无约束优化方法(最速下降法-牛顿法)
(05)第四章-无约束优化方法(梯度法-牛顿法和变尺度法)
第四章
第四章
无约束优化问题标准形式:
无约束优化问题标准形式:
§
§
§
§
§
§
图最速下降法的收敛过程
αα
2
2
例4-1 求目标函数
取初始点
[2,2]
=
x
例4-2 求目标函数解取初始点[2,2]
=x
算出一维搜索最佳步长
§
例4-3 用梯度法求下面无约束优化问题:
例4-3 用梯度法求下面无约束优化问题:
例4-3 用梯度法求下面无约束优化问题:
例4-3 用梯度法求下面无约束优化问题:
例4-3 用梯度法求下面无约束优化问题:
梯度法的特点
x
给定0,ε
一般迭代式:
§4.3
§4.3
§4.3
§4.3
α0
d 0
x
x 1
x*
1
α1d 1
1()
f −∇x d 1
4-4 共轭方向法
假设目标函数f (x ) 在极值点附近的二次近似函数为
沿某个下降方向
如果能够选定这样的搜索方向,那么对于二
α
0d0
x0x1x*
1
α
1
d1
1
()
f
−∇x d
1。
Matlab中的最优化问题求解方法
Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。
无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。
而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。
本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。
一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。
其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。
然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。
2. 共轭梯度法共轭梯度法是一种改进的最速下降法。
它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。
相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。
3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。
它通过构建并求解特定的二次逼近模型来求解无约束问题。
然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。
二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。
它通过在可行域内进行边界移动来寻找最优解。
然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。
2. 内点法内点法是一种改进的线性规划问题求解方法。
与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。
内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。
三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。
它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。
信赖域算法既考虑了收敛速度,又保持了数值稳定性。
2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。
它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。
遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。
无约束优化方法
无约束优化方法1. 最速下降法(Gradient Descent Method)最速下降法是一种基于梯度信息的迭代优化算法。
其基本思想是从任意初始点开始,沿着目标函数的梯度方向进行迭代,直到达到收敛条件。
最速下降法的迭代更新公式如下:x_{k+1}=x_k-t_k*∇f(x_k)其中,x_k是第k次迭代的解向量,t_k是第k次迭代的步长(也称为学习率),∇f(x_k)是目标函数在x_k处的梯度向量。
最速下降法的步骤如下:1)选取初始点x_0。
2)计算目标函数的梯度∇f(x_k)。
3)计算步长t_k。
4)更新解向量x_{k+1}。
5)判断迭代终止条件,如果满足则停止迭代;否则返回第2步。
最速下降法的优点是易于实现和理解,收敛性较好。
然而,最速下降法存在的问题是收敛速度较慢,特别是对于目标函数呈现狭长或弯曲形状的情况下。
这导致了在高维优化问题中,最速下降法的性能较差。
2. 牛顿法(Newton's Method)牛顿法是一种基于二阶导数信息的迭代优化算法。
它使用目标函数的一阶和二阶导数信息构造一个二次近似模型,然后求解该模型的最小值。
牛顿法的迭代更新公式如下:x_{k+1}=x_k-H_k^{-1}*∇f(x_k)其中,H_k是目标函数在x_k处的海森矩阵,∇f(x_k)是目标函数在x_k处的梯度向量。
