八年级数学上●第二单元

合集下载

人教版八年级数学(上)第二单元课堂练习

人教版八年级数学(上)第二单元课堂练习

人教版八年级数学(上)第二单元课堂练习
出题原则
1. 权衡考察知识点的基本情况和综合应用能力,综合运用不同知识点进行出题,考察学生的综合能力。

2. 配合教材内容设计试题,确保试题与教学内容的一致性和连贯性。

3. 根据学生能力的不同,设置不同难度的试题,既要有基础性的题目,也要有拓展性的题目,以满足不同层次学生的需求。

出题策略
以下是一些出题策略,可以帮助教师更好地设计课堂练:
1. 基础题目:通过设计一些基础题目,检验学生对于概念和定义的掌握情况。

例如,可以出题要求学生根据图形的定义进行分类或辨别。

2. 运用性题目:设计一些能够运用所学知识解决实际问题的题目,培养学生的应用能力和综合思考能力。

例如,可以设计一道题目要求学生运用平行线的性质解决实际问题。

3. 推理题目:通过设计一些需要推理和思考的题目,培养学生
的逻辑思维和推理能力。

例如,可以设计一道题目要求学生通过给
出的条件进行推理,确定某个图形的性质。

4. 拓展题目:设计一些较为复杂和有挑战性的题目,帮助学生
拓展思维,解决更高难度的问题。

例如,在运算的性质和应用方面,可以设计一些多步骤、多角度考察的拓展题目。

通过合理的出题原则和策略,可以有效地帮助学生巩固所学知识,培养他们的解决问题的能力和思维能力。

同时,教师在批改练
题时,也可以根据学生的表现,及时调整教学策略,帮助学生更好
地理解和掌握数学知识。

人教版八年级上数学第二单元重点课文复习材料

人教版八年级上数学第二单元重点课文复习材料

人教版八年级上数学第二单元重点课文复习材料1.整数的加减法本单元我们学习了整数的加减法。

在整数的运算中,加法和减法是最基本的运算。

整数的加法遵循以下规则:两个正整数相加,结果为正数。

两个负整数相加,结果为负数。

正整数和负整数相加,结果的符号取决于绝对值较大的数的符号。

整数的减法遵循以下规则:正整数减去正整数,结果为正数。

负整数减去负整数,结果为负数。

正整数减去负整数,结果的符号取决于绝对值较大的数的符号。

2.有理数的乘除法本单元我们还学习了有理数的乘除法。

有理数的乘除法可以通过将其转化为分数来进行计算。

有理数的乘法遵循以下规则:两个正有理数相乘,结果为正数。

两个负有理数相乘,结果为正数。

正有理数和负有理数相乘,结果为负数。

有理数的除法遵循以下规则:正有理数除以正有理数,结果为正数。

负有理数除以负有理数,结果为正数。

正有理数除以负有理数,结果为负数。

3.整数的混合运算在本单元中,我们还学习了整数的混合运算,即加减乘除混合进行的运算。

在整数的混合运算中,根据运算法则的先乘除、后加减原则,先进行乘除运算,再进行加减运算。

4.课文复习本单元的课文内容主要涉及整数的加减法和有理数的乘除法。

在复习课文时,建议重点关注以下内容:整数的加法和减法运算规则;有理数的乘法和除法运算规则;整数的混合运算的步骤和顺序;运用所学的知识解决实际问题的方法。

希望同学们通过复习课文,能够熟练掌握整数的加减法和有理数的乘除法,提高解决实际问题的能力。

以上是关于人教版八年级上数学第二单元重点课文复习材料的内容。

祝同学们复习顺利!。

八年级上册数学第二单元

八年级上册数学第二单元

第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。

二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。

2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。

三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。

3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。

四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。

2、判定定理:到角两个边距离相等的点在这个角的角平分线上。

3、拓展:三角形三个角的角平分线的交点到三条边的距离相等。

五、等腰三角形1、性质定理:(1)等腰三角形的两个底角相等(等边对等角)。

(2)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。

2、判断定理:一个三角形的两个相等的角所对的边也相等。

(等角对等边)。

六、等边三角形1、性质定理:(1)等边三角形的三条边都相等。

(2)等边三角形的三个内角都相等,都等于60°。

2、拓展:等边三角形每条边都能运用三线合一这性质。

3、判断定理:(1)三条边都相等的三角形是等边三角形。

(2)三个角都相等的三角形是等边三角形。

(3)有两个角是60°的三角形是等边三角形。

(4)有一个角是60°的等腰三角形是等边三角形。

七、直角三角形推论1、直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。

2、直角三角形中,斜边上的中线等于斜边的一半。

3、拓展:直角三角形常用面积法求斜边上的高。

(易错题)初中数学八年级数学上册第二单元《全等三角形》测试题(含答案解析)

(易错题)初中数学八年级数学上册第二单元《全等三角形》测试题(含答案解析)

一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等3.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 4.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .105.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .9 6.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:167.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL8.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 9.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°10.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20° 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 12.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题13.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.14.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .15.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.16.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 17.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.18.如图,△ACB 和△DCE 中,AC =BC ,∠ACB =∠DCE =90°,∠ADC =∠BEC ,若AB =17,BD =5,则S △BDE =_______.19.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.20.如图,ABC ∆的两条高AD 、CE 交于点H ,已知6EH EB ==,8AE =,则ACH ∆的面积为______.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.22.如图,在ABC ∆中,90,C ∠=︒点D 在BC 上,过点D 作DE AB ⊥于点,E 点F 是AC 边上一点,连接DF .若,BD DF CF EB ==,求证:AD 平分BAC ∠.23.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .24.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE .25.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.26.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.C解析:C【分析】根据有理数的乘法、全等三角形的概念、直角三角形的性质、对顶角的概念判断即可.【详解】解:A 、如果 ab =0,那么a =0或b =0或a 、b 同时为0,本选项说法是假命题,不符合题意;B 、面积相等的三角形不一定全等,本选项说法是假命题,不符合题意;C 、直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D 、不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.3.C解析:C【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .4.B解析:B【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值.【详解】∵BE ⊥CE ,AD ⊥CE ,∴∠E=∠ADC=90︒,∴∠EBC+∠BCE=90︒,∵∠BCE+∠ACD=90︒,∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC ,∴∆CEB≅∆ADC(AAS),∴BE=DC=1,CE=AD=3,∴DE=EC-CD=3-1=2,故选:B.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.5.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D.【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.A解析:A【分析】过点D作DE垂直于AB,DF垂直于AC,由AD为角BAC的平分线,根据角平分线定理得到DE=DF,再根据三角形的面积公式表示出△ABD与△ACD的面积之比,把DE=DF以及AB:AC的比值代入即可求出面积之比.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB :AC=4:3,∴S △ABD :S △ACD =(12AB•DE ):(12AC•DF )=AB :AC=4:3. 故选:A .【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题. 7.D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.8.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.9.B解析:B【分析】根据角平分线的性质和平行线的性质计算即可;【详解】∵AE 平分∠BAC ,∠BAE =34°,∴34EAC ∠=︒,∵ED ∥AC ,∴18034146AED ∠=︒-︒=︒,∵BE ⊥AE ,∴90AEB =︒∠,∴36090146124BED ∠=︒-︒-︒=︒;故答案选B .【点睛】本题主要考查了角平分线的性质和平行线的性质,结合周角的定理计算是解题的关键 。

八年级上册数学第二单元:全等三角形知识点与练习

八年级上册数学第二单元:全等三角形知识点与练习

第二单元全等三角形本单元的学习目标①重点:全等三角形的性质;三角形全等的判定;角平分线的性质及应用②难点:三角形全等的判断方法及应用;角平分线的性质及应用在中考中的重要性:①中考热点,初中数学中的重点内容②考察内容多样化,有的独立考三角形全等,有的考全等三角形结合其他知识点综合,有的探究三角形全等条件或结论的开放性题目③题型以选择题、填空题、解答题为主【知识归纳】1.全等三角形的基本概念:(1)全等图形的定义:能够完全重合的两个图形叫做全等图形。

(2)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点。

重合的边叫做对应边。

重合的角叫做对应角。

(3)全等三角形的表示方法:△ABC≌△A’B’C’(如图1)A’B C ’图12.全等三角形的性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等3.全等三角形的判定方法(1)三边相等(SSS);(2)两边和它们的夹角相等(SAS);(3)两角和其中一角的对应边相等(AAS);(4)两角和它们的夹边相等(ASA);(5)斜边和直角边相等的两直角三角形(HL).(该判定只适合直角三角形)注意:没有“AAA”和“SSA”的判定方法,这是因为“三角对应相等的两个三角形”和“两边及其中一边的对角对应相等的两个三角形”未必全等。

如图2,△ABC和△ADE中,∠A=∠A,∠1=∠3,∠2=∠4,即三个角对应相等,但它们只是形状相同而大小并不相等,故它们不全等;如图3,△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,即两边及其中一边的对角对应相等,但它们并不全等。

4.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。

5.角平分线推论:角的内部到角的两边距离相等的点在角的平分线上。

判定三角形全等常用思路公理及定理练笔1、一般三角形全等的判定(如图)(1) 边角边(SSS) AAB=A′B′ BC=B′C ′ _______=_____∴△ABC≌△A′B′C′(2)边角边(SAS)AB=A′B′∠B=∠B′ _______=_____ B C∴△ABC≌△A′B′C′A′(3) 角边角(ASA)∠B=∠B′ ____=_____ ∠C=∠C′∴△ABC≌△A′B′C′B ′ C′(4) 角角边(AAS)∠A=∠A′∠C=∠C′ _______=_____∴△ABC≌△A′B′C′2、直角三角形全等的判定:斜边直角边定理(HL)AB=AB _____=_____∴Rt△ABC≌Rt△A′B′C′B C B′ C′二、全等三角形的性质1、全等三角形的对应角_____2、全等三角形的对应边、对应中线、对应高、对应角平分线_______注意:1、斜边、直角边公理(HL)只能用于证明直角三角形的全等,对于其它三角形不适用。

初中数学苏教版八年级上册第二单元第1课《轴对称与轴对称图形》优质课公开课教案教师资格证面试试讲教案

初中数学苏教版八年级上册第二单元第1课《轴对称与轴对称图形》优质课公开课教案教师资格证面试试讲教案

初中数学苏教版八年级上册第二单元第1课《轴对称与轴对称图形》优质课公开课教案教师资格证面试试讲教案1教学目标(1)经历观察、操作、交流、抽象、归纳等过程建立概念,理解轴对称图形和两个图形成轴对称的意义,能够识别这些图形并能指出它们的对称轴,积累数学活动经验,体会轴对称的美。

