2018八年级下册数学知识汇总

合集下载

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线。

3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

八年级数学下册知识点总结

八年级数学下册知识点总结

八年级数学下册知识点总结一、二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”叫做二次根号,a叫做被开方数。

例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。

2. 二次根式有意义的条件。

- 被开方数必须是非负数,即对于√(a),a≥slant0时二次根式有意义。

例如在√(x - 2)中,x - 2≥slant0,解得x≥slant2时该二次根式有意义。

3. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(3))^2=3。

- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥slant0) - a(a < 0)end{array}right.。

例如√((-2)^2)=| - 2| = 2。

4. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。

例如(√(8))/(√(2))=√(frac{8){2}}=√(4)=2。

5. 二次根式的加减。

- 先把二次根式化成最简二次根式,再合并同类二次根式。

- 最简二次根式满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。

例如√(8)=√(4×2)=2√(2),2√(2)就是最简二次根式。

- 同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

例如√(12)=2√(3)与√(27)=3√(3)是同类二次根式,可以合并,2√(3)+3√(3)=(2 + 3)√(3)=5√(3)。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

初二数学下册知识点总结

初二数学下册知识点总结

初二数学下册知识点总结初中数学相较于小学数学难度更加大,那么初二数学下册知识点有哪些呢。

以下是由编辑为大家整理的“初二数学下册知识点总结”,仅供参考,欢迎大家阅读。

初二数学下册知识点总结第一章三角形的证明1、等腰三角形①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)②全等三角形的对应边相等、对应角相等③定理:等腰三角形的两底角相等,即位等边对等角④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)⑦定理:三个角都相等的三角形是等边三角形⑧定理;有一个角等于60°的等腰三角形是等边三角形⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形①定理:直角三角形的两个锐角互余②定理有两个角互余的三角形是直角三角形③勾股定理:直角三角形两条直角边的平方和等于斜边的平方④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题⑥一个命题是真命题,它的逆命题不一定是真命题。

如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理⑦定理:斜边和一条直角边分别相等的两个直角三角形全等3、线段的垂直平分线①定理:线段垂直平分线上的点到这条线段两个端点的距离相等②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上4、角平分线①定理:角平分线上的点到这个角的两边的距离相等②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上第二章一元一次不等式与一元一次不等式组1、不等关系2、不等式的基本性质①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变3、不等式的解集①能使不等式成立的未知数的值,叫做不等式的解②一个含有不等式所有的解,组成这个不等式的解集③求不等式解集的过程叫做解不等式4、一元一次不等式①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是15、一元一次不等式与一次函数6、一元一次不等式组①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心4、简单的图案设计第四章因式分解1、因式分解①把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式2、提公因式法①多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式②如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。

【小初高学习]2018年春八年级数学下册 16.1 二次根式 趣味数学 根号的由来素材 (新版)新人

【小初高学习]2018年春八年级数学下册 16.1 二次根式 趣味数学 根号的由来素材 (新版)新人

根号的由来早在1480年,德国人便开始用一个点来表示方根,如3表示3的平方根,3表示3的4次方根,3表示3的立方根,到了16世纪初,平方根用小点带上一条小尾巴来表示,就像一个小蝌蚪,因而很难标准。

1525年,德国数学家鲁道夫的代数书中用√8表示8的平方根,显然用“小钩子”要比“小蝌蚪”好多了,不过后来又发现了新问题。

传说,两个工程人员为式中“√2100g +”引起了矛盾,差一点要上法庭打官司。

究其原因,是因为小钩子“√”的意义不明确,不知道它能管后面几个字母及数字。

”,并把立方根写成,在原书第一版中写道:“如果我想求22a b +的平方根,就写作;如果想求3310100a <<33a b abc ++。

”笛卡尔的根号与鲁道夫的根号最大区别在于:笛卡尔考虑到,当被开方数有几项时,鲁道夫的根号会引起混淆,因次,他在上方用直线把这几项括起来,前面再放上记号“√”,也就是现在使用的根号了。