牛顿法的步骤如下:1)选取初始点x_0。
2)计算目标函数的梯度∇f(x_k)和海森矩阵H_k。
3)计算更新方向H_k^{-1}*∇f(x_k)。
4)更新解向量x_{k+1}。
5)判断迭代终止条件,如果满足则停止迭代;否则返回第2步。
牛顿法的优点是收敛速度快,尤其是在目标函数曲率大的地方。
然而,牛顿法也存在一些问题。
首先,计算海森矩阵需要大量的计算资源,特别是在高维空间中。
其次,当海森矩阵不可逆或近似不可逆时,牛顿法可能会失效。
综上所述,最速下降法和牛顿法是两种常用的无约束优化方法。
最速下降法简单易实现,但收敛速度较慢;牛顿法收敛速度快,但计算量大且可能遇到海森矩阵不可逆的问题。
最速下降法与牛顿法及其区别
最速下降法与牛顿法及其区别摘要:无约束优化方法是优化技术中极为重要和基本内容之一。
它不仅可以直接用来求解无约束优化问题,而且很多约束优化问题也常将其转化为无约束优化问题,然后用无约束优化方法来求解。
最速下降法和牛顿法是比较常见的求解无约束问题的最优化方法,这两种算法作为基本算法,在最优化方法中占有重要的地位。
其中最速下降法又称梯度法,其优点是工作量少,存储变量较少,初始点要求不高;缺点是收敛慢,效率低。
牛顿法的优点是收敛速度快;缺点是对初始点要求严格,方向构造困难,计算复杂且占用内存较大。
同时,这两种算法的理论和方法渗透到许多方面,特别是在军事、经济、管理、生产过程自动化、工程设计和产品优化设计等方面都有着重要的应用。
因此,研究最速下降法和牛顿法的原理及其算法对我们有着及其重要的意义。
关键字:无约束优化最速下降法牛顿法Abstract: unconstrained optimization method is to optimize the technology is extremely important and basic content of. It not only can be directly used to solve unconstrained optimization problems, and a lot of constrained optimization problems are often transformed into unconstrained optimization problem, and then use the unconstrained optimization methods to solve. The steepest descent method and Newton-Raphson method is relatively common in the unconstrained problem optimization method, these two kinds of algorithm as the basic algorithm, the optimization method plays an important role in. One of the steepest descent method also known as gradient method, its advantages are less workload, storage variable is less, the initial requirements is not high; drawback is the slow convergence, low efficiency. Newtonian method has the advantages of fast convergence speed; drawback is the initial point of strict construction difficulties, directions, complicated calculation and larger memory. At the same time, these two kinds of algorithm theory and methods into many aspects, especially in the military, economic, management, production process automation, engineering design and product optimization design has important applications. Therefore, to study the steepest descent method and Newton-Raphson method principle and algorithm for us with its important significance.Keywords: unconstrained optimization steepest descent method一、算法的基本原理1.1 最速下降法的基本原理在基本迭代公式k k k k P t X X +=+1中,每次迭代搜索方向k P 取为目标函数)(X f 的负梯度方向,即)(k k X f P -∇=,而每次迭代的步长k t 取为最优步长,由此确定的算法称为最速下降法。
最优化方法实验报告(2)