(2)通过自主、合作、探究的学习,体会概念形成以及由直观感受到数学抽象研究问题的一般过程,感悟如何“数学地”分析、解决问题,培养学生抽象、归纳、概括、推理等能力,以及创新精神和实践能力,发展空间观念,提升思维水平。

2学情分析轴对称是生活中常见的现象,在小学就曾经学习过,所不同的是,小学重在直观感受,而到了初中,随着学生思维能力的发展,我们更着意于借助实验操作使学生经历数学抽象、归纳概括等过程形成对轴对称的理性认识。

所以在建立概念时,我设计了一系列的实验操作活动,先利用学生小学的知识基础进行动手操作、观察实验,激活并强化学生对概念关键属性的的感性认知;再引导学生进行分析、比较、抽象、归纳,然后经过交流讨论发现概念的本质属性,从而形成概念;接着又以概念为依据结合实验操作进行说理和判断。

意图在于通过启发式教学,使学生动手操作、自主探索、独立思考与讨论交流相结合,充分的参与到教学活动中来,在“做数学” 的过程中掌握数学知识、认识问题、学会思考。

3重点难点教学重点:在实验操作中累积强化对操作对象的感性认知,并通过对比是与非、抽象归纳发现概念本质特征,从而形成对概念的理性认知。

教学难点:在整个教学流程中,对概念本质属性的抽象、归纳,和建立与已有概念的联系,并区分概念之间的关系是学生思维的难点,也是本节课的核心所在。

另外,针对学生间的差异,我结合多元智能理论和分层教学的思想,在问题投放、情境设置、活动内容、小组分工、反馈形式、回顾反思等方面都尽可能考虑到学生的个体差异,运用多样化的教学方式,使课堂教学丰富多彩,课堂互动形式多样,力争使学生的主体地位更加明显,促进学生潜能的开发,使每个学生都成为更优秀的自己。

