北师大版七年级数学《平方差公式》导学案
北师大版数学七年级下册《平方差公式的认识》教案
北师大版数学七年级下册《平方差公式的认识》教案一. 教材分析《平方差公式》是北师大版数学七年级下册的教学内容,本节课是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式是代数中的一个重要公式,它不仅有助于解决一些实际问题,而且是学习更高阶数学的基础。
二. 学情分析学生在六、七年级时已经学习了有理数的乘法和完全平方公式,对于代数式的运算和公式的应用已经有了一定的基础。
但是,对于平方差公式的推导和理解可能还存在一定的困难,需要通过实例和练习来加深理解。
三. 教学目标1.知识与技能:使学生理解和掌握平方差公式的推导过程和应用。
2.过程与方法:培养学生的逻辑思维能力和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:平方差公式的推导和应用。
2.难点:平方差公式的灵活运用和推导过程的理解。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,提高学生的参与度和实践能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“一块长方形的地毯,长是10米,宽是8米,如果将地毯对折,那么对折后的地毯面积是多少?”让学生思考并讨论,引发学生对平方差公式的兴趣。
2.呈现(15分钟)通过PPT展示平方差公式的推导过程,引导学生理解和记忆平方差公式的推导过程。
3.操练(20分钟)让学生通过PPT上的练习题进行自主学习和练习,教师进行个别辅导,帮助学生掌握平方差公式的应用。
4.巩固(15分钟)通过小组合作学习,让学生解决一些实际问题,巩固平方差公式的应用。
例如,让学生计算一个长方形对折后的面积,或者计算一个正方形旋转后的面积等。
5.拓展(10分钟)引导学生思考:平方差公式还可以用于解决哪些问题?让学生自由发挥,提出一些应用实例,拓展学生的思维。
北师大版七年级下册数学平方差公式导学案课件PPT板书设计教学实录
北师大版七年级下册数学《平方差公式》导学案课件PPT板书设计教学实录北师大版七年级下册数学《平方差公式》导学案课件PPT板书设计教学实录第十一课时●课题§1.7.1平方差公式(一)●教学目标(一)教学知识点1.经历探讨平方差公式的进程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探讨平方差公式的进程中,进展学生的符号感和推理能力.2.培育学生观看、归纳、归纳等能力.(三)情感与价值观要求在计算的进程中发觉规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特点判定题目可否利用公式.●教学方式探讨与讲练相结合.使学生在计算的进程中发觉规律,并运用自己的语言进行表达,用符号证明那个规律,并探讨出平方差公式的结构特点,在教师的讲解和学生的练习中学会应用.1 D)●教学进程Ⅰ.创设情景,引入新课[师]你能用简便方式计算以下各题吗?(1)XX×1999;(2)992-1[生]能够.在(1)中XX×1999=(XX+1)(XX-1)=XX2-XX+XX-1×1=XX2-12=4000000-1=3999999,在(2)中992-1=(100-1)2-1=(100-1)(100-1)-1=1002-100-100+1-1=10000-200=9800.(XX+1)(XX-1)=XX2-12.那么其他知足那个特点的运算是不是也有类似的结果呢?咱们不妨看下面的做一做.Ⅱ.使学生在计算的进程中,通过观看、归纳发觉规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);观看以上算式,你发觉什么规律?运算出结果,你又发觉什么规律?再举两例验证你的发觉?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每一个因式都是两项.[生]除上面两个同窗说的之外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是“x”与“2”这两个数的和与差的积;算式(2)是“1”与“3a”这两个数的和与差的积;算式(3)是“x”与“5y”的和与差的积;算式(4)是“y”与“3z”这两个数的和与差的积.[师]咱们观看出了算式的结构特点.像如此的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你必然会探访到答案.[生]解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2(如有必要的话能够让学生利用乘法分派律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分派律的重要作用和转化的思想) [生]从适才这位同窗的运算,我发觉:即两个数的和与差的积等于这两个数的平方差.这和咱们前面的一个简便运算得出一样的结果.即[师]你还能举两个例子验证你的发觉吗?[生]能够.例如:(1)101×99=(100+1)(100-1)=1002-100+100-12=1002-12=10000-1=9999;(2)(-x+y)(-x-y)=(-x)(-x)+xy-xy-y2=(-x)2-y2=x2-y2.即上面两个例子,一样能够验证:两个数的和与差的积,等于它们的平方差.[师]什么缘故会有如此的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,因此相加后为零.只剩下那个数的平方差.[师]专门好!你能用一样形式表示上述规律,并对规律进行证明吗?[生]能够.上述规律用符号表示为:(a+b)(a-b)=a2-b2 ①其中a,b能够表示任意的数,也能够表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么能够对规律进行证明,即(a+b)(a-b)=a2-ab+ab-b2=a2-b2[师]同窗们确实不简单用符号表示和证明咱们发觉的规律简捷明快.你能给咱们发觉的规律(a+b)(a-b)=a2-b2起一个名字吗?能形象直观地反映出此规律的.[生]咱们能够把(a+b)(a-b)=a2-b2叫做平方差公式.[师]大伙儿同意吗?[生]同意.[师]好了!这节课咱们要紧确实是学习讨论那个公式的.你能用语言描述那个公式吗?[生]能够.那个公式表示两数和与差的积,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单,但要注意必需符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用,感受平方差公式给多项式乘法运算带来的方便,进一步熟悉平方差公式.[例1](1)以下多项式乘法中,能用平方差公式计算的是( )A.(x+1)(1+x)B.( a+b)(b- a)C.(-a+b)(a-b)D.(x2-y)(x+y2)E.(-a-b)(a-b)F.(c2-d2)(d2+c2)(2)利用平方差公式计算:(5+6x)(5-6x);(x-2y)(x+2y);(-m+n)(-m-n).[生](1)中只有B、E、F能用平方差公式.因为B.( a+b)(b- a)利用加法互换律可得( a+b)(b - a)=(b+ a)(b- a),表示b与 a这两个数的和与差的积,符合平方差公式的特点;E.(-a-b)(a-b),一样可利用加法互换律得(-a-b)(a-b)=(-b -a)(-b+a),表示-b与a这两个数和与差的积,也符合平方差公式的特点;F.(c2-d2)(d2+c2)利用加法和乘法互换律得(c2-d2)(d2+c2)=(c2+d2)(c2-d2),表示c2与d2这两个数和与差的积,一样符合平方差公式的特点.[师]什么缘故A、C、D不能用平方差公式呢?[生]A、C、D表示的不是两个数的和与差的积的形式.[师]下面咱们就来做第(2)题,第一分析它们别离是哪两个数和与差的积的形式.[生](5+6x)(5-6x)是5与6x这两个数的和与差的形式;(x-2y)(x+2y)是x与2y这两个数的和与差的形式;(-m+n)(-m-n)是-m与n这两个数的和与差的形式.