线性代数向量空间的练习题
线性代数试题库(1)答案
线性代数试题库(1)答案一、选择题:(3×7=21分)1.n 阶行列式D 的元素a ij 的余子式M ij 与a ij 的代数余子式A ij 的关系是( C ) A . A ij =M ij B 。
A ij =(-1) n M ij C 。
A ij =(-1)j i +M ij D 。
A ij =-M ij2.设A 是数域F 上m x n 矩阵,则齐次线性方程组AX=O ( A ) A . 当m < n 时,有非零解 B .当m > n 时,无解C .当m=n 时,只有零解D .当m=n 时,只有非零解 3.在n 维向量空间V 中,如果σ,τ∈L (V )关于V 的一个基{n αα,,1 }的矩阵分别为A ,B.那么对于a ,b ∈F ,a σ+b τ关于基{n αα,,1 }的矩阵是( C ) A .A+B B .aA+B C .aA+bB D .A+Bb 4.已知数域F 上的向量321,,ααα 线性无关,下列不正确的是( D )A 1α,2α线性无关B .32,αα线性无关C .13,αα线性无关D .321,,ααα中必有一个向量是其余向量的线性组合。
5.R n 中下列子集,哪个不是子空间( C ) A .RnB .∑===∈ni i i n a n i R a a a 11}0,,1,|),,{(且C .∑===∈ni i i n a n i R a a a 11}1,,1,|),,{(且 D .{0}6.两个二次型等价当且仅当它们的矩阵( A )A 。
相似B .合同C .相等D .互为逆矩阵 7.向量空间R 3的如下变换中,为线性变换的是( C )A .)1,1|,(|),,(1321x x x x =σB .),,1(),,(321321x x x x x x +=σC .)0,,(),,(32321x x x x x =σD .),,(),,(232221321x x x x x x =σ二.填空题(3X10=30分)1.当且仅当k=(-1或3)时,齐次线性方程组⎪⎩⎪⎨⎧=++=+-=++09030322132`1321x k x x kx x x x x x 有非零解2.设A=()0,,,0321321≠=≠⎪⎪⎪⎭⎫ ⎝⎛b b b B a a a ,则秩(AB )为(1)。
线性代数习题集第五章
线性代数习题集第五章1.设三维线性空间V内的⼀个线性变换σ在基ε1,ε2,ε3下的矩阵为A=a b ca1b1c1a2b2c2,则σ在基ε1,ε2,ε3下的矩阵为()(1)a2b2c2a1b1c1a b c(2)c2b2a2c1b1a1c b a(3)a b ca1b1c1a2b2c2(4)a b ca1b1c1a2b2c22.设a,b,c是线性空间R3中的任意向量,下列对应法则哪⼀个是R3中的线性变换()(1)σa,b,c=(a2,0,0)(2)τa,b,c=a,b(3)υa,b,c=0,0,a b(3)φa,b,c=0,b,03.线性空间R3的两个线性变换σ,τ为σx1,x2,x3=x1?x2,x2,x3?x1;τx1,x2,x3=x1,0,0,并且α=1,0,1∈R3则σ+τα为()(1)2,0,0(2)2,0,1(3)1,0,0(4)1,0,14.R2的两个线性变换σ,τ为σx1,x2=x1,x2300?1;τx1,x2=x1,?x2,则σ?τx1,x2为()(1)2x1,0(2)3x1,0(3)x1+x2,0(4)x1+x2,x25.R3的两个线性变换σ,τ为σx1,x2,x3=0,x1,x2;τx1,x2,x3=x1,0,x2;则στ?L x1,x2,x3为()(1)1,1,x22(2)?x1,x1?x2,?x3(3) ?1,x1?x2,?1(4)?x1,?x2,x1?x36.已知R2的线性变换σx1,x2=x1+x2,2x1+x2,则σ2x1,x2为()(1)(x1+x2)2,(2x1+x2)2(2)x12+x22,4x12+x22(3)x1+x2,2x1+x2(4)3x1+2x2,4x1+3x2 7.“有相同的特征多项式”这是两个矩阵相似的()条件。
(1)充分(2)必要(3)充分必要(4)既不充分也不必要8.在线性空间R3中,线性变换σx,y,z=z,x,y,则σ在基ε1=1,0,0,ε2= 0,1,0,ε3=0,0,1下的矩阵为(1)010001100(2)001010100(3) 100010001(4) 001100010 9.矩阵 2202的特征值为()(1)λ1=λ2=2 (2)λ1=λ2=4 (3)λ1=2,λ2=4 (4)λ1=0,λ2=110.令 a b c d,则f A (x)的表达式为()(1)x 2?T r A x + A (2)x 2+T r A x + A(3)x 2?T r A x ? A (4)x 2?T r A x11.对f A x = x ?2 2(x +3)时矩阵A 的特征值为()(1)λ1=2 (2)λ1=?3,λ2=2(⼆重根)(3)λ1=3 (4)λ1=3,λ2=-212.以线性空间V 的任何⾮零向量作为特征值的线性变换只能是()(1)变换(2)位似(数乘)变换(3)单位变换(4)零变换13.n 维线性空间V 的线性变换σ可逆的充分必要条件是()(1)σ的特征多项式的常数项不等于零(2)σ的特征多项式不等于零(3)σ有n 个互异的特征值(4)σ有n 个线性⽆关的特征向量14.设λ是矩阵A 的特征值,且A 2=A ,则λ只能是()(1)0 (2)1 (3)正实数(4)0或115.实对称矩阵的特征值为()(1)都是实数(2)都不是实数(3)都是⾮负的实数(4)有实数也有⾮实数16.设线性空间V 的线性变换σ在基ε1,ε2,…,ε3下的矩阵是A ,在基ξ1,ξ2,…,ξn 下的矩阵是B ,并且从ε1,ε2,…,εn 到基ξ1,ξ2,…,ξn 的过度矩阵T ,则A,B,T 之间的关系是()(1)T=AB (2)TB=AT (3)TA=BT (4)B=T ’AT17.设数域K 上的n 维线性空间V 的线性变换σ关于V 的⼀个基的矩阵是A=(a ij ),σ的特征多项式f(x)=x n +a 1x n?1+?+a n? 1x +a n ,则a n 等于(1) A (2)(?1)nA (3) a ij n i =1 (4) a ij n i=1 18.设B=T ?1AT ,λ是A ,B 的⼀个特征值,ξ是A 的关于λ的特征向量,则B 的关于λ的特征向量是()(1)ξ(2)T ξ(3)T ?1ξ(4)T ’ ξ19.矩阵A=? a 11?a 1n a n 1?a nn的迹T r A 为()(1) a i 1n i=1 (2)(?1)n a 1j (3)? a i 1n i=1 (4)(?1)na 1i n i=1 20.设σ是⼀线性变换,若Ker (σ)={0},则下⾯说法正确的是()(1)σ⽆特征值零(2)σ有特征值零(3)σ有特征值1 (4)σ有特征值-121.设λ=2是⾮奇异矩阵A的特征值,则矩阵(1/3A2)?1的特征值等于()(1)4/3 (2)3/4 (3)1/2 (4)1/422.设A为N阶可逆矩阵,λ是A的⼀个特征值,则A?的特征值等于()(1)λ?1A n(2)λA n(3)λA(4)λ?1A23.n阶⽅阵A具有n个不同的特征值是A与对⾓矩阵相似的()(1)充分必要条件(2)必要⾮充分条件(3)充分⾮必要条件(4)⾮充分⾮必要条件24.⼆维平⾯上的旋转变换σ,()⾮平凡的不变⼦空间(1)有(2)有⼀个(3)有⽆限多个(4)没有25.对于数域K上的线性空间V的数乘变换来说,()不变⼦空间(1)每个⼦空间都是(2)有⼀个(3)有两个(4)不存在26.线性变换σ的多项式f(σ)的像与核都是σ的不变⼦空间,因为()(1)f(σ)仍是⼀个线性变换(2)σ是⼀个线性变换(3)σ的不变⼦空间也是f(σ)的(4)f(σ)与σ可交换II.填空题1.设σ是线性空间V的线性变换,若满⾜;则称σ是可逆变换,并且σ的逆变换是。
大一线性代数期末考试试题
大一线性代数期末考试试题一、选择题(每题2分,共10分)1. 向量空间的定义中,下列哪一项不是其公理化系统的一部分?A. 向量加法的封闭性B. 向量的数乘封闭性C. 向量加法的交换律D. 存在非零零向量2. 设A是一个3阶方阵,且满足A^2 - 2A + I = 0,其中I是3阶单位矩阵。
则A^3的值为:A. AB. 2AC. 3AD. 03. 在线性代数中,下列哪个矩阵是不可逆的?A. 单位矩阵B. 对角矩阵C. 行最简矩阵D. 行阶梯矩阵4. 特征值和特征向量的定义中,下列说法正确的是:A. 特征向量可以是零向量B. 每个特征值都有对应的特征向量C. 一个矩阵的特征值是唯一的D. 一个矩阵可能没有特征值5. 设T是一个线性变换,且T保持向量加法和数乘,那么T是一个:A. 线性变换B. 非线性变换C. 仿射变换D. 恒等变换二、填空题(每题2分,共10分)6. 若向量v = (1, 2, 3),向量w = (x, y, z),且v与w垂直,则x + y + z = _______。
7. 设矩阵A = (\*, \*, \*; \*, \*, \*; \*, \*, \*),若A的行列式为0,则称A为奇异矩阵,否则称为非奇异矩阵。
对于3阶方阵,其行列式计算公式为:det(A) = \*\*\* - \*\*\* + \*\*\* - \*\*\*+ \*\*\*。
8. 在求解线性方程组时,若系数矩阵的秩小于增广矩阵的秩,则该方程组是_______的。
9. 设P是n阶置换矩阵,那么P的行(或列)向量中,有_______个1,n-_______个0。
10. 对于一个n维向量空间,其基可以通过_______个线性无关的向量来构造。
三、简答题(每题10分,共30分)11. 请简述线性相关与线性无关的定义,并给出一个例子说明两者的区别。
12. 给出一个具体的3维向量空间,并说明其基和维数。
13. 解释何为矩阵的秩,并举例说明如何计算一个矩阵的秩。
线性代数向量空间的练习题
线性代数向量空间的练习题一、单项选择题1.设A,B分别为m×n和m×k矩阵,向量组是由A 的列向量构成的向量组,向量组是由的列向量构成的向量组,则必有A.若线性无关,则线性无关 B.若线性无关,则线性相关C.若线性无关,则线性无关 D.若线性无关,则线性相关2.设?1,?2,?3,?4是一个4维向量组,若已知?4可以表为?1,?2,?3的线性组合,且表示法惟一,则向量组?1,?2,?3,?4的秩为A.1 B.2C.D.43.设向量组?1,?2,?3,?4线性相关,则向量组中A.必有一个向量可以表为其余向量的线性组合B.必有两个向量可以表为其余向量的线性组合C.必有三个向量可以表为其余向量的线性组合D.每一个向量都可以表为其余向量的线性组合4.设有向量组A:?1,?2,?3,?4,其中?1,?2,?3线性无关,则A.?1,?3线性无关B.?1,?2,?3,?4线性无关C.?1,?2,?3,?4线性相关D.?2,?3,?4线性相关 5.向量组?1,?2,?,?s的秩不为零的充分必要条件是 A.?1,?2,?,?s中没有线性相关的部分组C.?1,?2,?,?s全是非零向量 B.?1,?2,?,?s中至少有一个非零向量 D.?1,?2,?,?s全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A=.如果|A|=2,则|-2A|=A.-3B.-4C.D.327.设α1,α2,α3,α是三维实向量,则A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关8.向量组α1=,α2=,α3=的秩为A.1B.2C.D.49.下列命题中错误的是..A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关10.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则A.α1必能由α2,α3,β线性表出C.α3必能由α1,α2,β线性表出B.α2必能由α1,α3,β线性表出 D.β必能由α1,α2,α3线性表出11.设α1,α2,α3,α4都是3维向量,则必有A.α1,α2,α3,α4线性无关B.α1,α2,α3,α4线性相关C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示二、填空题1.已知向量α=,β=,如果α+ξ=β,则ξ=_________.2.设向量组?1=,?2=, ?3=线性相关,则数a=________.3.向量组?1?,?2?,?3?的秩为_____________。
线性代数与空间解析几何综合练习100题
综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A AB E ,则+=A BA E . 7.若n 阶方阵,,A B C 满足=ABC E ,则'''=B A C E . 8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B13n --.9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 111666110331002⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C=0AB (1)mn ab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100.15.已知11000101100100110100*********a -⎛⎫⎪- ⎪ ⎪=-⎪- ⎪ ⎪-⎝⎭A ,则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0AX 的通解为(1,1,,1),k k '为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0AX 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-.19.如果(1,1,1)'=-ξ是方阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0.20.已知A 与B 相似,且3021⎛⎫= ⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--.21.已知33⨯A 的特征值为1,2,3,则1*||-+=A A 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为. 26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X AX A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X AX A X ,则1-=P AP 000103012⎛⎫⎪⎪ ⎪-⎝⎭.28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0AX 的系数矩阵A 的秩为r ,则=0AX 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0AX 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0AX 只有零解,则=AX β有唯一解; (B )若=0AX 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0AX 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ).