小学数学从“双基”发展为“四基”

合集下载

让数学教学从“双基”走向“四基”——以“找规律”一课教学为例

让数学教学从“双基”走向“四基”——以“找规律”一课教学为例

让数学教学从“双基”走向“四基”——以“找规律”一
课教学为例
数学教学一直以来都是以“双基”为基础,即“概念”和“算法”。

但是,这种教学方式容易导致学生缺乏对数学的深刻理解,只是机械地应用公式。

因此,我们需要从“双基”走向“四基”,即包括“概念”、“算法”、“方法”和“思维”。

以“找规律”一课教学为例,我们可以采取一些方法来帮助学生从“双基”走向“四基”。

首先,通过实际问题的引入,让学生明确问题的解决目标。

比如,假设学生需要计算1+2+3+…+100,我们可以先让学生思考自己如何计算,然后引入“找规律”这个方法,让学生明确自己需要找到一个规律,从而简化计算。

其次,通过示例的引入,让学生了解规律的本质。

我们可以通过列举一些例子来让学生发现规律,然后引导他们总结规律的本质和属性。

第三,通过探究问题的解决方法,帮助学生深刻理解概念和算法。

我们可以通过引导学生发现规律,进而找到一种通用的算法来解决问题。

然后,我们可以辅助学生对算法进行分析和理解,让他们深刻理解概念和算法的本质。

最后,让学生掌握方法和思维,把所学到的知识应用到各种实际问题中。

我们可以通过多样化的练习,让学生掌握方法和思维,从而不仅能够解决特定问题,也能灵活运用到其他相关的问题中。

总之,通过以上几个步骤,我们可以把数学教学从“双基”走向“四基”,让学生在学习过程中深化对数学概念的理解,掌握数学知识的应用技能,培养出科学的探究方法和思维能力。

从双基到四基从两能到四能

从双基到四基从两能到四能
演绎推理:从大到小,一般到特殊,结果必然; 已知 A 求证 B:不能发现新东西。
归纳推理:从小到大,特殊到一般,结果或然; 已知 a 推断 A:归纳(代数); 已知 A 推断 A+B:类比(几何)。
归纳教学的例子:尝试。 为得到公式 a2 – b2 = (a-b)(a+b)
首先进行化简,令 b=1。变化 a 可以得到: 22 – 1 = 4 - 1 = 3 32 – 1 = 9 - 1 = 8 42 – 1 = 16 - 1 = 15 52 – 1 = 25 - 1 = 24 62 – 1 = 36 - 1 = 35
命题:可以进行判断的话语 推理:一个命题判断到另一个命题判断的思维过程 命题 + 判断的四种形式:是是、是否、非是、非否
逻辑推理:命题主词的内涵之间具有传递性 有逻辑:凡人都有死,苏格拉底是人,所以苏格拉底有死。 无逻辑:苹果是酸的,酸是一种味道。所以苹果是一种味道。
逻辑推理 = 演绎推理 + 归纳推理
因为 8 = 2× 4,15 = 3× 5,24 = 4× 6 ,35 = 5× 7, 可以想到 a2–1 = (a-1)(a+1),然后考虑一般的 b。
从自然数的前 n 项和公式出发,得到平方和、立方和公式。
模型:构建数学与外部世界的桥梁。\数学的应用\
叙述的是一个用数学语言表达的实际故事。
方程、不等式、函数、递推(时间序列)等是语言工具。 比如,方程叙述的是量相等的故事。\距离=速度×时间\
因此,可以认为:
统计学是一门收集和分析数据的科学与艺术。 科学:基础是假说。验证与时间、地点、个性无关。 艺术:基础是标准。因人而异,因价值观而异。
对现有的学科大体可以分类: 自然学科:科学。\物理,化学,生物,地质\ 人文学科:艺术。\文学,历史,绘画,音乐\ 社会学科:科学与艺术。\经济,统计,心理,社会\

小学数学新课标四基与核心词解读

小学数学新课标四基与核心词解读
运算能力:是数学思考的重要内容,并非一 种单一的、孤立的数学能力,而是运算技能 与逻辑思维等的有机结合。
推理能力:合情推理与演绎推理 (推理是数学的基本思维方式) 模型思想:是一种数学的基本思想 数学模型:一种数学结构,代数式、关系式等 数学建模:即通过建立模型的方法来求得问题
解决的数学活动过程。
几何直观:就是依托利用图形进行数学的思 考和想象。
(想象力比知识更重要-爱因斯坦) (数形结合是认识数学的基本角度,与其说是
方法,不如说是基本要求)
数据分析观念:观念,是一种需要在亲身经 历的过程中培养出来的对一组数据的“领 悟”,由一组数据所想到的,所推测到的。
对课程内容的“核心概念”的修 改
对课程内容的“核心概念”的修 改
应用意识:是一种用数学的眼光、从数学的 角度观察、分析周围生活中问题的积极地心 理倾向和思维反应。
创新意识:数学教育应该启发人们的思维, 培养学生的创新意识。
怎样认识教师工作?
• 用知识传授知识——教书(教书匠) • 用思想引领思想——教育(教育家)
新课标培训经历、思考、迁移Fra bibliotek基本思想
数学抽象的思想 数学推理的思想 数学模型的思想
通过数学抽象,从客观世界中得到数学的 概念和法则,建立了数学学科;
通过数学推理,进一步得到大量结论,数 学科学得以发展;
通过数学建模,把数学应用到客观世界中, 产生了巨大的效益,又反过来促进数学科 学的发展。
数学抽象的思想
分类的思想 集合的思想 数形结合的思想 变中有不变的思想 符号表示的思想 对称的思想 对应的思想 有限与无限的思想
新课标培训
数感:感悟,是既通过肢体又通过大脑,既 有感知的成分又有思维的成分

从双基发展到四基

从双基发展到四基

如何理解课程目标由双基增加为四基?扬子学校:张玉平新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。

即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。

四基对老师的要求更高,整个课程改革的推进过程,对教师各方面的要求都会很高,教师需要不断学习不断更新才会有创新和发展。

数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

“基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。

”基本活动经验建立在生活经验基础上,帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。

“基本思想’主要是指演绎和归纳,这是整个数学教学的主线,是最上位的思想。

”具体的问题中,涉及数学抽象、数学模型、等量替换、数形结合等数学思想,但最重要的思想还是演绎和归纳。

回顾自己以前比较熟悉双基教学的操作程序,基础知识和基本技能的教学大部分可以得到落实。

欠缺的是对基本思想和基本活动经验进行理论和实际操作程序相结合的研究和实践,我将不断学习、研究,吸取别人的有益经验,争取早日适应社会时代的新要求。

如何理解《课程标准》中的10个核心概念?《课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

1、数感。

一是关于数与数量。

在小学低段,儿童对数的感悟是从数数学习辨认各组实物对象的多少开始建立的,学习用数表示多少的第一步就是数数,随着学习年级的增高,学生经历了更多的对数意义的感悟,如对分数、负数、有理数……的感悟,并形成对数的各种表征方式的理解,这是一个逐渐展开的过程。

