煤制天然气工艺过程

合集下载

煤制天然气工艺流程图

煤制天然气工艺流程图

煤制天然气工艺流程图煤制天然气是一种通过煤炭转化为天然气的工艺,其工艺流程可以分为煤气化、气体净化和气体转化三个主要步骤。

下面将对煤制天然气的工艺流程进行详细介绍。

第一步:煤气化煤气化是将煤炭通过高温和压力作用下转化为气体的过程。

首先,将煤炭破碎成适当大小的颗粒,然后进入煤气化炉。

在煤气化炉内,煤炭与一定量的氧气和水蒸气反应,产生一种称为合成气的气体。

合成气主要由一氧化碳、二氧化碳、氢气和甲烷等成分组成。

第二步:气体净化合成气中含有一些固体和液体杂质,需要进行净化处理。

首先,合成气经过除尘器去除其中的灰尘颗粒。

然后,经过吸收塔进行酸性气体的吸收,从而去除二氧化硫等物质。

接下来,通过变换器进行催化转化,将一氧化碳和二氧化碳转化为二氧化碳和甲烷。

最后,合成气经过低温除硫,去除其中的硫化物。

第三步:气体转化经过净化的气体进一步进行转化,产生天然气。

首先,将气体送入转化炉中,通过触媒的作用,使甲烷含量增加。

然后,将转化后的气体经过冷凝器冷却,将其中的液体分离出来,得到液态天然气。

最后,将气体通过压缩机进行压缩,得到压缩天然气。

煤制天然气工艺流程图如下:1. 煤炭破碎2. 煤气化炉3. 合成气4. 除尘器5. 吸收塔6. 变换器7. 低温除硫8. 转化炉9. 冷凝器10. 液态天然气11. 压缩机12. 压缩天然气以上是煤制天然气的工艺流程。

通过煤气化、气体净化和气体转化等步骤,煤炭可以被高效地转化为天然气,提供给人们使用。

这种工艺不仅可以减少对传统天然气资源的依赖,还可以促进煤炭资源的利用,实现能源的可持续发展。

煤制天然气的工艺流程浅析

煤制天然气的工艺流程浅析

煤制天然气的工艺流程浅析摘要:随着人们生活水平的提高,对居住环境的要求也日益提高,在这个背景下人们对优质清洁能源天然气的需求也急剧攀升,其在能源结构中的比例迅速增加。

中國天然气储量不足、产能有限的能源现状,导致天然气供需矛盾日益突出。

基于此本文探讨了煤制天然气的特点,分析了煤制天然气的预处理工艺及工艺流程。

关键词:煤制天然气;工艺流程引言煤制气项目对工业快速发展具有一定的必要性;对于人们生活质量的提高也具有重要的意义。

特别是煤制天然气项目,它具有广阔的发展空间和光明的发展前景。

从技术上说:煤制气技术中,SNU技术效率高而且环保,在煤制天然气技术上我国也有所突破。

随着市场油价的增长,煤制天然气发展空间很大,同时国家政策又给予有利的鞭策及支持,这使煤制气更“健康而茁壮成长”1.煤制天然气的特点煤制天然气工艺一般包括气化、净化、合成干燥等单元,配套空分、硫回收、冷冻、动力站和公用工程等。

SNU作为经化工工艺加工生产的天然气,其气质组成与管道天然气相比有着明显差异。

(1)SNU经过了严格的脱硫工序,基本不含硫。

在净化单元,粗合成气经过变换和低温甲醇洗,大部分含硫化合物、CO2等杂质被脱除,总硫含量可以降低到0. lmg/mj以下,CO2摩尔分数可以降低到1%以下。

由于甲醇洗在低温下进行,粗合成气中可能含有的微量轻烃也被液化或吸收。

考虑到甲烷化催化剂不耐硫,合成气在进行甲烷合成前,还要经过脱硫槽,将硫含量控制在30μg/mj以下。

因此,SNU中的总硫含量远低于管道天然气。

(2))SNU的CO2摩尔分数很低,通常在1%以下。

原因是大部分在净化单元己被脱除,剩余少量CO2和H:在甲烷合成单元可以反应产生CH4。

管道天然气因产地不同,CO2摩尔分数通常在千分之几到百分之几的范围,根据UB/T 37124-2018《进入天然气长输管道的气体质量要求》,CO2摩尔分数在3. 0%以下即可进入管道。