(A )*||=AA A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A . 7.设,AB 是n 阶方阵,A 非零,且=AB 0,则必有(D ).(A )=0B ; (B )=0BA ; (C )222()+=+A B A B ; (D )||0=B . 8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A .10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ). (A )若有全不为0的数12,,,m k k k 使11m m k k ++=0αα,则向量组12,,,mααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '=X 都有''X AX =X BX ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ;(C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )AB 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵; (C )若,A B 都是正交矩阵,则AB 也是正交矩阵; (D )若,A B 都是实对称矩阵,则AB 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0AX 与=0BX 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价.18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B 12010100100010001101⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ).(A )12=AP P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B .19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B .20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆.21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,4000000000000000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭B ,则A 与B (A ).(A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0BX 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A 等于(C ). (A )a ; (B )1a; (C )2n a -; (D )na . 25.设,A B 是n 阶方阵,则必有(D ). (A )11||||||--+=+A BA B ; (B )111||---+=+A B B A ;(C )222()=AB A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0AX 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη.27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ). (A )6π; (B )4π; (C )3π; (D )2π.28.若12312,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ). (A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A .30.设矩阵111222333a b c a b c a b c ⎛⎫⎪⎪ ⎪⎝⎭的秩是3,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A . 解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ,令 12341111010010(),0101000114D⎛⎫⎛⎫⎪⎪- ⎪ ⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭T T T T T ,由=AT TD 得 11*13111131111113||41111---⎛⎫ ⎪- ⎪=== ⎪--- ⎪ ⎪--⎝⎭A TDTT T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪-- ⎪⎪⎪=⋅ ⎪⎪⎪---- ⎪⎪⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-⎪⎪ ⎪==⋅ ⎪⎪ ⎪---- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭A TD T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====A A A A A .2.设0100102a c b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A ,(1),,a b c 满足什么条件时,A 的秩是3;(2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bc a c b b b ⎛⎫⎪--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭A当2a bc ≠时,A 的秩是3.(2)0100102a b c ⎛⎫ ⎪ ⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===.(3)要想A 为正交阵,应满足'=A A E ,即00101001000010110010022a b a c c b ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭⎝⎭.2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,2a b c ===. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ 问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一; (2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示.解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭B由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪ ⎪=+−−→-- ⎪ ⎪⎪ ⎪++⎝⎭⎝⎭行B 22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一.(3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=- ⎪ ⎪⎝⎭βξξξξξξ又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ. 所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ111232221232(,2,3)2123211231nn n n n n n n ++++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n n n n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭.5.设122212221-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,(1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.·129·(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪= ⎪ ⎪-⎝⎭T AT 于是 111115--⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫⎪ ⎪+= ⎪ ⎪⎪⎝⎭T E A T ,故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值.解:设α为A 的特征值为λ的特征向量,则λ=A αα.即 2111112111211k k λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-.7.设11 111, 1112a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求:(1)a 的值;(2)正交阵P ,使'P AP 为对角阵.解:(1)211111111101101120112a a a a aa a a a ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭B 111011000(1)(2)2a a a a a a ⎛⎫ ⎪→-- ⎪ ⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-.·130· (2)此时112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--=⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得13⎛⎫ ⎪=⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得2202⎛⎫⎪⎪= ⎪ - ⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫ ⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得363η⎛⎫ ⎪ =- ⎪⎪⎪⎪⎝⎭;·131·令3260⎛⎫ ⎪=⎪⎪⎪⎪⎝⎭P ,此时P 为正交阵,并且'P AP 为对角阵033⎛⎫⎪⎪ ⎪-⎝⎭. 8.已知线性方程组(I )1111221331442112222332440a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b bb b b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭A B由12,ξξ为(I )的一个基础解系得0'=AB .由12,ξξ线性无关,所以()2R =B ,又0'=BA ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a --⎛⎫⎛⎫⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β10242011530042452a b a a -⎛⎫⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β·132· 其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解112212314224253x k k x k k x k x k -++⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数.10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:322122||11423123k k k λλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+.解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k k k k k·133·因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =.因此 322010423-⎛⎫⎪=-⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫ ⎪= ⎪ ⎪--⎝⎭0ξ,得 23(1,2,0),(0,1,1)''=-=ξξ令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .11.设101020101⎛⎫⎪=⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E由于001010100⎛⎫ ⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,得 201030102⎛⎫ ⎪=+= ⎪ ⎪⎝⎭B A E ,12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫⎪= ⎪ ⎪⎝⎭C ,则=CA B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭AB C .13.设有线性方程组·134· 123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0a b bba b b b a=即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫ ⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭为任意常数.(3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X PY 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP .·135·由,A B 相似知||||λλ-=-E A E B ,即322223(2)()a b a b λλλ-+--+-3232λλλ=-+,比较系数得:0,0a b ==.由1000010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP B ,知A 的特征值是0,1,2.解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ - ⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫ ⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛ ⎪== ⎪ - ⎝⎭P P P P . 