[师]专门好!下面咱们就来用平方差公式计算上面各式.[生](5+6x)(5-6x)=52-(6x)2=25-36x2;(x-2y)(x+2y)=x2-(2y)2=x2-4y2;(-m+n)(-m-n)=(-m)2-n2=m2-n2.[师]这位同窗的思路超级清楚.下面咱们再来看一个例题.出示投影片(记作§1.7.1 C)[例2]利用平方差公式计算:(1)(- x-y)(- x+y);(2)(ab+8)(ab-8);(3)(m+n)(m-n)+3n2.[师]同窗们可先交流、讨论,然后各小组派一代表到黑板上演示.然后再派一名同窗讲评.[生]解:(1)(- x-y)(- x+y)——(- x)与y的和与差的积=(- x)2-y2——利用平方差公式得(- x)与y的平方差= x2-y2——运算至最后结果(2)(ab+8)(ab-8)——ab与8的和与差的积=(ab)2-82——利用平方差公式得ab与8的平方差=a2b2-64——运算至最后结果(3)(m+n)(m-n)+3n2——据运算顺序先计算m 与n的和与差的积=(m2-n2)+3n2——利用平方差公式=m2-n2+3n2——去括号=m2+2n2——归并同类项至最简结果[生]适才这位同窗的运算有条有理,有根有据,我感觉利用平方差公式计算必需注意以下几点:(1)公式中的字母a、b能够表示数,也能够是表示数的单项式、多项式即整式.(2)要符合公式的结构特点才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的互换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必需最简.[师]同窗们总结的专门好!下面咱们再来练习一组题.1.计算:(1)(a+2)(a-2);(2)(3a+2b)(3a-2b);(3)(-x+1)(-x-1);(4)(-4k+3)(-4k-3).2.把以下图左框里的整式别离乘(a+b),所得的积写在右框相应的位置上.解:1.(1)(a+2)(a-2)=a2-22=a2-4;(2)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2;(3)(-x+1)(-x-1)=(-x)2-12=x2-1;(4)(-4k+3)(-4k-3)=(-4k)2-32=16k2-9.2.(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2a b+b2;(a-b)(a+b)=a2-b2;(-a+b)(a+b)=(b+a)(b-a)=b2-a2;(-a-b)(a+b)=-a(a+b)-b(a+b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情形,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同窗们有何体会和收成呢?[生]今天咱们学习了多项式乘法运算中的一个重要公式——平方差公式即(a+b)(a-b)=a2-b2.[生]应用那个公式要明白公式的特点:(1)左侧为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b能够是数,也能够是代表数的整式.[生]有些式子表面上不能用公式,但通过适当变形实质上能用公式.[师]同窗们总结的专门好!还记得刚上课的一个问题吗?计算992-1,此刻想一想,能使它运算更简便吗?[生]能够.992-1能够看成99与1的平方差,从右往左用平方差公式可得:992-1=992-12=(99+1)(99-1)=100×98=9800.[师]咱们发觉平方差公式的应用是很灵活的,只要你准确地把握它的结构特点,必然能使你的运算简捷明了.Ⅴ.课后作业讲义P30,习题1.11,第1题.●板书设计§1.7.1平方差公式(一)做一做解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2.归纳、猜想规律(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.用符号运算证明(a+b)(a-b)=a2-ab+ab-b2=a2-b2.应用、升华例 1.(抓住平方差公式的特点,准确地利用平方差公式计算)例2.(对公式中a、b含义的明白得,既能够是具体的数也能够是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方式计算:(1)79×81(2)99×101×10001解:(1)原式=(80-1)(80+1)=802-1=6399;(2)原式=(100-1)(100+1)(10000+1)=(1002-12)(10000+1)=(10000-1)(10000+1)=100002-12=100000000-1=99999999.[例2]计算:(1)(b-2)(b2+4)(b+2)(2)[2a2-(a+b)(a-b)][(c-a)(a+c)+(-c+b)(c+b)]分析:(1)题可利用乘法互换律和结合律,先求(b-2)与(b+2)的积,所得结果再与(b2+4)相乘,可两次运用平方差公式;(2)题依照混合运算的运算顺序,先算括号里的其中(a+b)(a-b),(c-a)(a+c),(-c+b)(c+b)都可直接运用平方差公式计算.解:(1)(b-2)(b2+4)(b+2)=[(b-2)(b+2)](b2+4)=(b2-4)(b2+4)=(b2)2-42=b4-16(2)[2a2-(a+b)(a-b)][(c-a)(a+c)+(-c+b)(c+b)]=[2a2-(a2-b2)][(c+a)(c-a)+(b-c)(b+c)]=[2a2-a2+b2][c2-a2+b2-c2]=(a2+b2)(b2-a2)=(b2)2-(a2)2=b4-a4[例3]计算:(1)( + y)(- + y)(2)(a+b-c)(a-b+c)(3)(x+3y)2(x-3y)2(x2+9y2)2分析:(1)题中,可把相同的项放在对应的位置上,再把互为相反数的项放在对应的位置上,使之知足(a+b)(a-b),然后用平方差公式;(3)题先逆用积的乘方公式,然后用平方差公式.解:(1)( + y)(- + y)=( y+ )( y- )=( y)2-( )2= y2- x2(2)(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b2-2bc+c2)=a2-b2+2bc-c2(3)(x+3y)2(x-3y)2(x2+9y2)2=[(x+3y)(x-3y)(x2+9y2)]2=[(x2-9y2)(x2+9y2)]2=[x4-81y4]2=x8-162x4y4+6561y8.北师大版七年级下册数学《平方差公式》导学案课件PPT板书设计教学实录第十一课时●课题§1.7.1平方差公式(一)●教学目标(一)教学知识点1.经历探讨平方差公式的进程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探讨平方差公式的进程中,进展学生的符号感和推理能力.2.培育学生观看、归纳、归纳等能力.(三)情感与价值观要求在计算的进程中发觉规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特点判定题目可否利用公式.●教学方式探讨与讲练相结合.使学生在计算的进程中发觉规律,并运用自己的语言进行表达,用符号证明那个规律,并探讨出平方差公式的结构特点,在教师的讲解和学生的练习中学会应用.1 D)●教学进程Ⅰ.创设情景,引入新课[师]你能用简便方式计算以下各题吗?(1)XX×1999;(2)992-1[生]能够.在(1)中XX×1999=(XX+1)(XX-1)=XX2-XX+XX-1×1=XX2-12=4000000-1=3999999,在(2)中992-1=(100-1)2-1=(100-1)(100-1)-1=1002-100-100+1-1=10000-200=9800.(XX+1)(XX-1)=XX2-12.那么其他知足那个特点的运算是不是也有类似的结果呢?咱们不妨看下面的做一做.Ⅱ.使学生在计算的进程中,通过观看、归纳发觉规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).