从“双基”向“四基”的华丽转身

从“双基”向“四基”的华丽转身

从“双基”向“四基”的华丽转身打开文本图片集《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。

以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。

现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。

那么,如何在课堂教学中落实“四基”精神,提高儿童的数学素养呢?下面结合自己平时教学的体会谈谈自己的体会。

先讲一个教学小故事:苏教版小学数学六年级上册第一单元有这样一条练习题:本班61名学生,竟然有27名同学计算3月1日到9月1日有几个月时写出了这样的算式:9-3+1=7(个),正确率仅为55.73%,我有点诧异,六年级学生怎么会出现这样的错误。

晚上回家后,看到儿子在写数学作业(他今年三年级)。

我灵机一动,何不让他试一试。

于是,我问:“蛋蛋,从3月1号到9月1号经过了几个月啊?”(我故意省去2021年这个干扰条件)。

他稍微思考了一下说:“6个月”。

我问:“你是怎么想的啊?”他说:“三月到四月是1个月,三月到五月是2个月,三月到六月是3个月,所以三月到九月应该是6个月”。

我郁闷了,三年级学生会的题目,六年级学生怎么会做错。

为了进一步深入了解原因,我邀请了今年教三年级的张老师对他们班57名学生进行了问卷调查,结果只有4名学生做错,正确率为92.98%。

于是我分别从六年级做错的学生和三年级做对的学生中随机各选出10名学生进行了面谈交流,希以了解学生的真实想法。

下面是三年级几个有代表性的想法:师:这道题目你做的非常好,能说说你是怎么想的吗?生1:我是扳手指数出来的,从三月开始,三月不算,就数四月、五月、六月、七月、八月、九月,一共是6各月。

浅谈课程目标从“双基”增为“四基”的认识

浅谈课程目标从“双基”增为“四基”的认识

浅谈课程目标从“双基”增为“四基”的认识浅谈课程目标从“双基”增为“四基”的认识一、2011版《义务教育阶段数学课程标准》总体目标包括如下五个方面:1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。

3.教学活动是师生积极参与、交往互动、共同发展的过程。

有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。

应建立目标多元、方法多样的评价体系。

评价既要关注学生学习的结果,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。

5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。

数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。

要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。

二、结合数学教学浅谈对课程目标从“双基”增为“四基”的认识。

从《义务教育数学课程标准》内容的修订过程能够体会到课程改革实现着这样的变化:教育理念从“知识为本”转向于“育人为本”;课程目标从“双基”增为“四基”;内容方法从重结果发展到既重结果又重过程;评价体系也从“一维”提升到“三维”。

新课程标准里明确提出数学教学的“四基”(即基础知识、基本技能、基本思想和基本活动体验),在以往关注前“两基”显性目标的同时,全面强化基本思想和基本活动体验等隐性目标的落实,剑指思维能力的培养,数学素养的提高,明显是为适应时代所需,也是课改不断推进的结果。

双基与四基

双基与四基

双基与四基“四基”即基础知识、基本技能、基本思想、基本活动经验。

数学“基础知识”是指:数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法。

”基本技能”是指:能够按照一定的程序与步骤进行运算、作图或画图、进行简单的推理”。

以往对数学“双基”的理解多指数学的基本概念、基本公式、基本运算、基本性质、基本法则等。

而随着数学知识和技能理解的扩展,“双基”也会有新的发展,如估算、算法、数感、符号感、收集和处理数据等内容也应当列入“双基”的范畴,数学“双基”内容也要与时俱进。

数学的“基本思想”是指理解掌握数学中抽象的思想、推理的思想和模型的思想,这些思想不仅是学习数学不可缺少的,也是一个是否具有数学素养的标志。

“活动经验”是在学生学习数学过程中积累起来的,是深入理解和掌握数学,灵活地运用数学解决问题不可缺少的。

积累是一个过程,也是一个目标一,让学生去操作、去观察、去猜测、去交流,不仅是理解数学知识,而且是积累活动经验。

“四基”虽然是由4个部分构成的,但“四基”不应仅仅看作是4个事物简单的叠加或混合,而应是一个有机的整体,是互相联系、互相促进的。

我认为从“双基”到“四基”的发展,关键是新课标培养人才的目标是:培养全面发展的创新性人才。

《课标》在“四基”的表述前用了“获得适应社会生活和进一步发展所必需的”这样一个限制性定语,这一方面避免了在“四基”的名义下不适当地扩大教学内容,一方面也强调了学生获得数学“四基”的现实意义和长远意义.其现实意义是一一学生适应社会生活所必需:其长远意义是一一学生进一步发展所必需.如果数学课程能够使学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验,那么培养全面发展的创新性人才就具备了很好的条件.基础知识和基本技能是数学教学的主要载体,需要花费较多的课堂时间;数学思想则是数学教学的精髓,是统领课堂教学的制高点;数学活动是不可或缺的教学形式与过程.“四基”既然比原来增加了两条,教师在课堂教学的安排上就应该有意识地给数学思想的教学预留适当的时间;但是数学思想的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛;教师在讲解数学思想时,应该避免“两层皮”,避免生硬牵强,避免长篇大论.在课堂数学活动的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间,其他形式的数学活动也应安排适当的时间。

数学教学如何从“双基”到“四基”的转变

数学教学如何从“双基”到“四基”的转变

数学教学如何从“双基”到“四基”的转变新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。

即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。

这表明“以传授系统的数学知识”为基本目标的:学科体系为本的数学课程结构,将让位于“以促进学生整体发展”为基本目标的数学课程结构。

并进一步在基本理念中指出:“人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。

”过往的数学课程重视基础知识、基本技能,这亦是我国数学课程的一大优点,但以学科为中心的价值取向,使数学课程过于重视知识的系统、严谨,而忽视了学生观察、探索、猜想的意识与能力,忽视应用能力、创新意识与创新能力的培养,忽视数学作为文化的重要组成部分对人的素质的提高所发挥的巨大作用。

