误!,q=错误!x2-2,其中a>2,x∈R,则p,q的大小关系是()A.p≥q B.p>qC.p<q D.p≤q答案A解析由a>2,故p=a+错误!=(a-2)+错误!+2≥2+2=4,当且仅当a=3时取等号.因为x2-2≥-2,所以q =错误!x2-2≤错误!-2=4,当且仅当x=0时取等号,所以p≥q.故选A。
4.(2019·郑州外国语学校月考)若a>b>1,P=错误!,Q=错误!(lg a+lg b),R=lg 错误!,则()A.R<P<Q B.Q<P<RC.P<Q<R D.P<R<Q答案C解析因为a>b>1,所以lg a>0,lg b>0,且lg a≠lg b,所以错误!<错误!(lg a+lg b),由错误!<错误!,得lg错误!<lg 错误!.所以错误!(lg a+lg b)<lg 错误!,综上知P<Q<R.5.若正数x,y满足4x2+9y2+3xy=30,则xy的最大值是()A.错误!B.错误!C.2 D.错误!答案C解析由x>0,y〉0,得4x2+9y2+3xy≥2·(2x)·(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.6.《几何原本》第二卷的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F在半圆O上,点C在半径OB上,且OF⊥AB,设AC=a,BC=b,则该图形可以完成的无字证明为()A.错误!≥错误!(a>0,b>0)B.a2+b2≥2ab(a>0,b>0)C.错误!≤错误!(a>0,b>0)D。
课时作业13:不等关系与不等式
§1.4 不等关系与不等式课时精练1.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a -b >0⇒a >b ≥0⇒a >b ≥0⇒a 2>b 2, 但a 2-b 2>0⇏a -b >0,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件.2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b 答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ab >0,a <b ,则a 2b <ab 2,故B 不成立; 若a =1,b =2,则b a =2,a b =12,b a >a b,故D 不成立,由不等式的性质知,C 正确. 3.如果x +y <0,且y >0,那么下列不等式成立的是( )A .y 2>x 2>-xyB .x 2>y 2>-xyC .x 2<-xy <y 2D .x 2>-xy >y 2答案 D解析 x 2-y 2=(x -y )(x +y ),∵x +y <0且y >0,∴x <0,∴x -y <0,∴x 2-y 2>0,∴x 2>y 2,又xy +y 2=y (x +y ),∵x +y <0,y >0,∴y (x +y )<0,∴y 2<-xy .又x2+xy=x(x+y)>0,∴x2>-xy,综上,x2>-xy>y2.4.已知a1∈(0,1),a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M>NC.M=N D.不确定答案 B解析M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)(a2-1),又a1∈(0,1),a2∈(0,1),∴a1-1<0,a2-1<0.∴(a1-1)(a2-1)>0,即M-N>0,∴M>N.5.(多选)已知c<b<a,且ac<0,那么下列不等式中,一定成立的是()A.ab>ac B.c(b-a)>0C.cb2<ab2D.ac(a-c)<0答案ABD解析由c<b<a且ac<0知a>0且c<0,b的正负不确定,由b>c且a>0知ba>ca,故A一定成立;∵b-a<0且c<0,∴c(b-a)>0,故B一定成立;当b=0时,cb2=ab2=0,故C不一定成立;又a-c>0且ac<0,∴ac(a-c)<0,故D一定成立.6.(多选)有外表一样,重量不同的六个小球,它们的重量分别是a,b,c,d,e,f,已知a +b+c=d+e+f,a+b+e>c+d+f,a+b+f<c+d+e,a+e<b.则下列判断正确的有() A.b>c>f B.b>e>fC.c>e>f D.b>e>c答案ABD解析因为a+b+c=d+e+f,a+b+e>c+d+f,所以e-c>c-e,所以e>c,又因为a+b+c=d+e+f,a+b+f<c+d+e,所以c-f>f-c,所以c>f,所以e>c>f,所以C错误;又因为a+e<b,所以a<b,e<b,所以b>e>c,b>e>f,b>c>f均成立,所以ABD正确.7.已知M=x2+y2+z2,N=2x+2y+2z-π,则M________N.(填“>”“<”或“=”)答案>解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .8.已知非零实数a ,b 满足a >b ,则下列结论正确的是________(填序号).①1a <1b;②a 3>b 3;③2a >2b ;④ln a 2>ln b 2. 答案 ②③解析 当a >0,b <0时,1a >0>1b,故①不正确; 由函数y =x 3,y =2x 的单调性可知,②③正确;当a =1,b =-1时,ln a 2=ln b 2=ln 1=0,故④不正确.9.近来鸡蛋价格起伏较大,每两周的价格均不相同,假设第一周、第二周鸡蛋价格分别为a 元/斤、b 元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为更优惠)________.