(3)SNU的CH4体积分数一般高于管道天然气,而非甲烷烃类的很低,仅为10级,这与其采用合成气经甲烷化合成工艺有关。

煤制天然气甲烷化工艺温控优化

煤制天然气甲烷化工艺温控优化

持续优化:根据监测结果,对优化方案进行持续改进和优化
5
煤制天然气甲烷化工艺温控优化效果评估
优化前后效果对比
优化前:能耗高,效率低,产品质量不稳定
优化后:能耗降低,效率提高,产品质量稳定
具体数据:优化前能耗为XX,优化后能耗为XX;优化前效率为XX,优化后效率为XX
用户反馈:优化后产品质量得到明显提升,客户满意度提高
技术突破与挑战应对
技术突破:新型催化剂、高效反应器、智能控制系统等
展望:实现煤制天然气甲烷化工艺的持续优化和升级,提高经济效益和环境效益。
发展趋势:绿色化、智能化、高效化
挑战应对:提高反应效率、降低能耗、减少排放等
汇报人:
感谢您的观看
汇报人:
,a click to unlimited possibilities
煤制天然气甲烷化工艺温控优化
/目录
目录
02
煤制天然气甲烷化工艺概述
01
点击此处添加目录标题
03
煤制天然气甲烷化工艺温控现状及问题
05
煤制天然气甲烷化工艺温控优化效果评估
04
煤制天然气甲烷化工艺温控优化方案
06
煤制天然气甲烷化工艺温控优化发展前景与展望
甲烷化工艺在煤制天然气中的重要性
甲烷化工艺是煤制天然气生产的关键环节
甲烷化工艺决定了煤制天然气的质量和产量
甲烷化工艺的优化可以提高煤制天然气的生产效率和经济效益
甲烷化工艺的改进可以降低煤制天然气的生产成本和环境影响
温控优化在甲烷化工艺中的地位
温控优化是甲烷化工艺的关键环节,直接影响产品质量和生产效率
未来发展方向与重点
添加标题
添加标题
添加标题