观看以上算式,你发觉什么规律?运算出结果,你又发觉什么规律?再举两例验证你的发觉?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每一个因式都是两项.[生]除上面两个同窗说的之外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是“x”与“2”这两个数的和与差的积;算式(2)是“1”与“3a”这两个数的和与差的积;算式(3)是“x”与“5y”的和与差的积;算式(4)是“y”与“3z”这两个数的和与差的积.[师]咱们观看出了算式的结构特点.像如此的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你必然会探访到答案.[生]解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2(如有必要的话能够让学生利用乘法分派律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分派律的重要作用和转化的思想) [生]从适才这位同窗的运算,我发觉:即两个数的和与差的积等于这两个数的平方差.这和咱们前面的一个简便运算得出一样的结果.即[师]你还能举两个例子验证你的发觉吗?[生]能够.例如:(1)101×99=(100+1)(100-1)=1002-100+100-12=1002-12=10000-1=9999;(2)(-x+y)(-x-y)=(-x)(-x)+xy-xy-y2=(-x)2-y2=x2-y2.即上面两个例子,一样能够验证:两个数的和与差的积,等于它们的平方差.[师]什么缘故会有如此的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,因此相加后为零.只剩下那个数的平方差.[师]专门好!你能用一样形式表示上述规律,并对规律进行证明吗?[生]能够.上述规律用符号表示为:(a+b)(a-b)=a2-b2 ①其中a,b能够表示任意的数,也能够表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么能够对规律进行证明,即(a+b)(a-b)=a2-ab+ab-b2=a2-b2[师]同窗们确实不简单用符号表示和证明咱们发觉的规律简捷明快.你能给咱们发觉的规律(a+b)(a-b)=a2-b2起一个名字吗?能形象直观地反映出此规律的.[生]咱们能够把(a+b)(a-b)=a2-b2叫做平方差公式.[师]大伙儿同意吗?[生]同意.[师]好了!这节课咱们要紧确实是学习讨论那个公式的.你能用语言描述那个公式吗?[生]能够.那个公式表示两数和与差的积,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单,但要注意必需符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用,感受平方差公式给多项式乘法运算带来的方便,进一步熟悉平方差公式.[例1](1)以下多项式乘法中,能用平方差公式计算的是( )A.(x+1)(1+x)B.( a+b)(b- a)C.(-a+b)(a-b)D.(x2-y)(x+y2)E.(-a-b)(a-b)F.(c2-d2)(d2+c2)(2)利用平方差公式计算:(5+6x)(5-6x);(x-2y)(x+2y);(-m+n)(-m-n).[生](1)中只有B、E、F能用平方差公式.因为B.( a+b)(b- a)利用加法互换律可得( a+b)(b - a)=(b+ a)(b- a),表示b与 a这两个数的和与差的积,符合平方差公式的特点;E.(-a-b)(a-b),一样可利用加法互换律得(-a-b)(a-b)=(-b -a)(-b+a),表示-b与a这两个数和与差的积,也符合平方差公式的特点;F.(c2-d2)(d2+c2)利用加法和乘法互换律得(c2-d2)(d2+c2)=(c2+d2)(c2-d2),表示c2与d2这两个数和与差的积,一样符合平方差公式的特点.[师]什么缘故A、C、D不能用平方差公式呢?[生]A、C、D表示的不是两个数的和与差的积的形式.[师]下面咱们就来做第(2)题,第一分析它们别离是哪两个数和与差的积的形式.[生](5+6x)(5-6x)是5与6x这两个数的和与差的形式;(x-2y)(x+2y)是x与2y这两个数的和与差的形式;(-m+n)(-m-n)是-m与n这两个数的和与差的形式.[师]专门好!下面咱们就来用平方差公式计算上面各式.[生](5+6x)(5-6x)=52-(6x)2=25-36x2;(x-2y)(x+2y)=x2-(2y)2=x2-4y2;(-m+n)(-m-n)=(-m)2-n2=m2-n2.[师]这位同窗的思路超级清楚.下面咱们再来看一个例题.出示投影片(记作§1.7.1 C)[例2]利用平方差公式计算:(1)(- x-y)(- x+y);(2)(ab+8)(ab-8);(3)(m+n)(m-n)+3n2.[师]同窗们可先交流、讨论,然后各小组派一代表到黑板上演示.然后再派一名同窗讲评.[生]解:(1)(- x-y)(- x+y)——(- x)与y的和与差的积=(- x)2-y2——利用平方差公式得(- x)与y的平方差= x2-y2——运算至最后结果(2)(ab+8)(ab-8)——ab与8的和与差的积=(ab)2-82——利用平方差公式得ab与8的平方差=a2b2-64——运算至最后结果(3)(m+n)(m-n)+3n2——据运算顺序先计算m 与n的和与差的积=(m2-n2)+3n2——利用平方差公式=m2-n2+3n2——去括号=m2+2n2——归并同类项至最简结果[生]适才这位同窗的运算有条有理,有根有据,我感觉利用平方差公式计算必需注意以下几点:(1)公式中的字母a、b能够表示数,也能够是表示数的单项式、多项式即整式.(2)要符合公式的结构特点才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的互换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必需最简.[师]同窗们总结的专门好!下面咱们再来练习一组题.1.计算:(1)(a+2)(a-2);(2)(3a+2b)(3a-2b);(3)(-x+1)(-x-1);(4)(-4k+3)(-4k-3).2.把以下图左框里的整式别离乘(a+b),所得的积写在右框相应的位置上.解:1.(1)(a+2)(a-2)=a2-22=a2-4;(2)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2;(3)(-x+1)(-x-1)=(-x)2-12=x2-1;(4)(-4k+3)(-4k-3)=(-4k)2-32=16k2-9.2.(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2a b+b2;(a-b)(a+b)=a2-b2;(-a+b)(a+b)=(b+a)(b-a)=b2-a2;(-a-b)(a+b)=-a(a+b)-b(a+b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情形,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同窗们有何体会和收成呢?[生]今天咱们学习了多项式乘法运算中的一个重要公式——平方差公式即(a+b)(a-b)=a2-b2.[生]应用那个公式要明白公式的特点:(1)左侧为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b能够是数,也能够是代表数的整式.[生]有些式子表面上不能用公式,但通过适当变形实质上能用公式.[师]同窗们总结的专门好!还记得刚上课的一个问题吗?计算992-1,此刻想一想,能使它运算更简便吗?[生]能够.992-1能够看成99与1的平方差,从右往左用平方差公式可得:992-1=992-12=(99+1)(99-1)=100×98=9800.[师]咱们发觉平方差公式的应用是很灵活的,只要你准确地把握它的结构特点,必然能使你的运算简捷明了.Ⅴ.课后作业讲义P30,习题1.11,第1题.