“双基”变“四基”,更是对教师教学水平、教学能力的一大考验。

重视知识的生成过程,重视学生的实践活动经验,重视学生在活动过程中的猜想、推理、验证,这是“四基”里面蕴涵的精神。

如何在数学课堂中更好地实现“四基”的达成,也成为我们当下数学老师需要积极思考的问题。

下面我就新人教版八年级下册《平行线的性质》这一课,来说说我在数学教学从“双基”到“四基”的转变过程中所作的尝试。

“学起于思,思源于疑”。

探究源于问题,教学过程需要问题来活化,教学对象需要问题来触动,因此,新知的生长点往往来自于一些能突出认知矛盾,激发探究欲望的问题——探究点。

通过探究点的引领,借助于情境的支持,引发认知冲突,在原有知识经验不能同化新知识下,迫使学生及时地调整,以适应新知的学习。

这节课我设计三个环节,其中第一个环节就是复习引入,打下铺垫。

我首先复习全等三角形的性质,然后复习平行线的性质。

初步的打算是不但让学生复习上节课的内容,同时过渡到下面环节。

从“双基”到“四基”从“两能”到“四能”解读

从“双基”到“四基”从“两能”到“四能”解读

一、概述
《修订稿》在总目标中规定,通过义务教育阶段的数 学学习,学生能: 1.获得适应社会生活和进一步发展所必需的数学的 基础知识、基本技能、基本思想、基本活动经验。 2.体会数学知识之间、数学与其他学科之间、数学 与生活之间的联系,运用数学的思维方式进行思考,增 强发现和提出问题的能力、分析和解决问题的能力。 3.了解数学的价值,提高学习数学的兴趣,增强学 好数学的信心,养成良好的学习习惯,具有初步的创新 意识和科学态度。 其中,前两条被简称为获得“四基”、提高“四 能”,第三条则是发展情感态度价值观。
二、2011版的数学课程标准与2001版的数学课程 标准的不同之处 5. 课程总目标 这次课程目标的改动非常大。从1953年提出,数学教 学强调的“双基”:“基础知识和基本技能”。到1956年 写出来之后,到现在有六十年了,一直是我国基础数学教 育的核心。我国数学基础教育在世界上的影响非常大,基 础知识和基本技能功不可没。学生掌握的基础知识和基本 技能非常扎实。但是我国的学生缺少创造性的东西。因此 这次修订加了两个,一个是基本思想,另一个是基本活动 经验。就成为数学中的“四基”。
二、2011版的数学课程标准与2001版的数学课程 标准的不同之处 4.课程内容 数学主要有三方面的知识内容:“数量关系”、“几何 关系”、“随机关系”,所以,这次课程标准还是叫“数与 代数、图形与几何”、 “统计与概率”。还有,“综合与 实践”,因为在大学里,也把建模作为一门课程。“综合与 实践”与“数与代数”放在一起,就有了“四个方面的内 容”。
二、同之处
8.实施建议 实施建议这次修也较大。2001版关于编写建议、教学建议、评价建 议是按学段写。修订专家组发现这样编不够合适,这次基本上是重新 编写的。按前面基本的思想、紧扣基本理念来编写。 比如: 第一,受到良好数学教育的问题,基本根据理念来写。 第二,重视学生在学习中的主体地位。 第三,注重学生对基础知识、基本拔能的掌握。 第四,如何帮助学生积累数学活动经验,感悟数学思想。 第五,注意如何在教学中,关注学生情感态度的培养、发展、变化。 第六,教学应该注意的问题,预设和生成,事先备课备得怎么样, 讲课时遇到情况如何处理。 第七,如何面对全体学生和个别学生的关系。如何处理课内与课外 的关系,如何使用教学技术与教学方法的关系。

苏教版小学数学新课标变化

苏教版小学数学新课标变化

苏教版小学数学新课标变化精品文档1.“双基”变“四基”。

“双基”:基础知识、基本技能;“四基”:基础知识、基本技能、基本思想、基本活动经验“四基”与数学素养:掌握数学基础知识训练数学基本技能领悟数学基本思想积累数学基本活动经验《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。

以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。

现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。

2.史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。

”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。

陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数佳构文档佳构文档学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。

他系统地为我们解读了这些数学思想方法的意义、在小学数学讲授中的作用和价值以及使用时的留意事项,陈教师的分析让我认识到在讲授中关注数学思想方法的重要性,在讲授中渗透数学思想方法的必要性。

“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的研究和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。

“双基”变“四基”,任重而道远。

常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。

新课改中由“双基”变为“四基”的必要性——结合小学数学实例

新课改中由“双基”变为“四基”的必要性——结合小学数学实例

新课改中由“双基”变为“四基”的必要性——结合小学数学实例课程名称小学数学课程标准与教材分析年级 2 0 1 1 级专业小学教育姓名赵美佳学号03完成时间2013年4月29日目录摘要 (2)关键词 (2)一、“双基”与“四基”的简述 (3)二、“双基”发展为“四基”的原因 (3)(一)时代背景 (3)(二)与课程目标不同步 (4)(三)以人为本的素质教育理念 (4)(四)中外教育对比研究结果 (4)(五)数学素养的要求 (4)三、结合自身学习及实例探讨“四基”的优越性 (4)(一)基本思想 (5)1.抽象的思想 (5)2.推理的思想 (7)3.模型的思想 (7)(二)基本活动经验 (8)四、小结 (8)五、参考文献 (9)新课改中由“双基”变为“四基”的必要性——结合小学数学实例摘要:《义务教育数学课程标准(2011年版》中的课程目标在“双基”的基础上增加了“基本思想和基本活动经验”,确定为“四基”,这其中有深刻的原因,尤其是“基本思想”、“基本活动经验”的提出有利于提高学生数学素养,培养学生创新能力,增加教学有效性,培养全面发展的综合型人才。

关键词:双基;四基;基本思想;基本活动经验;启示新课改中由“双基”变为“四基”的必要性——结合小学数学实例一、“双基”与“四基”的简述所谓双基,指的是基础教学中的基本技能和基础知识,讲究精讲多练,其主要的教学目标是使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力,起源于20世纪50年代,在我国数学教学中应用广泛。

“四基”是指在原有基础知识和基本技能的基础上又加入了基本思想和基本活动经验,这是数学素养的重要标志。

“四基”是由《国家数学课程标准》制定组组长、东北师范大学的史宁中教授于2006年在厦门演讲时提出的,引起了数学教育界的广泛关注,适应时代发展的需求。

二、“双基”发展为“四基”的原因由“双基”发展而来的“四基”,在《课标》中的表述为:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

数学基础教育中的“双基”如何发展为“四基”

数学基础教育中的“双基”如何发展为“四基”