15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩·136· 1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2)t t λλ--A B ,则应有(21,,2)AB t t λλ=-----,且1220s λ⋅=---=AB t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3AB =-,故公垂线方程为 44133122y z z ++-==-. 16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)0λλλ++-+--= 解得14λ=. 从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4b b b b λλλλλλ-=--=-+++-E BππL 0L·137·比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪= ⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫ ⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B .18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01 ⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X PY 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ,可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:·138·12310221,0,00122⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ - ⎪⎝⎭⎝⎭P P P .令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P , 则在正交变换=X PY 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面.解:二次型f 所对应的矩阵为51315333c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,,'''===P P P , 取正交变换阵0⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ,则在正交线性变换=X PY 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+,求1000a .解法1:·139·由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A,并且1211,2211⎛⎫⎛⎫+ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+的特征向量.记1211(,)2211⎛⎫+ ⎪== ⎪ ⎪⎝⎭T ξξ,于是111-⎛ ⎪=⎪-⎪⎝⎭T则100-⎫⎪ = ⎝A T T99999911020-⎛⎫+ ⎪= ⎝A T T1000100010001000999999999999]]-+⎪= ⎪-+⎪⎝⎭所以10001000100011(()())522a +-=-. 解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ·140· 将n D 按第一行展开可得1n n n D D αβ--= (1)由, αβ的对称性可得1nn n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111n D --=-补充定义100,1D D -==,则12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+==,由(3)知 00000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++100010000000αβαβ-=-10001000⎡⎤⎥=-⎥⎝⎭⎝⎭⎦.·141·四、证明题1.证明69169169(1)316916n n D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅2 假设当n k ≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916k k k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m=0A ,则=20A .证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .所以A 经初等变换可以化为100000000000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,于是存在可逆阵,P Q ,使 1000100000(100)00000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P Q P Q ,·142· 取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A UV .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =,或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=AX X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0. (2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r -ξξξ为=0AX 的基础解系212,,,n r -ηηη是()n -=0A E X 的基础解系,则112,,,n r -ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r -ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n 个线性无关的特征向量1211,,,,,n r n r --ξξηη. 从而A可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E T AT 于是1()tr()tr()R r -===A TAT A .4.设,A B 是n 阶正定矩阵,证明:AB 的特征值全大于0.·143·证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P AB P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P PP 正定,它的特征值全大于0, 因AB 与1212()()''''P P P P 相似,从而AB 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k≠0A α,则1,,,,kk -A A A αααα线性无关;(2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n nR R +=A A .证:(1)反证法若1,,,,kk +A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01k k l l l +++=0αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠, 则 11i i k i i k l l l +++++=0A A A ααα,两边乘以矩阵k i -A ,得121k k k i i i k l l l +-++++=0A A A ααα,由于1k +=0Aα,故对任意1m k ≥+都有m =0A α,从而由上式得k i l α=0A ,但k ≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n =0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn -A A A αααα线性无关,与1n +个n 维向量1,,,,n n -A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0AX 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0A X 的解,所以方程1n +=0A X 与n =0A X 同解,所以1()()n n +=R A R A .6.已知向量组12,,,(2)m m ≥ααα线性无关,试证:向量组1112,m k =+=βααβ22111,,,m m m m m m m k k ---+=+=ααβααβα线性无关.证:假设有一组数121,,,,m m l l l l -使得112211m m m m l l l l --++++=0ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0ααααααα,即有·144· 112211112211()m m m m m m l l l l k l k l k l ----++++++++=0αααα由于12,,,m ααα线性无关,所以 1211122110m m m m l l l l k l k l k l ---====++++=,所以1210m m l l l l -=====.故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+=βααβααβ11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0αααααααα,即111221()()()m m m m k k k k k k -++++++=0ααα 又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+=,因为m 是奇数,所以线性方程组(1)的系数行列式1101111(1)20010001m D +==+-=≠, 1121000m m m k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ====,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为122311,,,,,()n n n R n -++++=ααααααααA ,问齐次线性方程组=0BX 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0BX ,没有非零解. 当n 为偶数时,=0BX 有非零解.·145·由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0BX 没有非零解,但当n 为偶数时,因122311()()()()n n n -+-++++-+=0αααααααα,122311,,,,n n n -++++αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0BX 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++αξξξ. 试证:1,,,n -A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ,对应的特征向量依次为12,,,n ξξξ,则1111(),,n n n n λλ=++=++=++A A A A αξξξξξξ11111n n n n n λλ---=++A αξξ.设有一组数011,,,n k k k -,使得1011n n k k k --+++=0αααA A 即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n n n k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n nn n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n n k k k ----⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ又由于1111221111()01n n i j j i nn nn --≤<≤-=-≠∏λλλλλλλλ.所以0110n k k k -====, 即21,,,,n -A A A αααα线性无关.·146· 10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E T AT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ. 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP Q BQ 于是11--=P AP Q BQ .即111()()---=PQ A PQ B故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A 是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A AX , (1)=0AX (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·147·另一方面,对任意1nn x x ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭R X 如果'=0A AX ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '=AX ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ====,即=0AX ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立. 13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵. 证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n =,于是 1()E e e e =jn由已知,1,2,,j j j n λ==Ae e得11()(),,A e e e e e e AE E A E λλλ===j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·148· 121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭P AP D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ==,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫ ⎪⎪⎪⎪'== ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα. 