●板书设计§1.7.1平方差公式(一)做一做解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2.归纳、猜想规律(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.用符号运算证明(a+b)(a-b)=a2-ab+ab-b2=a2-b2.应用、升华例 1.(抓住平方差公式的特点,准确地利用平方差公式计算)例2.(对公式中a、b含义的明白得,既能够是具体的数也能够是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方式计算:(1)79×81(2)99×101×10001解:(1)原式=(80-1)(80+1)=802-1=6399;(2)原式=(100-1)(100+1)(10000+1)=(1002-12)(10000+1)=(10000-1)(10000+1)=100002-12=100000000-1=99999999.[例2]计算:(1)(b-2)(b2+4)(b+2)(2)[2a2-(a+b)(a-b)][(c-a)(a+c)+(-c+b)(c+b)]分析:(1)题可利用乘法互换律和结合律,先求(b-2)与(b+2)的积,所得结果再与(b2+4)相乘,可两次运用平方差公式;(2)题依照混合运算的运算顺序,先算括号里的其中(a+b)(a-b),(c-a)(a+c),(-c+b)(c+b)都可直接运用平方差公式计算.解:(1)(b-2)(b2+4)(b+2)=[(b-2)(b+2)](b2+4)=(b2-4)(b2+4)=(b2)2-42=b4-16(2)[2a2-(a+b)(a-b)][(c-a)(a+c)+(-c+b)(c+b)]=[2a2-(a2-b2)][(c+a)(c-a)+(b-c)(b+c)]=[2a2-a2+b2][c2-a2+b2-c2]=(a2+b2)(b2-a2)=(b2)2-(a2)2=b4-a4[例3]计算:(1)( + y)(- + y)(2)(a+b-c)(a-b+c)(3)(x+3y)2(x-3y)2(x2+9y2)2分析:(1)题中,可把相同的项放在对应的位置上,再把互为相反数的项放在对应的位置上,使之知足(a+b)(a-b),然后用平方差公式;(3)题先逆用积的乘方公式,然后用平方差公式.解:(1)( + y)(- + y)=( y+ )( y- )=( y)2-( )2= y2- x2(2)(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b2-2bc+c2)=a2-b2+2bc-c2(3)(x+3y)2(x-3y)2(x2+9y2)2=[(x+3y)(x-3y)(x2+9y2)]2=[(x2-9y2)(x2+9y2)]2=[x4-81y4]2=x8-162x4y4+6561y8.北师大版七年级下册数学《平方差公式》导学案课件PPT板书设计教学实录第十一课时●课题§1.7.1平方差公式(一)●教学目标(一)教学知识点1.经历探讨平方差公式的进程.2.会推导平方差公式,并能运用公式进行简单的运算.(二)能力训练要求1.在探讨平方差公式的进程中,进展学生的符号感和推理能力.2.培育学生观看、归纳、归纳等能力.(三)情感与价值观要求在计算的进程中发觉规律,并能用符号表达,从而体会数学语言的简捷美.●教学重点平方差公式的推导和应用.●教学难点用平方差公式的结构特点判定题目可否利用公式.●教学方式探讨与讲练相结合.使学生在计算的进程中发觉规律,并运用自己的语言进行表达,用符号证明那个规律,并探讨出平方差公式的结构特点,在教师的讲解和学生的练习中学会应用.1 D)●教学进程Ⅰ.创设情景,引入新课[师]你能用简便方式计算以下各题吗?(1)XX×1999;(2)992-1[生]能够.在(1)中XX×1999=(XX+1)(XX-1)=XX2-XX+XX-1×1=XX2-12=4000000-1=3999999,在(2)中992-1=(100-1)2-1=(100-1)(100-1)-1=1002-100-100+1-1=10000-200=9800.(XX+1)(XX-1)=XX2-12.那么其他知足那个特点的运算是不是也有类似的结果呢?咱们不妨看下面的做一做.Ⅱ.使学生在计算的进程中,通过观看、归纳发觉规律,并用自己的语言和符号表示其规律[师]出示投影片(§1.7.1 A)做一做:计算以下各题:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).观看以上算式,你发觉什么规律?运算出结果,你又发觉什么规律?再举两例验证你的发觉?[生]上面四个算式都是多项式与多项式的乘法.[生]上面四个算式每一个因式都是两项.[生]除上面两个同窗说的之外,更重要的是:它们都是两个数的和与差的积.例如:算式(1)是“x”与“2”这两个数的和与差的积;算式(2)是“1”与“3a”这两个数的和与差的积;算式(3)是“x”与“5y”的和与差的积;算式(4)是“y”与“3z”这两个数的和与差的积.[师]咱们观看出了算式的结构特点.像如此的多项式与多项式相乘,它们的结果如何呢?只要你肯动笔、动脑,相信你必然会探访到答案.[生]解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2(如有必要的话能够让学生利用乘法分派律将多项式与多项式相乘转化成单项式与多项式相乘,进一步体会乘法分派律的重要作用和转化的思想)[生]从适才这位同窗的运算,我发觉:即两个数的和与差的积等于这两个数的平方差.这和咱们前面的一个简便运算得出一样的结果.即[师]你还能举两个例子验证你的发觉吗?[生]能够.例如:(1)101×99=(100+1)(100-1)=1002-100+100-12=1002-12=10000-1=9999;(2)(-x+y)(-x-y)=(-x)(-x)+xy-xy-y2=(-x)2-y2=x2-y2.即上面两个例子,一样能够验证:两个数的和与差的积,等于它们的平方差.[师]什么缘故会有如此的特点呢?[生]因为利用多项式与多项式相乘的运算法那么展开后,中间两项是同类项且系数互为相反数,因此相加后为零.只剩下那个数的平方差.[师]专门好!你能用一样形式表示上述规律,并对规律进行证明吗?[生]能够.上述规律用符号表示为:(a+b)(a-b)=a2-b2 ①其中a,b能够表示任意的数,也能够表示代表数的单项式、多项式.利用多项式与多项式相乘的运算法那么能够对规律进行证明,即(a+b)(a-b)=a2-ab+ab-b2=a2-b2[师]同窗们确实不简单用符号表示和证明咱们发觉的规律简捷明快.你能给咱们发觉的规律(a+b)(a-b)=a2-b2起一个名字吗?能形象直观地反映出此规律的.[生]咱们能够把(a+b)(a-b)=a2-b2叫做平方差公式.[师]大伙儿同意吗?[生]同意.[师]好了!这节课咱们要紧确实是学习讨论那个公式的.你能用语言描述那个公式吗?[生]能够.那个公式表示两数和与差的积,等于它们的平方差.[师]平方差公式是多项式乘法运算中一个重要的公式.用它直接运算会很简单,但要注意必需符合公式的结构特点才能利用它进行运算.Ⅲ.体会平方差公式的应用,感受平方差公式给多项式乘法运算带来的方便,进一步熟悉平方差公式.[例1](1)以下多项式乘法中,能用平方差公式计算的是( )A.(x+1)(1+x)B.( a+b)(b- a)C.(-a+b)(a-b)D.(x2-y)(x+y2)E.(-a-b)(a-b)F.(c2-d2)(d2+c2)(2)利用平方差公式计算:(5+6x)(5-6x);(x-2y)(x+2y);(-m+n)(-m-n).[生](1)中只有B、E、F能用平方差公式.因为B.( a+b)(b- a)利用加法互换律可得( a+b)(b - a)=(b+ a)(b- a),表示b与 a这两个数的和与差的积,符合平方差公式的特点;E.(-a-b)(a-b),一样可利用加法互换律得(-a-b)(a-b)=(-b -a)(-b+a),表示-b与a这两个数和与差的积,也符合平方差公式的特点;F.(c2-d2)(d2+c2)利用加法和乘法互换律得(c2-d2)(d2+c2)=(c2+d2)(c2-d2),表示c2与d2这两个数和与差的积,一样符合平方差公式的特点.