数学基础教育中的“双基”如何发展为“四基”南开大学数学科学学院顾沛:数学基础教育中的“双基”提法,近来被发展为“四基”的提法,其中有深刻的背景和原因;“四基”的内涵和外延非常丰富;这一发展对于提高学生的数学素养、培养全面发展的人才,意义重大.:基础教育;数学;双基;四基;发展数学基础教育中的“双基”提法,在教育部2019年12月28日颁布的《义务教育数学课程标准(2019年版)》(以下简称为《课标》)中被发展为“四基”的提法,即从“数学的基础知识、基本技能”发展为“数学的基础知识、基本技能、基本思想、基本活动经验”.那么,“双基”提法为什么要发展为“四基”的提法?其背景是什么?“四基”提法的内涵和外延是什么?“四基”对于基础教育的人才培养意义何在?现谈谈对此的一些浅见.1“双基”为什么要发展为“四基”“双基”发展的“四基”,在《课标》中的表述为:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验.”早在教育部2019年6月7日颁发的《基础教育课程改革纲要(试行)》(以下简称为《纲要》)中,就规定了基础教育阶段所有课程应该努力达到的三维目标,即“知识与技能”、“过程与方法”、“态度情感与价值观”这样3个维度的目标.因此,义务教育数学课程的课程目标首先应该符合上述三维目标;同时,还要结合数学学科的特点把它们具体化.这种“具体化”,未必仅仅用“四基”就能够完整、全面地表达.但限于文章讨论的范围和篇幅,下面只围绕“四基”论述.新中国的数学基础教育,历来重视“双基”,即要求学生基础知识扎实,基本技能熟练,这是正确的,其历史贡献也是应该肯定的,所以《课标》中的“四基”继续保留和强调了“双基”.但是,对于“双基”的内容,即对于什么是学生应该掌握的“基础知识”和“基本技能”,在“知识爆炸”的时代,在现代信息技术突飞猛进的时代,在获取知识、技能的渠道大大增加的时代,应该与时俱进.过去提到数学的“双基”时,通常是指:数学的基本概念、基本公式、基本运算、基本性质、基本法则、基本程式、基本定理、基本作图、基本推理、基本语言、基本方法、基本操作、基本技巧,等等.但是许多年来,“双基”概念一直在发展中深化.至2019年,中华人民共和国教育部制定的《九年义务教育全日制初级中学数学教学大纲(试验修订版)》中的表述,数学“基础知识是指:数学中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法.基本技能是指:能够按照一定的程序与步骤进行运算、作图或画图、进行简单的推理”【2】.并且,“双基”在此已经是与思维能力、运算能力、空间观念等相互联系表述的.在“知识爆炸”的时代,对于过去数学“双基”的某些内容,如繁杂的计算、细枝末节的证明技巧等,需要有所删减;而对于估算、算法、数感、符号意识、收集和处理数据、概率初步、统计初步、数学建模初步等,又要有所增加.这就是数学“双基”内容的与时俱进.那么,为什么有了“双基”还不够,现在还要增加两条,成为“四基”?这可以有下面3个理由.第一,因为“双基”仅仅涉及上述三维目标中的一个目标——“知识与技能”.新增加的两条则还涉及三维目标的另外两个目标——“过程与方法”和“态度情感与价值观”.第二,因为某些教师有时片面地理解“双基”,往往在实施中“以本为本”,见物不见人,而教育必须以人为本,新增加的“数学思想”和“活动经验”就直接与人相关,也符合“素质教育”的理念.第三,因为仅有“双基”还难以培养创新性人才,“双基”只是培养创新性人才的一个基础,但创新性人才不能仅靠熟练掌握已有的知识和技能来培养,获得数学思想和活动经验等也十分重要,这就是新增加的两条.2关于数学的“基本思想”使学生获得数学的基本思想,确实应该作为数学课程的一个重要目标.数学课程固然应该教会学生许多必要的结论,但绝不仅仅以教会这些定理、公式和计算程序、解题方法为目标,更重要的是让学生在学习这些结论的过程中获得数学思想.数学思想是数学科学发生、发展的根本,也是数学课程教学的精髓.但是,《课标》在这里并没有展开阐述“数学的基本思想”有哪些内涵和外延,这就给研究则留下了讨论的空间.而且由于它过去并没有被充分地讨论过,所以可能仁者见仁,智者见智,不同的学者可能会有不完全一样的说法.这里也谈谈自己不成熟的观点,与同行交流.数学思想的内涵和外延都很丰富,通俗地说,例如有从数学角度看问题的出发点,把客观事物简化和量化的思想,周到、严密、系统地思考问题,以及建立数学模型的思想,合理地运筹帷幄,等等.一个人进入社会后,如果不是在与数学相关的领域工作,他学过的数学定理和公式可能大多都用不到,而在学习数学知识的过程中获得的这些数学思想却一定会使他终生受益:虽然有些人对此是有意识的,有些人是无意识的.《课标》在这里的措词为数学的“基本思想”,而不是数学的“基本思想方法”,这是明智的、恰当的,因为“思想方法”可能更多地让人联想到具体的“方法”,如换元法、代入法、配方法,层次就降低了,且冲淡了“思想”这个.并且,其实双基中已经含有数学的这些具体方法.数学的基本思想,主要可以有数学抽象的思想、数学推理的思想、数学模型的思想、数学审美的思想.人类通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科及其众多的分支;通过数学推理,进一步得到大量结论,数学科学得以丰富和发展;通过数学模型,把数学应用到客观世界中,产生了巨大的社会效益,又反过来促进了数学科学的发展;通过数学审美,看到数学“透过现象看本质”、“和谐统一众多事物”中美的成份,感受到数学“以简驭繁”、“天衣无缝”给我们带来的愉悦,并且从“美”的角度发现和创造新的数学.当然,由上述数学的“基本思想”演变、派生、发展出来的数学思想还有很多.例如由“数学抽象的思想”派生出来的有:分类的思想,集合的思想,“变中有不变”的思想,符号表示的思想,对应的思想,有限与无限的思想,等等.例如由“数学推理的思想”派生出来的有:归纳的思想,演绎的思想,公理化思想,数形结合的思想,转换化归的思想,联想类比的思想,普遍联系的思想,逐步逼近的思想,代换的思想,特殊与一般的思想,等等.例如由“数学建模的思想”派生出来的可以有:简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,统计的思想,等等.例如由“数学审美的思想”派生出来的可以有:简洁的思想,对称的思想,统一的思想,和谐的思想,以简驭繁的思想,“透过现象看本质”的思想,等等.举例说,“分类的思想”和“集合的思想”可以是这样由“数学抽象的思想”派生出来的:人们对客观世界进行观察时,常常从研究需要的某个角度分析联想,排除那些次要的、非本质的因素,保留那些主要的、本质的因素,一种有效的做法就是对事物按照其某种本质进行分类,分类的结果就产生了“集合”.