最优化方法实验报告Numerical Linear Algebra And ItsApplications学生所在学院:理学院学生所在班级:计算数学10-1学生姓名:甘纯指导教师:单锐教务处2013年5月实验三实验名称:无约束最优化方法的MATLAB实现实验时间: 2013年05月10日星期三实验成绩:一、实验目的:通过本次实验的学习,进一步熟悉掌握使用MATLAB软件,并能利用该软件进行无约束最优化方法的计算。
二、实验背景:(一)最速下降法1、算法原理最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。
2、算法步骤用最速下降法求无约束问题n R()min的算法步骤如下:xxf,a )给定初始点)0(x ,精度0>ε,并令k=0;b )计算搜索方向)()()(k k x f v -∇=,其中)()(k x f ∇表示函数)(x f 在点)(k x 处的梯度;c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索,即求k λ,使得)(min )()()(0)()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。
(二)牛顿法1、算法原理牛顿法是基于多元函数的泰勒展开而来的,它将)()]([-)(1)(2k k x f x f ∇∇-作为搜索方向,因此它的迭代公式可直接写出来:)()]([)(1)(2)()(k k k k x f x f x x ∇∇-=-2、算法步骤用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下:a )给定初始点)0(x ,精度0>ε,并令k=0;b )若ε≤∇)()(k x f ,停止,极小点为)(k x ,否则转c );c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ∇∇-=∇--令;d )令1,)()()1(+=+=+k k p x x k k k ,转b )。
第3章 无约束最优化方法 3-1 最速下降法 3-2 牛顿法
1
u f ( x)u m u
T 2
2
u R
n
则从任意的初始点 x 0 出发,阻尼牛顿法产 生的迭代点列 满足: (1)当 x k 为有穷点列时,其最后一个点 为 f ( x) 的唯一极小点。 (2)当 x k 为无穷点列时,收敛到 f ( x) 的
第3.2节 Newton法及其改进
第3.1节 最速下降法(Steepest Method)
对于最速下降法的几点说明 (1)第2.6节中介绍的关于下降算法的收敛 性定理对最速下降法都是成立的 。 (2)目标函数在负梯度方向下降得最快只 是局部性质。 (3)锯齿现象 (4)改进策略:在计算的开始阶段使用最 速下降法,在迭代数次后,改用其他算法。
本节的主要内容:
(1)牛顿法的基本思想
(2)阻尼牛顿法
(3)带保护措施的阻尼牛顿法
(4)吉尔-默里稳定牛顿法
(5)信赖域方法(一)
第3.2节 Newton法及其改进
(1)牛顿法的基本思想: * 在目标函数f ( x)的极小点 x 的近似点 x k 附近将 f ( x) 二阶Tayler展开,用展开的二次 函数去逼近 f ( x),将这个二次函数的极小点 * x 作为 的一个新的近似点 x k 1 ,依次下去, 用一系列二次函数的极小点 xk 1 去逼近 f ( x) 的极小点 x * 。
第3.2节 Newton法及其改进
设 f ( x)二次连续可微,则 f ( x) 在 x k 处的二次 近似为: 1 T f ( x) qk ( x) f ( xk ) f ( xk ) ( x xk ) ( x xk )T 2 f ( xk )( x xk ) 2 令
无约束常用优化方法
步长 ,作前进(或后退)试探.如试探成功(目
标函数值有所减小),则按步长序列
,加
大步长(注意每次加大步长都是由初始点算起),直
至试探失败(目标函数值比前一次的有所增加)时,
则取其前一次的步长作为沿这个坐标轴方向搜索的最
优步长,并计算出该方向上的终止点,而后以这个终
止点为始点再进行下一坐标轴方向的搜索,并重复上
处
显然 是二次函数,并且还是正定二次函数,所以 是凸函数且存在唯一全局极小点.为求此极小点,令
即可解得
即
(5.9)
对照基本迭代公式,易知,式(5.9)中的搜索方向
步长因子
方向
是直指点 处近似二次函数
的极小点的方向.此时称此方向为从点 出发的
Newton方向.从初始点开始,每一轮从当前迭代点出发,
沿Newton方向并取步长 的算法称为Newton法.
另外,共轭梯度法不要求精确的直线搜 索.但是,不精确的直线搜索可能导致迭代 出来的向量不再共轭,从而降低方法的效 能.克服的办法是,重设初始点,即把经过 n次迭代得到的Xn作为初始点重新迭代.
五、坐标轮换法
在坐标轮换法中,沿各个坐标轴方向进行一维搜索
时,常选用最优步长法或加速步长法.加速步长法从
初始点出发,沿搜索(坐标轴)方向先取一个较小的
三、共轭方向法
1、概念
通常,我们把从任意点
出发,依次沿某组共轭
方向进行一维搜索的求解最优化问题的方法,叫做共
轭方向法.
2、特点
• 一般地,在n维空间中可以找出n个互相共轭的方向,对于n元正 定二次函数,从任意初始点出发,顺次沿这n个共轭方向最多作n 次直线搜索就可以求得目标函数的极小点.这就是共轭方向法的 算法形成的基本思想.