(在横线上填甲或乙即可)答案 乙解析 由题意得甲购买产品的平均单价为3a +3b 6=a +b 2,乙购买产品的平均单价为2010a +10b=2ab a +b,由条件得a ≠b . ∵a +b 2-2ab a +b =(a -b )22(a +b )>0, ∴a +b 2>2ab a +b, 即乙的购买方式更优惠.10.(2021·浙江宁海中学月考)已知等比数列{a 1,a 2,a 3,a 4}满足a 1∈(0,1),a 2∈(1,2),a 3∈(2,3),则a 4的取值范围是________.答案 (22,9)解析 设等比数列{a 1,a 2,a 3,a 4}的公比为q ,由a 1∈(0,1),a 2∈(1,2),a 3∈(2,3)可知,0<a 1<1①,1<a 1q <2②,2<a 1q 2<3③,由③÷②可得1<q <3,③÷①可得q 2>2,即q >2或q <-2,②÷①可得q >1, 所以2<q <3,所以a 4=a 3q ∈(22,9).11.已知a +b >0,试比较a b 2+b a 2与1a +1b 的大小. 解 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a2 =(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 12.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d; (2)已知c >a >b >0,求证:a c -a >b c -b. 证明 (1)∵bc ≥ad ,1bd >0,∴c d ≥a b, ∴c d +1≥a b +1,∴a +b b ≤c +d d. (2)∵c >a >b >0,∴c -a >0,c -b >0.∵a >b >0,∴1a <1b, 又∵c >0,∴c a <c b ,∴c -a a <c -b b, 又c -a >0,c -b >0,∴a c -a >b c -b.13.(多选)若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a >1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 AD解析 对于A ,∵b >c >1,∴b c>1.∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故正确. 对于B ,若c -a b -a >c b,则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故错误. 对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故错误.对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故正确.14.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.15.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系为( )A .a <b ≤cB .b ≤c <aC .b <c <aD .b <a <c答案 A解析 c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,又b +c =6-4a +3a 2,c -b =4-4a +a 2,两式相减得2b =2+2a 2即b =1+a 2,∴b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a ,∴a <b ≤c .16.观察以下运算:1×5+3×6>1×6+3×5,1×5+3×6+4×7>1×6+3×5+4×7>1×7+3×6+4×5.(1)若两组数a 1,a 2与b 1,b 2,且a 1≤a 2,b 1≤b 2,则a 1b 1+a 2b 2≥a 1b 2+a 2b 1是否成立,试证明.(2)若两组数a 1,a 2,a 3与b 1,b 2,b 3且a 1≤a 2≤a 3,b 1≤b 2≤b 3,对a 1b 3+a 2b 2+a 3b 1,a 1b 2+a 2b 1+a 3b 3,a 1b 1+a 2b 2+a 3b 3进行大小顺序(不需要说明理由).解 (1)成立,证明如下:∵a1b1+a2b2-(a1b2+a2b1)=a1(b1-b2)+a2(b2-b1)=(a1-a2)(b1-b2),又a1≤a2,b1≤b2,∴(a1-a2)(b1-b2)≥0,即a1b1+a2b2≥a1b2+a2b1.(2)a1b3+a2b2+a3b1≤a1b2+a2b1+a3b3≤a1b1+a2b2+a3b3.。
七年级上册数学创新课时作业本
七年级上册数学创新课时作业本第一课时作业
1. 分数大小比较
2. 分数的四则运算
第二课时作业
1. 整数的加减乘除
2. 整数绝对值的计算
第三课时作业
1. 一元一次方程的解法
2. 应用题解答
第四课时作业
1. 百分数的表示与计算
2. 百分数与实际问题的应用
第五课时作业
1. 平均数和中位数的计算
2. 平均数和中位数的应用
第六课时作业
1. 图形的基本概念与性质
2. 图形的面积计算
第七课时作业
1. 矩形和平行四边形的计算
2. 矩形和平行四边形的应用
第八课时作业
1. 三角形的计算
2. 三角形的应用
第九课时作业
1. 不等式的解法
2. 不等式的应用
第十课时作业
1. 统计与概率的计算
2. 统计与概率的应用
以上是《七年级上册数学创新课时作业本》的内容安排。
每课时都包括了两个主要的题目,旨在帮助同学们巩固所学的数学知识,并应用于实际问题中。
每个题目都涵盖了不同的知识点,包括分数的大小比较、整数的运算、一元一次方程的解法、百分数的计算、平均数和中位数的求解、图形的性质和面积计算、以及不等式的解法等等。
通过这些练习题,同学们可以加深对数学知识的理解和运用能力的提升。
希望同学们认真完成每个课时的作业,提高数学素养,为今后学习打下坚实的基础。