一元二次方程较难题型
中考数学培优 易错 难题(含解析)之一元二次方程含详细答案
![中考数学培优 易错 难题(含解析)之一元二次方程含详细答案](https://img.taocdn.com/s3/m/e3c9ee8caf45b307e971974a.png)
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.2.已知关于x 的一元二次方程()220x m x m -++=(m 为常数) (1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值及方程的另一个根.【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m 2+4,∵无论m 为何值时m 2≥0,∴m 2+4≥4>0,即△>0,所以无论m 为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0,所以m=0,即m 的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.3.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.4.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.5.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.6.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】(1)k=1;(2)证明见解析.【解析】【分析】(1)把x=1代入方程,即可求得k的值;(2)求出根的判别式是非负数即可.【详解】(1)把x=1代入方程x2﹣(k+3)x+3k=0得1﹣(k﹣3)+3k=0,1﹣k﹣3+3k=0解得k=1;(2)证明:1,(3),3a b k c k==-+=24b ac∆=-∴△=(k+3)2﹣4•3k =(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程的解以及根的判别式,熟练掌握相关知识点是解题关键.7.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市民于 A 超市购买 5 千克猪排骨花费 350 元.(1)A 超市 11 月排骨的进货价为年初排骨售价的32倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的售价定位为每千克多少元?(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了a%,且储备排骨的销量占总销量的57,两种排骨销售的总金额比 11 月 10 日提高了128a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.【解析】【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)11月10日的售价为350÷5=70元/千克年初的售价为:350÷5÷175%=40元/千克,11月的进货价为: 340602元/千克设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x ,解得10x =,25x =因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得52170(1%)100(1%)70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭解得135a =,20a =(舍去)所以a =35.【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t =,解方程求出t 后再求a 的值.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】10.我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答: (1)每千克茶叶应降价多少元?(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?【答案】(1)每千克茶叶应降价30元或80元;(2)该店应按原售价的8折出售.【解析】【分析】(1)设每千克茶叶应降价x 元,利用销售量×每件利润=41600元列出方程求解即可; (2)为了让利于顾客因此应下降价80元,求出此时的销售单价即可确定几折.【详解】(1)设每千克茶叶应降价x 元.根据题意,得:(400﹣x ﹣240)(200+10x ×40)=41600. 化简,得:x 2﹣10x +240=0.解得:x 1=30,x 2=80.答:每千克茶叶应降价30元或80元.(2)由(1)可知每千克茶叶可降价30元或80元.因为要尽可能让利于顾客,所以每千克茶叶某应降价80元.此时,售价为:400﹣80=320(元),320100%80%400⨯=. 答:该店应按原售价的8折出售.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.。
一元二次方程难题、易错题
![一元二次方程难题、易错题](https://img.taocdn.com/s3/m/a921c406effdc8d376eeaeaad1f34693daef1066.png)
一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。
解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。
将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。
已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。
解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。
因此,要求的值为(ab-16)(b-5)。
2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。
解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。
将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。
2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。