第3章 无约束最优化方法 3-1 最速下降法 3-2 牛顿法
是局部性质。 n (3)锯齿现象 n (4)改进策略:在计算的开始阶段使用最
速下降法,在迭代数次后,改用其他算法。
第3.1节 最速下降法(Steepest Method)
n [引理3.2](康德洛维奇Kntorovich不等式)
第3.2节 Newton法及其改进
n [推论3.8]设 且对任意的 在水平集
在开凸集D上二阶连续可微, ,存在常数 ,使得
上满足
则从任意的初始点 出发,牛顿法产生的迭
代点列 满足
,且收敛到
的唯一极小点。
第3.2节 Newton法及其改进
n 阻尼牛顿法的优点与缺点: 阻尼牛顿法克服了牛顿法要求初始点充分靠
n
,则d是下降方向;
n
,则 是下降方向。
第3.2.4节 吉尔-默里稳定牛顿法
n Gill-Murray稳定牛顿法的基本思想: n 当Hesse矩阵 在迭代点
处为不定矩阵时,对其进行强迫正 定的 分解;当 趋于零时, 采用负曲率方向使函数值下降。
第3.2.4节 吉尔-默里稳定牛顿法
n [算法3.15](求负曲率方向的算法)
得到方向 ,令
。
n (6)精确线性搜索求 ,且令
n (7)若
,则进行步(8);否则,
令
,转步(2)。
n (8)输出
,停止计算。
第3.2.4节 吉尔-默里稳定牛顿法
n [定理3.18]设 二阶连续可微,且存在
,使得
为有界闭
凸集。假定在吉尔-默里稳定牛顿法中取
,且初始点
,则吉尔-默里稳
定牛顿法产生的迭代序列 满足:
五种最优化方法
精心整理五种最优化方法1.最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);341.22.2.11232.23.3.11233.24.模式搜索法(步长加速法)4.1简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min(f_1(x),f_2(x),...,f_k(x))s.t.g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
6.1遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。
种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
2.适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。
该函数就是遗传算法中指导搜索的评价函数。
6.2遗传算法基本流程遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。
五种最优化方法
五种最优化方法 Prepared on 22 November 2020五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
机器学习算法系列最速下降法牛顿法拟牛顿法
机器学习算法系列最速下降法牛顿法拟牛顿法最速下降法(Gradient Descent)最速下降法是一种常用的优化算法,用于求解无约束的最小化问题。
其原理是通过不断迭代更新参数的方式来逼近最优解。
在最速下降法中,每次迭代的方向是当前位置的负梯度方向,即沿着目标函数下降最快的方向前进。
具体地,对于目标函数f(x),在当前位置x_k处的梯度为g_k=▽f(x_k),则下一次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-α*g_k其中,α 是一个称为学习率(learning rate)的参数,用于控制每次迭代的步长。
最速下降法的优点是简单易实现,收敛速度较快。
然而,它也有一些缺点。
首先,最速下降法的收敛速度依赖于学习率的选择,过小的学习率会导致收敛速度过慢,而过大的学习率可能会导致跳过最优解。
其次,最速下降法通常会在目标函数呈现弯曲或者高度相关的情况下表现不佳,很难快速收敛到最优解。
牛顿法(Newton's Method)牛顿法是一种通过二阶导数信息来优化的算法,可以更快地收敛到目标函数的最优解。
在牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-(H_k)^{-1}*▽f(x_k)其中,H_k是目标函数f(x)在当前位置x_k处的黑塞矩阵。
黑塞矩阵描述了目标函数的二阶导数信息,可以帮助更准确地估计参数的更新方向。