把它们上升到思想的层面上,就形成了“分类的思想”和“集合的思想”.在用数学思想解决具体问题时,对某一类问题反复推敲,会逐渐形成某一类程序化的操作,就构成了“数学方法”.数学方法也是具有层次的.处于较高层次的,例如有:逻辑推理的方法,合情推理的方法,变量替换的方法,等价变形的方法,分情况讨论的方法,等等.低一层次的数学方法,还有很多.例如有:分析法,综合法,穷举法,反证法,抽样法,构造法,待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,坐标法,配方法,列表法,图像法,等等.数学方法不同于数学思想.“数学思想”往往是观念的、全面的、普遍的、深刻的、一般的、内在的、概括的;而“数学方法”往往是操作的、局部的、特殊的、表象的、具体的、程序的、技巧的.数学思想常常通过数学方法去体现;数学方法又常常反映了某种数学思想.数学思想是数学教学的核心和精髓,教师在讲授数学方法时应该努力反映和体现数学思想,让学生体会和领悟数学思想,提高学生的数学素养.3关于数学的“基本活动经验”使学生获得数学的基本活动经验,也确实应该作为数学课程的一个重要目标.数学教学,本质上是师生共同进行数学活动的教学,所以学生获得相关的活动经验当然应该是数学课程的一个目标.特别是,其中有些精神“只能意会,难以言传”,必须要学生自己在亲身经历的过程中获得经验;有些内容虽能言传,但是如果没有学生在数学活动中亲身体会,理解也难以深刻.但是,《课标》并没有展开阐述“数学的基本活动经验”有哪些内涵和外延,这也给研究者留下了讨论的空间.在这里也谈谈自己不成熟的观点,与同行交流.什么是数学活动经验?“活动经验”与“活动”密不可分,所说的“活动”,当然要有“动”,手动、口动和脑动.它们既包括学生在课堂上学习数学时的探究性学习活动,也包括与数学课程相联系的学生实践活动;既包括生活、生产中实际进行的数学活动,也包括数学课程教学中特意设计的活动.“活动”是一个过程,因此也体现出,不但学习结果是课程目标,而且学习过程也是课程目标.其次,“活动经验”还与“经验”密不可分,当然就与“人”密不可分.学生本人要把在活动中的经历、体会总结上升为“经验”.这既可以是活动当时的经验,也可以是延时反思的经验;既可以是学生自己摸索出的经验,也可以是受别人启发得出的经验;既可以是从一次活动中得到的经验,也可以是从多次活动中互相比较得到的经验.特别关键的是,这些“经验”必须转化和建构为属于学生本人的东西,才可以认为学生获得了“活动经验”.应该注意的是,所说的“活动”都必须有明确的数学内涵和数学目的,体现数学的本质,才能称得上是“数学活动”,它们是数学教学的有机组成部分.教师的课堂讲授、学生的课堂学习,是最主要的“数学活动”,这种讲授和学习,应该是渐进式的、启发式的、探究式的、互动式的.此外,还有其他形式的“数学活动”,例如学生的自主学习,调查研究,独立思考,合作交流,小组讨论,探讨分析、参观实践,以及作业练习和操作计算工具,等等.还应该强调的是,学生在进行“数学活动”的过程中,除了能够获得逻辑推理的经验,还能够获得合情推理的经验.例如,根据条件“预测结果”的经验和根据结果“探究成因”的经验.这两种经验对于培养创新人才也是非常重要的.数学活动的教育意义在于,学生主体通过亲身经历数学活动过程,能够获得具有个性特征的感性认识、情感体验、以及数学意识、数学能力和数学素养.让学生获得“数学活动经验”,还能够培养学生在活动中从数学的角度思考问题,直观地、合情地获得一些结果,这些是数学创造的根本,是得到新结果的主要途径.数学活动经验并不仅仅是实践的经验,也不仅仅是解题的经验,更加重要的是思维的经验,是在数学活动中思考的经验.因为,创新依赖的是思考,是数学活动中创造性的思维.而思维方法是依靠长期活动经验积累获得的,思维品质是依靠有效的、多方面的数学活动改善的,并不是仅仅依靠接受教师的传授获得的.爱因斯坦说:“独立思考是创新的基础.”获得数学活动经验,最重要的是积累“发现问题、提出问题”的经验,以及“分析问题、解决问题”的经验,总之,是“从头”想问题、思考问题、做问题全过程的经验.学生形成智慧,不可能仅依靠掌握丰富的知识,一定还需要经历实践及在实践中取得经验.数学思想也不仅在探索推演中形成,还需要在数学活动经验积累的基础上形成.数学的基本活动经验可以按不同的标准分成若干类型.比如,有的学者把它分为如下4种:直接的活动经验,间接的活动经验,设计的活动经验和思考的活动经验.直接的活动经验是与学生日常生活直接联系的数学活动中所获得的经验,如购买物品、校园设计等.间接的活动经验是学生在教师创设的情景、构建的模型中所获得的数学经验,如鸡兔同笼、顺水行舟等.设计的活动经验是学生从教师特意设计的数学活动中所获得的经验,如随机摸球、地面拼图等.思考的活动经验是通过分析、归纳等思考获得的数学经验,如预测结果、探究成因等.学生只有积极参与数学课程的教学过程,经过独立思考,经过探索实践,经过合作交流,才有可能积累数学活动经验.《课标》中还专门设计了“综合与实践”的课程内容,强调以问题为载体,让学生在综合运用知识、技能解决问题的实践中获得数学活动经验.在学生获得数学的基本活动经验的过稃中,就必然有情感态度与价值观的提升.这样,“四基”就全面体现了《纲要》中“三维目标”的要求.4“四基”是一个有机的整体“四基”虽然是由4个部分构成的,但“四基”不应仅仅看作是4个事物简单的叠加或混合,而应是一个有机的整体,是互相联系、互相促进的.基础知识和基本技能是数学教学的主要载体,需要花费较多的课堂时间;数学思想则是数学教学的精髓,是统领课堂教学的制高点;数学活动是不可或缺的教学形式与过程.“四基”既然比原来增加了两条,教师在课堂教学的安排上就应该有意识地给数学思想的教学预留适当的时间;但是数学思想的教学不能空洞地进行,一定要以数学知识为载体进行,并且应该注意将数学知识与数学思想融为一体,因势利导,水到渠成,画龙点睛;教师在讲解数学思想时,应该避免“两层皮”,避免生硬牵强,避免长篇大论.在课堂数学活动的时间安排上,大量的应该是教师启发式传授和学生在教师指导下独立思考、自主探究的时间;其他形式的数学活动也应安排适当的时间.此外,“四基”既然比原来增加了两条,那么,在教学评价上也应该给数学思想和数学活动以适当的位置和空间.《课标》在“四基”的表述前用了“获得适应社会生活和进一步发展所必需的”这样一个限制性定语,这一方面避免了在“四基”的名义下不适当地扩大教学内容,一方面也强调了学生获得数学“四基”的现实意义和长远意义.其现实意义是一一学生适应社会生活所必需:其长远意义是一一学生进一步发展所必需.如果数学课程能够使学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验,那么培养全面发展的创新性人才就具备了很好的条件.【第 11 页。