因而2'-'E αααα为正交矩阵.16.设方程组=0AX 的解都是=0BX 的解,且()()R R =A B ,试证:=0AX 与·149·=0BX 同解.证:设()()R R r ==A B ,则=0AX 的基础解系含有n r -个线性无关的向量,不妨设为12,,,n r -ξξξ. 有,(,,)A ==-01i i n r ξ.又=0AX 的解必为=0BX 的解,从而,(,,)i i n r ξ==-01B从而12,,,n r -ξξξ也是=0BX 的基础解系.于是=0BX 的通解为11.n r n r k k --+ξξ则=0AX 与=0BX 同解.17.设A 是n 阶方阵,12(,,,)n b b b '=β是n 维列向量,0⎛⎫= ⎪'⎝⎭A B ββ,若()()R R =A B ,则=AX β有解.证:由于()()()R R R ≤=A B A β,又由于()()R R ≤A A β,所以()()R R =A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==<α是r 个线性无关的n 维实向量,12(,,,)n b b b '=β 是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量,试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r ==βα于是11(,)(,)0r r k k =++=βββαα, 从而=0β,矛盾.所以12,,,,r αααβ线性无关. 19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则AB 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵,设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n =P P P P ,则·150· 112211,,n n k k k λλλ--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP P BP 并且,0,(1,,)i i k i n λ>=,所以 1122111n n k k k λλλ---⎛⎫⎛⎫ ⎪⎪ ⎪⎪=⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭P ABP P AP P BP 1122n n k k k λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 且0,(1,,)i i k i n λ>=. 再由1-'=P P 得()'=AB AB ,因此AB 正定.20.设12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关. 证:设有一组数01,,,t k k k 使得011()()t t k k k +++++=0ββαβα即0121122()t t t k k k k k k k ++++++++=0βααα (1)由于12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,所以β不能表为1,,t αα的线性组合,所以0120t k k k k ++++=,因此(1)式变为1122t t k k k +++=0ααα,由于1,,t αα线性无关,所以120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
线性代数练习题
一.填空1.若()r A r =,则A 中必有一个( )阶子式不为零.2.A 为n 阶反对称矩阵,当且仅当对于任意n 维列向量X 均有T X AX =( ). 3.同一个向量在不同基下的坐标( )是不同的. 4.设((,))L V P n σ∈,则{0}Im Ker σσ=⇔=( ). 5.n 阶矩阵,A B 均正定,则A B ( )正定. 6. 设三阶数字方阵A 的特征值为1,2,-2,则||A =().7.设⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,则A 的初等因子为( ).8.若当块0()k J λ的初等因子组为 .9.正交矩阵的行列式为 .10.n 阶数字矩阵A 的所有不变因子的次数之和为 .11.已知n 阶实对称矩阵A 的特征值中共有t 个正实数,则A 的正惯性指数为 . 11. 设线性空间V 的任一向量都可由V 的线性无关向量组r ααα,,,21 线性表示,则V dim =( ).12. 设非零方阵A 的行列式为0,则()一定是A 的特征值.13. n 阶数字矩阵A 的所有初等因子的次数之和为( ). 14. 设三阶矩阵A 的元素均为1,则A 的最小多项式为().15. 若x 是方阵A 的属于特征值λ的特征向量,则()是AP P B 1-=的属于特征值λ的特征向量.参考答案:r,0,一般,V,不一定,3)1(-λ, 0()k λλ- , 1± ,n , t , r, 0,n,)3(-λλ,x P 1- 二.选择题1.设W 为V 的子空间,则W 中的零元必定是V 的零元. ( )2.在复数域C 作成自身上的线性空间中,令σαα=,则σ是C 的线性变换. ( )3.设A 为n 阶可逆矩阵,则A 的特征矩阵E A λ-一定可逆. ( )4.设σ是n 维欧氏空间V 的一个线性变换,则σ是正交变换的充要条件是σ把标准正交基变成标准正交基. ( ) 5.在3F 中定义变换σ(a a a 123,,)=(a a a 321,,),则σ是3F 的一个线性变换. ( )6. 若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的一组基,则)(,),(),(21n ασασασ 也为V 的一组基.()7. n 阶复矩阵A 与对角矩阵相似当且仅当它的不变因子全是一次的.( ) 8.任一线性空间一定含有无限多个向量. ( ) 9. n 阶复矩阵A 的最小多项式的根一定是A 的特征值.10.正定矩阵特征值都大于零. ( ) 11.同阶方阵,A B 相似的充要条件是有相同的最小多项式.( )12.线性空间的两个子空间的并集也是子空间. ( ) 13. n 阶复矩阵A 的零化多项式无重根,则A 可对角化. ( )14.若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的线性无关的向量组,则)(,),(),(21n ασασασ 也线性无关.15.有限维欧氏空间V 的正交变换在V 的任一组基下的矩阵皆为正交矩阵.()✓,✗, ✗ , ✓,✓, ✗,✗,✗,对, ✓ , ✗, ✗ , ✓ , ✗,错.三.选择题1.设矩阵A 的每行元素之和均为1,则( )一定是A 的特征值.A. 0B. 1C. 2D. 32.下列命题( )不是矩阵A 正定的判定条件.A .A 与单位矩阵等价. B.A 特征值都大于零.C.A 与单位矩阵合同.D. A 的顺序主子式都大于零.3.设复数域C 是定义在复数域C 上的线性空间,则此线性空间维数为( ).A .无限维 B. 3 C. 2 D. 14.设σ是数域F 上线性空间V 上的线性变换,若2I σ=,I 是恒等变换,则σ可能的特征值为( ). A. 0 B. 1 C. 2 D. 35.已知二次型),,(321x x x f 通过非退化线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ).A.正定B. 半正定C. 负定D. 不定 6.设矩阵A 的每行元素之和均为1,则()一定是A 的特征值.A. 0B. 1C. 2D. 37.设A 为2阶矩阵,21,λλ是A 的特征值,则正确的是( ).A.2121||,)(λλλλ=+=A A trB. 2121||,)(λλλλ=--=A A trC. 2121||,)(λλλλ+==A A trD. 以上都不对8.已知二次型),,(321x x x f 通过正交线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ). A.正定 B. 半正定 C. 负定 D. 不定9.下列命题( )不是n 阶实对称方阵A 正定的充要条件.A .A 合同于1(,,),0,1,,n i diag d d d i n >= B. A 的正惯性指数为n C. 存在可逆矩阵n n C R ⨯∈,使得T A C C = D.A 与单位矩阵等价.10.设A 是n 阶矩阵,E 是n 阶单位矩阵,线性方程组0)(=-x A E λ的两个不同解向量分别是,αβ,则( )必是A 对应于特征值λ的特征向量. A.αB. βC. αβ+D. αβ-B, A , D ,B ,D,B,A,D,D,D 四.计算1.设实对称矩阵⎪⎪⎪⎭⎫⎝⎛=122212221A ,求正交矩阵Q ,使得AQ Q T 为对角形矩阵. 1’ 已知实二次型323121232221321444),,(x x x x x x x x x x x x f +++++=.(1)写出二次型),,(321x x x f 的矩阵;(2)用正交替换化),,(321x x x f 为标准形,并写出所用的正交替换及二次型的标准形.2. 若数字矩阵A 的特征矩阵E A λ-与23(1,44,1,1,32)diag λλλλ-+--等价.(1)试写E A λ-的标准形. (2)试写A 的初等因子.(3)试写A 的Jordan 标准形.3.求矩阵⎪⎪⎪⎭⎫⎝⎛----=242422221A 在实数域上的全部特征值与特征向量. 4.设A =3452⎛⎝⎫⎭⎪.(1)求A 的特征值与特征向量.(2)A 是否可以对角化?若能对角化写出相应的过渡矩阵P ,使P AP -1为对角矩阵.1.解:A 的特征多项式)5()1(||)(2-+=-=λλλλA E f故A 的特征值为-1,-1,5.取-1的线性无关的特征向量)1,1,0(),1,0,1(21-=-=αα将其正交单位化得)61,62,61(),21,0,21(21--=-=γγ取特征值5的特征向量)1,1,1(3=α 将其单位化得)31,31,31(3=γ令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=31612131620316121Q 则)5,1,1(--=diag AQ Q T .2. 解:由条件知A 的初等因子为22(2),(2),(1)λλλ--+.(1) E A λ-的标准形为22(1,1,1,2,(2)(1))diag λλλ--+. (2) A 的初等因子为22(2),(2),(1)λλλ--+.(3) A 的Jordan 标准形2212111J ⎛⎫ ⎪⎪⎪= ⎪- ⎪ ⎪-⎝⎭3. 解:A 的特征多项式为2)2)(7(||)(-+=-=λλλλA E f故A 的特征值为-7,2,2.属于特征值2的特征向量为)1,0,2(),0,1,2(,,,21212211=-=∈+αααλR k k k k 属于特征值-7的线性无关的特征向量为)2,2,1(,,33-=∈ααR l l 4.解:(1)A 的特征多项式为34||(7)(2)52E A λλλλλ---==-+--故A 的特征值为7,2-.解其次线性方程组(7)0E A X -=,得其基础解系为1(1,1)ξ=,从而A 的属于特征值7的特征向量为1().k k ξ为任意数解其次线性方程组(2)0E A X --=,得其基础解系为2(4,5)ξ=-,从而A 的属于特征值2-的特征向量为2()k k ξ为任意数.(2)由(1)知A 有两个不同的特征值,故A 可以对角化.令 1415P ⎛⎫=⎪-⎝⎭则172PA P -⎛⎫=⎪-⎝⎭. 证明:1.设n n F ⨯是数域F 上的所有n 阶矩阵的集合,令}|{A APA S Tnn =∈=⨯,}|{A APA T Tnn -=∈=⨯.(1)证明:T S ,是n n F ⨯的子空间; (2)证明:TS F nn ⊕=⨯.证明: (1)由于S E ∈,故φ≠S .F l k S B A ∈∀∈∀,,,则lBkA lB kA T+=+)(故S lB kA ∈+,从而S 为n n F ⨯的子空间.同理可证T 是n n F ⨯的子空间.(法1)先证明TS F nn +=⨯.显然,nn FT S ⨯⊆+. nn FA ⨯∈∀,有22TTA A A A A -++=,而,22TTT A A A A +=⎪⎪⎭⎫⎝⎛+22TTT A A A A --=⎪⎪⎭⎫ ⎝⎛- ,故TA A S A A TT∈-∈+2,2,从而TSA +∈,故T S F nn +⊆⨯.故T S F n n +=⨯.再证T S F n n ⊕=⨯,T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 故结论成立.(法2) T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 从而nn Fnn n n n T S T S T S ⨯==--++=-+=+dim 022)dim(dim dim )dim(222又nn FTS ⨯⊆+,故T S F n n ⊕=⨯.2.设σ为数域F 上的n 维线性空间V 的线性变换.证明:n Ker =+σσdim Im dim . 证明: 设r =σker dim ,取σKer 基r ααα,,,21 扩充为V 的基r ααα,,,21 ,n r αα,,1 +.则))(,),(())(,),(),(,),(),((Im 1121n r n r r L L ασασασασασασασσ ++==下证)(,),(1n r ασασ +线性无关,设)()(11=++++n n r r k k ασασ由σ为线性变换,故0)(11=++++n n r r k k αασ从而σααKer k k n n r r ∈++++ 11,设rr n n r r k k k k k ααααα----=++++ 221111即0112211=++++++++n n r r r r k k k k k ααααα由r ααα,,,21 ,n r αα,,1 +线性无关得01===+n r k k ,故)(,),(1n r ασασ +线性无关,且是σIm 的基,故r n -=σIm dim ,而r Ker =σdim ,从而结论成立. 3.证明:欧氏空间V 上的对称变换的属于不同特征值的特征向量是正交的.证明:设σ为V 的对称变换,μλ,为σ的两个不同特征值,V ∈βα,是σ的分别属于μλ,的特征向量,即μββσλαασ==)(,)(由))(,()),((βσαβασ=可得 ),(),(ββμβαλ=,而μλ≠,故0),=(βα,从而结论成立.4. 证明:方阵A 的行列式为0的充要条件为0是A 的特征值. 证明:必要性.由于|0|||0A E A -==,故0是A 的特征值.充分性.由于0是A 的特征值,故||)1(|||0|0A A A E n-=-=-=,即0||=A .5. 设A 为n 阶可逆实矩阵,在n R 中,定义nT TRY X AY A XY X ∈∀=,,),(证明:),(Y X 是n R 的内积.