[师]什么缘故A、C、D不能用平方差公式呢?[生]A、C、D表示的不是两个数的和与差的积的形式.[师]下面咱们就来做第(2)题,第一分析它们别离是哪两个数和与差的积的形式.[生](5+6x)(5-6x)是5与6x这两个数的和与差的形式;(x-2y)(x+2y)是x与2y这两个数的和与差的形式;(-m+n)(-m-n)是-m与n这两个数的和与差的形式.[师]专门好!下面咱们就来用平方差公式计算上面各式.[生](5+6x)(5-6x)=52-(6x)2=25-36x2;(x-2y)(x+2y)=x2-(2y)2=x2-4y2;(-m+n)(-m-n)=(-m)2-n2=m2-n2.[师]这位同窗的思路超级清楚.下面咱们再来看一个例题.出示投影片(记作§1.7.1 C)[例2]利用平方差公式计算:(1)(- x-y)(- x+y);(2)(ab+8)(ab-8);(3)(m+n)(m-n)+3n2.[师]同窗们可先交流、讨论,然后各小组派一代表到黑板上演示.然后再派一名同窗讲评.[生]解:(1)(- x-y)(- x+y)——(- x)与y的和与差的积=(- x)2-y2——利用平方差公式得(- x)与y的平方差= x2-y2——运算至最后结果(2)(ab+8)(ab-8)——ab与8的和与差的积=(ab)2-82——利用平方差公式得ab与8的平方差=a2b2-64——运算至最后结果(3)(m+n)(m-n)+3n2——据运算顺序先计算m 与n的和与差的积=(m2-n2)+3n2——利用平方差公式=m2-n2+3n2——去括号=m2+2n2——归并同类项至最简结果[生]适才这位同窗的运算有条有理,有根有据,我感觉利用平方差公式计算必需注意以下几点:(1)公式中的字母a、b能够表示数,也能够是表示数的单项式、多项式即整式.(2)要符合公式的结构特点才能运用平方差公式.(3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的互换律、结合律适当变形实质上能应用公式.[生]还需注意最后的结果必需最简.[师]同窗们总结的专门好!下面咱们再来练习一组题.1.计算:(1)(a+2)(a-2);(2)(3a+2b)(3a-2b);(3)(-x+1)(-x-1);(4)(-4k+3)(-4k-3).2.把以下图左框里的整式别离乘(a+b),所得的积写在右框相应的位置上.解:1.(1)(a+2)(a-2)=a2-22=a2-4;(2)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2;(3)(-x+1)(-x-1)=(-x)2-12=x2-1;(4)(-4k+3)(-4k-3)=(-4k)2-32=16k2-9.2.(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ab+b2=a2+2a b+b2;(a-b)(a+b)=a2-b2;(-a+b)(a+b)=(b+a)(b-a)=b2-a2;(-a-b)(a+b)=-a(a+b)-b(a+b)=-a2-ab-ab-b2=-a2-2ab-b2(教师在让学生做练习,可巡视练习的情形,对确实有困难的学生要给以指导)Ⅳ.课时小结[师]同窗们有何体会和收成呢?[生]今天咱们学习了多项式乘法运算中的一个重要公式——平方差公式即(a+b)(a-b)=a2-b2.[生]应用那个公式要明白公式的特点:(1)左侧为两个数的和与差的积;(2)右边为两个数的平方差.[生]公式中的a、b能够是数,也能够是代表数的整式.[生]有些式子表面上不能用公式,但通过适当变形实质上能用公式.[师]同窗们总结的专门好!还记得刚上课的一个问题吗?计算992-1,此刻想一想,能使它运算更简便吗?[生]能够.992-1能够看成99与1的平方差,从右往左用平方差公式可得:992-1=992-12=(99+1)(99-1)=100×98=9800.[师]咱们发觉平方差公式的应用是很灵活的,只要你准确地把握它的结构特点,必然能使你的运算简捷明了.Ⅴ.课后作业讲义P30,习题1.11,第1题.●板书设计§1.7.1平方差公式(一)做一做解:(1)(x+2)(x-2)=x2-2x+2x-4=x2-4;(2)(1+3a)(1-3a)=1-3a+3a-9a2=1-9a2;(3)(x+5y)(x-5y)=x2-5xy+5xy-25y2=x2-25y2;(4)(y+3z)(y-3z)=y2-3yz+3zy-9z2=y2-9z2.归纳、猜想规律(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差.用符号运算证明(a+b)(a-b)=a2-ab+ab-b2=a2-b2.应用、升华例 1.(抓住平方差公式的特点,准确地利用平方差公式计算)例2.(对公式中a、b含义的明白得,既能够是具体的数也能够是整数)随堂练习(熟悉平方差公式).●备课资料参考例题[例1]用简便方式计算:(1)79×81(2)99×101×10001解:(1)原式=(80-1)(80+1)=802-1=6399;。
北师大版七年级下册数学教学设计:1.5.1《平方差公式》
北师大版七年级下册数学教学设计:1.5.1《平方差公式》一. 教材分析《平方差公式》是北师大版七年级下册数学的第二章第三节的内容,本节内容是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式是代数中的一个重要公式,它不仅涉及到平方差公式的推导,还涉及到平方差公式的应用,以及在此基础上进一步推导出完全平方公式的过程。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数的乘法、完全平方公式等基础知识,具备了一定的代数运算能力。
但是,对于平方差公式的推导过程,以及如何灵活运用平方差公式解决实际问题,对学生来说还是有一定的挑战性的。
因此,在教学过程中,需要关注学生的学习情况,引导学生积极参与,突破重难点。
三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程,理解平方差公式的含义,能够灵活运用平方差公式解决实际问题。
2.过程与方法:通过小组合作、探究学习,培养学生的合作意识,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,使学生感受到数学的乐趣。
四. 教学重难点1.重点:平方差公式的推导过程,以及平方差公式的应用。
2.难点:平方差公式的灵活运用,以及在此基础上推导出完全平方公式。
五. 教学方法1.采用问题驱动法,引导学生主动探究,发现规律。
2.运用小组合作学习,培养学生的团队协作能力。
3.通过实例讲解,使学生能够将理论知识与实际问题相结合,提高学生的应用能力。
六. 教学准备1.准备相关的教学PPT,包括平方差公式的推导过程、应用实例等。
2.准备一些实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生复习有理数的乘法,为新课的学习做好铺垫。
2.呈现(10分钟)呈现平方差公式的推导过程,引导学生观察、分析,发现其中的规律。
3.操练(10分钟)让学生独立完成一些平方差公式的练习题,巩固所学知识。
北师大版七年级下册数学教学设计:1.5.2《平方差公式》
北师大版七年级下册数学教学设计:1.5.2《平方差公式》一. 教材分析《平方差公式》是北师大版七年级下册数学的第二节内容。
本节课的主要目标是让学生掌握平方差公式的推导过程和应用。
平方差公式是代数学习中一个重要的公式,它不仅在解决实际问题中有着广泛的应用,而且为学生以后学习更高级的数学知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法运算,能够进行简单的代数运算。
但是,对于如何从实际问题中抽象出代数式,以及如何推导和应用平方差公式,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出代数式,培养学生的抽象思维能力。
三. 教学目标1.知识与技能:让学生掌握平方差公式的推导过程,能够灵活运用平方差公式解决实际问题。
2.过程与方法:通过小组合作、探究学习,培养学生的合作精神和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力。