牛顿法的优点是收敛速度较快,特别是对于目标函数呈现弯曲或者高度相关的情况下,相较于最速下降法可以更快地达到最优解。
然而,牛顿法也有一些缺点。
首先,计算黑塞矩阵的代价较高,尤其是当参数较多时。
其次,黑塞矩阵可能不可逆或者计算代价较大,这时可以通过使用拟牛顿法来避免。
拟牛顿法(Quasi-Newton Method)拟牛顿法是一类基于牛顿法的优化算法,通过估计黑塞矩阵的逆来逼近最优解,从而避免了计算黑塞矩阵的代价较高的问题。
在拟牛顿法中,每次迭代的位置x_{k+1}可以通过以下公式计算:x_{k+1}=x_k-B_k*▽f(x_k)其中,B_k是一个对黑塞矩阵逆的估计。
五种最优化方法
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
最速下降法与牛顿法结合求无约束最优值
哈哈,我已经实现了最速下降法语牛顿发的结合,并且还可以动画演示其求解最优值的迭代过程。
都已在程序上实现了。
(matlab).运行的时,最速下降精度不要弄得太小,到后面的牛顿精度就可以取任意值了。
ticclc;clear;syms x1 x2G=[];G=input('请输入想x1^2,x2^2,x1*x2,x1,x2,常系数,如[1,2,3,4,5,6] 系数向量=:');a=G(1,1);b=G(1,2);c=G(1,3);d=G(1,4);e=G(1,5);g=G(1,6);f=a*x1^2+b*x2^2+c*x1*x2+d*x1+e*x2+g;%画出原始图像figure;x11=-100:0.5:100;x22=x11;[x11,x22]=meshgrid(x11,x22);f11=a.*x11.^2+b*x22.^2+c*x11.*x22+d.*x11+e.*x22+g;surf(f11),grid on,hold on;%画出原始图像df1=diff(f,x1);df2=diff(f,x2);%对函数进行求一阶导DF=[df1;df2];df11=diff(df1,x1);df12=diff(df1,x2);df21=diff(df2,x1);df22=diff(df2,x2);%这里进行求函数二阶导数DEE=[df11,df12;df21,df22];x=input('请输入x的初始值为x=[x1,x2],x=:');x=x';E=input('请输入你所要求的最速下降法的精度数(一般取3~5)E=:');%这里进行一些相关初始值的计算T=[];d=T;T(:,1)=subs(DF,[x1,x2],[x(1),x(2)]);TH=subs(DEE,[x1,x2],[x(1),x(2)]);%这里进行一些相关初始值的计算disp('由于你输入的初始值,这里将开始最速下降法搜寻:');for k=1:100000d(:,1)=-T(:,1);%d(k)是x(k+1)=x(k)+A(k)*d(k)A(1)=(T(:,1)'*T(:,1))/(T(:,1)'*TH*T(:,1));TH=subs(DEE,[x1,x2],[x(1,k),x(2,k)]);T(:,k)=subs(DF,[x1,x2],[x(1,k),x(2,k)]);d(:,k+1)=-T(:,k);A(k)=(T(:,k)'*T(:,k))/(T(:,k)'*TH*T(:,k));KLJ(:,k)=norm(T(:,k));GG(k)=subs(f,[x1,x2],[x(1,k),x(2,k)]);if norm(T(:,k))<Edisp('有这里你就进入牛顿法求最优了');disp(' ');disp('FX就是最速下的解 ')FX=subs(f,[x1,x2],[x(1,k),x(2,k)])disp(' ');disp('对应的x值为 ');x(:,k)break;endx(:,k+1)=x(:,k)+A(k)*d(:,k);endtoc%画出最速下降迭代点最终停留位置figure;plot3(x11,x22,f11,'r'),grid on;for tk=1:kh1=line( 'Color' ,[0 1 0], 'Marker' , '.' , 'MarkerSize' ,20, 'EraseMode' , 'xor' ); set(h1, 'xdata' ,x(1,tk), 'ydata' ,x(2,tk), 'zdata' , GG(tk));drawnow; % 