人教版八年级数学上册第二单元测试卷

人教版八年级数学上册第二单元测试卷

⼈教版⼋年级数学上册第⼆单元测试卷 想要提⾼数学的成绩,除了上课认真听讲,更重要的是多做基础单元测试题⽬。

下⾯由店铺为你整理的⼈教版⼋年级数学上册第⼆单元测试卷,希望对⼤家有帮助! ⼈教版⼋年级数学上册第⼆单元测试卷 ⼀、选择题 1.正三⾓形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的⾯积是( ) A. B. C. D. 2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆⼼,CB为半径的圆恰好经过AB的中点D,则AC= ( )A.5B.C.D.6 3.将⼀副直⾓三⾓尺如图放置,若∠AOD=20°,则∠BOC的⼤⼩为( )A.140°B.160°C.170°D.150° 4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为( )A.6B.6C.9D.3 5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂⾜,连接CD.若BD=1,则AC的长是( )A.2B.2C.4D.4 6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂⾜为D,CE平分∠ACB.若BE=2,则AE的长为( ) A. B.1 C. D.2 7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为( )A.0.5kmB.0.6kmC.0.9kmD.1.2km 8.如图,⼀个矩形纸⽚,剪去部分后得到⼀个三⾓形,则图中∠1+∠2的度数是( )A.30°B.60°C.90°D.120° 9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂⾜为D,CD=1,则AB的长为( )A.2B.C.D. 10.在⼀个直⾓三⾓形中,有⼀个锐⾓等于60°,则另⼀个锐⾓的度数是( )A.120°B.90°C.60°D.30° 11.将四根长度相等的细⽊条⾸尾相接,⽤钉⼦钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( ) A. B.2 C. D.2 12.将⼀个有45°⾓的三⾓板的直⾓顶点放在⼀张宽为3cm的纸带边沿上.另⼀个顶点在纸带的另⼀边沿上,测得三⾓板的⼀边与纸带的⼀边所在的直线成30°⾓,如图,则三⾓板的最⼤边的长为( )A.3cmB.6cmC. cmD. cm 13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )A. cmB.2cmC.3cmD.4cm 14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3B.4C.5D.6 15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上⼀点,连接DE,则下列说法错误的是( )A.∠CAD=30°B.AD=BDC.BD=2CDD.CD=ED ⼆、填空题 16.由于⽊质⾐架没有柔性,在挂置⾐服的时候不太⽅便操作.⼩敏设计了⼀种⾐架,在使⽤时能轻易收拢,然后套进⾐服后松开即可.如图1,⾐架杆OA=OB=18cm,若⾐架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 cm. 17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= . 18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= . 19.如图,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= . 20.在矩形ABCD中,对⾓线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= . 第2章特殊三⾓形 ⼈教版⼋年级数学上册第⼆单元测试卷参考答案与试题解析 ⼀、选择题(共15⼩题) 1.正三⾓形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的⾯积是( ) A. B. C. D. 【考点】等边三⾓形的判定与性质. 【专题】压轴题. 【分析】依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的⼩正三⾓形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D= ;同理求出S△CC1B1=S△BB1A1= ;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果. 【解答】解:依题意画出图形,如下图所⽰: 过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三⾓形. ⼜AC1=AC﹣CC1=3﹣1=2,AD=1, ∴点D为AC1的中点, ∴S△AA1C1=2S△AA1D=2× ×12= ; 同理可求得S△CC1B1=S△BB1A1= , ∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1= ×32﹣3× = . 故选B. 【点评】本题考查等边三⾓形的判定与性质,难度不⼤.本题⼊⼝较宽,解题⽅法多种多样,同学们可以尝试不同的解题⽅法. 2.在Rt△ABC中,∠C=90°,AB=10.若以点C为圆⼼,CB为半径的圆恰好经过AB的中点D,则AC= ( )A.5B.C.D.6 【考点】等边三⾓形的判定与性质;含30度⾓的直⾓三⾓形;勾股定理. 【专题】计算题;压轴题. 【分析】连结CD,直⾓三⾓形斜边上的中线性质得到CD=DA=DB,利⽤半径相等得到CD=CB=DB,可判断△CDB为等边三⾓形,则∠B=60°,所以∠A=30°,然后根据含30度的直⾓三⾓形三边的关系先计算出BC,再计算AC. 【解答】解:连结CD,如图, ∵∠C=90°,D为AB的中点, ∴CD=DA=DB, ⽽CD=CB, ∴CD=CB=DB, ∴△CDB为等边三⾓形, ∴∠B=60°, ∴∠A=30°, ∴BC= AB= ×10=5, ∴AC= BC=5 . 故选C. 【点评】本题考查了等边三⾓形的判定与性质:三边都相等的三⾓形为等边三⾓形;等边三⾓形的三个内⾓都等于60°.也考查了直⾓三⾓形斜边上的中线性质以及含30度的直⾓三⾓形三边的关系. 3.将⼀副直⾓三⾓尺如图放置,若∠AOD=20°,则∠BOC的⼤⼩为( )A.140°B.160°C.170°D.150° 【考点】直⾓三⾓形的性质. 【分析】利⽤直⾓三⾓形的性质以及互余的关系,进⽽得出∠COA的度数,即可得出答案. 【解答】解:∵将⼀副直⾓三⾓尺如图放置,∠AOD=20°, ∴∠COA=90°﹣20°=70°, ∴∠BOC=90°+70°=160°. 故选:B. 【点评】此题主要考查了直⾓三⾓形的性质,得出∠COA的度数是解题关键. 4.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为( )A.6B.6C.9D.3 【考点】含30度⾓的直⾓三⾓形;线段垂直平分线的性质. 【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD为∠BAC的⾓平分线,由⾓平分线的性质得DE=CD=3,再根据直⾓三⾓形30°⾓所对的直⾓边等于斜边的⼀半可得BD=2DE,得结果. 【解答】解:∵DE是AB的垂直平分线, ∴AD=BD, ∴∠DAE=∠B=30°, ∴∠ADC=60°, ∴∠CAD=30°, ∴AD为∠BAC的⾓平分线, ∵∠C=90°,DE⊥AB, ∴DE=CD=3, ∵∠B=30°, ∴BD=2DE=6, ∴BC=9, 故选C. 【点评】本题主要考查了垂直平分线的性质,⾓平分线上的点到⾓的两边距离相等的性质,直⾓三⾓形30°⾓所对的直⾓边等于斜边的⼀半的性质,熟记各性质是解题的关键. 5.如图,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂⾜,连接CD.若BD=1,则AC的长是( )A.2B.2C.4D.4 【考点】含30度⾓的直⾓三⾓形;线段垂直平分线的性质;勾股定理. 【分析】求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°⾓的直⾓三⾓形性质求出AC即可. 【解答】解:∵在Rt△ABC中,∠B=90°,∠A=30°, ∴∠ACB=60°, ∵DE垂直平分斜边AC, ∴AD=CD, ∴∠ACD=∠A=30°, ∴∠DCB=60°﹣30°=30°, 在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1, ∴CD=2BD=2, 由勾股定理得:BC= = , 在Rt△ABC中,∠B=90°,∠A=30°,BC= , ∴AC=2BC=2 , 故选A. 【点评】本题考查了三⾓形内⾓和定理,等腰三⾓形的性质,勾股定理,含30度⾓的直⾓三⾓形性质的应⽤,解此题的关键是求出BC的长,注意:在直⾓三⾓形中,如果有⼀个⾓等于30°,那么它所对的直⾓边等于斜边的⼀半. 6.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂⾜为D,CE平分∠ACB.若BE=2,则AE的长为( ) A. B.1 C. D.2 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质;线段垂直平分线的性质. 【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由⾓平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利⽤三⾓形内⾓和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°⾓所对的直⾓边等于斜边的⼀半得出AE= CE=1. 【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2, ∴BE=CE=2, ∴∠B=∠DCE=30°, ∵CE平分∠ACB, ∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°, ∴∠A=180°﹣∠B﹣∠ACB=90°. 在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2, ∴AE= CE=1. 故选B. 【点评】本题考查的是含30度⾓的直⾓三⾓形的性质,线段垂直平分线的性质,等腰三⾓形的性质,⾓平分线定义,三⾓形内⾓和定理,求出∠A=90°是解答此题的关键. 7.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为( )A.0.5kmB.0.6kmC.0.9kmD.1.2km 【考点】直⾓三⾓形斜边上的中线. 【专题】应⽤题. 【分析】根据直⾓三⾓形斜边上的中线等于斜边的⼀半,可得MC=AM=1.2km. 【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点, ∴MC= AB=AM=1.2km. 故选D. 【点评】本题考查了直⾓三⾓形斜边上的中线的性质:在直⾓三⾓形中,斜边上的中线等于斜边的⼀半.理解题意,将实际问题转化为数学问题是解题的关键. 8.如图,⼀个矩形纸⽚,剪去部分后得到⼀个三⾓形,则图中∠1+∠2的度数是( )A.30°B.60°C.90°D.120° 【考点】直⾓三⾓形的性质. 【专题】常规题型. 【分析】根据直⾓三⾓形两锐⾓互余解答. 【解答】解:由题意得,剩下的三⾓形是直⾓三⾓形, 所以,∠1+∠2=90°. 故选:C. 【点评】本题考查了直⾓三⾓形两锐⾓互余的性质,熟记性质是解题的关键. 9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂⾜为D,CD=1,则AB的长为( )A.2B.C.D. 【考点】含30度⾓的直⾓三⾓形;勾股定理;等腰直⾓三⾓形. 【分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继⽽可得出AB. 【解答】解:在Rt△ACD中,∠A=45°,CD=1, 则AD=CD=1, 在Rt△CDB中,∠B=30°,CD=1, 则BD= , 故AB=AD+BD= +1. 故选D. 【点评】本题考查了等腰直⾓三⾓形及含30°⾓的直⾓三⾓形的性质,要求我们熟练掌握这两种特殊直⾓三⾓形的性质. 10.(2014•海南)在⼀个直⾓三⾓形中,有⼀个锐⾓等于60°,则另⼀个锐⾓的度数是( )A.120°B.90°C.60°D.30° 【考点】直⾓三⾓形的性质. 【分析】根据直⾓三⾓形两锐⾓互余列式计算即可得解. 【解答】解:∵直⾓三⾓形中,⼀个锐⾓等于60°, ∴另⼀个锐⾓的度数=90°﹣60°=30°. 故选:D. 【点评】本题考查了直⾓三⾓形两锐⾓互余的性质,熟记性质是解题的关键. 11.将四根长度相等的细⽊条⾸尾相接,⽤钉⼦钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( ) A. B.2 C. D.2 【考点】等边三⾓形的判定与性质;勾股定理的应⽤;正⽅形的性质. 【分析】图1中根据勾股定理即可求得正⽅形的边长,图2根据有⼀个⾓是60°的等腰三⾓形是等边三⾓形即可求得. 【解答】解:如图1, ∵AB=BC=CD=DA,∠B=90°, ∴四边形ABCD是正⽅形, 连接AC,则AB2+BC2=AC2, ∴AB=BC= = = , 如图2,∠B=60°,连接AC, ∴△ABC为等边三⾓形, ∴AC=AB=BC= . 【点评】本题考查了正⽅形的性质,勾股定理以及等边三⾓形的判定和性质,利⽤勾股定理得出正⽅形的边长是关键. 12.将⼀个有45°⾓的三⾓板的直⾓顶点放在⼀张宽为3cm的纸带边沿上.另⼀个顶点在纸带的另⼀边沿上,测得三⾓板的⼀边与纸带的⼀边所在的直线成30°⾓,如图,则三⾓板的最⼤边的长为( )A.3cmB.6cmC. cmD. cm 【考点】含30度⾓的直⾓三⾓形;等腰直⾓三⾓形. 【分析】过另⼀个顶点C作垂线CD如图,可得直⾓三⾓形,根据直⾓三⾓形中30°⾓所对的边等于斜边的⼀半,可求出有45°⾓的三⾓板的直⾓边,再由等腰直⾓三⾓形求出最⼤边. 【解答】解:过点C作CD⊥AD,∴CD=3, 在直⾓三⾓形ADC中, ∵∠CAD=30°, ∴AC=2CD=2×3=6, ⼜∵三⾓板是有45°⾓的三⾓板, ∴AB=AC=6, ∴BC2=AB2+AC2=62+62=72, ∴BC=6 , 故选:D. 【点评】此题考查的知识点是含30°⾓的直⾓三⾓形及等腰直⾓三⾓形问题,关键是先求得直⾓边,再由勾股定理求出最⼤边. 13.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于( )A. cmB.2cmC.3cmD.4cm 【考点】含30度⾓的直⾓三⾓形. 【专题】常规题型. 【分析】根据在直⾓三⾓形中,30度所对的直⾓边等于斜边的⼀半得出AE=2ED,求出ED,再根据⾓平分线到两边的距离相等得出ED=CE,即可得出CE的值. 【解答】解:∵ED⊥AB,∠A=30°, ∴AE=2ED, ∵AE=6cm, ∴ED=3cm, ∵∠ACB=90°,BE平分∠ABC, ∴ED=CE, ∴CE=3cm; 故选:C. 【点评】此题考查了含30°⾓的直⾓三⾓形,⽤到的知识点是在直⾓三⾓形中,30度所对的直⾓边等于斜边的⼀半和⾓平分线的基本性质,关键是求出ED=CE. 14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3B.4C.5D.6 【考点】含30度⾓的直⾓三⾓形;等腰三⾓形的性质. 【专题】计算题. 【分析】过P作PD⊥OB,交OB于点D,在直⾓三⾓形POD中,利⽤锐⾓三⾓函数定义求出OD的长,再由PM=PN,利⽤三线合⼀得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长. 【解答】解:过P作PD⊥OB,交OB于点D, 在Rt△OPD中,cos60°= = ,OP=12, ∴OD=6, ∵PM=PN,PD⊥MN,MN=2, ∴MD=ND= MN=1, ∴OM=OD﹣MD=6﹣1=5. 故选:C. 【点评】此题考查了含30度直⾓三⾓形的性质,等腰三⾓形的性质,熟练掌握直⾓三⾓形的性质是解本题的关键. 15.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上⼀点,连接DE,则下列说法错误的是( )A.∠CAD=30°B.AD=BDC.BD=2CDD.CD=ED 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质;等腰三⾓形的判定与性质. 【专题】⼏何图形问题. 【分析】根据三⾓形内⾓和定理求出∠CAB,求出∠CAD=∠BAD=∠B,推出AD=BD,AD=2CD即可. 【解答】解:∵在△ABC中,∠C=90°,∠B=30°, ∴∠CAB=60°, ∵AD平分∠CAB, ∴∠CAD=∠BAD=30°, ∴∠CAD=∠BAD=∠B, ∴AD=BD,AD=2CD, ∴BD=2CD, 根据已知不能推出CD=DE, 即只有D错误,选项A、B、C的答案都正确; 故选:D. 【点评】本题考查了三⾓形的内⾓和定理,等腰三⾓形的判定,含30度⾓的直⾓三⾓形的性质的应⽤,注意:在直⾓三⾓形中,如果有⼀个⾓等于30°,那么它所对的直⾓边等于斜边的⼀半. ⼆、填空题 16.由于⽊质⾐架没有柔性,在挂置⾐服的时候不太⽅便操作.⼩敏设计了⼀种⾐架,在使⽤时能轻易收拢,然后套进⾐服后松开即可.如图1,⾐架杆OA=OB=18cm,若⾐架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 18 cm. 【考点】等边三⾓形的判定与性质. 【专题】应⽤题. 【分析】根据有⼀个⾓是60°的等腰三⾓形的等边三⾓形进⾏解答即可. 【解答】解:∵OA=OB,∠AOB=60°, ∴△AOB是等边三⾓形, ∴AB=OA=OB=18cm, 故答案为:18 【点评】此题考查等边三⾓形问题,关键是根据有⼀个⾓是60°的等腰三⾓形的等边三⾓形进⾏分析. 17.在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6 . 【考点】含30度⾓的直⾓三⾓形;勾股定理. 【分析】由∠B=30°,AB=12,AC=6,利⽤30°所对的直⾓边等于斜边的⼀半易得△ABC是直⾓三⾓形,利⽤勾股定理求出BC的长. 【解答】解:∵∠B=30°,AB=12,AC=6, ∴△ABC是直⾓三⾓形, ∴BC= = =6 , 故答案为:6 .° 【点评】此题考查了含30°直⾓三⾓形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键. 18.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= 2 . 【考点】含30度⾓的直⾓三⾓形;⾓平分线的性质. 【分析】根据⾓平分线性质求出∠BAD的度数,根据含30度⾓的直⾓三⾓形性质求出AD即可得BD. 【解答】解:∵∠C=90°,∠B=30°, ∴∠CAB=60°, AD平分∠CAB, ∴∠BAD=30°, ∴BD=AD=2CD=2, 故答案为2. 【点评】本题考查了对含30度⾓的直⾓三⾓形的性质和⾓平分线性质的应⽤,求出AD的长是解此题的关键. 19.如图,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 . 【考点】含30度⾓的直⾓三⾓形;正⽅形的性质. 【分析】先由正⽅形的性质可得∠BAC=45°,AB∥DC,∠ADC=90°,由∠CAE=15°,根据平⾏线的性质及⾓的和差得出∠E=∠BAE=∠BAC﹣∠CAE=30°.然后在Rt△ADE中,根据30°⾓所对的直⾓边等于斜边的⼀半即可得到AE=2AD=8. 【解答】解:∵正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O, ∴∠BAC=45°,AB∥DC,∠ADC=90°, ∵∠CAE=15°, ∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°. ∵在Rt△ADE中,∠ADE=90°,∠E=30°, ∴AE=2AD=8. 故答案为8. 【点评】本题考查了含30度⾓的直⾓三⾓形的性质:在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半.也考查了正⽅形的性质,平⾏线的性质.求出∠E=30°是解题的关键. 20.在矩形ABCD中,对⾓线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 . 【考点】含30度⾓的直⾓三⾓形;矩形的性质. 【分析】根据矩形的性质,可以得到△AOB是等边三⾓形,则可以求得OA的长,进⽽求得AB的长. 【解答】解:∵四边形ABCD是矩形, ∴OA=OB ⼜∵∠AOB=60° ∴△AOB是等边三⾓形. ∴AB=OA= AC=5, 故答案是:5.。