谈谈小学数学教学中的“四基

谈谈小学数学教学中的“四基

谈谈小学数学教学中的“四基
在这里我对“四基”的理解就是从原来的“双基”中基础知识、基本技能,分为到四基的一个变化。

变化到现在的基础知识、基本技能,基本思想和基本活动经验。

我认为这样的变化,意义还是很深远,关于这个为什么要添加后面的两基,这个问题还是特别重要。

首先双基发展到四基我自己觉得,可能有三个理由。

是双基仅仅涉及到我们讲三维目标的第一维目标,另外两维目标都没有涉及到。

到四基的一个变化其次理由是因为我们的教师片面的理解双基,就往往有那种实施当中以本为本,见物不见人,而教学当中,必须是以人为本,所以新增加这个教学思想和活动经验,就直接与人相关,最后也符合素质教育。

最后原因,双基是培养创新型人才的一个基础,但是创新型人才不能仅仅靠熟练掌握已有的知识和技能来培养。

解决老师提出的问题,解决书本上提出的问题,解决考试里提出的问题是重要的,但是更重要是能够自己有独立思考,自己能够发现问题,提出问题和解决问题。

从双基到四基的里面,还有一基,就是基本活动经验,那么基本活动经验,对于我们来讲,跟双基相比,还是陌生很多,把握起来也更困难。

比如,我在教学的对找圆的圆心时,让他们自己折一折、画一画,找一找,然后总结怎么样去找圆的圆心时,并提出问题。

大部分的学生很自觉地做,但有一部分的学生不愿意动手操作。

让数学教学从“双基”走向“四基”——以“找规律”一课教学为例

让数学教学从“双基”走向“四基”——以“找规律”一课教学为例

让数学教学从“双基”走向“四基”——以“找规律”一课教学为例随着课程改革的深入实施,对培养创新人才提出了新的要求,所以数学教学的“四基”目标应时代发展的要求呼之而出。

在课堂中落实“四基”的教学目标,更能突出对学生习惯、修养、思想等方面的培养。

那么,小学数学教学应该如何从“双基”向“四基”发展呢?下面,笔者结合自己多年的教学经验,谈一些粗浅的想法。

一、体现“双基”的课堂教学苏教版小学数学四年级上册“找规律”一课,笔者通过听课调查发现,大部分教师教学这个内容的一般程序如下。

1.引导学生初步感知什么是一一间隔排列。

师(出示主题图,如下):仔细观察,每一组中两种物体是怎样排列的?兔子和蘑菇是怎样排列的?生:每两只兔子中间有一个蘑菇。

师(小结):像这样每两个同样的物体间隔排列别的物体,叫做一一间隔排列。

2.猜测一一间隔排列两种物体的个数。

师:数一数这些物体的个数,再填写下表,比一比每组中两种物体的个数有什么关系。

师出示“想想做做”第4题:沿圆形池塘的一周共栽了75棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?(生思考解答)3.师生谈话,总结规律。

师:两种物体一一间隔排列,如果两端物体相同,那么排在两端的物体比排在中间的物体多1个;如果两端物体不同(所排列物体是首尾相连的),两种物体的个数相同。

……本课教材涉及的内容和概念有排列、间隔排列、排列的物体、两端物体、中间物体等,还把物体的排列分成了首尾不相连和首尾相连两种情况,由此得出两种物体的数量不同的关系。

这样的编排设计,存在以下三个不足:一是两端物体和中间物体两个概念不明确,使学生对后续内容的学习产生负迁移,如“许多物体排列在一起,中间物体是指哪一个”等。

二是对数学学习本质的误导。

数学学习的本质应该是利用数学本身的抽象性和思想性,使学生变得聪明和有智慧,从而提高自身的素质。

本课时的教学目标不重在找出物体个数之间的关系,而在于引导学生发现物体一一对应的排列规律,再利用对应思想去解决物体个数等相关问题,切勿本末倒置。

如何在数学课堂教学中贯彻“四基”教学目标

如何在数学课堂教学中贯彻“四基”教学目标

如何在数学课堂教学中贯彻“四基”教学目标小学数学从“双基”教学发展为“四基”教学,让小学数学教学目标呈现多元化、立体化发展,教学内容贴近儿童生活,更有趣味性和吸引力,教学手段和方法更加灵活有效,学生学习数学,更易于理解和运用,对数学知识记忆更深刻,在学习过程中更易于萌发创造性,形成创新能力。

在这里笔者结合教学实践探讨一下,在课堂教学中如何贯彻“四基”教学目标。

一、基础知识是“四基”教学目标的核心作为数学教师,应该认识到所有的数学教学活动都围绕获取数学基础知识进行。

它包括基本的“概念、性质、运算与运算法则、数量关系、定律和公式”等。

基础知识往往呈现的是一种结果,掌握数学基础知识必须建立在理解的基础上,让学生经历数学的观察、猜测、推理、验证过程,也就是数学知识的再发现过程,做到对基础知识的“理解掌握”。

这就要求老师在数学课堂教学中做到以下几点。

(一)老师要把握教材,熟悉教学内容俗话说“你有一桶水,才能给别人一杯水”。

老师传授知识给学生必须熟悉所教内容,而要熟悉教学内容,课前一定要深入备课。

可借助教学参考、教学设计、多媒体等深入了解、理解教学内容,把握教学内容的教学目标、教学重难点,所使用的教学手段、方法,贯彻的新课改理念、精神,这样才能有准备的组织好一节数学教学课。

(二)整合教学资源,采用灵活、高效的教学手段、方法在传授基础知识的过程中,老师要把控好整个学习进程,充分利用好教学资源,根据实际情况采用不同的教学手段和教学方法。