解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。
解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。
一元二次方程经典难题
![一元二次方程经典难题](https://img.taocdn.com/s3/m/2118aa23f61fb7360a4c65b3.png)
1、已知关于x 的方程226250x x m m -+-+=的一个根为2,求另一个根及的值。
2、已12x x 、知是方程22340x x +-=的两个根,利用根与系数的关系,求42241212**x x x x +的值。
3、已知关于x 的方程22(1)10x m x m --++=的两根满足关系式121x x -=,求的值及方程的两个根4、已知关于的一元二次方程21(2)302x m x m +-+-= (1)求证:无论取什么实数值,这个方程总有两个不相等的实数根。
(2)若这个方程的两个实数根12x x 、满足122+=m+1x x ,求的值。
5、122+=m+1x x ,12+=m-2x x , 211*32x x m =-,求m 6、已知方程222(2)40x m x m +-++=有两个实数根,且两个根的平方和比两根的积大21,求的值。
7、已知关于的一元二次方程22(1)(1)10a x a x --++=两实根互为倒数,求a8、已知两数的和等于6,这两数的积是4,求这两数。
0、已知方程240x mx ++=和2(2)160x m x ---=一个相同的根,求的值及这个相同的根。
10,求23610x x -+-的最值11、已知a,b 是方程221140x x -+=的解,求22920a a b -+=的值12、关于x 的方程2(21)(1)0kx k x k -++-=,实数在什么范围取值时①有正的实数根?②同号?13、解不等式x 2+3x-10<0 14、已知关于的一元二次方程01x 1()122=++--)(a x a 两实根互为倒数,求a 15、已知a 、b 是方程0522=-+x x 的两个实数根,求22a ab a ++的值。
16、已知两方程和至少有一个相同的实数根,求这两个方程的四个实数根的乘积。
17、是否存在实数,使关于的方程9x 2-(4k-7)x+6k 2=0的两个实根x 1、x 2,满足123||2x x =,如果存在,试求出所有满足条件的k 的值,如果不存在,请说明理由。
一元二次方程的重难点及题型
![一元二次方程的重难点及题型](https://img.taocdn.com/s3/m/77898776ef06eff9aef8941ea76e58fafab045c1.png)
一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。
【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。
一元二次方程难题精选
![一元二次方程难题精选](https://img.taocdn.com/s3/m/3bc67d03e87101f69e31958d.png)
1,财政预计,三峡工程投资需2039亿元,由静态投资901亿元,贷款利息成本a 亿元,物价上涨价差(a +360)亿元三部分组成。
但事实上,因国家调整利率,使贷款利息减少了15.4%;因物价上涨幅度比预测要低,使物价上涨价差减少了18.7%。
2004年三峡电站发电量为392亿度,预计2006年的发电量为573亿度,这两年的发电量年平均增长率相同。
若年发电量按此幅度增长,到2008年全部机组投入发电时,当年的发电量刚好达到三峡电站设计的最高年发电量,以后每年发电量按最高发电量计算。
从2009年,将三峡电站和葛洲坝电站的发电收益全部用于返还三峡工程投资成本。
葛洲坝年发电量为270亿度,国家规定电站出售电价为0.25元/度。
(1)因利息调整和物价上涨幅度因素使三峡工程总投资减少多少亿元?(结果精确到1亿元)(2)大约到哪一年可以收回三峡工程的投资成本?3,已知方程()011996199419952=-∙-x x 的较大根是r ,0199519942=-+x x 的较小值是s ,求s r -的值。
1.随着城市人口的不断增加,美化城市、改善人们的居住环境,已成为城市建设的一项重要内容,•某城市到2006•年要将该城市的绿地面积在2004•年的基础上增加44%,同时,要求该城市到2006年人均绿地的占有量在2004年基础上增加21%,•为保证实验这个目标,这两年该城市人口的平均增长率应控制在多少以内?(精确1%)1.解:设2004年城市的人口总量为m ,绿地面积为n ,•这两年该城市人口的年平均增长率为x ,由题意,得2(144%)(1)n m x nm++=1+21%,整理,得(1+x )2=1.44 1.2,11.21 1.1x +=±. ∴x 1=21239%,1111x ≈=-(舍去).设m 为整数,且4<m<40,方程x 2-2(2m -3)x+4m 2-14m+8=0有两个整数根,求m 的值. 分析:由△=b 2-4ac ,得△=4(2m -3)2-4(4m 2-14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数,所以2m+1也是一个完全平方数.∵4<m<40,∴9<2m+1<81,∴2m+1=16,25,36或49,∵m 为整数,∴m=12或24.代入已知方程,得x=16,26或x=38,25.综上所述m 为12,或24.17.如图,在矩形ABCD 中,BC=20cm,P 、Q 、M 、N 分别从A 、B 、C 、D 出发沿AD 、BC 、CB 、DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x ≠0),则AP=2xcm,CM=3xcm,DN=2x cm.(1)当x 为何值时,以PQ 、MN 为两边,以矩形的边(AD 或BC )得一部分为第三边构成一个三角形;(2)当x 为何值时,以P 、Q 、M 、N 为顶点的四边形是平行四边形;(3)以P 、Q 、M 、N 为顶点的四边形能否为等腰梯形?如果能,求出x的值。
中考数学一元二次方程(大题培优 易错 难题)及答案
![中考数学一元二次方程(大题培优 易错 难题)及答案](https://img.taocdn.com/s3/m/b0c3ece933687e21ae45a93f.png)