四. 教学重难点1.重点:平方差公式的推导过程和应用。
2.难点:如何引导学生从实际问题中抽象出代数式,以及如何灵活运用平方差公式解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出代数式。
2.运用小组合作、探究学习的方式,让学生通过合作、交流、讨论,共同推导出平方差公式。
3.通过例题讲解和练习,让学生掌握平方差公式的应用。
六. 教学准备1.准备相关的问题和例题,用于引导学生从实际问题中抽象出代数式。
2.准备多媒体教学设备,用于展示问题和例题。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生从实际问题中抽象出代数式,激发学生的学习兴趣。
2.呈现(10分钟)展示问题和例题,让学生观察和分析,引导学生思考如何解决这些问题。
3.操练(10分钟)让学生分组合作,通过探究学习,共同推导出平方差公式。
教师在这个过程中给予适当的引导和指导。
4.巩固(10分钟)通过讲解和练习,让学生掌握平方差公式的应用。
2024北师大版数学七年级下册1.5.1《平方差公式》教案1
2024北师大版数学七年级下册1.5.1《平方差公式》教案1一. 教材分析《平方差公式》是北师大版数学七年级下册第1章第5节的内容,本节课主要让学生掌握平方差公式的推导过程和应用。
平方差公式是初中学历阶段非常重要的一个公式,它不仅在数学计算中有着广泛的应用,而且为学生以后学习更高深的数学知识打下基础。
二. 学情分析七年级的学生已经具备了一定的代数基础,对因式分解、有理数运算等概念有一定的了解。
但学生在学习新知识时,往往还依赖于死记硬背,对于公式的推导和证明过程缺乏理解。
因此,在教学过程中,需要引导学生主动探索,理解平方差公式的推导过程,提高学生的逻辑思维能力。
三. 教学目标1.知识与技能目标:让学生掌握平方差公式的推导过程,理解并熟练运用平方差公式进行计算。
2.过程与方法目标:通过合作交流、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:平方差公式的推导过程和运用。
2.教学难点:平方差公式的灵活运用,以及理解公式背后的数学思想。
五. 教学方法采用问题驱动法、合作交流法、探究学习法等,引导学生主动探索,提高学生的逻辑思维能力和团队协作能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:笔记本、笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的一些实际问题,引导学生思考如何用数学知识解决这些问题。
例如,一块正方形的土地,如果每边减少3米,新的土地面积是多少?让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)引导学生列出正方形土地面积的计算公式,然后展示平方差公式的推导过程。
通过示例,让学生理解平方差公式的含义,并学会如何运用。
3.操练(10分钟)让学生独立完成一些关于平方差公式的练习题,巩固所学知识。
教师及时给予解答和指导,帮助学生掌握平方差公式的运用。
北师大七年级数学下册 1.6平方差公式(1)导学案
(1) (t+s)(t-s)=(2) (3m+2n)(3m-2n)=
(3) (1+n)(1-n)=(4) (10x+5)(10x-5)=
3、用平方差公式计算:
① (3x+2)(3x-2)②(b+2a)(2a-b)
③(-x+2y)(-x-2y)④(-m+n)(m+n)
七年级 数学科 导学案
主备:科组长审核:使用时间:
学习内容
1.6平方差公式(1))
学习目标
1.经历探索平方差公式的过程,进一步发展学生的符号意识和推理能力。
2.会推导平方差公式,并能运用公式进行简单的计算和推理。
3.了解平方差公式的几何背景,发展几何直观。
学习重难点
平方差公式的推及运用。
导学过程
一、自主学习
自学课本第20页内容,并解决下列问题:
(1)你能写出平方差公式的推导过程吗?
(2)平方差公式的左右两边各有什么特点?
(3)如何用语言表述这一公式?
二、小组合作学习
1、计算下列各式的积
(1) (2)
(3) (4)
2、观察以上算式的结构,你发现了什么规律?
①上面四个算式中每个因式都是项。
②它们都是两个数的与的。(填“和”“差”“积”)
(1)(-a+b)(a+b)( ) (2) (-2a+b)(-2a-b)( )
(3)(-a+b)(a-b)( ) (4) (a+b)(a-c) (
2、完成书第21页的随堂练习
3、书第20页 想一想
四、拓展提升
1、判断正误:
北师大版七年级下册数学教案设计:1.5.1 《平方差公式》
生的主体作用,增强学生学数学、用数学的兴趣。
同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦。
四、教学策略选择与信息技术融合的设计1.多媒体辅助;合作探究;自主学习;师生互动。
2. 特例──归纳──猜想──验证──用数学符号表示——练习反馈——评析校正五、教学过程教师活动预设学生活动设计意图(一)创设情境,引出课题问题1:计算下列多项式的积,你能发现什么规律?(1)(x+2)(x-2)= ;(2)(1+3a)(1-3a)= ;(3)(x+5y)(x-5y)= ;(4)(2y+z)(2y-z)= 。
4名学生板演计算,其他学生独立计算,然后学习小组讨论4个算式与计算结果间存在的关联。
【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式。
(二)探索新知,尝试发现问题2:依照以上三道题的计算回答下列问题:①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:。
(a+b)(a-b)=a2-b2【设计意图】根据“最近发展区”理论,在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理。
(三)数形结合,几何说理问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系。
学生拿出已准备好的长方形纸条动手操作,经历、体验,推论,计算、验证。
【设计意图】通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:,验证了其公式的正确性。
2024年北师大版七下数学1.5平方差公式第1课时平方差公式的认识教学设计
2024年北师大版七下数学1.5平方差公式第1课时平方差公式的认识教学设计一. 教材分析平方差公式是初中数学中的重要内容,对于学生来说,掌握平方差公式对于理解和掌握后续的代数知识有着重要的意义。
本节课的内容是在学生已经掌握了有理数的乘法、平方的知识基础上进行讲解的,通过平方差公式的学习,使学生能够掌握两个数的平方差可以表示为它们的和与差的乘积的两倍,并能够运用平方差公式解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法、平方的知识,对于新的知识有一定的接受能力。
但部分学生在理解上可能还存在一定的困难,因此,在教学过程中,需要关注这部分学生的学习情况,引导他们理解和掌握平方差公式。
三. 教学目标1.知识与技能:使学生理解和掌握平方差公式,能够运用平方差公式解决实际问题。
2.过程与方法:通过小组合作、探究的学习方式,培养学生的合作意识和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。
四. 教学重难点1.重点:平方差公式的理解和运用。
2.难点:理解平方差公式的推导过程和背后的数学思想。
五. 教学方法采用问题驱动法、小组合作学习法、引导发现法等,激发学生的学习兴趣,引导学生主动探究,培养学生的合作意识和解决问题的能力。
六. 教学准备1.准备相关课件和教学素材。
2.准备平方差公式的推导过程的动画或视频。
3.准备一些实际问题,用于引导学生运用平方差公式解决。