现代的立方根号出现的很晚,一直到18世纪才在一些书中看到,在1732年以后才渐渐通行。

之后,一般的n 次方根符号也就相继出现了。

逐步逼近法估算在数学计算中,“逐步逼近法”是常用的计算方法。

的近似值,但是若是生活在荒岛上,又未带计算器和其他资料,人们就可以用逐步逼近的方法计算这种方法可以运用到其他问题中。

由于34<<,所以可设3x =+(x 是一个正的纯小数)。

两边平方,得21396x x =++.由于x 是一个小量,所以2x 是一个比x 更小的高次小量。

可以忽略掉,故1396x ≈+。

即23x ≈233≈ 再作第二次逼近:233y =+,两边平方,得21212212122139393y y y =++≈+ 所以233y ≈-221193 3.60633333≈-=≈如果继续逼近下去,就可以得到更精确的近似值。

近似求解立方根 当立方根是一位整数时,很容易求出这个立方根,但当立方根是两位或两位以上的整数时,也能容易地求出吗?例如140608的立方根,怎样求容易?下面就介绍它的巧妙求法。

2018八年级数学下册全册重点知识总结

2018八年级数学下册全册重点知识总结

2018八年级数学下册全册重点知识总结2018八年级数学下册全册重点知识总结第一章三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质SSS三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等SAS两边及其夹角分别相等的两个三角形全等ASA两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理等腰三角形的两底角相等。

简述为:等边对等角在△ABC中,若AB=AC,则∠B=∠C条件:边相等,即AB=AC结论:角相等,即∠B=∠C推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC,AB=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也是其他两线※等腰三角形中的相等线段:1等腰三角形两底角的平分线相等2等腰三角形两腰上的高相等3两腰上的中线相等4底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。

它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC中,若∠B=∠C则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“”(或“≤”), “”(或“≥”)连接的式子叫做不等式.※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 === 大于等于0(≥0) === 0和正数 === 不小于0非正数 === 小于等于0(≤0) === 0和负数 === 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果ab,那么a+cb+c, a-cb-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果ab,并且c0,那么acbc, .(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果ab,并且c0,那么acbc,※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果ab,那么a-b是正数;反过来,如果a-b是正数,那么ab;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果ab,那么a-b是负数;反过来,如果a-b是正数,那么ab;即:ab === a-b0a=b === a-b=0ab === a-b0三. 不等式的解集:※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,当不等式两边都乘以一个负数时,不等号要改变方向.※3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)※4. 一元一次不等式基本情形为axb(或axb)①当a0时,解为 ;②当a=0时,且b0,则x取一切实数;当a=0时,且b≥0,则无解;③当a0时, 解为 ;5. 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.六. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.(解集的公共部分,通常是利用数轴来确定.)※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且ab)xb 两大取较大xa 两小取小axb 大小交叉中间找无解在大小分离没有解(是空集)第三章图形的平移与旋转一、平移变换:1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。

2. 一元一次方程的概念、解法和实际应用。

3. 一元一次不等式的概念、解法和实际应用。

4. 一元二次方程的概念、解法和实际应用。

5. 代数式的加减乘除、化简和因式分解。

6. 二元一次方程组的概念、解法和实际应用。

7. 一元二次不等式的概念、解法和实际应用。

8. 质因数分解和最大公因数、最小公倍数的求法。

9. 分式的基本概念和运算方法。

二、几何1. 平面图形的基本性质和分类。

2. 勾股定理及其应用。

3. 三角形的相似性质和判定方法。

4. 三角形的内角和及其计算。

5. 空间图形的基本性质和分类。

6. 直线与平面的位置关系及其应用。

7. 圆的基本性质和相关定理。

8. 空间中直线与平面的交角问题和判定方法。

9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。

三、概率统计1. 事件和概率的基本概念。

2. 古典概型和几何概型的概率计算。

3. 条件概率和独立性的概念和计算方法。

4. 排列和组合的概念和应用。

5. 随机变量和概率分布的定义和联系。

6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。

7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。

8. 正态分布的概念和应用。

9. 假设检验的基本概念和方法。

以上就是八年级数学下册的全部知识点总结。

在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。

同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。

初二下册数学重要知识点总结精选

初二下册数学重要知识点总结精选

初二下册数学重要知识点总结精选初二下册数学重要知识点第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3、整数指数幂的加减乘除法。