刷新屏幕pause(0.1);endfop1=getframe(gcf)image(fop1.cdata)%画出最速下降迭代点最终停留位置ticY=x(:,k);EE=input('请输入牛顿最终的精度系数EE=:');TT(:,1)=subs(DF,[x1,x2],[Y(1),Y(2)]);THH=subs(DEE,[x1,x2],[Y(1),Y(2)]);aa=1;disp('程序可以运行到这里');for kk=1:10000dd(:,kk)=-inv(THH)*TT(:,kk);Y(:,kk+1)=Y(:,kk)+ aa*dd(:,kk);THH=subs(DEE,[x1,x2],[Y(1,kk),Y(2,kk)]);TT(:,kk+1)=subs(DF,[x1,x2],[Y(1,kk+1),Y(2,kk+1)]);PP=norm(TT(:,kk));GG1(kk)=subs(f,[x1,x2],[Y(1,kk),Y(2,kk)]);if PP<EEdisp('到这里您已经得到全局最优解了');FXX=subs(f,[x1,x2],[Y(1,kk),Y(2,kk)])disp(' ');disp('对应的x值为: ');Y(:,kk)break;endendFXX=subs(f,[x1,x2],[Y(1,kk),Y(2,kk)])toc%画出最终极值点停留位置figure;plot3(x11,x22,f11,'r'),grid on;for J=1:kkh2=line( 'Color' ,[0 1 0], 'Marker' , '.' , 'MarkerSize' ,40, 'EraseMode' , 'xor' ); set(h2, 'xdata' ,Y(1,J), 'ydata' ,Y(2,J), 'zdata' , GG1(1,J));pause(0.1);fop=getframe(gcf);image(fop.cdata);enddisp('现在程序已经结束了');%画出最终极值点停留位置[attach]3912[/attach]。
五种最优化方法
五种最优化方法Document number:NOCG-YUNOO-BUYTT-UU986-1986UT五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
五种最优化方法
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
第三章非线性规划无约束问题的最优化方法
x0
0p 0
1.919877 还需要经过10次迭代才
能满足精度要求
0.003070
第三节 牛顿法
3. 牛顿法的缺点: 牛顿法要求初始解离最优解不远,若初始点选得离最优解太
远时,牛顿法并不能保证其收敛,甚至也不是下降方向。因此, 常将牛顿法与最速下降法结合起来使用。前期使用最速下降法, 当迭代到一定程度后,改用牛顿法,可得到较好的效果。 4. 修正牛顿法 基本思想: 保留了从牛顿法中选取牛顿方向作为搜索方向,摒弃其步长恒 为1的做法,而用一维搜索确定最优步长来构造算法。
2
2
0
2e2 2 3
00 21 0
03
f x3 9
第二节 最速下降法
再从x(3)点 出发,沿x3轴方向e3进行一维搜索:
0 x 3 e3 0
3
00 00 13
f x 3 e3
32
f' 0 x4 x3
3
3
0
3e3 0 0
f x4 0
第二节 最速下降法
因为 x 1
x 4 ,0故.0以1 x(4)点作为新的x(1) ,进行新一轮迭代。
0
1 33 22
f x0
p0
52 5
42
f' x0
p0 5 5 0
22
01
第三节 牛顿法
x1 x0
1 p0 3
2
3
f x1
14
12 2
0
30
12 1 2
2
f x1
所以选取 x* x 1
1 3 作为极小点。 2
第三节 牛顿法
6. 修正牛顿法的缺点: 修正牛顿法虽然比牛顿法有所改进,但也有不足之处:
机器学习算法系列(25):最速下降法、牛顿法、拟牛顿法
作为指导。
3.2 DFP算法
DFP算法是以William C.Davidon、Roger Fletcher、Michael J.D.Powell三个人人的名字的首首字⺟母命 名的,它由Davidon于1959年年首首先提出,是最早的拟牛牛顿法。该算法的核心心是:通过迭代的方方
,求λ k,使 f(x ( k ) + λ kp k) = minλ ≥ 0 f(x ( k ) + λp k) 4. 置x ( k + 1 ) = x ( k ) + λ kp k,计算f(x ( k + 1 ) )当 | | f(x ( k + 1 ) ) − f(x ( k ) ) | | < ξ或 | | x ( k = 1 ) − x ( k ) | | < ξ,停止止迭代,令x ∗ = x ( k + 1 ) 5. 否则,置k = k + 1,转到步骤3。 当目目标函数是凸函数时,梯度下降法的解释全局最优解。一一般情况下,其解不不保证是全局最优 解。梯度下降法的收敛速度也未必是很快的。