如:数学教学常用的情景教学法,老师要利用电子白板或教学挂图创设情景,让学生在贴近自身生活经验的情景中发现数学问题,提出问题,分析问题,解决问题。

从而发挥学生学习的主体性地位,变“要我学”到“我要学”,让学生主动去理解和掌握基础知识。

(三)学生对基础知识的掌握,建立在充分理解的基础上,不能死记硬背基础知识往往以一种结果的状态呈现。

一名优秀的数学老师教学关注结果,更重在过程。

比如:平行四边形的面积=底x高,假如老师要求学生死记硬背,不用1分钟,绝大多数学生能背得滚瓜烂熟。

小学数学课堂教学中如何落实“四基”

小学数学课堂教学中如何落实“四基”

小学数学课堂教学中如何落实“四基”2011年版新课标在课程总目标的阐述中将“双基”(基础知识、基本技能)变成“四基”(基础知识、基本技能、基本思想、基本活动经验),两能变成四能,使小学数学教学目标更加全面和立体。

一、如何理解“双基”变成“四基”1、“双基”变成“四基”的原因双基只涉及三维目标的第一目标:知识与技能,另外两维目标:过程与方法、情感、态度与价值观都没有涉及;有些教师片面地理解双基,只追求知识技能单一目标,教学中不是以人为本,是以本为本。

新增加的两基是以人为本,是符合素质教育的;双基是培养创新型人才、实践型人才的一个基础,但是仅仅靠熟练掌握已有的知识和技能来培养创新型、实践型人才是不行的。

更重要的是让学生在学习知识形成技能的过程中,去学习感悟数学思想,积累数学活动经验,学会数学思考,自己能够发现问题、提出问题、分析问题和解决问题。

2、“双基”内涵的变化随着社会的进步,科学技术的发展,课程改革的实施,新课标“双基”的内涵也发生了一些变化:课程内容中的基础知识不仅包括基本概念、性质、公式等,还包括这些基础知识形成的过程和蕴含的思想方法。

课程内容发生变化,直接删去了一些过难的内容,降低了对部分知识点的学习要求,这从一年级新教材已经开始实施了。

课程内容将十个核心概念作为教学目标,强调应该注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识等。

(每一个核心概念的内涵课程标准在课程内容里都有解释)基本技能不仅要使学生形成运算、推理、图形处理技能,还增添了数据处理技能(从复杂的数据信息背后探寻数据规律的技能)、数学交流技能(数学表达、谈论数学的技能)、运用信息技术技能等。

(运用计算器、计算机进行计算或数据处理;运用计算机软件作图)“双基”在方法上更强调学生掌握数学知识不能依赖死记硬背,必须以理解为基础,在知识的应用中不断巩固和深化。

3、基本思想和基本活动经验“双基”是基础,基本思想和基本活动经验是在“双基”的基础上形成的,是“双基”的发展。

新修订的数学课程标准把数学教学中的双基发展为四

新修订的数学课程标准把数学教学中的双基发展为四

新修订的数学课程标准,把数学教学中的“双基”发展为“四基”。

“基本数学活动经验”作为“四基”之一,已经提到了一个前所未有的高度。

请结合学习说一说什么是数学活动?数学活动有哪些基本类型?分别可以怎样实施?什么是数学活动?数学活动首先是活动,而且是为了数学的活动,学生通过数学活动积累数学活动经验。

1 .活动。

活动是由共同目的联合起来并完成一定社会职能的动作的总和。

活动由目的、动机和动作构成,具有完整的结构系统。

苏联心理学家从 20 年代起就对活动进行了一系列研究。

其中Α.Н. 列昂节夫的活动理论对苏联心理学的发展影响很大,成为现代苏联心理学的重要理论基石。

2 .数学活动。

数学活动是数学教育在活动中进行,即“数学 + 活动”。

活动是形式,是实现目标的手段,让学生通过活动学习数学,让活动贯穿始终。

活动中既包括操作性活动(动手),也包括观念性活动(动脑),做数学活动时要注意调动学生动脑、动手、动眼、动口,多种感觉器官密切配合,协调活动,学生通过画一画、拼一拼、摆一摆、量一量、剪一剪、数一数等形式,在“做中学”、“学中做”。

教、学、做合一,让学生在活动中感受到愉悦、轻松、快活。

苏霍姆林斯基说了这样一句话,“当知识与积极的活动紧密联系在一起的时候,学习才能成为孩子精神生活的一部分”。

学生在活动中,体脑结合,手脑并用,减轻了学习负担,他们的兴趣、爱好和个性特长得以充分发挥,发现问题、解决问题的能力得以进一步发展。

3 .数学活动经验。

数学经验大致可以分为 : ①日常生活中的数学经验;②社会科学文化情境中的数学经验;③从事纯粹数学活动累积的数学经验数学活动有哪些基本类型?1 .说话。

通过让学生说,调动学生的经验。

用熟悉的来认识新面孔,让学生产生原来就是“他”之感。

2 .对话。

在竞争的状态下,学生的参与度更高。

3 .表演。

通过直观表演,学生进入角色设身处地思考问题,可使得数学问题更容易理解。

4 .操作。

给学生提供充分的数学活动的机会,学生经历了做的过程,思考就有了载体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论小学数学从“双基”发展为“四基”
摘要:“双基”是中国土生土长的具有中国特色的教育,有着悠久的历史。

但是从21世纪开始,“双基”教学在发展过程中被异化,在素质教育的呼声下,“四基”教育应运而生,日渐丰富并发展起来。

“四基”的出现是对“双基”教育传统的继承、发展与创新,它的提出为小学数学教师的教学指明了方向。

关键词:“双基”“四基”小学数学教学基本思想基本活动经验
一、“双基”产生的背景
一般认为“双基”是指数学学科的基础知识和基本技能。

“双基”教学植根于中国教育的优良传统,有着悠久的历史。

远在2200年前,春秋战国时期的《论语》中说过,“学而时习之,不亦乐乎”,“温故而知新”。

这些就已经渗透着“双基”的复习策略了,即“熟能生巧”。

“熟能生巧”已经成了中国的教育格言,成为中华民族的一部分,但是此时的“双基”思想还没有形成理论框架。

直到新中国的成立,“双基”的理论框架才逐渐清晰起来。

一般认为“双基”教学萌芽于50年代,形成于60年代,发展于80年代,成熟于90年代。

[1]例如,1952年教育部颁发的《小学算术教学大纲(草案)》和《小学珠算教学大纲(草案)》任务之一是保证儿童自觉地及巩固地掌握算术知识和直观几何知识,并使他们获得实际运用这些知识的技能。