煤制天然气的工艺流程

煤制天然气的工艺流程

煤制天然气的工艺流程
煤制天然气是指将煤通过一系列的物理、化学反应转化为天然气的过程。

下面是一般的煤制天然气工艺流程:
1. 煤炭粉碎:将煤炭破碎成适当的颗粒大小,增加反应表面积。

2. 煤气化:将煤炭颗粒与气体(通常是水蒸气和氧气或空气)在高温下反应,产生合成气体(主要是一氧化碳和氢)和一些其他气体、灰渣等。

3. 气体净化:通过一系列的净化工艺,如除尘、脱硫、脱砷、脱气化物等,去除合成气中的固体颗粒、硫化氢、氯化物等有害物质。

4. 合成气转化:将合成气通过化工反应转化为天然气,主要包括甲烷合成和甲醇合成两种常见工艺。

5. 甲烷合成:将合成气经过合成反应器,催化剂的作用下,转化为甲烷(主要成分)。

甲烷合成反应通常采用低温合成和高温合成两种工艺。

6. 甲醇合成:将合成气通过甲醇合成反应器,催化剂的作用下,转化为甲醇。

甲醇在后续工艺中可以进一步转化为甲烷。

7. 甲烷处理:对甲烷进行脱硫、脱水、脱碳等处理,使其符合天然气管道输送
标准。

8. 天然气储存和输送:经过处理的煤制天然气可以注入储气库进行储存,也可以通过管道输送至用户。

需要注意的是,不同的煤制天然气工艺流程会有一定的差异,具体的工艺设计和操作也会因不同的厂家和地区而有所不同。

以上只是一个一般的煤制天然气工艺流程的概述。

焦炉煤气制液化天然气项目工艺流程

焦炉煤气制液化天然气项目工艺流程

焦炉煤气制液化天然气项目工艺流程1.煤气净化焦炉煤气中含有大量的杂质和硫化氢,需要通过煤气净化来去除这些杂质。

煤气净化过程包括硫化氢去除、酸性物质去除、颗粒物去除和水分去除。

首先,将焦炉煤气送入硫化氢去除装置,利用吸收剂将硫化氢吸附除去。

然后,将煤气送入酸性物质去除装置,通过吸附剂去除酸性物质。

接下来,通过过滤装置去除颗粒物,并通过干燥装置去除水分。

2.产气经过煤气净化的焦炉煤气进入产气装置,进行进一步的处理。

产气装置主要包括变压吸附(PSA)过程和膜分离过程。

首先,将净化后的焦炉煤气通过压缩机增压,然后进入PSA过程。

在PSA过程中,通过特定的吸附剂将气体中的甲烷和其他碳氢化合物吸附,然后通过减压脱附,使吸附剂再次可用。

然后,进入膜分离过程,利用特定的膜材料对气体进行分离,将甲烷和其他碳氢化合物分离开来。

3.液化分离得到的甲烷和其他碳氢化合物进入液化装置,进行液化处理。

液化装置主要包括压缩机、冷却器和膨胀阀。

首先,通过压缩机将气体增压,然后经过冷却器进行冷却,冷却温度通常在-160°C至-180°C之间。

在冷却的过程中,气体逐渐转化为液体。

最后,通过膨胀阀将液体进一步降温,达到常温下的液化状态。

4.储存液化的天然气(LNG)通过输送管道进入储罐进行存储。

储罐通常采用双层结构,内层用于储存液化天然气,外层用于保温。

储罐还配备了安全阀和压力传感器,以确保储存的LNG的安全性。

以上是焦炉煤气制液化天然气(LNG)项目的工艺流程的详细描述。

通过煤气净化去除杂质和硫化氢,通过产气过程去除甲烷和其他碳氢化合物,然后通过液化和储存,将焦炉煤气转化为液态天然气,方便储存和运输。

这项工艺过程能够更高效地利用焦炉煤气,并提供更为清洁的能源。

焦炉煤气制液化天然气项目工艺流程

焦炉煤气制液化天然气项目工艺流程

焦炉煤气制液化天然气项目工艺流程步骤1:触变换焦炉煤气进入初级处理单元,通过触变换器进行初步的处理。

在触变换过程中,高温的煤气被冷却至约80°C,同时采用触变换剂将硫化氢(H2S)和一些有机硫化物转化为硫元素,并去除部分粘附有机物质。

步骤2:硫还原触变换后的煤气进入硫还原器,将剩余的硫化氢进一步还原为硫元素。

硫还原使用催化剂,通常是氧化铝载体上的钼和镍催化剂。

步骤3:脱酚硫还原后的煤气通过脱酚器,将含酚化合物(如苯、甲苯、二甲苯等)从煤气中去除。

脱酚器中通常使用有机溶剂,如N-甲基吡咯烷酮(NMP)或N-甲基-2-吡咯烷酮(NMP)和聚乙烯醇(PVA)复配。

步骤4:除甲硫除酚后的煤气进入除甲硫器,将含有机硫的化合物(如甲基硫化氢、异丁基硫醇等)从煤气中去除。

通常使用金属氧化物作为吸附材料,如氧化铝、氧化锌等。

步骤5:蒸汽重整除甲硫后的煤气进入蒸汽重整器,通过高温和蒸汽的作用,将一些低碳烃转化为高碳烃。

这个过程中使用催化剂,通常是镍基催化剂。

步骤6:压缩蒸汽重整后的煤气被压缩至一定的压力。

将煤气压缩主要是为了方便后续工艺的进行。

步骤7:冷却压缩后的煤气进入冷却器,通过水或其他冷却介质进行冷却。

冷却的作用是将煤气中的水蒸汽和其他液态物质冷凝成液体。

步骤8:分离液态天然气(LNG)和其他成分冷却后的煤气进入分离器,通过分离器将液态天然气(LNG)和其他成分分离开来。

LNG是主要产品,而其他成分,如硫元素、甲醇等,则作为副产品进行处理或回收利用。

步骤9:增压泵送分离得到的液态天然气(LNG)通过增压泵送至贮存容器中。

增压泵送过程是将LNG压力提高到一定程度,以便储存和运输。

步骤10:贮存和运输储存容器中的LNG通过管道或其他运输方式,如船运、卡车运输等,进行运输。

LNG作为清洁能源的替代品,被广泛应用于城市燃气供应、发电厂和工业领域。

以上是焦炉煤气制液化天然气(LNG)项目的工艺流程,通过一系列的处理和分离过程,将焦炉煤气转化为液化天然气(LNG)并进行贮存和运输。

煤制天然气生产工艺及优化

煤制天然气生产工艺及优化

煤制天然气生产工艺及优化摘要:在社会经济水平不断提升的背景下,人们更加关注环境问题,对天然气产生了更大的需求。

在不断增长世界天然气产量的同时,为天然气化工提供了充足的原料。

天然气已经成为社会发展的主体性产业,为积极响应我国所提出的可持续发展理念,全面落实环保工作,需要对天然气化工的发展现状进行明确的分析,确保天然气得到有效的应用,积极推动我国与其他国家之间的交流和合作,不断加强新技术的学习,以发挥天然气化工技术的重要作用,积极推动我国社会经济稳定性的提高。

关键词:煤制;天然气生产;工艺;优化引言煤化工也是增加煤炭产业附加值、实现高碳能源低碳化利用的重要力量,已成为发挥能源资源禀赋特长、支撑国家现代化的重要途径和手段。

中国是全球煤化工生产大国,已经走出了一条中国特色的能源与化工融合发展的清洁高效的工业化之路。

可以确定的是,煤炭在中国化工领域短期内很难被完全替代,未来煤炭的清洁高效利用将是煤化工领域的重中之重。

煤制天然气(SNG)是煤化工的重要组成,整体转化效率(55%~60%)远高于其他煤化工类型,而且水耗较低,是煤炭清洁化利用的重要方向之一。

1煤制天然气工艺技术该煤制天然气项目的原料为褐煤,设计规模为13.3亿m3/a,煤制天然气的工艺流程见图1。

该项目通过碎煤加压气化来生产粗煤气后,再通过部分变换冷却使CO2转化为CO,将H2/CO的比值调节至约3.0,然后将调整好比例的粗煤气通过低温甲醇洗技术,脱除粗煤气中的CO2和H2S等酸性气体变为净化气,最后经过甲烷化技术和压缩脱水工艺生产出合格天然气;除生产主产品天然气外,同时副产粗酚、混合苯、焦油、硫铵以及硫磺。