4、分式方程及其解法。

第二章反比例函数1、反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。

第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1、平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结一、实数1.1 实数的定义及分类实数包括有理数和无理数。

有理数是可以表示为两个整数比的数,包括整数、分数、小数(有限小数和无限循环小数)。

无理数是不能表示为两个整数比的数,例如√2和π。

1.2 实数的性质(1)实数具有加法、减法、乘法、除法四种运算。

(2)实数具有相反数、倒数等概念。

(3)实数可以进行大小比较。

1.3 实数与数轴数轴是一条直线,规定了原点、正方向和单位长度,实数与数轴上的点一一对应。

二、整式与函数2.1 整式的定义及分类整式是只有加、减、乘运算,且运算对象为整数的代数式。

整式包括单项式和多项式。

2.2 整式的运算(1)单项式的运算:加、减、乘、除。

(2)多项式的运算:加、减、乘、除。

2.3 函数的定义及性质函数是一种对应关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。

函数具有唯一性、连续性、单调性等性质。

2.4 一次函数一次函数是形如y=kx+b(k、b为常数,k≠0)的函数。

一次函数的图像是直线。

2.5 二次函数二次函数是形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数。

二次函数的图像是一条抛物线。

三、三角形3.1 三角形的定义及性质三角形是由三条边和三个角组成的图形。

三角形的内角和为180∘,任意两边之和大于第三边。

3.2 三角形的分类(1)锐角三角形:三个内角都小于90∘。

(2)直角三角形:一个内角为90∘。

(3)钝角三角形:一个内角大于90∘。

3.3 三角形的判定(1)SSS 判定:三角形的三边分别相等,则这三个三角形全等。

(2)SAS 判定:三角形的两边和它们夹角分别相等,则这两个三角形全等。

(3)ASA 判定:三角形的两角和它们夹边分别相等,则这两个三角形全等。

(4)AAS 判定:三角形的两角和其中一边分别相等,则这两个三角形全等。

四、平行四边形4.1 平行四边形的定义及性质平行四边形是具有两对平行边的四边形。

初中八年级下册数学知识点

初中八年级下册数学知识点

初中八年级下册数学知识点
1. 勾股定理:勾股定理是一个基本的几何定理,用于描述直角三角形中三条边的关系。

在八年级下册,学生将学习如何使用勾股定理解决实际问题。

2. 二次根式:二次根式是数学中的一种表达式,表示一个数的平方根。

学生需要掌握二次根式的性质、运算规则以及与实数的关系。

3. 一元二次方程:一元二次方程是包含一个未知数的二次方程。

学生需要掌握一元二次方程的解法、应用以及与现实生活的关系。

4. 平面直角坐标系:平面直角坐标系是一个基本的数学工具,用于描述平面上的点的位置。

学生需要掌握如何使用坐标系表示点的位置,以及如何通过坐标系解决实际问题。

5. 一次函数与反比例函数:一次函数和反比例函数是两种基本的函数形式。

学生需要掌握它们的性质、图像以及在实际生活中的应用。

6. 数据的收集与整理:学生需要掌握如何收集和整理数据,以及如何使用图表来表示数据。

这将帮助他们更好地理解和分析现实生活中的问题。

以上是初中八年级下册数学的主要知识点。

在学习过程中,学生需要注重理解和应用,通过大量的练习来巩固所学知识。

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结

最全面八年级下册数学知识点归纳总结八年级下册数学知识点归纳总结一、代数基础1.数的基础知识正数、负数的概念,求相反数,绝对值。

2.代数式代数式的概念,如何列代数式,代数式的简单加减乘除。

3.一元一次方程一元一次方程的概念,如何列一元一次方程,方程的解。

4.解一元一次方程组一元一次方程组的概念,如何列一元一次方程组,解一元一次方程组。