3.1 拟牛牛顿条件
设经过k + 1次迭代后得到X k + 1,此时将目目标函数f(X)在X k + 1附近作泰勒勒展开,取二二阶近似,得到 1 f( X) ≈ f( X k + 1 ) + ∇ f( X k + 1 ) · ( X − X k + 1 ) + · ( X − X k + 1 ) T · ∇ 2 f( X k + 1 ) · ( X − X k + 1 ) 2 在两边同时作用用一一个梯度算子子 ∇ ,可得 ∇ f( X) ≈ ∇ f ( X k + 1 ) + H k + 1 · ( X − X k + 1 ) 取X = X k并整理理,可得 g k + 1 − g k ≈ H k + 1 · (X k + 1 − X k ) 若引入入记号s k = X k + 1 , y k = g k + 1 − g k则可以改写成
4.3 4.4 最速下降法 牛顿法
3.搜索步长:取最优步长,即满足
f (X k1) f (X k kf (X k )) min()
( )
f ( X ) X
dX
d
[f ( X k
kf ( X k ))]T (f
( X k )) 0
f (X k1)T f (X k ) 0
令
d k1 f ( X k1)
d k f (X k )
• 初始点 X k 、搜索方向 d k 、迭代步长 k 为优化方
法算法的三要素。 • 搜索方向问题是无约束优化方法的关键,决定一个
算法的成 败、收敛速率的快慢等。 • 各种无约束优化方法的区别就是确定搜索方向的方
法不同。
最速下降法
1.基本思想
• 优化设计是追求 min f ( X ) ,即从某点 X 出发,
牛顿型方法
3.求目标函数 f x x12 25x22 的极小点。
解: 取初始点 x0 2,2T 1
x1 x0 2 f
x0
1f
x0
2 2
2 0
0 1
4 100
0 0
50
经过一次迭代即求得最小点 x* 0,0T
函数极小值 f x* 0
牛顿型方法
阻尼牛顿法
牛顿法的缺陷: 在确定极值点的过程中,并不含沿下降方向搜索的概念。
最速下降法
f (x) (1 20)2 (1 20)2 2(1 20)2 (0),
(0) 4(1 20)(2) 8(1 20). 令 (0) 0
即 解得
80(11220) 0
代入 X 1式得
X
1
1 1
20 20
0 0
,
求梯度公式
f
(X1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)由于 ,不满足精度指标,转下一步计算。
(3)确定搜索方向
(4)计算新的迭代点
由公式(4.2)可得
代入目标函数
沿 方向进行一维搜索(或对 求导,并令其为零)
令 ,,求得最优步长 。
(5)计算新迭代点
(6)计算新迭代点的梯度及梯度的模
因已满足精度要求,停止迭代,得最优解为
4.1最速下降法
最速下降法是一个求解极值问题的古老算法,1847年由柯西(Cauchy)提出。
4.1.1最速下降法的基本原理
由第二章优化设计的数学基础可知,梯度方向是函数增加最快的方向,负梯度方向是函数下降最快的方向,所以最速下降法以负梯度方向为搜索方向,每次迭代都沿着负梯度方向进行一维搜索,直到满足精度要求为止。因此,最速下降法又称为梯度法。由公式(4.2)
一:间接法——要使用导数的无约束优化方法,如直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。
无约束优化问题的一般形式可描述为:
求n维设计变量
使目标函数
目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。
图4.1最速下降法的搜索路径
此外,最速下降法的迭代公式也可以写成下面的形式
(4.4)
将其与式4.3相比较,可知,此处 等于4.3式中步长除以函数在 点导数的模 ,而此时的搜索方向 也不再是个单位向量。
4.1.2最速下降法的迭代过程
1)给定初始点 ,收敛精度ε,并令计算次数 ;
2)计算 点的梯度 及梯度的模 ,并令
,
可见,对于目标函数的等值线为圆的情况,只要一次迭代就能达到极小值点 。这是因为圆周上任意一点的负梯度方向总是指向圆心的,如图4.3所示。
图4.3例题4.1目标函数极小值的搜索过程