2煤制天然气生产工艺及优化2.1深化改革,以市场化机制促进清洁低碳灵活电源的发展尽快形成顶层设计思路,分阶段、有步骤的完善电价市场化机制,通过电力市场和碳市场耦合作用,大力促进灵活低碳电源建设。

短期内对调峰天然气发电推行“两部制”电价,完善天然气价格与上网电价联动机制,体现气价的季节性变化,有效保障气电调峰作用的发挥;加快形成容量市场/辅助服务市场、电量市场、碳市场/碳税、污染物排放交易市场/环境税等协调统一的市场架构,体现含外部性电源间的公平竞争,确保绿色低碳灵活性电源的竞争优势;中长期逐步完善用户参与的辅助服务分担共享机制,确保新型电力系统的供应安全,也保障能源转型的平稳和可持续。

煤制天然气-甲烷化

煤制天然气-甲烷化

煤制天然气-甲烷化1. 简介煤制天然气(Coal-to-Natural-Gas,简称CTG)是一种将煤炭转化为天然气的技术,主要过程是甲烷化,即将煤炭中的有机化合物转化为甲烷气体。

煤制天然气是一项重要的能源转化技术,可以将煤炭资源转化为更清洁的天然气,从而减少对传统石油和天然气资源的依赖。

2. 煤制天然气的步骤煤制天然气的主要步骤包括煤气化和甲烷化两个过程。

2.1 煤气化煤气化是指将煤炭在高温和高压条件下,在缺氧或有限氧气条件下进行化学反应,使煤炭转化为合成气。

合成气由一氧化碳(CO)、二氧化碳(CO2)和氢气(H2)组成,其中一氧化碳和氢气是后续甲烷化反应的主要原料。

2.2 甲烷化甲烷化是将合成气转化为甲烷气体的过程。

在高温和催化剂的作用下,合成气中的一氧化碳和氢气发生反应生成甲烷气体。

甲烷气体是主要成分,其含量通常达到90%以上,可以直接作为燃料供应给城市燃气系统或工业领域使用。

3. 煤制天然气的优势和挑战3.1 优势•利用煤炭资源:煤炭是一种丰富的能源资源,通过煤制天然气技术可以有效利用这些资源,减缓传统石油和天然气的供需矛盾。

•降低碳排放:相比燃烧煤炭产生的二氧化碳排放,煤制天然气技术可以显著降低碳排放量,对环境更加友好。

•提高能源利用效率:煤制天然气技术可以实现高效能源利用,将煤炭中的有机物质转化为更高价值的甲烷气体。

3.2 挑战•能源转化效率:煤制天然气技术在转化过程中会产生一定的能量损失,需要进一步提高转化效率,减少能源浪费。

•环境影响:煤制天然气过程中会产生一定的副产物和废弃物,对环境造成一定的影响和压力,需要合理处理和减少环境污染。

•经济可行性:煤制天然气技术的投资和运营成本较高,需要找到经济上可行的路径和模式,以实现可持续发展。

4. 煤制天然气在全球的应用和发展煤制天然气技术在许多国家得到了广泛应用和快速发展。

其中,中国是全球最大的煤制天然气生产国之一。

中国在煤制天然气领域进行了大规模的投资和研发,建设了多个煤制天然气项目。

煤制天然气工艺流程

煤制天然气工艺流程

煤制天然气是一种通过煤炭制造可替代天然气的工艺过程。

以下是一般煤制天然气的工艺流程:
1.煤炭破碎与煤气化:首先,将煤炭经过破碎设备碎化成合适的粒度,并将其送入煤气化炉。

煤气化炉中煤炭与空气或氧气流进行煤气化反应,生成一种称为合成气的气体。

合成气主要由一氧化碳、氢气和少量的二氧化碳、氮气等成分组成。

2.温度调节与除尘:合成气进入后处理系统时,需要进行温度的调节和除尘处理。

一般采用换热器来调节合成气的温度,使其达到适宜的反应温度。

3. 焦炉气和蒸馏:经过温度调节后,合成气被送入蒸馏塔。

在蒸馏塔中,合成气进行馏分分离,分离出不同碳数的烃类气体,主要有甲烷、乙烯和苯等组分。

4.吸附分离:从蒸馏塔顶部蒸馏出来的气体中,进一步通过吸附剂进行分离处理。

吸附剂可以选择合适的材料,如分子筛等,根据各成分的吸附性质来实现不同成分的分离。

5.气体制冷与液化:经过吸附分离后,可以对冷却后的气体进行制冷处理,使其冷却到低温。

低温下,一部分气体可通过压缩机进行液化,形成液态的天然气。

6.储存与输送:液化的天然气可以被储存和输送。