二、图形的性质1.平面图形各种多边形的定义、性质和判定方法。

2.圆的相关知识圆的定义和性质、弧、圆周角、相交弧、相切弧的性质。

3.相似三角形相似三角形的概念、性质、判定方法及三倍线定理。

4.勾股定理勾股定理的概念、性质、证明及应用场景。

5.解锐角三角函数正弦、余弦、正切函数,锐角函数基本关系式。

三、空间几何1.空间图形的计算长方体、正方体、球体等几何体的体积、表面积的计算。

2.解同面直线和平面的关系两个平面的交线是直线,两个直线的位置关系是什么,两个直线的夹角,两条垂直直线之间的夹角。

3.平面与立体图形的关系平面和立体图形的交、相交线,截面的形状及性质。

四、统计数学1.概率的基本概念概率的概念、事件、随机事件的计算公式,样本空间、基本事件。

2.事件的独立性事件的并、交、余、互斥,两个事件的独立性及其判定。

3.频率与概率的关系频率与概率的定义及其区别,频率越大,概率越小。

五、函数初步1.函数的定义函数的概念及表示方法,自变量、因变量和函数值。

2.函数的图像与性质函数图像的概念,单调性、奇偶性、周期性、对称性等。

3.函数的应用如何应用函数进行模型建立,自变量和因变量的定量关系。

六、反比例函数1.反比例函数的概念反比例函数的定义,反比例函数图像。

2.反比例函数的性质反比例函数的单调性、渐近线、变化率,反比例函数与直线的关系。

3.应用反比例函数如何应用反比例函数进行模型建立,自变量和因变量的定量关系。

七、数列1.等差数列等差数列的概念、通项公式、通项公式的推导及应用。

2.等比数列等比数列的概念、通项公式、通项公式的推导及应用。

八年级下册数学知识点归纳

八年级下册数学知识点归纳

八年级下册数学知识点归纳学习好八年级下册数学的知识点,和初二学生自己的努力是分不开的。

为大家整理了八年级下册数学知识点归纳,欢迎大家阅读!八年级下册数学知识点归纳(一)分解因式一、公式:1、ma+mb+mc=m(a+b+c)2、a2-b2=(a+b)(a-b)3、a2&plusmn;2ab+b2=(a&plusmn;b)2 二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

1、把几个整式的积化成一个多项式的形式,是乘法运算.2、把一个多项式化成几个整式的积的形式,是因式分解.3、ma+mb+mc m(a+b+c)4、因式分解与整式乘法是相反方向的变形。

三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式. 找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 分解因式的方法:1、提公因式法。

2、运用公式法。

八年级下册数学知识点归纳(二)证明一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果&hellip;&hellip;,那么&hellip;&hellip;”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

八年级下数学知识点归纳大全

八年级下数学知识点归纳大全

八年级下数学知识点归纳大全一、分式1. 分式的概念- 分式就像是分数的“升级版”。

如果A、B表示两个整式,A÷B就可以写成(A)/(B)的形式,这里B要是含有字母的整式,而且B不能等于0哦,这样的式子就是分式啦。

比如说(x)/(x + 1)就是分式,而(3)/(5)是分数不是分式,因为分母没有字母。

2. 分式的基本性质- 分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。

这就好比给分式“化妆”,只要按照规则来,它的“本质”不会变。

例如(a)/(b)=(ac)/(bc)(c≠0)。

3. 分式的运算- 分式的乘除:分式相乘,分子乘分子,分母乘分母;分式相除,就把除式的分子分母颠倒位置后再相乘。

就像一群小分式在玩乘法和除法的游戏,按照规则就能算出结果。

- 分式的加减:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,要先通分,把它们变成同分母分式,然后再按照同分母分式加减的方法计算。