七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生回顾有理数的乘法和平方的知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件呈现平方差公式,引导学生观察和思考,引导学生发现平方差公式的规律。
3.操练(10分钟)利用平方差公式的推导过程的动画或视频,引导学生直观地理解平方差公式的推导过程,使学生能够理解和掌握平方差公式。
4.巩固(10分钟)设计一些练习题,让学生运用平方差公式进行计算,巩固所学知识。
北师大版数学七年级下册《平方差公式的应用》教案
北师大版数学七年级下册《平方差公式的应用》教案一. 教材分析《平方差公式》是北师大版初中数学七年级下册第五章《整式的乘法与因式分解》中的一个重要内容。
平方差公式是:(a^2 - b^2 = (a+b)(a-b))。
这个公式不仅可以帮助学生更好地理解和掌握整式的乘法,还能为后续学习平方根、一元二次方程等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了整数的乘法、有理数的乘法、整式的加减等知识。
但是,对于平方差公式这样的抽象公式,学生可能一下子难以理解和接受。
因此,在教学过程中,教师需要利用生动的实例和直观的图形,引导学生理解和记忆平方差公式。
三. 教学目标1.知识与技能:使学生理解和掌握平方差公式,能够运用平方差公式进行整式的乘法运算。
2.过程与方法:通过探究平方差公式的过程,培养学生观察、思考、归纳的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:平方差公式的理解和记忆。
2.难点:如何引导学生理解和记忆平方差公式。
五. 教学方法采用“问题驱动”的教学方法,通过提出问题,引导学生思考和探究,从而达到理解和掌握平方差公式的目的。
同时,运用多媒体辅助教学,以直观的图形和动画,帮助学生更好地理解和记忆平方差公式。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出平方差公式:已知一个正方形的边长是8厘米,求它的面积。
2.呈现(10分钟)通过多媒体展示正方形和它的面积公式,引导学生观察和思考。
然后,逐步引导学生推导出平方差公式。
3.操练(10分钟)让学生分组进行练习,运用平方差公式计算一些整式的乘法。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些关于平方差公式的练习题,检验学生对平方差公式的理解和掌握程度。
5.拓展(10分钟)引导学生思考:平方差公式有哪些应用?可以解决哪些实际问题?6.小结(5分钟)教师引导学生总结本节课所学的内容,使学生对平方差公式有一个清晰的认识。
7年级数 学北师大版下册教案第1章《平方差公式》
教学设计平方差公式一、教材的地位与作用《平方差公式》是北师大版义务教育课程标准实验教科书《数学》七年级(下)第一章《整式的运算》第七节的内容。
平方差公式是特殊的乘法公式,它既是前面知识“多项式乘多项式”的应用,也是后继知识如因式分解,分式等的基础,对整个教科书也起到了承上启下的作用,在初中阶段占有很重要的地位。
本节课主要研究的是平方差公式的推导和平方差公式在整式乘法中的应用。
它是学生在已经掌握单项式乘法、多项式乘法基础上的拓展和再创造,一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,通过乘法公式的学习可以简化某些整式的运算、培养学生的求简意识。
二、教学目标:知识与技能:(1)使学生理解和掌握平方差公式;(2)会利用公式进行计算,能够掌握平方差公式的一些应用。
过程与方法:(1)经历探索平方差公式的过程,增强了数和符号的意识,培养学生发现问题、提出问题的能力;(2)经历探索和发现规律的感受,进一步发展了学生的符号感和推理能力,培养学生观察、归纳、概括的能力.情感态度与价值观:(1)在合作交流中扩展思路,经过验证反思积累数学活动经验;(2)在探索和交流的过程中,培养学生与人协作的习惯、质疑的精神。
三、教学重点与难点:教学重点:(1)弄清平方差公式的来源及其结构特点,能用自己的语言说明公式及其特点;(2)发展学生发现问题、提出问题、分析问题和解决问题的能力。
教学难点:准确理解和掌握公式的结构特征。
四、教与学互动设计:(一)创设情景,导入新课课件出示引入问题:王捷同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,王捷就说出应付99.96元,结果与售货员计算出的结果相吻合。
售货员很惊讶地说:“你好象是个神童,怎么算得这么快?”王捷同学说:“过奖了,我利用了在数学上刚学过的一个公式。
”你知道王捷同学用的是一个什么样的公式吗?学生首先就会想到计算列式:9.8⨯10.2=?,计算方法是关键。
北师大版七年级字上册1.5平方差公式优秀教学案例
本节课结束后,教师要引导学生进行反思与评价。首先,让学生回顾本节课所学内容,总结自己的学习收获。其次,组织学生进行互评,评价他人的解答方法和思路,取长补短。最后,教师对学生的学习情况进行总结性评价,鼓励优点,指出不足,激发学生的学习动力。
四、教学内容与过程
(一)导入新课
本节课的导入我采用了趣味性问题导入法。上课之初,我提出了一个问题:“同学们,你们知道吗?我们国家的面积大约是960万平方千米,如果我们用平方差公式来计算我国的面积差,会得到什么结果呢?”这个问题引起了学生的兴趣,他们纷纷开始思考。通过这个问题,我顺利地引导学生进入了本节课的主题——平方差公式。
4.多元化的评价方式:本节课采用自评、互评和他评等多种评价方式,关注学生的知识掌握程度和情感态度,使学生在评价中认识自己的优点和不足,激发学习动力。
5.教学内容的层次性:本节课的教学内容具有层次性,从导入、讲授、讨论、总结到作业小结,环环相扣,循序渐进,使学生在学习过程中始终保持兴趣和参与度。
北师大版七年级字上册1.5平方差公式优秀教学案例
一、案例背景
本节内容为北师大版七年级数学上册1.5平方差公式,平方差公式是初中数学中的重要知识点,也是学生首次接触的较复杂的公式。本节课的内容对于学生来说比较生活实际和趣味性问题,激发学生的学习兴趣,提高学生的参与度。
3.运用引导发现法,让学生在探究过程中发现问题、解决问题,培养学生的独立思考能力和创新意识。
(三)情感态度与价值观
1.让学生在成功解决问题的过程中体验到数学的价值和乐趣,激发学生学习数学的兴趣。
2.培养学生的自信心和自主学习能力,使学生在学习过程中形成积极向上的情感态度。
3.通过对实际问题的探究,让学生认识到数学与生活的紧密联系,提高学生学以致用的能力。
2024北师大版数学七年级下册1.5.2《平方差公式》教学设计2
2024北师大版数学七年级下册1.5.2《平方差公式》教学设计2一. 教材分析平方差公式是初中数学中的重要内容,对于学生来说,掌握平方差公式不仅有助于解决实际问题,而且为后续学习代数方程、函数等知识打下基础。
北师大版数学七年级下册1.5.2《平方差公式》通过丰富的例题和练习,使学生能够理解和掌握平方差公式的推导过程及其应用。
二. 学情分析七年级的学生已经学习了有理数的乘法、完全平方公式等知识,对于代数式的运算有一定的基础。
但平方差公式与完全平方公式相似,学生容易混淆。
因此,在教学过程中,需要帮助学生明确平方差公式与完全平方公式的区别和联系。
三. 教学目标1.理解平方差公式的推导过程。
2.掌握平方差公式的结构特点和应用。
3.能够运用平方差公式解决实际问题。
四. 教学重难点1.教学重点:平方差公式的推导过程和应用。
2.教学难点:平方差公式与完全平方公式的区别和联系。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极参与,提高学生的动手能力和团队协作能力。
六. 教学准备1.准备相关例题和练习题。
2.准备多媒体教学设备,如投影仪、计算机等。
七. 教学过程1.导入(5分钟)通过复习完全平方公式,引导学生发现完全平方公式中的平方差部分,激发学生的学习兴趣。
2.呈现(10分钟)展示平方差公式的推导过程,引导学生观察、分析并总结平方差公式的结构特点。
3.操练(15分钟)让学生分组进行练习,运用平方差公式解决实际问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)挑选几道典型题目,让学生上黑板演示解题过程,讲解解题思路。