它可以通过管道输送到需要的地方,供人们使用;也可以通过储罐等设施进行储存,以备后续供应。

需要注意的是,具体煤制天然气工艺流程可能会有所不同,具体会受到工艺技术、煤炭种类和工厂设备等因素的影响。

上述流程仅作为一般参考,以了解煤制天然气的基本工艺过程。

在实际应用中,还需要根据具体情况进行工艺设计和优化。

煤制天然气生产工艺

煤制天然气生产工艺

煤制天然气生产工艺
稿子一:
嘿,朋友们!今天咱们来聊聊煤制天然气这神奇的生产工艺。

你知道吗?这煤制天然气可不是个简单的事儿。

首先得把煤弄碎弄细,就像给它来个“粉碎大变身”。

然后呢,把这些碎煤放进一个大大的“魔法炉”里,通过高温和一些特别的化学反应,让煤发生变化。

挑出来的气体还不够纯,就像一杯没过滤干净的水,还得再加工加工。

经过一系列的处理步骤,把杂质去掉,让气体越来越纯,越来越接近咱们想要的天然气。

等到这些气体终于变得纯净又优质,就像是一群训练有素的小士兵,排好队准备为我们服务啦。

它们会通过管道,跑到我们的家里,给我们做饭、取暖,让我们的生活变得更方便、更温暖。

怎么样,煤制天然气的生产工艺是不是很有趣呀?
稿子二:
亲爱的小伙伴们,今天咱们一起走进煤制天然气的奇妙世界!
说起煤制天然气,那可是个相当厉害的过程。

一开始,那些黑黑的煤就像是一群等待变身的“小怪兽”。

然后呢,会有厉害的机器把它们磨成细细的粉末。

接着,这些粉末被送进超级热的大容器里,就好像是在进行一场火热的“大冒险”。

在里面,它们发生了神奇的变化,变成了各种各样的气体。

这时候,就像是在一个大派对里挑选出最优秀的舞者,要把有用的气体挑出来。

这个过程可不简单,需要很多专业的知识和厉害的技术。

经过一番努力,这些气体终于变得纯净又好用啦。

它们欢快地跑向管道,就像一群快乐的小精灵,去到我们需要的地方,给我们带来光明和温暖。

煤制天然气的生产工艺充满了惊喜和挑战,是不是很神奇呢?。

焦炉煤气制液化天然气(LNG)项目工艺流程

焦炉煤气制液化天然气(LNG)项目工艺流程

焦炉煤气制液化天然气(LNG)项目工艺流程一、焦炉气预处理从焦化厂来的焦炉气含有多种杂质组份,特别是苯和蔡的含量较高,约为3000 mg / Nm;和300mg / Nm,该组份将对下游的净化分离工序造成危害,需要进行脱除。

采用吸附法脱除苯、蔡和焦油。

即在较低压力和温度下用吸附剂吸附苯、蔡和焦油等重质组份,之后在高温、低压下解吸再生,构成吸附剂的吸附与再生循环,达到连续分离气体的目的。

这样,可以保护后续的催化剂,又避免了蔡在升压后结晶堵塞管道和冷却器等设备。

二、氢气提纯当前工业上比较广泛应用的氢气分离技术有变压吸附和膜分离两种。

由于变压吸附技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,因此,进入70年代后,这项技术被广泛应用于石油化工、冶金、轻工及环保等领域。

变压吸附分离过程操作简单,自动化程度高,设备不需要特殊材料等优点。

吸附分离技术最广泛的应用是工业气体的分离提纯,氢气在吸附剂上的吸附能力远远低于CH2,N2,CO和CO2等常见的其他组分,所以变压吸附技术被广泛应用于氢气的提纯和回收领域。

为了使得产品氢气具有较高的纯度,选用变压吸附技术进行氢气的提纯。

三、甲烷化反应甲烷化反应是指气体CO和CO2在催化剂作用下,与氢气发生反应,生成甲烷的强放热化学反应。

甲烷化反应属于催化加氢反应。

其反应方程为:通常工业生成中的甲烷化反应有两种:一种是用于合成氨及制氢装置中,在催化剂作用下将合成气中少量碳氧化物(一般CO + CO2<0. 7 %)与氢反应生成水和惰性的甲烷,以削除碳氧化物对后续工序催化剂的影响。

用于上述甲烷化反应的催化剂和工艺主要是用于脱除合成气中残留的少量碳氧化物(CO和CO2),自1902年发明了用于催化甲烷化反应的镍基催化剂以来,化肥生产中用于甲烷化的催化剂和工艺绝大多数围绕这类催化剂进行研究。