通过上面的分析可知最速下降法具有以下特点:
(1)理论明确,程序简单,对初始点要求不严格,每次迭代所需的计算量和存储量也较小,适用于计算机计算。
第四章无约束优化方法
——最速下降法,牛顿型方法
概述
在求解目标函数的极小值的过程中,若对设计变量的取值围不加限制,则称这种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的,无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过对约束条件的处理,转化为无约束最优化问题来求解。
最常用的数值方法是搜索方法,其基本思想如下图所示:
无约束优化方法可以分为两类。一类是通过计算目标函数的一阶或二阶导数值确定搜索方向的方法,称为间接法,如最速下降法、牛顿法、变尺度法和共轭梯度法。另一类是直接利用目标函数值确定搜索方向的方法,称为直接法,如坐标轮换法、鲍威尔法和单形替换法。各种无约束优化方法的区别在于确定其搜索方向0d的方法不同。
2、数值方法
数值迭代法的基本思想是从一个初始点 出发,按照一个可行的搜索方向 搜索,确定最佳的步长 使函数值沿 方向下降最大,得到 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为
(4.2)
在上式中, 是第是k+1次搜索或迭代方向,称为搜索方向(迭代方向)。
由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点 、搜索方向 和迭代步长 ,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向 上确定最优步长 的方法,本章我们将讨论如何确定搜索方向 。
无约束优化问题的求解:
1、解析法
可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方程
的解。也就是求X*使其满足
解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用数值迭代的方法直接求解无约束极值问题。
可知,若某次选代中己取得点 ,从该点出发,取负梯度方向
为搜索方向。则最速下降法的迭代公式为
(4.3)
当第k次的迭代初始点 和搜索方向 已经确定的情况下,原目标函数成为关于步长 的一维函数。即
最优步长 可以利用一维搜索的方法求得
根据一元函数极值的必要条件和多元复合函数的求导公式,得
或写成
由此可知,在最速下降法中相邻两个搜索方向互相正交。也就是说在用最速下降法迭代求优的过程中,走的是一条曲折的路线,该次搜索方向与前一次搜索方向垂直,形成“之”字形的锯齿现象,如图4.1所示。最速下降法刚开始搜索步长比较大,愈靠近极值点其步长愈小,收敛速度愈来愈慢。特别是对于二维二次目标函数的等值线是较扁的椭圆时,这种缺陷更加明显。因此所谓最速下降是指目标函数在迭代点附近出现的局部性质,从迭代过程的全局来看,负梯度方向并非是目标函数的最快搜索方向。
(2)对一般函数而言,最速下降法的收敛速度并不快,因为最速下降方向仅仅是指某点的一个局部性质。
(3)最速下降法相邻两次搜索方向的正交性,决定了迭代全过程的搜索路线呈锯齿状,在远离极小点时逼近速度较快,而在接近极小点时逼近速度较慢。
(4)最速下降法的收敛速度与目标函数的性质以及初始点的选择密切相关。对于等值线(面)为同心圆(球)的目标函数,一次搜索即可达到极小点。若目标函数为二次函数,等值线为椭圆,当初始点选在长轴或短轴上时,一次搜索也可达到极小值点。
3)判断是否满足精度指标 ;若满足, 为最优点,迭代停止,输出最优解 和 ,否则进行下一步计算;
4)以 为出发点,沿 进行一维搜索,求能使函数值下降最多的步长 ,即
5)令 ,k=k+1,转到步骤2)。
最速下降法的程序框图如图4.2所示。
4.2最速下降法的程序框图
例题4.1用最速下降法求目标函数 的极小值,设初始点 ,计算精度 。
为什么要研究无约束优化问题?
(1)有些实际问题,其数学模型本身就是一个无约束优化问题。
(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。
(3)约束优化问题的求解可以通过一系列无约束优化方法来达到。
所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。
根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。