原题目:人教版八年级数学(上)第二单元知识点梳理

原题目:人教版八年级数学(上)第二单元知识点梳理

原题目:人教版八年级数学(上)第二单元
知识点梳理
一、直线的特征与表示
- 直线是由无限多个点连成的笔直的轨迹。

- 直线上两点可以唯一确定一条直线。

- 直线的表示方法有点斜式、点法式和一般式。

二、直线与平面的位置关系
- 直线与平面的相交情况有三种:相交于一点、平行不相交、与平面重合。

三、平行线的性质
- 平行线具有以下基本性质:
- 平行线之间的距离在任意两点之间都相等。

- 平行线上的两个相交线段之间的夹角都相等。

四、相交线与相交角
- 两条相交线可以分为内角、外角、对顶角和同位角。

- 相交线之间的角可以用角的度量来进行表示。

- 对顶角的度量相等,同位角的度量相等。

五、成比例线段和相似三角形
- 成比例线段是指两个线段之间的比相等。

- 相似三角形是指对应角相等,对应边成比例的三角形。

六、题目示例
- 通过一些例题来加深对知识点的理解和掌握。

以上是人教版八年级数学(上)第二单元的知识点梳理。

希望对你的研究有所帮助!。

青岛版八年级数学上册第二单元测试题(含答案)

青岛版八年级数学上册第二单元测试题(含答案)

第二章图形的轴对称单元测试1.在角、线段、等腰三角形、平行四边形、等腰梯形、圆这六个图形中,是轴对称图形的有。

2.等边三角形、角、长方形这三个图形中,对称轴最多的是,它共有条对称轴。

3.小明面对镜子站着,他的左脚在前,那么在镜子里他是脚在前。

4.在下面这一组图形中符号中找出它们所蕴含的内在规律全面质量管理在横线上的空白处填上恰当的图形。

5.观察下列平面图形,期中是轴对称图形的有()A、1个B、2个C、3个D、4个6.下列说法中正确的是()A、轴对称图形是由两个图形组成的B、等边三角形有三条对称轴C、两个全等三角形组成一个轴对称图形D、直角三角形一定是轴对称图形7.以下由一些弧所组成的图形都是轴对称图形,你能找到它们的对称轴吗?有的图形不止一条对称轴,你能找到它们各自所有的对称轴吗?在图中把它们画出来。

8.如图,在△ABC中,DE是AC的垂直平分线,交BC于D,交AC于F,△ABD的周长为15cm,而AC=5cm,求△ABC的周长。

能力提升9.一辆汽车牌在水中的倒影为,则该车牌照号码为。

10.在A,B,N,H,U这五个英文文字中近似成轴对称的是。

11.如图,在△ABC中,∠A=90°,∠B=15°,DE是BC的垂直平分线,交AB于D,交BC于E,且BD=18cm,则AC=cm。

12.如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形。

BD CEA第8题图EBDCA第11题图方法一方法二方法三13.如图,BD=DC,ED⊥BC,AE平分∠BAC,EM⊥AB,EN⊥AC垂足分别为M,N。

求证:BM=CN。

考点追踪1.如图,对称轴条数最多的一个图形是()2.如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD,②AC⊥BD,③AO=CO,④AB⊥BC,其中正确的结论有________。

ABCDOl第 2 题图3.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D',C'的位置,若∠EFB=65°,则∠AED'等于()65°AB CDD'C'第 3 题图EFA、50°B、55°C、60°D、65°NEBMD CA第13题图参考答案基础闯关1、角、线段、等腰三角形、等腰梯形、圆2、等边三角形 33、右4、5、C6、B8、20cm能力提升9、M1793610、A、H、U11、连接BE,CE,因为BD=DC、ED⊥BC,所以EB=EC,又因为EM⊥AB,EN⊥AC,EA平分∠BAC,所以EM=EN,∠EMB=∠ENC=90度,所以RT△BEM≌RT△CEN,所以BM=CN考点追踪1、B2、①②③3、A。

人教版八年级数学(上)第二单元重点知识点

人教版八年级数学(上)第二单元重点知识点

人教版八年级数学(上)第二单元重点知识点知识点1: 根式的运算1. 同类项的根式可以直接进行加减运算,结果仍为同类项的根式。

2. 根式可以与整数进行加减运算,运算结果仍为根式。

知识点2: 平方根与立方根1. 平方根和立方根是指一个数的平方和立方的根,平方根用符号√表示,立方根用符号∛表示。

2. 计算平方根和立方根时,可以使用计算器来辅助求解。

知识点3: 分数指数幂1. 求一个数的分数指数幂,可以将指数的分母作为根式的指数,将指数的分子作为底数的指数。

2. 分数指数幂的运算结果为一个根式,可以进行化简和约分。

知识点4: 整除与余数1. 两个整数a和b,如果可以整除,即a可以被b整除,记作a÷b,余数为0。

2. 整除运算可以用来判断一个数是否是另一个数的倍数。

知识点5: 除数和倍数1. 整数a是整数b的倍数,即a可以被b整除,可以写成a是b的n倍。

2. 整数b是整数a的除数,即b可以整除a,可以写成b是a的约数。

3. 两个整数的最小公倍数是它们的公共倍数中最小的一个。

知识点6: 素数和合数1. 素数是指除了1和本身外没有其他约数的自然数,例如2、3、5、7等。

2. 合数是指除了1和本身外还有其他约数的自然数,例如4、6、8、9等。

3. 任何一个大于1的数,都能被素数唯一分解。

知识点7: 素因数分解1. 素因数分解是指将一个合数分解为一系列素数的乘积。

2. 素因数分解可以使用质因数分解法进行计算。

知识点8: 最大公约数和最小公倍数1. 最大公约数是指两个或多个数共有的约数中最大的一个。

2. 最小公倍数是指两个或多个数的公共倍数中最小的一个。

3. 最大公约数和最小公倍数有着特定的计算方法和性质。

知识点9: 分数的加减运算1. 对于分数的加减运算,需要先找到它们的最小公倍数,并将分母化为最小公倍数的倍数。

2. 分数的加减运算结果为一个分数,可以进行化简和约分。

知识点10: 分数的乘除运算1. 对于分数的乘除运算,可以直接对分子和分母进行对应的运算。

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

(典型题)初中数学八年级数学上册第二单元《实数》测试(包含答案解析)