另一种是人工合成天然气工艺中的甲烷化,其原料气中的碳氧化物((CO + CO2)浓度较高。

煤制天然气工艺简介(最新终极版)

煤制天然气工艺简介(最新终极版)

一期气 化35KV 变电所 25000K VA×2
一期净 化35KV 变电所 40000K VA×2
一期空 分35KV 变电所 25000K VA×2
一期厂 用35KV 变电所 50000K VA×2
一期 35KV 备用 ×2
2号发 电机 15000 KW
全厂工艺流程简述
• 煤制天然气全套生产装置主要包括:备煤、水处理、空分、 热电、气化、煤气水分离、酚氨回收、变换和煤气冷却、低 温甲醇洗、混合制冷、硫回收、甲烷合成、天然气压缩和干 燥脱水、罐区等生产装置。其中备煤、水处理、空分、热电 为辅助生产装置,而气化、煤气水分离、酚氨回收、变换和 煤气冷却、低温甲醇洗、混合制冷、硫回收、甲烷合成、天 然气压缩和干燥脱水为化工主生产装置。 • 辅助生产装置中,备煤主要是通过破碎、筛分(弛张筛)等 生产过程为气化炉提供6~50mm的原料煤;空分采用内压 缩流程生产技术,为化工装置提供氮气和氧气;热电装置采 用循环流化床锅炉(一期)和汽轮发电机组为全厂提供蒸汽 和电能;水处理包括原水处理、脱盐水、循环水、污水处理 等生产装置,为全厂提供新鲜水、脱盐水、循环水以及对全 厂的污水进行生化处理。
• 打开灰锁泄压阀,将灰锁压力泄至常压后关闭灰 锁泄压阀,打开灰锁下锥阀将灰排出。 • 关闭灰锁下锥阀,再打开灰锁充压阀用中压蒸汽 充压,如此循环往复上述的排灰过程。
• (三)变换冷却
• 变换冷却装置为两系列,单系列变换包括1台 洗涤塔、2台预变换炉、1台主变换炉等设备。 • 其工艺原理是通过钴钼催化剂使一氧化碳与水 蒸气反应生成二氧化碳和氢气,从而降低一氧 化碳含量和提高氢气含量(即调整氢碳比), 目的是使煤气组分符合甲烷合成的要求。

因低温甲醇洗使用的是低温甲醇,所以必须由外部装置提供冷量。 混合制冷装置的作用就是为低温甲醇洗提供冷量;其工艺流程就是 利用蒸气透平离心式压缩机将来自低温甲醇洗的氨气压缩后进入吸 收器用贫氨水吸收后变为浓氨水,之后再进入精馏塔进行精馏,得 到的纯氨气经冷却后变为液氨,然后将液氨送到低温甲醇洗作为制 冷剂。液氨经蒸发制冷后变为氨气再重新回到压缩机进行压缩,如 此往复循环使用。

煤制天然气的工艺流程

煤制天然气的工艺流程

煤制天然气的工艺流程
煤制天然气是一种将固体煤转化为气体燃料的技术。

它是一种清洁能源,可以替代传统的燃煤发电,减少对环境的污染。

下面是一个基本的煤制天然气的工艺流程。

首先,煤炭经过破碎和磨粉,变成粉状煤。

这个步骤可以提高煤炭的反应性和表面积,有利于后续的反应过程。

接下来,粉状煤和一定量的水蒸汽进入气化炉。

在高温和高压的条件下,煤炭发生气化反应,产生一种混合气。

这个混合气主要由一氧化碳、氢气和少量的二氧化碳、甲烷等组成。

然后,混合气进入洗涤塔。

在洗涤塔中,混合气被洗涤剂吸收,其中的硫化氢和氨等有毒物质被去除。

同时,洗涤塔中的水也被循环利用,减少了水的消耗。

接下来,洗涤后的气体进入变换反应器。

在变换反应器中,一氧化碳和二氧化碳发生变换反应,生成甲烷和水。

这个反应是温度敏感的,通常需要控制在一定的温度范围内进行。

最后,反应后的气体经过净化,去除其中的杂质和微量的有毒物质,得到纯净的天然气。

然后,天然气可以进行储存、运输和使用。

总结起来,煤制天然气的工艺流程主要包括煤炭破碎、气化、洗涤、变换和净化等步骤。

这个流程可以高效地将固体煤转化为气体燃料,提供清洁能源的同时减少对环境的污染。

煤制天
然气技术的不断发展和改进,将有助于推动能源结构的转型,实现可持续发展目标。

煤制天然气工艺组成.