其他学生听讲,巩固所学知识。
5.拓展(10分钟)引导学生思考:平方差公式在实际问题中的应用,如何将实际问题转化为平方差公式的形式。
6.小结(5分钟)对本节课的主要内容进行总结,强调平方差公式与完全平方公式的区别和联系。
7.家庭作业(5分钟)布置适量作业,让学生巩固所学知识,提高解题能力。
北师大版数学七年级下册1.5《平方差公式》教学设计2
北师大版数学七年级下册1.5《平方差公式》教学设计2一. 教材分析平方差公式是北师大版数学七年级下册1.5节的内容,本节课主要让学生掌握平方差公式的推导过程和应用。
平方差公式是一个基本的代数公式,它在解决实际问题和初中数学的学习中有着重要的作用。
本节课的内容是学生进一步学习完全平方公式和二元一次方程组的基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、完全平方公式等知识,具备了一定的代数基础。
但学生对于平方差公式的推导过程和应用可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,引导学生通过自主学习、合作学习等方式,理解和掌握平方差公式。
三. 教学目标1.知识与技能目标:让学生掌握平方差公式的推导过程和应用。
2.过程与方法目标:通过自主学习、合作学习等方式,培养学生的探究能力和合作意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:平方差公式的推导过程和应用。
2.难点:平方差公式的灵活运用。
五. 教学方法1.自主学习:引导学生通过自主学习,理解平方差公式的推导过程。
2.合作学习:学生进行小组合作,共同探讨平方差公式的应用。
3.实例讲解:通过具体的例子,让学生理解平方差公式的运用。
六. 教学准备1.准备平方差公式的推导过程和应用的例子。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过复习完全平方公式,引导学生发现完全平方公式和平方差公式的关系,激发学生的学习兴趣。
2.呈现(10分钟)展示平方差公式的推导过程,让学生理解平方差公式的来源。
3.操练(10分钟)让学生通过自主学习,尝试运用平方差公式解决问题。
教师在这个过程中给予适当的引导和帮助。
4.巩固(10分钟)学生进行小组合作,共同探讨平方差公式的应用。
通过小组讨论,加深学生对平方差公式的理解。
5.拓展(5分钟)引导学生思考:平方差公式在实际生活中有哪些应用?通过实例讲解,让学生理解平方差公式在实际生活中的重要性。
(北师大版)初中数学《平方差公式》导学案 (6)
《平方差公式》导学案学习目标:1、通过计算、小组讨论,能说出平方差公式的结构特点,能用语言和公式总结出平方差公式。
2、通过对几何图形的观察,能描述平方差公式的特征和由来,并体会数形结合的思想。
3、能运用平方差公式进行乘法运算。
学习重点:会运用平方差公式进行计算学习难点:平方差公式的灵活运用。
学习过程;一、复习旧知,感知新知。
1、多项式与多项式相乘2、根据多项式乘多项式的法则进行计算:(1)、(x+2)(x-2); (2)、(1+3a)(1-3a) ; (3)、(x+5y)(x-5y);二、小组合作,探究新知。
1、观察以上各式,它们的两个因式有什么特点?2、它们的运算结果与两个因式之间又有什么关系?同伴之间相互说一说。
3、再举两个例子说明你的发现。
4、因此,(a+b)(a-b)= 这个公式叫做。
用文字语言叙述。
5、你能从此图中发现平方差公式吗?思考:(1) 在图中①、②、③、④区域的面积分别怎么表示?(2)在图中(a+b)(a-b)表示哪一区域的面积?(3)在图中(a2-b2)表示哪一区域的面积?(4) 图中(a+b)(a-b)与(a2-b2)表示的面积之间是什么关系?三、展示自我,运用新知。
1、下列各式哪些可以运用平方差公式计算。
A、(a+b)(a-b)B、(x+y)(-y+x)C、(ab-3x)(-3x-ab)D、(-m-n)(m+n)2、运用公式进行计算。
(1)、(3x+2)(3x-2)(2)、(b+2a)(2a-b)(3)、(-x+2y)(-x-2y)(4)、(-2m-n)(2m-n)3、填空。
(1)、(3+2a)(3-2a)= (2)、(4a-1)()=16a2-1 (3)、(2x+ )( -3y)=4x2-9y2(4)、()(x-1)=1-x2四、延伸迁移,深化新知。
(1)(a-b)(a+b)(a2+b2) (2)(3x+4)(3x-4)-(2x+3)(3x-2)五、自悟自得本节课你学会了那些知识?六、达标测试1、选择题(1)下列各式,可以利用平方差公式计算的是()A (a-nb)(nb-a) B(-1-a)(a+1)C (-m+n)(-m-n) D(ax+b)(a-bx)(2)、(m2-n2)-(m+n)(m-n)等于()A -2n2B 0C 2m2 D2m2-2n22、计算:(1)(a+3b)(a-3b)(2)(3+2a)(-3+2a)(3)498 × 502 (4)(3x+1)(3x-1)+5x(x+1)七、课后选做先化简,再求值(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1, y=2。
北师大版七年级数学《平方差公式》导学案.pptx
1
学海无 涯
4、课堂测试:
(1)、你能用简便方法计算下列各题吗?
(1)103 97
(2) 9981002
(3) 59.8 60.2
(4)(x 3)(x 3)(x2 9)
(5)
x
1
x2
1
x
1
2 4 2
2.下列哪些多项式相乘可以用平方差公式?若可以,请用平方
达 差公式解出
(1) (a b c)(a b c)
(2) (a b c)(a b c)
标
(3)a b ca b c (4)(a 2b 2c)(a 2b 2c)
展示提升: 1、 (2 1)(22 1)(24 1)(28 1) 1
测 2、 2、 (22 42 1002 ) (12 32 992 )
3、观察下列各式: (x 1)(x 1) x2 1 (x 1)(x2 x 1) x3 1 (x 1)(x3 x2 x 1) x4 1
探究 2、如何验证平方差公式?
问 做一做:如图,边长为a 的大正方形中有一个边长为b 的小正方
形。
(1)请表示图中阴影部分的面积: S
a
题 (2)小颖将阴影部分拼成了一个长方形,这个长方 形的长和宽分别是多少?
探
你能表示出它的面积吗?长=
S
ቤተ መጻሕፍቲ ባይዱ
宽= b
a
(3)比较 1,2 的结果可得
究
=
平方差公式中的a、b 可以是单项式,也可以 b 是多项
试 根据前面的规律可得: (x 1)(xn xn1 x 1)
教后反思: 评价 我的收获:
我的疑惑:
2
学海无 涯
杨庄一中 七 年级数学导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做:如图,边长为 的大正方形中有一个边长为 的小正方形。
(1)请表示图中阴影部分的面积:
(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?
你能表示出它的面积吗?长= 宽=
(3)比较1,2的结果可得
=
平方差公式中的 可以是单项式,也可以是多项式,在平方时,应把单项式或多项式加括号;学会灵活运用平方差公式。有些式子表面上不能应用公式,但通过适当变形实质上能应用公式.如: 中相等的项有和;相反的项有,因此
杨庄一中 七 年级数学导学案
主备
课 题
5、2平方差公式(2)
学习 目 标
进一步掌握平方差公式,让学生理解公式数学表达式与文字表达式在应用上的差异。
学习重难 点
1、公式的应用及推广。
2、灵活应用平方差公式。
旧知识链 接
平方差公式是什么?
问
题
探
究
达
标
测
试
探究1:如何确定平方差公式中哪个是多项式中的和哪个是多项式的差?
3、自学课本例1
4、课堂测试:
(1)、你能用简便方法计算下列各题吗?
(1) (2) (3)
(4) (5)
2.下列哪些多项式相乘可以用平方差公式?若可以,请用平方差公式解出
(1) (2)
(3) (4)
展示提升:
1、
2、2、
3、观察下列各式:
根据前面的规律可得:
______________
教后反思:
评价