一、选择题1.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .14 2.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .6 3.已知实数x 、y 满足|x -4|+8y -=0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 4.下列实数227,3π,3.14159,9-,39,-0.1010010001…….(每两个1之间依次多1个0)中无理数有( )A .1个B .2个C .3个D .4个5.如x 为实数,在“(31)-□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A .31-B .31+C .33D .13-6.已知 ||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7B .1或-7C .1或7D .±1或7± 7.下列说法中正确的是( ) A .25的值是±5B .两个无理数的和仍是无理数C .-3没有立方根.D .22-a b 是最简二次根式.8.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b - 9.下列说法正确的是( )A 5B .55C .2<5<3D .数轴上不存在表示5的点10.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近﹣10的是( )A .点MB .点NC .点PD .点Q11.已知x 5,则代数式x 2﹣x ﹣2的值为( ) A .5B .5 C .5D .512.下列运算正确的是( )A .(x +y )2=x 2+y 2B .(﹣12x 2)3=﹣16x 6C .215-=125D 2(5)-=5二、填空题13.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.14.3x -+|2x ﹣y |=0,那么x ﹣y =_____.15.一个数的算术平方根是6,则这个数是_______,它的另一个平方根是_________. 16.计算((2323⨯+的结果是_____.17.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.18.已知b>032a b -=_____.19.若[)x 表示大于x 的最小整数,如[)56=,[)1.81-=-,则下列结论中正确的有______(填写所有正确结论的序号).①[)01=;②33055⎡⎫-=⎪⎢⎣⎭;③[)0x x -<;④[)1x x x <≤+;⑤存在有理数x 使[)0.2x x -=成立.20.已知:15-=m m,则221m m -=_______. 三、解答题 21.计算.(121483230(223)5; (2)22021021(1)(2)(4)362π-⎛⎫---⨯- ⎪⎝⎭22.计算:(1(2)已知﹣a|=0,求a 2﹣+2+b 2的值.23.计算:21()|12-24.计算:(1))11(2142⎛⎫⨯-- ⎪⎝⎭25.计算:(1(2)2|1(2)+--26.化简(1)+(2【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据2ndf 键是功能转换键列算式,然后解答即可.【详解】14==. 故选:D .【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能. 2.A解析:A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误;的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 3.B解析:B【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B .【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.4.C解析:C【分析】根据无理数的概念即可判断.【详解】解:,无理数有:3π,-0.1010010001…….(每两个1之间依次多1个0),共有3个. 故选:C .【点睛】 本题考查了无理数.解题的关键是熟练掌握无理数的概念.5.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A 、1)1)0-=,故选项A 不符合题意;B 、1)1)2⨯=,故选项B 不符合题意;C 1与C 符合题意;D 、1)(10+-=,故选项D 不符合题意.故选:C .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键. 6.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.7.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.8.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.9.C解析:C【分析】根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【详解】解:A A 错误;B 、5的平方根是B 错误;C ∴23,故C 正确;D D错误;故选:C.【点睛】本题考查了实数的意义、实数与数轴的关系利用被开方数越大算术平方根越大是解题关键.10.B解析:B【分析】根据无理数的估值方法进行判断即可;【详解】∵-3.16,∴点N最接近故选:B.【点睛】本题考查了实数与数轴,无理数的估算,熟练掌握知识点是解题的关键;11.D解析:D【分析】把已知条件变形得到x2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x时,原式=3)﹣1=.故选:D.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.12.D解析:D【分析】直接利用积的乘方运算法则以及负整数指数幂的性质和二次根式的性质、完全平方公式分别判断得出答案.【详解】解:A 、(x +y )2=x 2+2xy +y 2,故此选项错误;B 、(﹣12x 2)3=﹣18x 6,故此选项错误; C 、215-=25,故此选项错误;D 5,故此选项正确;故选:D .【点睛】本题考查了积的乘方、负整数指数幂、二次根式的性质、完全平方公式,解题关键是熟知这些性质,并能准确应用.二、填空题13.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.14.﹣3【分析】先根据非负数的性质列出方程组求出xy 的值进而可求出x ﹣y 的值【详解】解:∵+|2x ﹣y|=0∴解得所以x ﹣y =3﹣6=﹣3故答案为:-3【点睛】本题考查了二次根式的非负性绝对值的非负性根解析:﹣3【分析】先根据非负数的性质列出方程组,求出x、y的值,进而可求出x﹣y的值.【详解】解:∵+|2x﹣y|=0,∴3020xx y-=⎧⎨-=⎩,解得36 xy=⎧⎨=⎩.所以x﹣y=3﹣6=﹣3.故答案为:-3【点睛】本题考查了二次根式的非负性,绝对值的非负性,根据题意得到关于x、y的二元一次方程组,求出x、y的值是解题关键.15.-6【分析】根据正数的平方根有两个它们互为相反数进行解答【详解】解:∵∴这个数是36∵一个正数的两个平方根互为相反数这个数的算术平方根为6∴它的另一个平方根是6的相反数即-6故答案为:36-6【点睛解析:-6【分析】根据正数的平方根有两个,它们互为相反数进行解答.【详解】解:∵26=36,∴这个数是36∵一个正数的两个平方根互为相反数,这个数的算术平方根为6,∴它的另一个平方根是6的相反数,即-6.故答案为:36,-6.【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.17.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴ 解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.18.【分析】先由二次根式的被开方数为非负数得出≥0结合已知条件b >0根据有理数乘法法则得出a≤0再利用积的算术平方根的性质进行化简即可【详解】解:∵≥0b >0∴a≤0故答案为:【点睛】本题主要考查了二次解析:-【分析】先由二次根式的被开方数为非负数得出32a b -≥0,结合已知条件b >0,根据有理数乘法法则得出a≤0,再利用积的算术平方根的性质进行化简即可.【详解】解:∵32a b -≥0,b >0,∴a≤0,a =⋅=-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,难度适中,得出a≤0是解题的关键. 19.①④⑤【分析】根据题意表示大于x 的最小整数结合各项进行判断即可得出答案【详解】解:①根据表示大于x 的最小整数故正确;②应该等于故错误;③当x=05时故错误;④根据定义可知但不会超过x+1所以成立故正 解析:①④⑤【分析】根据题意[)x 表示大于x 的最小整数,结合各项进行判断即可得出答案.【详解】解:①[)01=,根据[)x 表示大于x 的最小整数,故正确; ②33055⎡⎫-=⎪⎢⎣⎭,应该等于333215555⎡⎫-=-=⎪⎢⎣⎭,故错误; ③[)0x x -<,当x=0.5时,[)10.5=0.50x x -=->,故错误;④[)1x x x <≤+,根据定义可知[)x x <,但[)x 不会超过x+1,所以[)1x x x <≤+成立,故正确;⑤当x=0.8时,[)1-0.8=0.2x x -=,故正确.故答案为:①④⑤.【点睛】本题主要考查了对题意的理解,准确的理解题意是解决本题的关键. 20.【分析】先利用完全平方差公式求出的值再利用完全平方和公式求出的值最后利用平方差公式即可得【详解】则故答案为:【点睛】本题考查了完全平方公式平方差公式平方根熟记公式是解题关键解析:±【分析】 先利用完全平方差公式求出221m m +的值,再利用完全平方和公式求出1m m+的值,最后利用平方差公式即可得.【详解】 15m m -=, 22221252271m m m m ⎛⎫-+=+= ⎪⎭∴⎝+=, 22212279122m m m m +⎛⎫∴+= =⎪+⎝=⎭+,1m m∴+=,则22111m m m m m m ⎛⎫-= ⎪⎛⎫+-=± ⎪⎭⎝⎭⎝故答案为:±本题考查了完全平方公式、平方差公式、平方根,熟记公式是解题关键.三、解答题21.(1)-7;(2)-5【分析】(1)先算二次根式的乘方,乘除,再算加减法,即可求解;(2)先算乘方,算术平方根,再算加减法,即可求解.【详解】(1)原式-3-7;(2)原式=4(164)1--⨯--=4416+--=-5.【点睛】本题主要考查二次根式的混合运算以及实数的混合运算,掌握二次根数的混合运算法则以及实数的混合运算法则,是解题的关键.22.(1)2)4【分析】(1)根据二次根式的乘除法和加减法可以解答本题;(2)根据﹣a|=0,可以得到a 、b 的值,然后将所求式子变形,再将a 、b 的值代入即可解答本题.【详解】解:(1=4-=4+(2)∵﹣a|=0, ∴a =0,b ﹣2=0,∴a,b =2,∴a2﹣a +2+b 2=(a 2+b 2)2+22=02+4=4【点睛】本题考查了如二次根式的化简求值、非负数的性质、解答本题的关键是明确二次根式混合运算的计算方法;23.14【分析】先计算平方、立方根、绝对值,再加减即可.【详解】解:21()|12-+ =12|13|4+-- =1224+- =14【点睛】本题考查了实数的计算,解题关键是准确的计算立方根、算术平方根和乘方,明确绝对值的意义.24.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式221=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.25.(1)13;(2)3 【分析】(1)直接利用算术平方根的性质、二次根式的性质、立方根的性质分别化简在计算得出答(2)直接利用绝对值的性质、平方的的性质计算得出答案.【详解】解:(1=1-2+4=1-23+ 1=3(2)2|1(2)+--14+=3【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.。

八年级上册数学第二单元检测试题答案(人教版)

八年级上册数学第二单元检测试题答案(人教版)

书山有路勤为径;学海无涯苦作舟八年级上册数学第二单元检测试题答案(人教版)初二是初中生活的关键,一定要加油!初中频道为大家准备了八年级上册数学第二单元检测试题答案,欢迎阅读与选择!一、选择题1.B 解析:只有②④是正确的.2. C 解析:∵AB=AC,D 为BC 中点,&there4; AD 是&ang;BAC 的平分线,AD&perp;BC.∵&ang;BAD=35 度,&there4; &ang;DAC=35 度,&there4; 在Rt△DAC 中,&ang;C=90 度-&ang;DAC=90 度-35 度=55 度.3.A 解析:∵AB=AC,&ang;A=36 度,&there4; &ang;ABC=&ang;C=72 度.∵DE 垂直平分AB,&there4; DA=DB,&there4; &ang;ABD=&ang;A=36 度.&there4; &ang;DBC=36 度,&ang;BDC=72 度,&there4; BD 平分&ang;ABC,AD=BD=BC,①②正确;△BCD 的周长=BC+BD+CD=BC+AD+CD=BC+AC=BC+AB,③正确.∵BD 大于CD,&there4; AD 大于CD,故④错误.4.B 解析:4+9+9=22(cm).5.B 解析:&ang;AED=&ang;EDC+&ang;C,&ang;ADC=&ang;B+&ang;BAD,∵AD=AE,&there4; &ang;AED=&ang;ADE.∵AB=AC,&there4; &ang;B=&ang;C,&there4; &ang;B+&ang;BAD=&ang;EDC+&ang;C+&ang;EDC,今天的努力是为了明天的幸福。

最全面人教版八年级上册数学第二单元知识点归纳总结

最全面人教版八年级上册数学第二单元知识点归纳总结

最全面人教版八年级上册数学第二单元知
识点归纳总结
本文汇总了《人教版八年级上册数学》第二单元的知识点,旨在帮助同学们系统复和总结。

知识点一:有理数的乘除运算
在该单元中,我们研究了有理数的乘法和除法运算。

有理数的乘法遵循交换律、结合律和分配律,并且正数乘以正数为正数,负数乘以负数为正数,正数乘以负数为负数。

有理数的除法可通过乘法的逆运算来实现。

知识点二:有理数的加减法运算
除了乘除法运算外,本单元还涉及有理数的加法和减法运算。

同号数相加,结果的符号和绝对值均为原来的数;异号数相加,结果的符号和绝对值由大数决定。

知识点三:绝对值与相反数
绝对值指一个数到零的距离,绝对值是非负的。

相反数指与一个数相加为零的数,具有相反符号但绝对值相等。

知识点四:数轴与有理数的比较
数轴是用于表示有理数的一个直线,可以通过数轴判断有理数的大小关系。

数轴上,数越往右越大,数越往左越小。

知识点五:有理数的平方与平方根
本单元还介绍了有理数的平方和平方根的概念。

一个数的平方是指该数自乘的结果,而平方根是指一个数的正平方根。

我们研究了如何求一个数的平方和平方根。

知识点六:小数的运算
在该单元中,我们还涉及了小数的加减乘除运算。

小数之间的运算遵循正数和正数、负数和负数的规律。

小数的运算可以通过转换为分数进行简化。

以上就是本文对《人教版八年级上册数学》第二单元知识点的总结。

希望同学们能够通过复习和巩固这些知识点,提高数学学习的效果。

加油!。

八年级上册数学第二单元

八年级上册数学第二单元

八年级上册数学第二单元八年级上册数学第二单元主要包括三个部分:线性方程组、一元二次方程和一次不等式。

下面我将逐一介绍这三个部分的内容。

一、线性方程组线性方程组是由多个线性方程组成的方程集合。

在这一部分,我们将学习如何求解线性方程组。

首先,我们要了解什么是线性方程组。

线性方程组一般有两个以上的方程,方程中的未知数个数与方程个数相同。

在解线性方程组时,我们可以使用消元法、代入法、加减法或等价变形法等方法。

这些方法的核心思想是通过对方程进行变形或运算,使方程组的解更容易求得。

二、一元二次方程一元二次方程是一个二次函数的零点方程,其一般形式为ax^2+bx+c=0,其中a、b、c都是已知的实数,并且a不等于0。

在这一部分,我们将学习如何求解一元二次方程。

求解一元二次方程的方法主要有:配方法、因式分解法、求根公式法和完成平方法。

我们将学习这些方法的具体步骤,并通过例题进行练习,以提高解题能力。

三、一次不等式一次不等式是一个一次函数的不等式,其一般形式为ax+b<0或ax+b>0,其中a、b都是已知的实数,并且a不等于0。

在这一部分,我们将学习如何求解一次不等式。

求解一次不等式的方法主要有:解法一、解法二和解法三。

这些方法的核心思想是通过变换不等式的形式,使其更容易求解。

我们将学习这些方法的具体步骤,并通过例题进行练习,以提高解题能力。

以上就是八年级上册数学第二单元的内容介绍。

通过学习这些知识,我们将能够更好地理解和应用线性方程组、一元二次方程和一次不等式的概念和求解方法。

希望同学们能够认真学习,积极参与课堂讨论和练习,提高数学解题能力。

八年级上册数学第二单元测试

八年级上册数学第二单元测试

八年级上册数学第二单元测试一、全等三角形的概念。

1. 定义。

- 能够完全重合的两个三角形叫做全等三角形。

- 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

例如,若△ABC与△DEF全等,点A与点D、点B与点E、点C与点F是对应顶点;AB与DE、BC与EF、AC与DF是对应边;∠A与∠D、∠B 与∠E、∠C与∠F是对应角。