煤制天然气工艺组成.
单击此处编辑母版标题样式 第二节、煤制天然气工艺
一、工艺组成:
煤气化、空分、部分变换、净化(低温甲醇洗)、甲烷化
煤气化
制取合成气 CO+H2
空分
制取O2
部分 变换
调整 H2/CO
净化
脱除 H2S、CO2
甲烷化
合成CH4
煤制天然气 的关键技术
Page 1
单击此处编辑母版标题样式 第二节、煤制天然气工艺
3
二、煤制天然气流程
H2S, CO2 煤 空气
煤气化 变换 低温 甲醇洗 甲烷化
CH4
O2
空分
煤制天然气流程
Page 2
单击此处编辑母版标题样式 第二节、煤制天然气工艺
三、甲烷化
主要反应:
CO + 3H2 = CH4 + H2O CO2 + 4H2 = CH4 + 2H2O
1. 反应热的撤热问题 2. 甲烷化工艺回路(稀释法、冷激法) 3. 多级反应器串联(三级甲烷化) 4. 甲烷合成的压力(高压力利于甲烷化和缩小设备体积) 5. 甲烷化反应的产物( 大量CH4、微量N2,H2,CO,CO2 ) 6. 甲烷化催化剂(还原镍、RHM-266, M-349, MCR-2X)

煤制天然气SNG技术

煤制天然气SNG技术

煤制天然气(SNG)技术1、煤制天然气技术路线传统的煤制天然气技术是以煤炭为原料,气化生产合成气,经净化和转化以后,在催化剂的作用下发生甲烷化反应,生产热值符合规定的替代天然气(Substitute Natural Gas),也被称为煤气化转化技术。

此技术需要的设备较多,投资较高,但技术非常成熟,甲烷转化率高,技术复杂度略低,因此应用更加广泛,是煤制天然气中的主流工艺。

煤制天然气与煤制其他能源产品相比,能量效率高,单位热值水耗低。

煤制能源产品的能量效率和水耗项目能量效率/% 单位热值水耗/(t〃GJ-1)煤制天然气50~52 0.18~0.23煤制油34.8 0.38煤制二甲醚37.9 0.77煤制甲醇41.8 0.782、煤气化转化技术制备天然气一般情况下,经煤气化得到的合成气的H2/CO比达不到甲烷化的要求,因此需要经过气体转换单元提高H2/CO比。

从工艺技术和加工过程可分为“一步法”和“两步法”两种。

(1) “一步法”煤制天然气技术“一步法”煤制天然气技术就是以煤为原料直接合成甲烷,从而得到煤制天然气的方法,又称“蓝气技术”。

该技术是将煤粉和催化剂充分混合后送人反应器,与水蒸气在一个反应器中同时发生气化和甲烷化反应,气化反应所需的热量刚好由甲烷化反应所放出的热量提供。

反应生成的CH4和CH2混合气从顶部离开反应器进入一个旋风分离器,分离出混合气中夹带的同体颗粒,然后进入一个气体净化器,脱除其中的硫,最后分离出CO2得到煤制合成天然气(SNG)。

煤灰由反应器下部流出,在一个专门设备巾和催化剂进行分离,分离的催化剂返回煤仓继续循环使用。

蓝气技术的特点是在一个反应器中催化3种反映:气化反应、水煤气变换反应、甲烷化反应,难点是催化剂的分离。

(2)“两步法”煤制天然气技术“二步法”是先将煤转化成合成气(H2和CO),然后再进行甲烷化得到SNG的方法。

从煤转化为SNG需要经历几个步骤:(1)气化:在一定压力(3~4 MPa)和温度(1000~1300℃)下,煤与氧气和过热水蒸气的混合物发生气化反应生成富含H2和CO的煤气。

煤制天然气工艺简介

煤制天然气工艺简介

• 之后煤气水依次进入初焦油分离器和最终油
分离器,分别将焦油和中油分离出来作为产 品。而来自低温甲醇洗的含油煤气水则进入 含油煤气水膨胀器进行泄压闪蒸,闪蒸气也 是送往热电锅炉处理;然后煤气水进入油分 离器和最终油分离器,将中油分离出来作为 产品;分离出焦油和中油之后的酚水送往酚
氨回收进行脱酚和脱氨处理。
别送往煤气水分离装置。
INET
3.煤气水分离装置
• 煤气水分离装置为四系列,是将气化、变换冷却和
低温甲醇洗装置来的煤气水进行物理分离,将焦油
、中油、闪蒸汽分离出来,之后酚水送酚氨回收;
其采用的原理就是泄压闪蒸和重力沉降。
• 气化和变换冷却来的含尘煤气水经换热器冷却后首 先进入膨胀槽进行泄压闪蒸,将煤气水中含带的二 氧化碳等气体闪蒸出来送往热电锅炉处理;
碳压缩机和2台循环气压缩机) • 混合制冷装置2系列 • 硫回收装置1系列
1、低温甲醇洗
• 在原料气净化工艺中,无论采用哪一 种原料或者那一种气化方法制得的合 成原料气,除含有H2、CO、CO2、 CH4以外,还含有其余相当数量的组 分均为合成反应所不需要的各种杂质 ,如:硫化物、氮化物、氢氰酸、惰 性气体、煤焦油等。
2、混合制冷(采取以氨为制冷剂 )
• 制冷为甲醇洗装置、空分装置的各氨冷却器提供不 同等级的制冷液氨,同时又把返回的气氨在此压缩 、冷凝成液氨。
• 此方案是将蒸发后的气氨经离心式氨压机提压后再去吸 收制冷,避免了吸收器在负压下操作,使生产操作更加 稳妥可靠,混合制冷采用工艺副产的低压蒸汽作热源, 系统中的溶解热及冷凝热由冷却水带出。
气化装置工艺流程示意图