这就好比把不同的小伙伴拉到同一个“队伍”里,然后再进行计算。

二、反比例函数1. 反比例函数的概念- 一般地,如果两个变量x、y之间的关系可以表示成y=(k)/(x)(k为常数,k≠0)的形式,那么y是x的反比例函数。

想象一下,x和y就像两个调皮的小孩,它们的乘积是个固定的数(k),但是x越大,y就越小,就像跷跷板一样。

2. 反比例函数的图象和性质- 反比例函数的图象是双曲线。

当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y随x的增大而增大。

可以把图象想象成两个弯弯的“手臂”,k的正负决定了这两个“手臂”在哪个象限跳舞。

3. 反比例函数的应用- 在实际生活中,比如压力一定时,压强和受力面积的关系就可以用反比例函数来表示。

这就像我们在雪地里走路,脚面积越大,压强越小,就不容易陷进去,这里压强和受力面积就是反比例关系。

八年级下册数学知识点

八年级下册数学知识点

八年级下册数学知识点八年级下册数学知识点15篇上学的时候,相信大家一定都接触过知识点吧!知识点也可以通俗的理解为重要的内容。

为了帮助大家掌握重要知识点,下面是店铺帮大家整理的八年级下册数学知识点,仅供参考,大家一起来看看吧。

八年级下册数学知识点11.旋转和平移平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。

旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。

2.平行四边形平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。

3.特殊平行四边形行特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。

这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。

解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。

这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。

八年级下册数学知识点21、分式:(1)分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意义的条件:分式的分母是否等于0,有意义则分母不为0,无意义则分母为0。

(3)分式值为零的条件:分式A/B=0的条件是A=0,且B≠0。

注意:求出使分子为0的字母的值,一定要注意检验这个字母的值是否使分母的值为0,一般当分母的值不为0时,就是所要求的字母的值。

(4)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(5)分式的通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

2018年新人版八年级数学(下册)知识点总结归纳

2018年新人版八年级数学(下册)知识点总结归纳

第十六章 二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式. 注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;注意使用)0a ()a (a 2≥=.(3)积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅. 5.二次根式比较大小的方法: (1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (ba b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则: (1))0b ,0a (bab a >≥=; (2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2018-2019学年八年级数学下册 第一部分 基础知识篇 第2课 二次根式的运算例题 (新版)浙教版

2018-2019学年八年级数学下册 第一部分 基础知识篇 第2课 二次根式的运算例题 (新版)浙教版

宽AD.
思而答路可案分求:析得∵斜:AE坡,度DAFB是,的垂再坡直加度距上i=离B1C:与即2水可.5平,.距BA离EE 的比21.,5 从,
∵斜坡CD的坡度i=1:2,
CF DF

1, 2
∵BE=20米,∴AE=50米,DF=40米, ∵EF=BC,BC=5米, ∴EF=5米, ∴AD=AE+EF+DF=50+5+40=95米, 答:坝底宽AD为95米.
(1) 7 的有理化因式是 ,3 2 2 的有理化因式是

(2)化简: 3 ;
32 3
(3)比较 2014 2013与 2012 2011 的大小,说明理由.
解题技巧
解:(1) 7 的有理化因式是 7 ,3 2 2 的有理 化因式是 3 2 2 ;
(2)原式
3 32
3

二四三一
联悟解读
74 384 321
方法2:原式= x 2 2 2 2
2
32 2
2
3 2321
方法3:Q x 2 3 x 2 2 3即x 2 4x 4 3
x 2 4x 2 32 1
重要结论: 代关数键式词求:值 可用求整x体值代再入 计变法二代形算会次数再也使根式可计代式求先算数,. 重式要的方求法值:更 整简值体便,代. 整入体法
3
2
2 3



11 2 8
15


4


1 2 1
3
3 6 8
解题技巧
解:
例2.计算:12 3 1
3 22
20 5

2018八年级下册数学知识汇总,推荐文档

2018八年级下册数学知识汇总,推荐文档

八年级下册定义公式汇总第十六章二次根式1、一般地,把形如-((a>0)的式子叫做二次根式,“「”称为二次根号。

(一个正数有两个平方根;在实数范围内,负数没有平方根。

)2、二次根式的性质:(..a ) 2=a (a>0),p I I 厂a (a > 0)v a ay 0 ( a =0);3、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面•4、二次根式的乘法法则:..a x .._b = .. ab (a> 0,b > 0)二次根式的乘法法则逆用:J ab = . a x . b (a》0,b》0)5、二次根式的除法法则:山=「(a> 0,b > 0)J b * b二次根式的除法法规逆用:,a「a (a> 0,b >0)V b J b6最简二次根式:必须同时满足下列条件①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式;③分母中不含根式。