2. 表示方法。

- 全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF。

书写时,对应顶点的字母要写在对应的位置上。

二、全等三角形的性质。

1. 全等三角形的对应边相等。

- 若△ABC≌△DEF,则AB = DE,BC = EF,AC = DF。

2. 全等三角形的对应角相等。

- 若△ABC≌△DEF,则∠A=∠D,∠B = ∠E,∠C=∠F。

三、全等三角形的判定。

1. SSS(边边边)- 三边对应相等的两个三角形全等。

- 例如,在△ABC和△DEF中,AB = DE,BC = EF,AC = DF,则△ABC≌△DEF。

2. SAS(边角边)- 两边和它们的夹角对应相等的两个三角形全等。

- 如在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,则△ABC≌△DEF。

3. ASA(角边角)- 两角和它们的夹边对应相等的两个三角形全等。

- 例如,在△ABC和△DEF中,∠A=∠D,AB = DE,∠B = ∠E,则△ABC≌△DEF。

4. AAS(角角边)- 两角和其中一个角的对边对应相等的两个三角形全等。

- 如在△ABC和△DEF中,∠A = ∠D,∠B = ∠E,BC = EF,则△ABC≌△DEF。

5. HL(斜边、直角边,适用于直角三角形)- 斜边和一条直角边对应相等的两个直角三角形全等。

- 在Rt△ABC和Rt△DEF中,∠C = ∠F = 90°,AB = DE,AC = DF,则Rt△ABC≌Rt△DEF。

八年级数学上册第二单元综合测试试题试题

八年级数学上册第二单元综合测试试题试题

创作;朱本晓 八年级第二单元测试一、选择题1.以下几组数中不能作为直角三角形三边长度的是〔 〕A . a=7,b=24,c=25B .C .45,2,32===c b aD . a=15, b=8, c=172.小强量得家里彩电荧屏的长为58cm ,宽为46cm ,那么这台电视机尺寸是 〔 〕A .9英寸〔23cm 〕B .21英寸〔54cm 〕C .29英寸〔74cm 〕D .34英寸〔87cm 〕3.等腰三角形腰长10cm ,底边16cm ,那么面积〔 〕A .96cm 2B .48cm 2C .24cm 2D .32cm 2 4.三角形三边a,b,c 满足 (a+b)2=c 2+2ab ,那么这个三角形是〔 〕A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形创作;朱本晓 5.(-6)2的平方根是〔 〕A .-6B .36C .±6D .6±6.以下命题正确的个数有:a a a a ==233)2(,)1(〔3〕无限小数都是无理数〔4〕有限小数都是有理数〔5〕实数分为正实数和负实数两类 〔 〕A .1个B .2个C .3个D .4个7.x 是2)9(-的平方根,y 是64的立方根,那么x+y =〔 〕A .3B .7C .3,7D .1,78.直角三角形边长为a,b ,斜边上高为h ,那么以下各式总能成立的是 〔 〕A 、2h ab =B .2222h b a =+C . h b a 111=+D .222111hb a =+创作;朱本晓 二、填空题9.以下实数1415926.3)1(, ⋅3)2(,722)3(2)4(38)5(-2)6(π, 3030030003.0)7( 其中无理数有________,有理数有________.〔填序号〕11.16的平方根________,64的立方根________.12.算术平方根等于它本身的数有________,立方根等于本身的数有________.13.假设2562=x ,那么x________,假设2163-=x ,那么x________.14.Rt △两边为3,4,那么第三边长________.15.假设三角形三边之比为3:4:5,周长为24,那么三角形面积________.16.假如0)6(42=++-y x ,那么=+y x ________. 17.三角形三边长12+n ,n n 222+,1222++n n 。

八年级上册数学第二单元

八年级上册数学第二单元

八年级上册数学第二单元八年级上册数学的第二单元主要讲解了平面直角坐标系以及线段和中点的相关内容。

这些知识是我们进一步学习几何知识的基础,对于理解空间关系和直线、点、面等概念都非常重要。

首先,我们来了解一下平面直角坐标系。

平面直角坐标系是由两条互相垂直的线段所确定的。

一条线段被称为x轴,另一条线段被称为y轴。

两个轴的交点被称为原点,用O表示。

我们可以通过在坐标轴上选择一个单位长度,来确定其他点的位置。

在平面直角坐标系中,每一个点都可以用一对有序数表示,即(x, y),其中x表示横坐标,y表示纵坐标。

接下来,我们学习了线段和中点的相关概念。

线段是指两个点之间的部分,其中的两个端点用大写字母表示。

而中点则是指线段的中间点,用大写字母与小写字母的首字母相同来表示。

例如,线段AB的中点用M表示。

中点的横坐标等于两个端点横坐标的和的一半,纵坐标等于两个端点纵坐标的和的一半。

在学习了平面直角坐标系和线段与中点的基本概念后,我们开始学习如何计算两个点之间的距离。

利用勾股定理可以计算两个坐标点的距离,即:两点之间的距离等于横坐标之差的平方与纵坐标之差的平方的和再开平方根。

例如,点A(x1, y1)和B(x2, y2)之间的距离AB 可以表示为√((x2-x1)² + (y2-y1)²)。

除了计算两个点之间的距离,我们还学习了如何判断一个点在坐标轴上的位置。

对于坐标轴上的点,横坐标为0或纵坐标为0的点分别被称为x轴和y轴上的点。

而原点的横坐标和纵坐标都为0。

在平面直角坐标系中,我们也可以根据两个点相对于坐标轴的位置关系来判断线段的斜率。

斜率是指直线与x轴的夹角的正切值,用k 来表示。

对于两点A(x1, y1)和B(x2, y2)来说,线段AB的斜率k可以表示为k=(y2-y1)/(x2-x1)。

另外,我们还学习了如何通过坐标轴上的两个点来确定一个直线。

通过计算两个点的斜率k,并选择一个点A(x1, y1),我们可以得到直线的方程。

新人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)

新人教版初中数学八年级数学上册第二单元《全等三角形》测试卷(答案解析)