煤斗
煤锁 氧气 气 化 蒸汽 炉 洗 涤 冷 却 器 废 热 锅 炉

煤制天然气生产工艺流程及合成工段工艺简介

煤制天然气生产工艺流程及合成工段工艺简介
提高了催化剂在高温条件下的稳定性,一般会将其混合到 Al2O3 中制成复合型载体,如Al2O3-TiO2 、Al2O3-ZrO2、Al2O3-NiO/ZrO2。
有较好的催化活性和稳定性; 孔分布更好,比表面积更大;
四、合成工段催化剂
3、甲烷化催化剂结构性能
(3)催化剂助剂 助剂是催化剂的重要组成部分,其加入量虽小,却可以提高
近年来我国煤制甲醇、煤直接和间接制油、煤 制烯烃、煤制天然气、煤制乙二醇等技术和装备自 主化率达到 85%以上,新型煤化工产能已初具规 模。
一、煤化工产业
3、新型煤化工特点
以清洁能源为主要产品
煤炭-能源化工一体化 高新技术及优化集成
八项
人力资源得到发挥 环境友好
建设大型企业和产业基地
经济效益最大化
15500 20000 15500 20000
四、合成工段催化剂
2、甲烷合成工段
第二、三、四甲烷化反应器 催化剂预期寿命5年,保证寿命3年
功能 甲烷化 甲烷化 甲烷化
催化剂 型号
wt%
填充密度
颗粒( mm)
MCR
Ni
1.1 11 x 5
PK-7R
Ni 20-30 NiO 1-5 Al2O3 60-70
净煤气

气 水
氧气
空分





混合制冷 硫回收
产品石脑油 产品硫磺
煤气水 酚水 分离
氨水
酚回收
氨回收
产品液氨
产品焦油 中油
产品粗酚
全厂废水
生化污 水处理
甲烷合成
天 然 气
压缩 干燥
天 然 气
天然气 首站
二、煤制天然气生产工艺流程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤制天然气生产工艺装置
1 、煤制天然气装置
原料煤通过煤气化、变换、酸性气体脱除、高甲烷化工艺来生产天然气(SNG)。

1.1 、备煤加压气化装置
装置采用纯氧碎煤加压气化技术单套气化炉系统主要有以下几部分组成:1.煤斗 2.煤锁 3.气化炉4.灰锁5. 洗涤冷却器6.废热锅炉。

2 、变换冷却装置
气化装置来粗煤气经洗涤塔用酚水洗涤后经换热器换热后进入预变炉和主变炉反应,经换热器换热再进入废热锅炉回收余热,然后煤气进入三级换热器依次与脱氧水、脱盐水、循环水换热使煤气温度降低再进入气液分离器将煤气中的冷凝液分离出去,然后送入下游的低温甲醇洗装置;
3 、低温甲醇洗装置
制冷为甲醇洗装置、空分装置各氨冷却器提供不同等级的制冷液氨,同时又把返回的气氨在此压缩、冷凝成液氨。

此方案是将蒸发后的气氨经离心式氨压机提压后再去吸收制冷,避免了吸收器在负压下操作,使生产操作更加稳妥可靠,混合制冷采用工艺副产的低压蒸汽作热源,系统中的溶解热及冷凝热由冷却水带出。

4 、甲烷化装置
甲烷化装置将低温甲醇洗装置来的净化气经甲烷化、天然气压缩、天然气干燥三个工序;将净化气中的CO、CO2 与H2在甲烷化反应器内镍基催化剂的作用下生成含甲烷94%--96%以上的人造天然气送干燥单元。

5 、干燥脱水装置
湿气通过入口分离器,除去液态烃和固态杂质后,进入吸收塔底部。

在吸收塔内向上通过充满甘醇的填料段或一系列泡帽或阀盘和甘醇充分接触,被甘醇脱去水后,再经过吸收塔内顶部的捕露网将夹带的液体留下。

最后脱水后的干气离开吸收塔,经过贫甘醇冷却器( 甘醇─干气热交换器)后进入销售输气管网。

相关文档
最新文档