7、二次根式加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

10、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

11、有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章勾股定理1、勾股定理 (命题1)如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边在/ABC 中,/ C=90 o,贝U c= a2 b2 ,a= . c2 - b2, b= . c2 - a2)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、勾股定理的逆定理(直角三角形的判定)(命题2)如果三角形的三边长a、b、c,满足a2+b2=c2那么这个三角形是直角三角形要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;2 2 2 2 2 2(2)验证c与a +b是否具有相等关系,若a +b =c ,则△ ABC是以/ C为直角2 2 2 2 2 2 的直角三角形(若c >a +b,则△ ABC是以/ C为钝角的钝角三角形;若c < a +b,2 2 2则厶ABC为锐角三角形)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册定义公式汇总第十六章二次根式二次根式,”称为二次根号。

“)、一般地,把形如((a>01的式子叫做a (一个正数有两个平方根;在实数范围内,负数没有平方根。

) 0),二次根式的性质:)(=a (a>2、2aa > 0 () a 2丨 a aa ;o (=0)如果被开方数中有的因式能够开得尽方,那么,就可以、因式的外移和内移:3a a V 0)(用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. 4、二次根式的乘法法则:X = (a>0,b >0) baabab (a>0,b >0二次根式的乘法法则逆用:=)X abaa=) 0a5、二次根式的除法法则:》0,b >(bbaa ) 0,b >0=二次根式的除法法规逆用:(a> bb①被开方数不含分母;②被开方数必须同时满足下列条件、最简二次根式:6中不含能开得尽方的因数或因式;③分母中不含根式。

二次根式加减时,可以先将二次根式化成最简二次根、7二次根式加减法法则:式,再将被开方数相同的二次根式进行合并。

,则这几最简二次根式后,若被开方数相同二次根式化成、10同类二次根式:个二次根式就是同类二次根式。

有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律、11以及多项式的乘法公式,都适用于二次根式的运算.第十七章勾股定理1、勾股定理(命题1)如果直角三角形的两直角边长分别为a, b,斜边长为C, 222=c+b那么a要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边-1 -222222a=b=)在/ABC中,/ C=90 o,贝U, c= , a-cbcab-)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(2 (3)利用勾股定理可以证明线段平方关系的问题2、勾股定理的逆定理(直角三角形的判定)(命题2)如果三角形的三边长a、222那么这个三角形是直角三角形+b =cb、c,满足a要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:C;222222为直角的直ABC是以/ C+bc与a是否具有相等关系,若a+b=c ,则△ (2)验证222222,贝U△为钝角的钝角三角形;若c< a+bc角三角形(若> a+b,则厶ABC是以/ C222如若三角ABC为锐角三角形)。

(定理中a+b=c只是一种表现形式,不可认为是唯一的,222,那么以a + c= b, b,c为三边的三角形也是直角三角形,但ca形三边长,b,满足a为斜边)是b3、命题2与命题1的题设、结论正好相反,这两个命题叫做互为逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