一、选择题1.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°2.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .43.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.110<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .34.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 6.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:16 7.如图,AB =AC ,点D 、E 分别是AB 、AC 上一点,AD =AE ,BE 、CD 相交于点M .若∠BAC =70°,∠C =30°,则∠BMD 的大小为( )A .50°B .65°C .70°D .80°8.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),当△ACP 与△BPQ 全等时,则点Q 的运动速度为( )cm/s .A .0.5B .1C .0.5或1.5D .1或1.5 9.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .310.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20° 11.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.14.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____15.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.16.如图,在ABC 中,C 90∠=,A ∠、B ∠的平分线交于O ,OD AB ⊥于D .若AC 3=,BC 4=,AB 5=,则AD =________.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)18.如图,在ABC 中,AB CB =,90ABC ∠=︒,AD BD ⊥于点D ,CE BD ⊥于点E ,若7CE =,5AD =,则DE 的长是______.19.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.20.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.三、解答题21.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.23.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.24.如图,点C 在BE 上,AB ⊥BE ,DE ⊥BE ,且AB =CE ,AC =CD .判断AC 和CD 的关系并说明理由.25.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.26.求证:全等三角形对应边上的中线相等.(根据图形写出已知,求证并完成证明)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 2.B解析:B【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.3.B【分析】根据平方根、立方根、无理数的估算和三角形全等判定定理进行判断即可.【详解】解:①0.09的算术平方根是0.3,不是0.03,因此①不正确;②1的立方根是1,不是±1,因此②不正确;③因为3.12=9.91,3.22=10.24,而9.91<10<10.24,所以3.1<3.2,因此③正确;④只有两边夹角对应相等的两个三角形全等,而两边及一角分别相等的两个三角形不一定全等.因此④不正确;所以正确的只有③,故选:B .【点睛】本题考查平方根、立方根、无理数的估算以及三角形全等判定定理,掌握平方根、立方根的意义、掌握无理数的估算方法和三角形全等的判断方法是正确判断的前提. 4.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.5.B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.A解析:A【分析】过点D 作DE 垂直于AB ,DF 垂直于AC ,由AD 为角BAC 的平分线,根据角平分线定理得到DE=DF ,再根据三角形的面积公式表示出△ABD 与△ACD 的面积之比,把DE=DF 以及AB :AC 的比值代入即可求出面积之比.【详解】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F .∵AD 为∠BAC 的平分线,∴DE=DF ,又AB :AC=4:3,∴S △ABD :S △ACD =(12AB•DE ):(12AC•DF )=AB :AC=4:3. 故选:A .【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题. 7.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.8.D解析:D【分析】设点Q 的运动速度是x cm/s ,有两种情况:①AP=BP ,AC=BQ ,②AP=BQ ,AC=BP ,列出方程,求出方程的解即可.【详解】解:设点Q 的运动速度是x cm/s ,∵∠CAB=∠DBA ,∴△ACP 与△BPQ 全等,有两种情况:①AP=BP ,AC=BQ ,则1×t=4-1×t ,则3=2x ,解得:t=2,x=1.5;②AP=BQ ,AC=BP ,则1×t=tx ,4-1×t=3,解得:t=1,x=1,故选:D .本题考查了全等三角形的判定的应用,以及一元一次方程的应用,掌握方程的思想和分类讨论思想是解此题的关键.9.A解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD=⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD 222∴⨯=⨯+⨯, AC BF AD BD CD AD ∴⨯=⨯+⨯,即10BF 8886112=⨯+⨯=,BF 11.2∴=,EF BF BE 11.210 1.2∴=-=-=,故选:A .【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.10.C解析:C【分析】利用全等三角形的性质可得∠A′CB′=∠ACB ,再利用等式的性质可得答案.解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB,∴∠A′CB′-∠A′CB=∠ACB-∠A′CB,∴∠ACA′=∠BCB′=25°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应角相等.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC和AED中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.14.1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.15.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全 解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中,A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.16.【分析】根据三角形角平分线的交点到边的距离相等再利用三角形面积公式解答即可【详解】解:过作于于∵的平分线交于于∴∵∴四边形是正方形∴∵的面积即解得:∴∴在与中∴∴故答案为:【点睛】本题考查了角平分线 解析:2【分析】根据三角形角平分线的交点到边的距离相等,再利用三角形面积公式解答即可.【详解】解:过O 作OE AC ⊥于E ,OF BC ⊥于F ,∵A ∠、B ∠的平分线交于O ,OD AB ⊥于D ,∴OD OE OF ==.∵C 90∠=,∴四边形ECFO 是正方形,∴OE OF CE CF ===.∵ABC 的面积1111AC BC AB OD AC OE BC OF 2222=⋅=⋅+⋅+⋅, 即()1134OE 34522⨯⨯=⨯++, 解得:1OE =, ∴CE OE 1==,∴AE AC CE 2=-=.在Rt AEO 与Rt ADO 中,AO AO OE OD =⎧⎨=⎩, ∴Rt AEO Rt ADO ≅,∴AD AE 2==.故答案为:2.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,正确作出辅助线是解题的关键. 17.AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB =∠ACD ,则△ABC ≌△ADC (ASA );若添加条件∠ABC =∠ADC ,则△ABC ≌△ADC (AAS );故答案为:AB =AD (答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答. 18.2【分析】通过证明≌得到即可求解【详解】解:∵∴∵∴∴∴在和中∴≌∴∴故答案为:2【点睛】本题考查全等三角形的判定与性质掌握全等三角形的判定与性质是解题的关键解析:2【分析】通过证明CBE △≌BAD ,得到7BD CE ==,5BE AD ==,即可求解.【详解】 解:∵90ABC ∠=︒,∴90ABD CBE ∠+∠=︒,∵AD BD ⊥,CE BD ⊥,∴90CEB D ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∴CBE BAD ∠=∠,在CBE △和BAD 中,CEB D CBE BAD CB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴CBE △≌BAD ,∴7BD CE ==,5BE AD ==,∴2DE BD BE =-=,故答案为:2.【点睛】本题考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键. 19.;【分析】过点P 作MN ⊥AD 根据角平分线的性质以及平行线的性质即可得出PM=PE=2PE=PN=2即可得出答案【详解】过点P 作MN ⊥AD ∵AD ∥BC ∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交 解析:18;【分析】过点P 作MN ⊥AD ,根据角平分线的性质以及平行线的性质即可得出PM=PE =2,PE=PN =2,即可得出答案.【详解】过点P 作MN ⊥AD∵AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,PE ⊥AB 于点E ∴AP ⊥BP ,PN ⊥B C∴PM=PE =9,PE=PN =9∴MN =9+9=18故答案为18.【点睛】此题主要考查了角平分线的性质以及平行线的性质,根据题意作出辅助线是解决问题的关键.20.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.三、解答题21.(1)AP 是∠BAC 的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF ≌△AEF 即可证明AP 是∠BAC 的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP 是∠BAC 的平分线,理由如下:在△ADF 和△AEF 中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键.22.(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解. 【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE=⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.24.AC ⊥CD ,理由见解析【分析】根据条件证明△ABC ≌△CED 就得出∠ACD=90°,则可以得出AC ⊥CD .【详解】解:AC ⊥CD .理由:∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°.在Rt △ABC 和Rt △CED 中,AB CE AC CD =⎧⎨=⎩, ∴Rt △ABC ≌Rt △CED (HL ),∴∠A =∠DCE ,∠ACB =∠D .∵∠A+∠ACB =90°,∴∠DCE+∠ACB =90°.∵∠DCE+∠ACB+∠ACD =180°,∴∠ACD =90°,∴AC ⊥CD .【点睛】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,解答时证明三角形全等是关键.25.(1)证明见解析;(2)120︒.【分析】(1)先根据角平分线的定义可得ACB FCE ∠=∠,再根据三角形全等的判定定理与性质即可得证;(2)先根据平行线的性质可得B FCE ∠=∠,从而可得E FCE B ACB ∠∠=∠=∠=,再根据直角三角形的性质可得30ACB ∠=︒,然后根据三角形的内角和定理即可得.【详解】(1)CB 为ACE ∠的角平分线,ACB FCE ∴∠=∠, 在ABC 和FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC FEC AAS ∴≅,AB FE ∴=;(2)//AB CE ,F E B C ∴∠=∠,E FCE B B AC ∠=∴∠=∠∠=,ED AC ⊥,即90CDE ∠=︒,90E FCE ACB ∠∠+∠∴+=︒,即390ACB ∠=︒,解得30ACB ∠=︒,30B ∴∠=︒,180120B A ACB ∠=︒-∠=∴∠-︒.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.见解析【分析】利用SAS 证明ABD ≌A B D '''△,即可证得结论.【详解】 解:已知:如图,ABC ≌A B C ''',AD 和A D ''分别是BC 和B C ''上的中线,求证:AD =A D ''.证明:∵ABC ≌A B C ''', ∴AB =A B '',∠B =∠B ',BC =B C '',∵AD 、A D ''是 BC 和B C ''上的中线,∴BD =12BC ,12B D B C ''''=, ∴BD =B D '',∴在ABD 与A B D '''△中 AB A B B B BD B D =⎧⎪∠=∠⎨⎪=''''⎩' ∴ABD ≌A B D '''△(SAS ),∴AD =A D ''.【点睛】本题考查了全等三角形的判定与性质,证明线段相等的问题,基本的思路是转化成三角形全等.。

新人教版初中数学八年级数学上册第二单元《全等三角形》测试(答案解析)(3)

新人教版初中数学八年级数学上册第二单元《全等三角形》测试(答案解析)(3)