证明:nRZ Y X ∈∀,,,R k ∈∀由于(1)),()(),(X Y AX A Y AY A XAY A XY X TT TT TTT====;(2)),()(),(Y X k AY A kXAY A kX Y kX TTTT ===;(3)),(),()(),(Z Y Z X AZ A Y AZ A XAZ A Y X Z Y XTTTTTT+=+=+=+;(4)由A A T 正定知,0),(≥=AX A XX X T T.若0=X,则0),(=X X .若AXA XX X TT==),(0,由A A T正定知0=X .6.数域F 上一个n 阶矩阵A (E A A n ≠≠>,0,1),满足A A =2.证明: (1)A 的特征值只能是0或1; (2) ()()Tr A r A =;(3) 对任意的自然数m k ,有()n A E r A r m k =-+)()(. 证明: (1)设λ为A 的任一特征值,α为对应的特征向量,即0,≠=αλααA由A A =2,有αλαλαααλα22)(=====A A A A A ,而0≠α,故λλ=2,于是0=λ或1.从而结论成立.(2) 由A A =2知λλλ-=2)(g 为A 的零化多项式,而)(λg 无重根,从而A 相似于对角阵,即存在可逆矩阵P使得P E PA r ⎪⎪⎭⎫ ⎝⎛=-01其中r A r =)(,而)(A tr 为对角阵对角元之和0011)(+++++= A tr ,故()()Tr A r A =.(3)由(2)有P E P A E P E PA rn m r k ⎪⎪⎭⎫⎝⎛=-⎪⎪⎭⎫ ⎝⎛=---0)(,011从而结论成立.7. 设σ是数域F 上的n 维线性空间V 的线性变换,且I =2σ.(1)证明:σ的特征值只能为1或1-;(2)用11,-V V 分别表示σ的属于特征值1和1-的特征子空间,证明:11-⊕=V V V.证明: (1) 设λ为σ的任意一个特征值,α为属于λ的一个特征向量,即λαασ=)(.由I =2σ,有αλλασασα22)()(===故12=λ,即σ的特征值为1或1-. (2)下证11-⊕=V V V .V ∈∀α,则))((21))((21ασαασαα++-=,且)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ--=-=-=-)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ+=+=+=+即11-+=V V V .11-∈∀V V α,则αασα-==)(,于是0=α.从而11-⊕=V V V8.证明反对称实矩阵的特征值是零或纯虚数.证明:设A 为n 阶反对称实矩阵,C λ∈为A 的任一特征值,n C α∈为对应的特征向量,即,0A αλαα=≠ 上式两边取共轭和转置得TTA A αλααλα=-=于是 TT TA λααααλαα-==而0Tαα>,故λλ-=.即λ为零或纯虚数.。
第四章习题课线性代数
第四章习题课线性代数第四章向量组的线性相关性6.设21,a a 线性无关, b a b a ++21,线性相关,求向量b 用21,a a 线性表示的表示式.解由于b a b a ++21,线性相关, 所以存在不全为零的数21,k k ,使得2211212211)(0)()(a k a k b k k b a k b a k --=+?=+++.由于21,a a 线性无关,故021≠+k k ,否则由上式得, 00212211==?=+k k a k a k , 这与21,k k 不全为零矛盾.所以由221121)(a k a k b k k --=+得,.0,,,212122121211≠+∈+-+-=k k R k k a k k k a k k k b8.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由m a a ,2线性表示.解设Te a )0,,0,0,1(11 ==, 032====m a a a满足m a a a ,,,21 线性相关, 但1a 不能由m a a ,,2 线性表示.(2) 若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立, 则m a a ,,1 线性相关, m b b ,,1 亦线性相关.解有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 ,其中m e e ,,1 为单位坐标向量,则上式成立,而m a a ,,1 ,m b b ,,1均线性无关.(3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.解由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )得0)()(111=++++m m m b a b a λλ (仅当01===m λλ ) m m ba b a b a +++?,,,2211 线性无关.取021====m a a a ,取m b b ,,1 为线性无关组(例如单位坐标向量m e e ,,1 ),满足以上条件,但不能说m a a a ,,,21 线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立.解 T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ?-=?=+-=?=+21221121221134020λλλλλλλλb b a a 021==?λλ与题设矛盾.9.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明设有4321,,,x x x x 使得044332211=+++b x b x b x b x则0)()()()(144433322211=+++++++a a x a a x a a x a a x0)()()()(443332221141=+++++++?a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,使得044332211=+++a k a k a k a k .取141k x x =+;221k x x =+;332k x x =+;443k x x =+; 由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,又044332211=+++b x b x b x b x 所以4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则=+=+=+=+000043322141x x x x x x x x 011000110001110014321=??x x x x 由01100011000111001=知, 此齐次方程存在非零解, 所以有不全为零的4321,,,x x x x 使得044332211=+++b x b x b x b x ,则4321,,,b b b b 线性相关. 综合得证.10.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组 r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故==++=+++000221r r r k k k k k k=??????? ????????? ??0001001101121 r k k k因为0110011011≠= ,故方程组只有零解.则021====r k k k , 所以r b b b ,,,21 线性无关.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组表示.(2)---140113130********211.解---==14011313021512012211),,,,(54321a a a a a A 14132~r r r r --??????? ??------222001512015120122114323~r r r r ?+?---00000222001512012211,所以第1、2、3列321,,a a a 构成一个最大无关组.把A 化成行最简形矩阵),,,,(54321b b b b b B =.~A ??---00000222001512012211--=00000111001301001001~B 由于方程0=Ax 与0=Bx 同解,所以向量54321,,,,a a a a a 之间与向量54321,,,,b b b b b 之间有相同的线性关系.由于3214301000010300010131b b b b -+=-??????? ??+??????? ??=??????? ??-= 325010000100110b b b +-=+??????? ??-=??????-= 所以32143a a a a -+=,325a a a +-=.13.设向量组=131a a ,????? ??=322b a ,????? ??=1213a ,????=1324a的秩为2,求b a ,.解由于43,a a 的对应分量不成比例,所以43,a a 线性无关,其秩为2. 从而4321,,,a a a a 的秩为2?21,a a 可由43,a a 线性表示0),,det(431=a a a 且0),,det(432=a a a . 因为a a a a -=2),,det(431,b a a a -=5),,det(432,所以4321,,,a a a a 的秩为2?2=a ,5=b .14.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明由于n 维单位坐标向量n e e e ,,,21 能由n a a a ,,,21 线性表示,不妨设:n nn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ()()=nn n n n n n n k k kk k k k k k a a a e e e 2122212121112121两边取行列式,得()()==nn nn n n n n k k kk k k k k k a a a e e e E2122212121112121||,由=1||E ()021≠n a a a ,即n 维向量组n a a a ,,,21 所构成矩阵的秩为n ,故n a a a ,,,21 线性无关.15.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明必要性: 设b 为任一n 维向量, 则n 维向量组b a a a n ,,,,21 线性相关(其所含向量个数大于向量维数).因为n a a a ,,,21 线性无关,所以b 能n a a a ,,,21 线性表示.充分性: 因为任一n 维向量可由n a a a ,,,21 线性表示,所以单位坐标向量组n e e e ,,,21 能由n a a a ,,,21 线性表示.则na a a R n a a a R e e e R n n n n =?≤≤=),,,(),,,(),,,(212121 ,所以n a a a ,,,21 线性无关.16. 设向量组m a a a ,,,21 线性相关,且01≠a ,证明存在某个向量)2(m k a k ≤≤,使得k a可由121,,,-k a a a 线性表示.证明反证法,假设结论不成立.设02211=+++m m a k a k a k , )(* 因为m a 不能由121,,,-m a a a 线性表示,所以0=m k .)(*式变为0112211=+++--m m a k a k a k .因为1-m a 不能由221,,,-m a a a 线性表示,所以01=-m k .……同理可得, 0232====--k k k m m .所以)(*式变为011=a k . 由于01≠a ,所以01=k .综上可知, 021====m k k k ,所以m a a a ,,,21 线性无关,这与题设矛盾!从而假设不成立,原命题成立.17.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ?矩阵,且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩r K R =)(.证明令),,(),,(11s r a a A b b B ==, 则有AK B =.必要性: 若B 组线性无关,则r B R =)(.由)()}(),(min{)()(K R K R A R AK R B R ≤≤=,故r K R ≥)(. 又K 为r s ?阶矩阵,则r K R ≤)(. 综上知,r K R =)(.充分性: 设r K R =)(.令02211=+++r r b x b x b x ,其中i x 为实数,r i ,,2,1 =.则有0),,,(121=r r x x b b b ,即00=?=AKx Bx .由于s a a a ,,,21 线性无关,所以s A R =)(,从而方程0=Ay 只有零解,故0=Kx .由于r K R =)(,则方程0=Kz 只有零解,所以0=x . 从而021====r x x x . 所以r b b b ,,,21 线性无关.20.求下列齐次线性方程组的基础解系: (3)02)1(121=++-+-n n x x x n nx .解系数矩阵为)1,2,),1(,( -n n ,秩是1,未知数个数是n ,所以基础解系应含有1-n 个解向量. 原方程组即为1212)1(------=n n x x n nx x 取121,,,-n x x x 为自由未知量,令=??????? ??-100,,010,001121 n x x x 得n x n -=,1+-n , ,2-.所以基础解系为-+--=-21100010001),,,(121n n n ξξξ.21.设--=82593122A ,求一个24?矩阵B,使O AB =,且2)(=B R .解由于A 有2阶非零子式,故2)(=A R ,所以齐次线性方程组0=Ax 的基础解系中应含有2个向量.设24?矩阵B 为),(21ξξ=B ,其中21,ξξ是4维列向量.O AB =,且2)(=B R01=ξA ,02=ξA ,且21,ξξ线性无关21,ξξ是齐次线性方程组0=Ax 的基础解系.对A 实施初等行变换化为行最简形矩阵:--=82593122A ~?---8118510818101令=???? ??10,0143x x ,得-?????? ??=???81181,858121x x .所以-=???????? ??=1081181,01858121ξξ.故所求矩阵-=1001811858181B .22.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解显然原方程组的通解为+??????? ??=?01233210214321k k x x x x ,(R k k ∈21,) 即=+=+==1 4213212213223k x k k x k k x k x ,代入3,31241x k x k ==, 消去21,k k 得 ??=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.26.