4、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

5、常见的勾股定理三边的组合:15 15 8 24 25 17 9 7126124 10 26 60 9 41 40 11- 2 -平行四边形章第十八四边形知识点:一、关系结构图:、知识点讲解:1、平行四边形的性质(重点):D 1 ()两组对边分别平行;商组对边廿别乎疔平帝四边形正方形—组对边平行. 另一组对边军平帝ABCD是平行四边形)两组对角分别相等;(3 A B 2、C)两组对边分别相等;2O平行四边形的判定(难点):川辺看J二.一鋁对辺平行且糊畀L三篇铝对订分棉寺卜㈣训岸虚平行四进恥川角音…一闪"聒铝对吊卄别珥薛丛对用吐看一一五*对角诈丘码平廿)对角线互相平分;4(.)邻角互补5(DCO . AB 矩形的性质:3、CDCD1;()具有平行四边形的所有通性ABCD是矩形因为;2)四个角都是直角(O ⑷是轴对称图形,它有两条对称轴. 、矩形的判定:4 .)对角线相等3 (⑴有一个角是直角的平行四边形;(2)有三个角是直角的四边形;AABB对角线相等的平行四边形;⑶⑷对角线相等且互相平分的四边形. 5、菱形的性质:D1 ()具有平行四边形的所有通性;是菱形ABCD因为)四个边都相等;2 ( 6.菱形的判定:O.3)对角线垂直且平分对(角CA D 一组邻边等)平行四边形(1 )四条边都相等(2.ABCD四边形是菱形 B O边形)对角线垂直的平行四(3 7、正方形的性质:CA CDCD B O-4 -BBAA.()具有平行四边形的所有通性; 1 ABCD是正方形2)四个边都相等,四个(角都是直角;正方形的判定:8•.分对角(3)对角线相等垂直且平一个直角一组邻边等(1)平行四边形四边形ABCD是正方形.一个直角)菱形(2 (3)矩形一组邻边等9、两条平行线之间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离10、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位11、三角形的中线:三角形的一边中点与这边所对顶点的连线叫做三角形的中线。

12、三角形的中位线定理:三角形的中位线平行行三角形的第三边, 并且等于第三边的一半。

菱有一组邻边相等的平行四边形叫做还有①除具有平行四边形的性质外,四边形相等;②对角线互相垂直,且每一条对角线平分一组对角;③既是①四条边相等的四边形是菱形;②对角线垂直的平行四边形是菱形;③有一组邻边相等为一边①S-ah(a为这条边上h 长,;的高)2 的平行四边形。

菱形。

中心对称图形又是轴对称图形。

形c(b、②为两条对角线的)长-j 为边菱形的性质:矩形、①有一组邻边相等的矩形是①(a有一组邻边具有平行四边形、②有一个角是直角的长);相等且有一①四个角是直角,四条边相等;②对正方形;正2 ③有一个角是角线相等,互相垂直平分,每一条对菱形是正方形;个角是直角方为(b②直角的平行四边形且邻边相角线平分一组对角;③既是中心对称的平行四边形)对角线长图形又是轴对称图形。

等。

形叫做正方形第十九章一次函数函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能的量。

S = -bc取同一数值的,并且对于xy2、函数:一般的,在一个变化过程中,如果有两个变量x和自变称为的值与其对应,那么我们就把每一个确定的值,y都有唯一确定x是x的函数。

y量,y是因变量,丫对应两个值是错误的一个X是否有唯一确定的的函数,只要看YX取值确定的时候,XY* 判断是否为值与之对应一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义3、定义域:域。

-6 -4、确定函数定义域的方法:1 ;全体实数整式)关系式为时,函数定义域为(2 ;分母不等于零)关系式含有分式(时,分式的 3 ;被开放方数大于等于零)关系式含有二次根式(时,4 ;底数不等于零)关系式中含有指数为零的式子(时,5。

有意义函数定义域还要和实际情况相符合(,使之)实际问题中,5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.运用:求解析式中的参数、求函数解释式7、描点法画函数图形的一般步骤;列表(表中给出一些自变量的值及其对应的函数值)第一步:y=3X函数表达式为第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为;纵坐标,描出表格中数值对应的各点)第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接。

起来)8函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(一)一次函数1、一次函数的定义kb的形式较为灵活,但只要抓与(,是常数(其中一般地,形如bkx ybk kb, 根据题意求的常数的取值范围),且与)的住函数基本形式,准确找到0 k X是自变量。