这是在教学大纲中第一次提出关于小学
数学“双基”的教学任务。

到了六十年代,原来的草案在实施中存在很大的问题,于是教育部在1963年颁布了《全日制小学算术教学大纲(草案)》,大纲规定数学的教学目的是加强基础知识和指明三大能力。

一般认为这是数学“双基”的开端。

在经历了十年动乱之后,国家于1986年颁布了《全日制小学数学教学大纲》,大纲进一步明确了基础知识和发展智力、培养能力的重要性,可见“双基”的内涵在不断拓展。

再经过历时六年的修订,1992年国家颁布了《九年义务教育全日制小学数学教学大纲(试用)》,大纲在原来的知识和能力的基础上对思想品德的教育进行了进一步的明确。

2001年教育部颁发的《基础教育课程改革纲要》明确指出:“使获得基础知识和基本技能的同时成为学会学习和形成正确价值观的过程。

”它肯定了“双基”的地位与作用。

二、“双基”在发展过程出现的异化
(一)“双基”自身存在的局限。

“双基”具体指的是数学基本知识和数学基本技能。

数学基本知识一般是指数学课程中所涉及的基本概念、基本性质、基本法则、基本公式等。

在“知识爆炸”的时代,原有的一些知识已经不能适应发展的需要,如随着信息技术的发展,计算机被引入教学中,原有的珠算要求有所降低,随着大数的出现,估算、算法最优化等开始也受到专家学者的重视。

因此原有的一些知识就需要有所删减。

数学基本技能一般指数学课程中所涉及的基本运算、测量、绘图等技能,在“知识爆炸”的时代,如繁杂的计算或大数的运算,现在
引入计算器使计算更加容易。

“双基”教学会遇到如何联系实际的问题,因此“双基”教学首先要适应时代的发展,更新知识和技能。

(二)“双基”教学被曲解。

在新一轮的课改中,有人认为:数学“双基”教学是传统数学教育的产物,它只注重接受已有的知识和技能,机械地进行训练,不利于学生提出问题、发现问题,也不利于学生的创新能力的发展。

但是“知识技能”既是学生发展的基础性目标,又是落实“数学思考”“问题解决”“情感态度”目标的载体,可见“双基”在现在来看,仍具有重要的地位。

但是仍然有专家认为我国教育是“赢在基础,输在创新”。

对此,笔者想说:“难道输在创新的教育一定是基础过好引起的?”这否定了“双基”教学的地位。

张奠宙说过:《义务教育数学课程标准》提出的“四基”是对“双基+能力”教育传统的继承、发扬、改进和创新。

三、“四基”的内涵与拓展
随着时代的发展,“四基”教学开始受到专家、学者的重视,“四基”的首次出现并不是在此次修订稿的课标中,在这之前,专家一直在探寻。

早在1992年的时候,由教育部颁发的数学教学大纲中开始出现了“四基”的雏形,此时的“四基”是指基础知识、基本技能、基本能力和基本态度。

随着时代的发展,人们开始认识到数学思想方法的重要性,将其作为数学知识的一部分,2001年颁布的《全日制义务教育课程标准(实验稿)》提出将数学知识和数学思想方法加以并列,开始关注数学活动经验。

在对课程标准修订的过
程中,2004年,人民教育出版社的章建跃在为南宁数学高级研讨班而做的文章中指出:“数学双基应该发展为‘四基’。

”2006年12月,东北师范大学的史宁中教授在厦门演讲时提出:要把数学中的“双基”发展为“四基”,即除了“基础知识”和“基本技能”外,增加“基本思想”“基本活动经验”,2007年形成的《标准(修订稿)》(未正式颁布),已把“四基”纳入课程目标。

[2]在2011年《义务教育数学课程标准》中首次明确把“基本思想”、“基本活动经验”、“基础知识”、“基本技能”并列为“四基”。

[3]
四、“四基”教学对我国小学数学教学的启示
(一)让学生充分地参与到知识和技能的产生、发展和应用的全过程。

抽象性是数学最基本的特征,决定着教师不能把现成的结论直接教给学生,而是要教师一步步引导学生寻求知识的产生和发展及应用。

例如,在此次新课标课程目标中多次出现了“经历”“体会”“感受”“体验”“探索”等表达过程目标的词。

同时,学生是学习的主体,这种主体地位的重要标志就是他们积极地参与各种活动,“四基”中的一个重要组成部分就是获得基本的活动经验,这种经验是别人无法替代的,必须自己去经历和感受。

(二)在数学教学中让学生体会和领悟数学思想。

数学思想的内涵比较丰富,有专家说:“数学思想是将具体的数学知识都忘掉以后剩下的东西。

”[4]数学思想是数学课程教学的精髓,随着知识爆炸时代的到来,知识的更新速度已经远远超过了人
的学习速度,单纯地靠知识的学习不能应付未来的社会,必须学会更为本质的东西,数学思想则能克服这一缺陷。

因为数学思想是抽象的,概念的东西,教师无法直接传授给学生,必须从具体的内容中抽象与概括出来,比如说在教学1—5的认识的时候,因为1—5是抽象的数字符号,所以在教学时,我们可以出示5把尺子、5个小朋友、5支铅笔等,从中抽象出数字5,这就是归纳的思想,学生在学习6—9时,就能从具体的实物中抽象出数字6—9来。

(三)通过综合与实践课来积累数学活动经验。

所谓基本数学经验是指在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识[5]。

因此综合实践课则是积累数学经验的重要途径,在第一学段的统计与概率这部分内容中,就有让学生回去记录自己家一个星期的塑料袋用量,这个一方面可以感知一个家庭的塑料袋的用量,同时,也可以渗透着环保教育。

在第二学段的角的学习中,书上有个主题活动叫做“怎样滚得远”,书上分别展示了30度的角、45度的角、60度的角等,让学生自己通过做实验来探索物体滚的远与角的大小存在一定的关系。

这些活动一方面可以为学生学习这块知识提供感性材料,另一方面可以培养学生的建模思想。

由“双基”发展为“四基”体现了对数学价值的全面认识,在一定程度上弥补了我国学生在创新和实践方面的不足,它被看做是2011课标修订的标志之一。

参考文献:
[1]张奠宙.中国数学双基教学[m].上海:华东师范大学出版社,2006.
[2]刘久成.小学数学课程60年[m].南京:江苏大学出版社,2011.
[3]中华人民共和国教育部.义务教育阶段数学课程标准(2011年版)[m].北京:北京师范大学出版社,2012.
[4]顾沛.数学教育中的“双基”如何发展为“四基”[j].数学教育通报,2012(2).
[5]张奠宙,竺仕芬,林永伟.“数学基本活动经验”的界定与分类[j].数学通报,2008(5).。

相关文档
最新文档