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(2)-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解对增广矩阵实施初等行变换化为行最简形矩阵.--------=00000221711012179016124211635113251~初等行变换B 由于2)()(==B R A R ,所以方程组有解.原方程组等价于??--=++-=2217112179432431x x x x x x . 取43,x x 为自由未知数,令???? ??=???? ??0043x x ,得原方程组的一个解.0021??-=η对应的齐次线性方程组等价于??-=+-=43243121712179x x x x x x . 令,20,0743???? ??????=???? ??x x 得其基础解系.2011,071921??-=??????? ??-=ξξ27.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量.且=54321η,=+432132ηη 求该方程组的通解.解由于系数矩阵的秩为3=r ,134=-=-r n .故其对应的齐次线性方程组的基础解系含有一个向量.由于321,,ηηη均为方程组的解,由非齐次线性方程组解的结构性质得齐次解齐次解齐次解=??=-+-=+-6543)()()()()(23121321ηηηηηηη 为其基础解系向量,故此方程组的通解:+??????? ??=54326543k x ,)(R k ∈.30.设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关, 3212a a a -=,向量4321a a a a b +++=,求方程b Ax =的通解.解由于432,,a a a 线性无关,所以3)(≥A R .由3212a a a -=知321,,a a a 线性相关,故4321,,,a a a a 线性相关,从而3)(≤A R .综上可知, 3)(=A R .所以齐次方程0=Ax 的基础解系含有4-3=1个向量.022321321=+-?-=a a a a a a ,所以-=0121ξ是0=Ax 的一个非零解,从而构成其基础解系.又4321a a a a b +++=,故=1111η是b Ax =的一个解.所以方程b Ax =的通解是.,11110121R c c c x ∈+??????? ??-=+=ηξ31.设*η是非齐次线性方程组b Ax =的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1) r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关. 证明(1) 设有关系式:0110=+++--*r n r n C C C ξξη (1)由于*η为特解,r n -ξξ,,1 为基础解系,故得C A C C C C A r n r n 00110)(==+++*--*ηξξη而由(1)式可得0)(110=+++--*r n r n C C C A ξξη ,故00=b C .而该方程组为非齐次线性方程组,得0≠b ,所以00=C . 代入(1)式得.011=++--r n r n C C ξξ由于r n -ξξ,,1 是基础解系从而线性无关,故.01===-r n C C 所以010====-r n C C C , 故r n -*ξξη,,,1 线性无关.(2) 设有关系式:0)()(110=+++++-*-**r n r n C C C ξηξηη (2)即0)(1110=++++++--*-r n r n r n C C C C C ξξη .由题(1)知, r n -*ξξη,,,1 线性无关,故2110=====+++--r n r n C C C C C C 0210=====?-r n C C C C ,所以r n -***++ξηξηη,,,1 线性无关.32. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .证明s s k k k x ηηη+++= 2211也是它的解.证明由于s ηη,,1 是非齐次线性方程组b Ax =的s 个解. 故有 ),,1(s i b A i ==η 而s s s s A k A k A k k k k A ηηηηηη+++=+++ 22112211)(b k k b s =++=)(1所以s s k k k x ηηη+++= 2211也是方程b Ax =的解.33.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题31知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n kk ).证明设x 为b Ax =的任一解.由题设知:121,,,+-r n ηηη 线性无关且均为b Ax =的解.取11132121,,,ηηξηηξηηξ-=-=-=+--r n r n ,则它们均为0=Ax 的解.用反证法证明:r n -ξξξ,,,21 线性无关.假设它们线性相关,则存在不全为零的数r n l l l -,,,21 ,使得02211=+++--r n r n l l l ξξξ .即0)()()(11132121=-++-+-+--ηηηηηηr n r n l l l0)(13221121=+++++++-+---r n r n r n l l l l l l ηηηη由121,,,+-r n ηηη 线性无关知0)(2121=====+++---r n r n l l l l l l与r n l l l -,,,21 不全为零矛盾! 故假设不成立. r n -∴ξξξ,,,21 线性无关.由于b Ax =的系数矩阵的秩为r ,故齐次方程0=Ax 的基础解系应含有r n -个向量.r n -∴ξξξ,,,21 构成0=Ax 的基础解系.由于1,ηx 均为b Ax =的解,所以1η-x 为0=Ax 的解1η-?x 可由r n -ξξξ,,,21 线性表示.r n r n k k k x ---+++=-ξξξη123121)()()(111133122ηηηηηη-++-+-=+-+-r n r n k k k1133221321)1(+-+-+-++++----=r n r n r n k k k k k k x ηηηη令13211+-----=r n k k k k ,则11321=+++++-r n k k k k ,且112211+-+-+++=r n r n k k k x ηηη .34.设}0,,),,,({211211=+++∈==n n T n x x x R x x x x x x V 满足}1,,),,,({211212=+++∈==n n T n x x x R x x x x x x V 满足问21,V V 是不是向量空间?为什么?证明非空向量集V 成为向量空间只需满足条件:若V V ∈∈βα,,则V ∈+βα; 若R V ∈∈λα,,则V ∈λα.1V 是向量空间.由1)0,,0,0(V T∈ 知1V 非空.设121),,,(V T n ∈=αααα ,121),,,(V Tn ∈=ββββ ,R ∈λ. 则021=+++n ααα ,021=+++n βββ .由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++ 0)()(2121=+++++++=n n βββααα故1V ∈+βα.又T n ),,,(21λαλαλαλα =且00)(2121=?=+++=+++λαααλλαλαλαn n故1V ∈λα.2V 不是向量空间.若221),,,(V T n ∈=αααα ,221),,,(V Tn ∈=ββββ , 则121=+++n ααα ,121=+++n βββ . 由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++211)()(2121=+=+++++++=n n βββααα 故2V ?+βα. 又T n ),,,(21λαλαλαλα =且λλαααλλαλαλα=?=+++=+++1)(2121n n故当1≠λ时,2V ?λα.35.试证:由T T T a a a )0,1,1(,)1,0,1(,)1,1,0(321===所生成的向量空间就是3R .证明设),,(321a a a A =.11101110,,321==a a a A 02≠=于是3)(=A R ,故321,,a a a 线性无关.由于321,,a a a 均为三维向量,且秩为3,所以321,,a a a 是三维向量空间3R 的一组基, 故由321,,a a a 所生成的向量空间就是3R .36.由T T a a )1,1,0,1(,)0,0,1,1(21==所生成的向量空间记作1L ,由T T b b )1,1,1,0(,)3,3,1,2(21--=-=所生成的向量空间记作2L ,试证21L L =.证明因为21,a a 的对应分量不成比例,所以21,a a 线性无关,故2),(21=a a R .因为21,b b 的对应分量不成比例,所以21,b b 线性无关,故2),(21=b b R .---=1310131011010211),,,(2121b b a a ~--0000000013100211 所以2),,,(2121=b b a a R ,从而),,,(),(),(21212121b b a a R b b R a a R ==. 所以21,a a 与21,b b 等价,因此21L L =.37.验证T T T a a a )2,1,3(,)3,1,2(,)0,1,1(321==-=为3R 的一个基,并把T T v v )13,8,9(,)7,0,5(21---==用这个基线性表示.解设),,(321a a a A =,),(21v v V =.对),(V A 实施初等行变换化为行最简形矩阵.----=1372308011195321),(V A ~---211003301032001由于A ~E ,所以3),,(321=a a a R ,故321,,a a a 线性无关,则321,,a a a 为3R 的一个基. 因为---==-213332),,(),,(),(321132121a a a V A a a a v v所以321132a a a v -+=, 3212233a a a v --=.38.已知3R 的两个基为=1111a ,-=1012a , ??=1013a 及 ????? ??=1211b , ????? ??=4322b , ????? ??=3433b , 求由基321,,a a a 到基321,,b b b 的过度矩阵P .解设),,(321a a a A =, ),,(321b b b B =.因为321,,a a a 与321,,b b b 是3R 的基,所以B A ,是3阶可逆矩阵.B A P P a a a b b b 1321321),,(),,(-=?=.对),(B A 实施初等行变换化为行最简形矩阵.-=341111432001321111),(B A ~---101100010010432001 所以---==-1010104321B A P .。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。
答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。
答案:可交换3. 一个向量空间的维数是指该空间的______的个数。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题及答案
线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性空间测试题及答案
线性空间测试题及答案一、选择题1. 线性空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 分配律D. 所有选项都正确2. 以下哪个不是线性空间的定义条件?A. 向量加法的封闭性B. 标量乘法的封闭性C. 存在零向量D. 向量加法的逆元存在二、填空题1. 线性空间中的向量加法满足_________,即对于任意向量u, v ∈ V,存在一个向量w ∈ V,使得u + w = v。
2. 线性空间中的标量乘法满足_________,即对于任意向量v ∈ V和标量a, b,有(a + b)v = av + bv。
三、简答题1. 请简述线性空间的定义。
2. 线性空间中的向量加法和标量乘法需要满足哪些条件?四、计算题1. 给定线性空间V中的向量u = (1, 2)和v = (3, 4),计算u + v。
2. 若标量a = 2,计算2u。
五、证明题1. 证明线性空间中的向量加法满足结合律。
2. 证明线性空间中的标量乘法满足分配律。
答案:一、选择题1. 答案:D2. 答案:D二、填空题1. 答案:逆元存在2. 答案:分配律三、简答题1. 答案:线性空间是一个集合V,配合两个二元运算:向量加法和标量乘法,满足以下条件:向量加法的封闭性、结合律、存在零向量、向量加法的逆元存在,以及标量乘法的封闭性、分配律、结合律。
2. 答案:向量加法需要满足封闭性、结合律、存在零向量、逆元存在,而标量乘法需要满足封闭性、分配律、结合律。
四、计算题1. 答案:u + v = (1+3, 2+4) = (4, 6)2. 答案:2u = 2 * (1, 2) = (2, 4)五、证明题1. 证明:设u, v, w ∈ V,则(u + v) + w = u + (v + w),由向量加法的结合律得证。
2. 证明:设u ∈ V,a, b为标量,则a(bu) = (ab)u,由标量乘法的分配律得证。
空间向量的习题及答案
空间向量的习题及答案空间向量是线性代数中的重要概念之一,它在解决几何问题时起到了关键作用。
本文将通过一些典型的习题来探讨空间向量的性质和应用,并给出详细的答案解析。
1. 习题一:已知向量a = (1, 2, -3),向量b = (-2, 1, 4),求向量a与向量b的数量积和向量积。
解析:向量a与向量b的数量积为:a·b = 1*(-2) + 2*1 + (-3)*4 = -2 + 2 - 12 = -12。
向量a与向量b的向量积为:a×b = (2*(-3) - 1*4, 1*(-3) - (-2)*4, 1*1 - (-2)*(-3)) = (-6 - 4, -3 + 8, 1 + 6) = (-10, 5, 7)。
2. 习题二:已知向量a = (2, -1, 3),向量b = (3, 4, -2),求向量a与向量b的夹角的余弦值。
解析:向量a与向量b的夹角的余弦值为:cosθ = (a·b) / (|a| * |b|)。
其中,a·b为向量a与向量b的数量积,|a|为向量a的模,|b|为向量b的模。
计算得到:a·b = 2*3 + (-1)*4 + 3*(-2) = 6 - 4 - 6 = -4,|a| = √(2^2 + (-1)^2+ 3^2) = √(4 + 1 + 9) = √14,|b| = √(3^2 + 4^2 + (-2)^2) = √(9 + 16 + 4)= √29。
代入公式得到:cosθ = (-4) / (√14 * √29)。
3. 习题三:已知向量a = (1, 2, 3),向量b = (4, 5, 6),求向量a与向量b的和、差和模长。