一、选择题1.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .72.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm3.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 4.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA5.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .96.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 7.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠DB .EB=DFC .AD=BCD .AE=CF 8.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .2.5B .3C .3.5D .49.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 10.在尺规作图作一个角的平分线时的两个三角形全等的依据是( )A .SASB .AASC .SSSD .HL 11.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 12.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b二、填空题13.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.14.如图,在ABC 中,=6AB ,=4AC ,点D ,E 分别在边AB ,AC 上,2BD AE CE ===,//CE AB 交DE 的延长线于点F ,则CF 的长为_____________.15.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.16.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第7个图形中有全等三角形的对数是________.17.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.18.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.19.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.20.如图,△ABC 的面积为1cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为___.三、解答题21.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.23.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.24.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.25.如图,在△ABD 中,∠ABD =90°,AB=BD ,点E 在线段BD 上,延长AB 使BC=BE ,连接AE 、CE 、CD ,点M 在线段AE 上,点N 在线段CD 上,BM ⊥BN ,易证△ABE ≌△DBC ;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.26.作图:已知ABC 和线段r ,请在ABC 内部作点P ,使得点P 到AC 和BC 的距离相等,并且点A 到点P 的距离等于定长r .(不写作法,保留痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.2.B解析:B【分析】过点O 作MN ,MN ⊥AB 于M ,证明MN ⊥CD ,则MN 的长度是AB 和CD 之间的距离;然后根据角平分线的性质,分别求出OM 、ON 的长度,再把它们求和即可.【详解】如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE =3cm ,∴OM =OE =3cm ,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON =OE =3cm ,∴MN =OM +ON =6cm ,即AB 与CD 之间的距离是6cm ,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.3.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB 与EF 交于点G ,如果AE=CE,∵EF∥BC,∴EG是△ABC的中位线,∴EF平分AB,而AE与CE不一定相等,∴不能证明EF平分AB,故C错误;,∵Rt ACB Rt FEC∴∠A=∠F,∴∠A+∠ACD=∠F+∠ACD=90°,∴∠ADC=90°,∴AB⊥CF,故D正确.∴结论不正确的是C.故选:C.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理.4.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.5.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;7.A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;8.B解析:B【分析】作DH ⊥AC 于H ,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得12×2×AC+12×2×4=7,于是可求出AC 的值. 【详解】解:作DH ⊥AC 于H ,如图,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DH ⊥AC , ∴DH=DE=2,∵S △ABC =S △ADC +S △ABD ,∴12×2×AC+12×2×4=7, ∴AC=3.故选:B .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.9.B解析:B【分析】由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COMBOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.10.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS .【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O 为圆心,任意长为半径画弧,交AO 、BO 于点F 、E ,②再分别以F 、E为圆心,大于12EF 长为半径画弧,两弧交于点M , ③画射线OM ,射线OM 即为所求.由作图过程可得用到的三角形全等的判定方法是SSS .故选:C .【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.11.C解析:C【分析】根据全等三角形的判定定理:SSS、SAS、ASA、AAS、HL定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C.【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.12.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED,在△CEF和△CED中∵D CFECEF CEDCE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEF≌△CED(AAS)∴CE=CF,∴四边形ABDC的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b+,故选:B.【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.二、填空题13.61°【分析】首先利用直角三角形的性质求得∠ABC的度数然后利用角平分线的判定方法得到BD为∠ABC的平分线再求出∠ABD的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.14.4【分析】根据ASA证明△ADE≌△CFE得CF=AD再求出AD的长即可【详解】解:∵AB=6BD=2∴AD=AB-BD=6-2=4∵∴∠BAC=∠FCE 在△ADE 和△CFE 中∴△ADE ≌△CFE ∴解析:4【分析】根据ASA 证明△ADE ≌△CFE 得CF=AD ,再求出AD 的长即可.【详解】解:∵AB=6,BD=2∴AD=AB-BD=6-2=4∵//CE AB∴∠BAC=∠FCE ,在△ADE 和△CFE 中BAC FCE AE CEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CFE∴CF=AD=4.故答案为:4.【点睛】此题主要考查了全等三角形的判定与性质,证明△ADE ≌△CFE 是解答此题的关键. 15.40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS )由全等三角形的性质可得∠B =∠C 根据三角形内角和定理求出∠C 继而即可求解【详解】在△ABE 和△ACD 中∴△ABE ≌△ACD (SAS )∴解析:40°【分析】由全等三角形的判定证得△ABE ≌△ACD (SAS ),由全等三角形的性质可得∠B =∠C ,根据三角形内角和定理求出∠C ,继而即可求解.【详解】在△ABE 和△ACD 中,AB AC AD AE A A ==∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△ACD (SAS )∴∠B =∠C∵60A ∠=︒,80ADC ∠=︒,∴∠C =180°-∠A -∠ADC =40°,∴∠B=40°故答案为:40°.【点睛】本题考查全等三角形的判定和性质,三角形内角和定理,解题的关键是熟练掌握全等三角形的判定和性质证得∠B =∠C .16.28【分析】设第n 个图形中有an (n 为正整数)对全等三角形根据各图形中全等三角形对数的变化可找出变化规律an=(n 为正整数)再代入n=7即可求出结论【详解】解:设第n 个图形中有an (n 为正整数)对全解析:28【分析】设第n 个图形中有a n (n 为正整数)对全等三角形,根据各图形中全等三角形对数的变化可找出变化规律“a n =(1)2n n +(n 为正整数)”,再代入n=7即可求出结论. 【详解】解:设第n 个图形中有a n (n 为正整数)对全等三角形.∵点E 在∠BAC 的平分线上∴∠BAD=∠CAD 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),∴a 1=1;同理,可得:a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,…,∴a n =1+2+3+…+n=(1)2n n +(n 为正整数), ∴a 7=7(71)282⨯+=. 故答案为:28.【点睛】本题考查了全等三角形的判定以及规律型:图形的变化类,根据各图形中全等三角形对数的变化,找出变化规律“a n =(1)2n n +(n 为正整数)”是解题的关键. 17.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理 解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.18.5【分析】作DF ⊥AB 于F 根据角平分线的性质得到DE=DF 根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ∵BD 平分∠ABCDE ⊥BCDF ⊥AB ∴DE=DF ∴×AB×DF+×BC×DE=解析:5【分析】作DF ⊥AB 于F ,根据角平分线的性质得到DE=DF ,根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ,∵ BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE=DF , ∴12×AB×DF+12×BC×DE=ABC S ∆ , 即12×AB×2+12×7×2=12, 解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 19.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .20.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==, 1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.三、解答题21.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.【详解】解:∵ AD CE ⊥, BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADCCEB ACDCBE AC BC∴ACD CBE ≌(AAS) ∴ 3CD BE ==, AD CE =,∵ 358CE CD DE =+=+=,∴ 8AD =.ACE 11883222S CE AD △.【点睛】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键. 24.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.25.△ABM ≌△DBN ,△BME ≌△BNC ,理由见解析.【分析】观察图形,可找出△ABM ≌△DBN ,△BME ≌△BNC .①由△ABE ≌△DBC 可得到∠BAE=∠BDC ,根据BM ⊥BN 可得到∠AMB+∠MBE =∠DBN+∠MBE ,继而得到∠AMB=∠DBN ,AB=BD ,可得△ABM ≌△DBN ;②由△ABM ≌△DBN 可得BM=BN ,根据∠NBE+∠MBE =∠NBE+∠NBC ,可得∠MBE =∠NBC ,继而可证得△BME ≌△BNC .【详解】解:全等三角形:△ABM ≌△DBN ,△BME ≌△BNC ,理由如下:由题意知△ABE ≌△DBC ,∴∠BAE=∠BDC ,∵BM ⊥BN ,∴∠MNB=90︒,∴∠ABM+∠MBE =∠DBN+∠MBE ,∴∠ABM=∠DBN ,AB=BD ,∴△ABM ≌△DBN ,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC ,∴∠MBE =∠NBC ,∵BE=BC ,∴△BME ≌△BNC .【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键. 26.图见解析.【分析】根据题意点P 到AC 和BC 的距离相等,可知点P 在ACB ∠的角平分线上,点A 到点P 的距离等于定长r ,可知点P 在以点A 为圆心,以定长r 为半径的圆上,由此作图即可.【详解】如图,先作ACB ∠的角平分线,再以点A 为圆心,以定长r 为半径作圆弧,圆弧与ACB ∠角平分线的交点即为点P .【点睛】本题主要考查角平分线的画法,属于基础题,需要有一定的画图能力,熟练掌握角平分线的画法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上●第一、二单元《全等三角形及轴对称性》练习题考试时间:10月12日 13:30-15:30一.选择题(每题2分,共36分)1.能判定△ABC ≌△A ’B ’C ’的条件是( ) A .AB =A ’B ’,AC =A ’C ’,∠C =∠C ’; B .AB =A ’B ’,∠A =∠A ’,BC =B ’C ’; C .AC =A ’C ’,∠A =∠A ’,BC =B ’C ’; D .AC =A ’C ’,∠C =∠C ’,BC =B ’C.2.△ABC ≌△DEF ,△ABC 的周长为100cm ,DE =30cm ,DF =25cm ,那么BC 长( ) A .55cm B .45cm C .30cm D .25cm3.下列是我国四大银行的商标,其中不是轴对称图形的是 ().A B C D4.△ABC 与△A ´B ´C ´中,条件①AB= A ´B ´,②BC= B ´C ´,③AC =A ´C ´,④∠A=∠A ´,⑤∠B=∠B ´,⑥∠C=∠C ´,则下列各组条件中不能保证△ABC ≌△A ´B ´C ´的是( ) A. ①②③ B. ①②⑤ C. ①③⑤ D. ②⑤⑥5.等腰三角形的顶角等于70o,则它的底角是 ( )。

A 、70oB 、55oC 、60oD 、70o 或55o6.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于( ). A.12B.12或15C.15D.15或187.如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以( )A.带①去B.带②去C.带③去D.带①和②去8.已知△ABC 的周长为24,AB =AC ,AD ⊥BC 于D ,若△ABD 的周长为20,则AD 的长 为( ).①②③A.6B.8C.10D.129.小明从镜子中看到对面电子钟示数如图所示,这时的时刻应是 ( ) A 、21:10 B 、10:21 C 、10:51 D 、12:0110.如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,•AC=AE ,则( )A .△ABD ≌△AFDB .△AFE ≌△ADC C .△AFE ≌△DFCD .△ABC ≌△ADE11.如图,∠DBC 和∠ECB 是⊿ABC 的两个外角,点P 是∠DBC,∠ECB 两角的平分线的交点,PM 、 PN 、 PQ 分别是P 点到AB 、AC 、BC 三边的垂线段;PM 、PN 、PQ 的数量关系( )A .PM>PN>PQB .PM<PN<PQC .PM=PN=PQD .PM=PN>PQ12.若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )。

A 、11cmB 、7.5cmC 、11cm 或7.5cmD 、 以上都不对13.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )。

A 、90° B 、 75° C 、70° D 、60°14.已知∠AOP=∠BOP=15°,PC ∥OA , PD ⊥OA ,若PC=4,则PD= ( ) A .4 B .3 C .2 D .1第6题DCBAFEBADPOC15.如图,有两个三角锥ABCD 、EFGH ,其中甲、乙、丙、丁分别表示△ABC 、△ACD 、 △EFG 、△EGH 。

若∠ACB =∠CAD =∠EFG =∠EGH =70︒,∠BAC =∠ACD =∠EGF =∠EHG =50︒,则下列叙述何者正确? ( )(A)甲、乙全等,丙、丁全等 (B) 甲、乙全等,丙、丁不全等(C) 甲、乙不全等,丙、丁全等 (D) 甲、乙不全等,丙、丁不全等16.如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( )A.55 B.45 C.40 D.3517.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°.18.下列命题正确的是( )(1)有两边和一角对应相等的两个三角形全等 (2)有两角和一边对应相等的两个三角形全等(3)两个等边三角形一定全等 (4)全等三角形的对应线段相等。

A.(1)和(3)B.(2)和(3)C.(1)和(2)D.(2)和(4)G 50︒ ABCD EF70︒50︒ 70︒50︒70︒50︒70︒ H甲乙丙丁DCB A231PEα二.填空题(每题2分,共30分)1.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______2.如图1,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______3.如右图,已知在ABC 中,90,,A AB AC CD ∠=︒=平分ACB ∠,DE BC ⊥于E ,若15cm BC =,则DEB △的周长为_______ cm .4.在△ABC 和△A ′B ′C ′中,∠A=∠A ′,CD 和C ′D ′分别是AB 和A ′B ′上的中线,再从以下三个条件:①AB=A ′B ′,②AC=A ′C ′,③CD=C ′D ′中任取两个为题设,另一个为结论,则最多可以构成______个正确的命题.5.如图2,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.6.如图3,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,则DE = cm ,ABC △的面积= cm 2.7.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.8.在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=ADOCB图1DCBA EADC B图2A BEG CD 图39.如图,若AB =DC ,AC =DB ,则有△ABC ≌_____________,依据是________ ____, 则∠ABD =______________.10.如图4:沿AM 折叠,使D 点落在BC 上,如果AD=7cm ,DM=5cm ,∠DAM=30°,则AN=_________ cm ,∠NAM=_________。

11.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________.12.若等腰三角形的一个外角为120°,一边长为2cm ,则另外两边长为13.如图(1)所示,在△ABC 中,AB=AC ,∠A=44°,BD 是角平分线,BE=BD ,那么∠AED=°14.如图(2)所示,△ABC 中,AB=AC ,∠BAC=120°,AD 是BC 边上的中线,点E 在AB 上,DE ⊥AB ,AD=8cm ,则AE= cm ,AC= cm 。

15.如图,点P 关于OA ,OB 的对称点分别为C 、D ,连接CD ,交OA 于M ,交OB 于N ,若CD=18cm ,则△PMN 的周长为________A DBC第9题三.解答证明题(共84分)1.(共9分)如图,AC ∥DE , BC ∥EF ,AC =DE 求证:AF =BD2.(共10分)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证: CG AEAFAEDBC3.(共9分)如图,AB //CD ,90B ∠=,E 是BC 的中点,DE 平分ADC ∠。

求证:AE 平分DAB ∠。

4.(共18分)如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长; ② 若BC=4,求△BCD 的周长.B CD EA5.(共20分)(1)如图,已知AD 是线段BC 的垂直平分线,且BD =3cm ,△ABC 的周长为20cm ,求AC 的长.(2)如图,在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.A B C DBDCEA6.(共18分)如图,点A 、B 、C 在同一直线上,△ABD ,△BCE 都是等边三角形。

(1)求证:AE=CD ;(6分)(2)若M ,N 分别是AE ,CD 的中点,试判断△BMN 的形状,并证明你的结论。

(6分)B A CED N M。

相关文档
最新文档