当时,一次函数函数,叫做一次函数,其中,又叫做正比kxy 0b例函数。

⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是by kx判断是否能化成以上形式.,时,仍是一次函数.⑵当kxy 0k0b - 7 -时,它不是一次函数.⑶当,00 kb .⑷正比例函数是一次函数的特例,一次函数包括正比例函数2、正比例函数及性质y=kx(kk工0)k叫做比是常数,一般地,形如的函数叫做正比例函数,其中.例系数y=kx (k) k x1 ③不为零②不为零①注:正比例函数一般形式指数为b取零k>0y=kxxy也经过三、一象限,从左向右上升,即随当的增大时,直线k<0y=kxxy反经过二、四象限,从左向右下降,即随增大;当增大时,直线而减小.(1)解析式y=kx (k是常数,k0)工必过点,:、1k)(2)(0, 0)(?时,图像经过一、三象限;k<0时,(3)图像经过二、四象限走向:k>0 x , y随增减性k>0, y随x 增大而减小的增大而增大;k<0(4)轴;|k|x轴|k|越大,越接近y(5)越小,越接近倾斜度:3、一次函数及性质y=kxb(k,bk工O)yx.b=O当叫做一般地,形如,那么+是常数,的一次函数y=kxby=kx.,所以说正比例函数是一种特殊的一次函数+时,即y=kx+b (k) k x1指数为不为零注:一次函数一般形式①不为零②b取任意实数③b Ob-y二kx+bO )两点的一条直线,我一次函数)和(的图象是经过(,,k b>O.y=kx+b,y=kx|b| (当它可以看作由直线个单位长度得到们称它为直线平移b<ObY=kx +b实际就是函数图象与坐时,向下平移)时,向上平移;当其中Yx=0时。

标轴轴的交点即当)和,bO(2)必过点:((1)解析式:y=kx+b(k、b是常数,kO) b 0 )(-,3 )走向:_ k Okk 0 直线经过第一、三、四象限直线经过第一、二、三象限0 b Ob 0 k Ok 直线经过第二、三、四象限直线经过第一、二、四象限0 Obb (4)增减性:k>0 , y随x的增大而增大();k<0, y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:的图象的画法y=kx + b4、一次函数YX=0,的在实际做题中只需要俩点就可以确定函数图像求出一般我们令.Y=0X如图求出值,再令的y=kx+bb)(0, (两点确定一条直线,这两点我们解析:X轴上所有坐般确定在坐标轴上,因为x,0Y0轴上所有点的)即(标点的纵坐标为0y , 0 ) O(-b/k )这样作图既快又准确即(横坐标为,5、正比例函数与一次函数之间的关系个单|b|它可以看作是由直线y=kx平移一次函数y=kx + b的图象是一条直线,时,向下平移)时, 向上平移;当b<0b>0位长度而得到(当、正比例函数和一次函数及性质6正比例函数是一次即,,(正比例函数是一次函数的特例)),所以可以说正比例函数是一次函数而一次函数未必是正比例函数函数b=0的情)的位置关系6、直线()与0k 0y kx by kx bk 221121)两直线相交2且(1()两直线平行k bkk kb 211221 4 )两直线垂直且3)两直线重合((1b b kk kk 212112 、用待定系数法确定函数解析式的一般步骤:7 )根据已知条件写出含有待定系数的函数关系式;(1 的几对值或图象上的几个点的坐标代入上述函数关系式中得到、y2)将x (以待定系数为未知数的方程;)解方程得出未知系数的值;(3. 4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式(- 10 -第二十章数据的分析一、数据的代表1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.XX x 公式:n12 _____________________________________ n时,一般使用该公的重要程度相同,…,中各个数据使用:当所给数据,XXX 12n式计算平均数.2、加权平均数:若个数,,…,的权分别是,,…,,贝卩n WXWXWX 2ii2nn XW XW XW,叫做这个数的加权平均数.使用:当所给数据,,…,中各n121n2n ---------------------------------- WW W n21个数据的重要程度(权)不同时,一般选XXX12n用加权平均数计算平均数•权的意义:权就是权重即数据的重要程度•常见的权:1)数值、2)百分数、3)比值、4)频数等。

相关文档
最新文档