解析:向量a与向量b的和为:a + b = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
向量a与向量b的差为:a - b = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
线性代数习题集第七章
线性代数习题集第七章第七章欧⼏⾥得空间I. 单项选择题1. 欧式空间V 内的s 个⾮零向量12,,,s ααα,如果两两正交,则()⑴线性相关⑵线性⽆关⑶互相可以线性表⽰⑷两两夹⾓为零2. 给定两个向量1123a α?? ? ?= ?- ?-??,23241α-?? ? ?= ? ???,且内积12,1αα=-,则a 为()⑴23- ⑵34- ⑶14- ⑷123. n 维欧式空间V 的线性变换σ是可逆的对称变换当且仅当σ关于V 的任意⼀组标准正交基的矩阵是()⑴可逆变换⑵对称变换⑶正交变换⑷可逆的对称变换 4. 正交变换在标准正交基下的矩阵是()⑴初等矩阵⑵正定矩阵⑶正交矩阵⑷实对称矩阵 5. 设A 为n 阶对称矩阵,若1A -存在,则1A -是()⑴正交矩阵⑵正定矩阵⑶对称矩阵⑷反对称矩阵 6. 下列有关正交变换的命题中,正确的是()⑴保持任意向量长度不变的线性变换是正交变换⑵保持任意两个⾮零向量夹⾓不变的线性变换是正交变换⑶正交变换是对称变换⑷正交变换在任意⼀组基下的矩阵是正交矩阵7. 在欧式空间V 中,两组标准正交基间的过渡矩阵是()⑴正定矩阵⑵对称矩阵⑶正交矩阵⑷转置矩阵 8. 实上三⾓矩阵为正交矩阵时,必为对⾓矩阵,其对⾓线上的元素为()⑴1 ⑵-1 ⑶0 ⑷±1 9. 欧式空间中线性变换σ是正交变换的充要条件是()⑴σ为对称变换⑵σ保持向量的长度不变⑶σ保持向量间的夹⾓不变⑷保持向量间的正交关系不变 10. n 阶实矩阵T 是正交矩阵当且仅当T 的⾏向量组是()⑴正交组⑵标准正交组⑶线性⽆关组⑷单位向量组 11. 正交矩阵的实特征值只能是()⑴正实数⑵负实数⑶1或-1 ⑷零12. 矩阵1121121121121-?? ?- ? ?-??是()⑴正交矩阵⑵⾮正交矩阵⑶正定矩阵⑷实反对称矩阵13. 设1111A ??=,P 为⼆阶正交阵,且'0002P AP ??=,则P =()⑴12121212??-⑵? -?⑶?-⑷12121212-??14. 设()12,a a α=,()12,b b β=为⼆维实空间2R 中任意两个向量,2R 对以下规定的哪个内积作成欧式空间()⑴1221,a b a b αβ=+ ⑵1122,a b a b αβ=-⑶1122,1a b a b αβ=++ ⑷()()121122,2a a b a a b αβ=+++II. 填空题 1. 设12,,,s ααα是欧式空间V 中的s 个向量,如果12,,,s ααα两两正交,则它们______. 2. 欧式空间V 内任意两个向量,αβ有,αβαβ≤,等号成⽴的充要条件是_________. 3. 欧式空间中,正交向量组必__________.4. 在欧式空间V 中,设(),,.L V R V σλ?∈∈∈如果(),σ?λ?=且?________,则称λ为________,?为________.5.如果向量组()12,,,2s s ααα≥中任⼀向量都不能被其余向量线性表⽰,则此向量组________.6. 如果对称矩阵A 为⾮奇异矩阵,则1A -也是________.7. 正交变换σ保持向量的内积不变,因⽽它保持向量的________和________不变. 8. 设实数域R 上的⼀个n 阶⽅阵T 满⾜' ',T T TT E ==即________,则称T 为________. 9. 设σ为n 维欧式空间V 的⼀个线性变换,若σ对⼀组基12,,,n ααα中的向量有()()1111,,,1,2,,i n ασααα==,则σ________正交变换.10. 设()A ij a =是数域K 上的⼀个n 阶⽅阵,如果________,则称A 是⼀个对称矩阵,如果________,则称A 是⼀个反对称矩阵.11. 正交矩阵A 的⾏列式A =________或________.12. 设σ是欧式空间V 内的⼀个对称变换,则σ的对应于不同特征值的特征向量________.13. 欧式空间中的正交变换之积________正交变换. 14. 对称变换在标准正交基下的矩阵是________矩阵.15. 设A 是⼀个n 阶实对称矩阵,则存在n 阶______,使1'T AT T AT D -==为对⾓形矩阵. 16. 设V 是⼀个n 维欧式空间,令()0n 表⽰V 中全体正交变换所成的集合,则()0n 具有性质⑴_______________;⑵_______________;⑶_______________. 17. 设σ是欧式空间V 内的⼀个线性变换,若对V 中任意向量,αβ都有()(),,ασββ=,则称σ为____________.18. 设σ是n 维欧式空间V 内的⼀个线性变换,如果对任意,V αβ∈,有()(),,αβασβ=,则称σ为⼀个____________.19. 欧式空间V 中的线性变换σ称为反对称的,如果对V 中任意向量,αβ,都有_________.20. 设(1α=,(2α=-,(3α=-,则123,,ααα是3R 的⼀个标准正交基,因为____________,____________.III. 判断题1. 设,αβ是欧式空间V 中的任意两个向量,则,αβαβ≤.2. 设()12,a a α=,()12,b b β=为⼆维实空间2R 中任意两个向量,规定内积:()()1212,a a b b αβ=++,则,0αβ≥,当且仅当0α=时,,0αα=.3. 令2R 为实数域上全体⼆维向量所组成的线性空间,()12,a a α=,()12,b b β=为其中任意两个向量,规定:()12122,a a b a b αβ=++,则,,αββα=.4. 实对称矩阵的特征值必为实数.5. 在某⼀组基下的矩阵是实对称矩阵的线性变换是对称矩阵.6. 对称变换的特征值都是实数.7. 对称变换在任意⼀组基下的矩阵都是实对称矩阵.8. 保持任意两个⾮零向量夹⾓不变的线性变换⼀定是正交变换.9. 设()12,a a α=,()12,b b β=为⼆维实空间2R 中任意两个向量,2R 对以下所规定的内积作成欧式空间,1221,a b a b αβ=+.10. 标准正交基到标准正交基的过渡矩阵是正交矩阵.11,在4R 中,向量()1,2,2,3α=,()3,1,5,1β=的夹⾓为4π.12. 正交变换在标准正交基下的矩阵是正交矩阵.IV. 简答(或计算)题1. 求与()1,2,1,1α=-,()2,3,1,1β=,()1,1,2,2γ=---都是正交的向量.2. 在欧式空间4R 中,求()1,2,2,3α=,()3,1,5,1β=的夹⾓.3. 在欧式空间4R 中,求()2,1,3,2α=,()1,2,2,1β=-的夹⾓.4. 设()()()1231,0,2,0,0,2,0,3,2,6,4,9ααα===,试将()123,,L ααα的基扩充成欧式空间4 R 的⼀组基.5. 求线性⽅程组123452111311101032112x x x x x ?? ?--?? ? ?= --的解空间的标准正交基.6. 设220212020A -?? ?=-- ? ?-??,求正交矩阵T ,使'T AT 成对⾓形.7. 求下列矩阵123213336A ??= ? ???的特征值和特征向量,并将特征向量标准正交化.8. ⽤正交变换化⼆次型222123121323222f x x x x x x x x x =+++++为标准形.9. ⽤正交变换化⼆次型123444f x x x x =+为标准形.10. 设0111101111011110A -??-= - -,求正交矩阵U ,使'U AU 成对⾓形. 11. 设12345,,,,εεεεε是五维欧式空间V 的⼀组标准正交基,()1123,,V L ααα=,其中11521243123,,2αεεαεεεαεεε=+=-+=++,求1V 的⼀组标准正交基.12. 在[]4R x中定义内积为:()()11,f g f x g x dx -=?,求[]4R x 的⼀组标准正交基(对基231,,,x x x 正交单位化)13. 求⼀个正交变换,把⼆次型()222123123121323,,44448f x x x x x x x x x x x x =++-+-化为标准形.14. 已知⼆次型()22212312323,,2332(0)f x x x x x x ax x a =+++>,通过正交变换化成标准形:22212325f y y y =++,求参数a 及所⽤的正交变换矩阵. *15. 设n 阶⽅阵A 有n 个特征值0,1,2,n 1-,且⽅阵B 与A 相似. 求B E +,这⾥E 为n 阶单位矩阵.*16. 设⼆次型222123122313222f x x x ax x bx x x x =+++++,经正交变换X U Y =化成22232f y y =+,其中()'123,,X x x x =和()'123,,Y y y y =是三维列向量,U 是三阶正交矩阵. 试求,a b .*17. 欧式空间4R 中,若基()()()()12341,1,0,0,1,2,0,0,0,1,2,11,0,1,1αααα=-=-==的度量矩阵为:23013601001391197A -??--= -. ⑴求基()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1εεεε====的度量矩阵;⑵求向量γ,它与以下向量都正交,()()()1231,1,1,1,1,1,1,1,2,1,1,3=-=--=. *18. 在2R 中,已知基()()121,0,0,1αα==的度量矩阵1112A ??=. 求2R 的⼀个标准正交基,并验证该基的度量矩阵是1001E ??=. *19. 设12345,,,,εεεεε是五维欧式空间的⼀个标准正交基,()1123,,V L ααα=,其中11521243123,,2αεεαεεεαεεε=+=-+=++,求1V 的⼀个标准正交基. *20. 设M 是欧式空间3R 的⼆维⼦空间,取其基()()121,1,2,2,2,3αα==. 求M ⊥.*21. 设V 为四维欧式空间,1234,,,εεεε为V 的⼀个标准正交基,⼦空间()12,M L αα=,其中1122123,αεεαεεε=+=+-. 求M ⊥.*22. 设4R 中的⼦空间M 是齐次线性⽅程组123412412342303220390x x x x x x x x x x x ++-=??+-=??++-=?的解空间,试分别求M ,M ⊥的基. 并写出以M ⊥为解空间的齐次线性⽅程组.*23. 已知'100030007Q AQ ?? ?= ? ,其中0Q ??- =- ??,302032225A ?? ?=- ? ?-??.求A 的特征值与特征向量.*24. 已知6,3,3是三阶实对称矩阵A 的三个特征值,()'11,1,1?=是属于特征值6的⼀个特征向量.V. 证明题1. 证明:对欧式空间中任意向量,αβ,下列等式成⽴:222222αβαβαβ++-=+.2. 在欧式空间中,若向量α与β正交. 求证:220αβαβ+--=.3. 设123,,,n αααα是欧式空间V 的⼀组基. 证明:若1,0(1,2,,)i n βα==,则0β=.4. 设α与β为n 维欧式空间V 中两个不同的向量,且1αβ==. 证明:,1βα≠.5. 设设123,,,n αααα是欧式空间V 的⼀组基. 证明:如果V γ∈,使1,0(1,2,,)i n γα==,则0r =.6. 设V 为 n 欧式空间,12,V γγ∈,如果对V 中任意向量α均有12,,γαγα=,则12γγ=.7. 设β与123,,,n αααα都正交. 证明:β与123,,,n αααα的任意线性组合都正交.8. 设123,,,n αααα是欧式空间V 内的n 个⾮零向量且它们两两正交. 证明:123,,,n αααα线性⽆关.9. 设A 为实对称矩阵. 证明:0A =充要条件是20A =. 10.设12,,,m ααα是欧式空间V内的⼀个向量组,令111212122212,,,,,,,,,m m m m m mαααααααααααααα??= ? ? ?. 证明:当且仅当0?≠时,12,,,m ααα线性⽆关.11. 设,στ是n 维欧式空间V 的两个线性变换. 证明:στ也是V 的正交变换. 12. 证明:实对称矩阵A 正定的充要条件是'A B B =,其中'B 为可逆矩阵. 13. 设,A B 都是正交矩阵,且A B =-. 证明:0A B +=. 14. 证明:对称的正交矩阵的特征值必为1+或1-.15. 设σ是欧式空间V 中对称变换. 证明:σ对应于不同特征值1,2λλ的特征向量12,??彼此正交.16. 设,A B 均为n 阶对称矩阵. 证明:AB 为对称矩阵的充要条件是AB BA =.17. 设A 为实对称矩阵,B 为反对称矩阵,且AB BA =,A B -是⾮奇异矩阵. 证明:()()1A B A B -+-是正交矩阵.18. 设A 为n 阶反对称矩阵,若A 为⾮奇异⽅阵. 证明:1A -也是反对称⽅阵.19. 设可逆矩阵A 的伴随矩阵A *为反对称矩阵. 证明:A 的转置矩阵'A 也是反对称矩阵. 20. 设,ατ均为欧式空间V 的两个对称变换. 证明:σττσ+也是V 的对称变换.21. 设α是n 维欧式空间V 中的⼀个⾮零向量. 证明:{},0M V ξξα=∈=是V 的⼦空间.22. 证明:第⼆类正交变换⼀定有特征值-1. 23. 设A 为正交矩阵. 证明:A *也是正交矩阵.24. 证明:在欧式空间中,对任意向量,ξη均有22,1414ηξηξη=+--. 25. 设12,,,n ααα是n 维欧式空间V 的⼀个基. 证明:12,,,n ααα是标准正交基的充要条件是对V 中任意1122n n x x x αααα=+++,1122n n y y y βααα=+++,1122,n n x y x y x y αβ=+++.*26. 设12,,,n εεε是n 维欧式空间的的⼀个基. 证明:12,,,n εεε是标准正交基的充要条件是任意向量α的坐标可由内积表出:1122,,,n n αεεαεεαεε=+++.*27. 设12,,,n εεε是n 维欧式空间V 的⼀个标准正交基,n 阶实矩阵()ij A a =是此基到基12,,n ηηη的过渡矩阵. 证明:12,,n ηηη是标准正交基的充要条件是A 为正交矩阵.*28. 证明:有限维欧式空间存在标准正交基. *29. 设12,,,m ααα是n 维欧式空间V 的⼀个标准正交基. 证明:对任意V ξ∈,以下不等式成⽴:2211,mi αξ=≤∑.*30. 证明:n 阶实对称矩阵A 是正定的,当且仅当存在nR ⼀个基,使A 为其度量矩阵. *31. 设,A B 是两个n 阶正交矩阵. 证明:1AB -的⾏向量构成欧式空间nR 的⼀个标准正交基.*32. 证明:两个有限维欧式空间同构的充要条件是它们的维数相同.*33. 证明:n 维欧式空间V 与'V 同构的充要条件是,存在双射f :'V V →,并且对V 中任意向量,ξη,有,(),()f f ηξη=.*34. 设f 是欧式空间V 到'V 的⼀个同构映射. 证明:1f -是'V 到V 的同构映射.*35. 设()12,,,,1,2,,i i i in a a a i n α==是n 维欧式空间n R 的向量组. 证明:110,1,2,,;,0nnij ji j j i j a xi n x αα=====∑∑的解空间同构.*36. 证明:实系数线性⽅程组1,1,2,,nij jj j a xb i n ===∑⑴有解的充要条件是向量()12,,,nn b b b R β=∈与齐次⽅程组10,1,2,,nij j j a x i n ===∑⑵的解空间正交.*37. 设A 是n 阶正定矩阵,E 是n 阶单位矩阵. 证明:A E +的⾏列式⼤于1.。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数期末考试试题及答案
线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。
线性代数基础练习题
线性代数基础练习题一、选择题(每题2分,共20分)1. 矩阵的秩是指:A. 矩阵中非零行的最大个数B. 矩阵中非零列的最大个数C. 矩阵中线性无关行的最大个数D. 矩阵中线性无关列的最大个数2. 向量空间的基是指:A. 空间中任意向量的一组表示B. 空间中线性无关的向量集合C. 空间中所有向量的集合D. 空间中能生成整个空间的向量集合3. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后保持不变的向量集合D. 变换后向量长度不变的集合4. 方程组有唯一解的条件是:A. 方程个数等于未知数个数B. 方程组的系数矩阵是可逆的C. 方程组的系数矩阵是方阵D. 方程组的系数矩阵是对称的5. 特征值和特征向量是:A. 线性变换中的特定值和向量B. 矩阵对角化过程中的值和向量C. 矩阵行列式为零的值D. 矩阵的秩二、填空题(每题2分,共20分)6. 向量空间 \( \mathbb{R}^3 \) 中,基 \( \{ \mathbf{v}_1,\mathbf{v}_2, \mathbf{v}_3 \} \) 的向量 \( \mathbf{v}_1 = (1, 0, 1) \),\( \mathbf{v}_2 = (0, 1, 1) \),那么\( \mathbf{v}_3 \) 可以是 _________ 。
7. 若矩阵 \( A \) 与 \( B \) 相似,则 \( A \) 和 \( B \) 有相同的 _________ 值。
8. 线性方程组 \( \begin{cases} x + y + z = 1 \\ 2x - y + z = 0 \\ 3x + y - z = 0 \end{cases} \) 的系数矩阵的秩是_________ 。
9. 矩阵 \( A \) 的迹(trace)是 _________ 矩阵元素的和。
10. 线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \),若 \( T(\mathbf{e}_1) = \mathbf{e}_2 \) 且 \( T(\mathbf{e}_3) = \mathbf{e}_1 + \mathbf{e}_3 \),则 \( T(\mathbf{e}_2) \) 是_________ 。
线性代数考试题及答案
线性代数考试题及答案一、选择题(共10小题,每题2分,共20分)1. 在线性空间R^3中,向量的维数是()。
A. 1B. 2C. 3D. 无穷大2. 已知向量组{v1, v2, v3}线性无关,向量v4可以由向量组{v1, v2,v3}线性表示,那么向量组{v1, v2, v3, v4}()。
A. 线性无关B. 线性相关C. 只存在部分线性相关D. 无法确定3. 若A是一个n×n矩阵,且满足A^2 = -I,其中I为n阶单位矩阵,则矩阵A的特征值为()。
A. -1B. 1C. iD. -i4. 设A为n×n矩阵,若A^2=0,则()。
A. A非奇异B. A是零矩阵C. A的特征值全为0D. A的特征向量全为05. 设A为3×3矩阵,若A的秩为2且|A|=0,则()。
A. A的特征值必为0B. A的特征值至少有2个为0C. A的特征值可能全为非零数D. A的特征值全为非零数6. 设A为m×n矩阵,若齐次线性方程组Ax = 0有非零解,则()。
A. A的列向量组线性无关B. A的行向量组线性无关C. A的列向量组线性相关D. A的行向量组线性相关7. 设A、B为m×n矩阵,若AB=0,则()。
A. A=0或B=0B. A和B至少有一方为0C. AB为零矩阵D. AB不一定为零矩阵8. 若二次型f(x) = x^T Ax恒大于等于零,其中x为非零向量且A为n×n对称矩阵,则A()。
A. 不一定是正定矩阵B. 一定是正定矩阵C. 一定是半正定矩阵D. 不一定是半正定矩阵9. 若矩阵A=(a1,a2,a3,...,an)为方阵,并且满足AtA=In,其中In为n阶单位矩阵,则()。
A. A非奇异B. A为对角阵C. A为正交阵D. A为对称阵10. 对于线性方程组Ax = b,若方程组有解,则()。
A. A的行向量数等于b的个数B. A的列向量数等于b的个数C. A的秩等于b的个数D. A的秩小于等于b的个数二、简答题(共4题,每题15分,共60分)1. 请证明:若n×n矩阵A与B的秩相等,即rank(A)=rank(B),则AB与BA的秩也相等。
线性代数试题及答案
线性代数试题及答案一、选择题1. 线性代数是数学的一个分支,主要研究向量空间、线性变换以及它们之间的关系。
以下哪个选项不是向量空间的基本性质?A. 封闭性B. 结合律C. 交换律D. 单位元存在性答案:C2. 设A是一个3级方阵,且det(A) = 2,那么det(2A)等于多少?A. 4B. 6C. 8D. 10答案:C3. 在线性代数中,线性变换可以通过什么来表示?A. 矩阵B. 行列式C. 特征值D. 坐标答案:A4. 特征值和特征向量在描述线性变换时具有重要意义。
一个矩阵的特征值和特征向量分别表示什么?A. 变换后矩阵的行列式,变换前矩阵的行列式B. 变换后矩阵的行列式,变换前向量的方向C. 变换前矩阵的行列式,变换后向量的方向D. 变换前矩阵的行列式,变换后向量的方向答案:B5. 线性代数中的欧几里得空间是一个完备的度量空间,它满足哪些性质?A. 可数性B. 完备性C. 可加性D. 所有上述性质答案:D二、填空题1. 在线性代数中,若一个向量空间的基包含n个向量,则该向空间的维数为______。
2. 设矩阵A = [a_ij],其中i表示行索引,j表示列索引。
如果A的逆矩阵存在,则A的行列式det(A)不等于______。
3. 对于一个n级方阵A,若存在一个非零向量v,使得Av=λv,其中λ为一个标量,则称λ为A的______,v为对应于λ的______。
三、计算题1. 给定矩阵B = [1 2 3; 4 5 6; 7 8 9],求矩阵B的秩。
2. 设线性方程组如下:a_1 + 2a_2 + 3a_3 = 64a_1 + 5a_2 + 6a_3 = 127a_1 + 8a_3 + 9a_3 = 18求该方程组的解。
3. 给定一个3级方阵C,其特征值为1,-2和3,求矩阵C。
四、论述题1. 讨论线性变换在几何上的意义,并给出一个具体的例子来说明其作用。
2. 解释何为线性空间,以及线性空间的同构关系是如何定义的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数向量空间的练习题一、单项选择题1.设A,B分别为m×n和m×k矩阵,向量组是由A 的列向量构成的向量组,向量组是由的列向量构成的向量组,则必有A.若线性无关,则线性无关 B.若线性无关,则线性相关C.若线性无关,则线性无关 D.若线性无关,则线性相关2.设?1,?2,?3,?4是一个4维向量组,若已知?4可以表为?1,?2,?3的线性组合,且表示法惟一,则向量组?1,?2,?3,?4的秩为A.1 B.2C.D.43.设向量组?1,?2,?3,?4线性相关,则向量组中A.必有一个向量可以表为其余向量的线性组合B.必有两个向量可以表为其余向量的线性组合C.必有三个向量可以表为其余向量的线性组合D.每一个向量都可以表为其余向量的线性组合4.设有向量组A:?1,?2,?3,?4,其中?1,?2,?3线性无关,则A.?1,?3线性无关B.?1,?2,?3,?4线性无关C.?1,?2,?3,?4线性相关D.?2,?3,?4线性相关 5.向量组?1,?2,?,?s的秩不为零的充分必要条件是 A.?1,?2,?,?s中没有线性相关的部分组C.?1,?2,?,?s全是非零向量 B.?1,?2,?,?s中至少有一个非零向量 D.?1,?2,?,?s全是零向量6.设α1,α2,α3,α4是4维列向量,矩阵A=.如果|A|=2,则|-2A|=A.-3B.-4C.D.327.设α1,α2,α3,α是三维实向量,则A. α1,α2,α3,α4一定线性无关B. α1一定可由α2,α3,α4线性表出C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关8.向量组α1=,α2=,α3=的秩为A.1B.2C.D.49.下列命题中错误的是..A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关10.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则A.α1必能由α2,α3,β线性表出C.α3必能由α1,α2,β线性表出B.α2必能由α1,α3,β线性表出 D.β必能由α1,α2,α3线性表出11.设α1,α2,α3,α4都是3维向量,则必有A.α1,α2,α3,α4线性无关B.α1,α2,α3,α4线性相关C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示二、填空题1.已知向量α=,β=,如果α+ξ=β,则ξ=_________.2.设向量组?1=,?2=, ?3=线性相关,则数a=________.3.向量组?1?,?2?,?3?的秩为_____________。
4.已知向量组?1?T,?2?T,?3?T线性相关,则数a?______.5.设向量组?1?T,?2?T,且?1??1??2,?2??2,则向量组?1,?2的秩为______.6.实数向量空间V={|x1+x2+x3=0}的维数是_________. TT7.设4维向量??,β=,若向量γ满足2??γ=3β,则γ=__________.8.设α=,则与α反方向的单位向量是_________________.9.设A为5阶方阵,且r=3,则线性空间W={x | Ax=0}的维数是______________.三、计算题1.求向量组α1=,α2=,α3=的秩.2.求向量组?1=T,?2=T,?3=T,?4=T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.3.设向量组为 ?1??2??3? ?4?求向量组的秩,并给出一个极大线性无关组。
4.设向量组?1?T,?2?T,?3?T,?4?T,求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示.5.设向量α=,求101.6.设向量组α1=,α2=,α3=,α4=.求该向量组的一个极大线性无关组;将其余向量表示为该极大线性无关组的线性组合.7.设向量组?1?T,?2?T,?3?T,?4?T,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量。
8.求向量组α1=,α2=,α3=的秩和一个极大无关组.四、证明题1.设向量组α1,α2,α3线性无关,β1=α1+α2,β2=α2+α3,β3=α3+α1,证明:向量组β1,β2,β3线性无关.2. 证明:若向量组?1,?2,??n线性无关,而?1??1??n,?2??1??2,?3??2??3,?, ?n??n?1+?n,则向量组?1,?2,?,?n线性无关的充要条件是n为奇数。
3.设向量组?1,?2,?3线性无关,且??k1?1?k2?2?k3?3.证明:若k1≠0,则向量组?,?2,?3也线性无关.4. 已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.5. 若α1,α2,α3是Ax=b的线性无关解,证明α2-αl,α3-αl是对应齐次线性方程组Ax=0的线性无关解.《第四章向量空间》自测题分钟)1. 下列向量集合按向量的加法和数乘运算构成R上一个向量空间的是。
R中,分量满足x1+x2+…+xn=0的所有向量; R中,分量是整数的所有向量;R中,分量满足x1+x2+…+xn=1的所有向量;Rn中,分量满足x1=1,x2,…,xn可取任意实数的所有向量。
.设R的一组基为?1,?2,?3,?4,令nnn?1??1??2,?2??2??3,?3??3??4,?4??1??4,则子空间W?{k1?1?k2?2?k3?3?k4?4|ki?F,i?1,2,3,4}的维数为,它的一组基为。
. 向量空间Rn 的子空间W?{|x1?x2?0,x1?xn?1?R}的维数为它的一组基为。
a114. 设W是所有二阶实对称矩阵构成的线性空间,即Wa12?a12???aij?R?,则它的维数为,a22一组基为。
??a?5.若A=?b??0??12120?0??0?为正交矩阵,且|A|=-1,则a= ,?1?=。
二、计算题1.设R3的两组基为:?1?,?2?,?3?和?1?,?2?,?3?,TTTTTT向量α=求由基?1,?2,?3到基?1,?2,?3的过渡矩阵。
求α关于这两组基的坐标。
将?1,?2,?3化为一组标准正交基。
2. 在R中,求下述齐次线性方程组的解空间的维数和基,T?3x1?2x2?5x3?4x4?0??3x1?x2?3x3?3x4?0?3x?5x?13x?11x?0234?13.已知?1,?2,?3是3维向量空间R3的一组基,向量组?1,?2,?3满足?1??3??1??2??3,?1??2??2??3,?2??3??1??3证明:?1,?2,?3是一组基。
求由基?1,?2,?3到基?1,?2,?3的过渡矩阵。
求向量1?2?2??3关于基?1,?2,?3的坐标。
.已知A是2k+1阶正交矩阵,且|A|=1,求|A-E|。
三、证明题1. 设k1??k2??k3??0,且k1k3?0。
证明:L?L。
. 设A为正交矩阵,证明:A为正交矩阵。
3.设A、B为n阶正交矩阵,且|A|?|B|。
证明:A+B 为不可逆矩阵。
*参考答案一、选择、填空1. A2. dimW=3,一组基为?1,?2,?3.3. dimW=n-2,一组基为?1?T,?2?T,?n?2?T. dimW =3,一组基为???1?00??0?,??000??0?,??111??。
0??5. a=12,=12二、计算题?1?2?1,?3的过渡矩阵:??2?1??2101?0??1? ??1??1.基?1,?2,?3到基?1,?2 α关于?1,?2,?3的坐标是 α关于?1,?2,?3的坐标是 ?1??13??6?1??1??,??6?3???1??26?3????1???21??。
?,??2??0??,?2?93932.解空间的维数是2,一组基为?1。
3.提示:证明?1,?2,?3与?1,?2,?3等价,从而r=3,线性无关。
?0?,?3到基?1,?2,?3的过渡矩阵为?111?100?精品文档?2?0??基?1,?2。
向量?关于基?1,?2,?3的坐标为。
. A?E?AE?A?1?E?ATAT?E??2k?1?A?E?三、证明题1. 提示:证明两个向量组等价,即{?,?}?{?,?},则生成子空间L?L。
. 证明:A*T?AA?1?AA?1??AA?1?A?1??AAT?E。
T2TT??A?E?A?E?0。
3.提示:A?B?AE?A?1B?AB?1?A?1B??A?B?A?B?011/ 11。