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0. 【解析】 【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0,①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍.②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍),综上所述,n=0.2.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月801513. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了45m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50.【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.5.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.6.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵a b)2=a﹣ab b≥0∴a+b ab a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x的最大值为 ;(2)若y =27101x x x +++,(x >﹣1),求y 的最小值;(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25. 【解析】 【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算;(2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可. 【详解】(1)当x >0时,x 1x +≥1x x ⋅=2; 当x <0时,﹣x >0,1x->0. ∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x+的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9.(3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x=,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25. 【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.已知关于x 的方程()()212310k x k x k -+-++=有两个不相等的实数根1x ,2x .()1求k 的取值范围.()2是否存在实数k ,使方程的两实数根互为相反数?【答案】(1)1312k <且1k ≠;(2) k 不存在,理由见解析 【解析】 【分析】(1)因为方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2.得出其判别式△>0,可解得k 的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k 的值. 【详解】(1)方程(k ﹣1)x 2+(2k ﹣3)x +k +1=0有两个不相等的实数根x 1,x 2,可得:k ﹣1≠0且△=﹣12k +13>0,解得:k <1312且k ≠1; (2)假设存在两根的值互为相反数,设为 x 1,x 2. ∵x 1+x 2=0,∴﹣231k k --=0,∴k =32. 又∵k <1312且k ≠1,∴k 不存在. 【点睛】本题主要考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是方程x 2+px +q =0的两根时,x 1+x 2=﹣p ,x 1x 2=q .10.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。
一元二次方程经典考题难题
![一元二次方程经典考题难题](https://img.taocdn.com/s3/m/720664c57d1cfad6195f312b3169a4517623e573.png)
一元二次方程经典考题难题一元二次方程经典考题难题1.用适当的方法解下列方程:4(x-5)^2=16$3x^2+5(2x+1)=0$x^2+22x-4=0$2x-1)^2=4(x+3)^2$12(2x+3)=4(2x+3)^2+9$2x^2+3(x+1)(2-x)-2(x-2)^2=0$x^2+3x+4)(x^2+3x+5)=6x$x(x^2-1)^2=9x(x+1)(x+3)(x+5)(x+7)=20$2.若$t$是一元二次方程$ax+bx+c\neq 0$的根,则判别式$\Delta=b^2-4ac$和完全平方式$M=(2at+b)^2$的关系式为$|\Delta|=M$。
3.已知关于$x$的一元二次方程$x+bx+c$的两根为$x_1=-1$,$x_2=2$,则$x+bx+c=(x+1)(x-2)$。
4.在实数范围内因式分解$x-4x-7=(x-7)(1-4)$。
5.已知$-\frac{4x}{4x+3}$,则$3x+12x-3=\frac{45x}{4x+3}$。
6.$4x+mx+m$是一个完全平方式,则$m=4$。
7.已知$a(x^2+1)=\left(x+\frac{1}{\sqrt{2}}\right)^2+m$,则$a=2$,$m=-\frac{1}{2}$。
8.当$k=3$时,方程$(k-3)x-2x+k+1=0$是关于$x$的一元二次方程。
9.关于$x$的方程$(m-16)x+(m+4)x+2m+3=0$,当$m=12$时是一元一次方程,当$m=20$时是一元二次方程。
10.已知$x-\frac{1}{x-1}=\frac{1}{2x+2009}$,则$-x+2x+2009=-2007$。
11.已知$(x+y)+(x+y)-12=0$,则$x+y=2$。
12.证明关于$x$的方程$(a-8)x^2+2ax+1=0$,无论$a$取何值,该方程都是一元二次方程。
13.已知关于$x$的一元二次方程$(k-1)x+2x-k-2k+3=0$的一个根为零,则$k=3$。
初中数学方程与不等式之一元二次方程难题汇编及解析
![初中数学方程与不等式之一元二次方程难题汇编及解析](https://img.taocdn.com/s3/m/45afe7b7941ea76e58fa04a0.png)
初中数学方程与不等式之一元二次方程难题汇编及解析一、选择题1.今年深圳的房价平均20000元/平方米,政府要控房价预计后年均价在16000元/平方米,若每年降价均为x%,则下列方程正确的是( )A .220000(1x%)16000+=B .220000(1x%)16000-=C .220000(12x%)16000+=D .()2200001x %16000-= 【答案】B【解析】【分析】已知今年房价及每年降价率,可依次算出降价后明年及后年的房价.【详解】解:根据每年降价均为x%,则第一次降价后房价为20000(1-x%)元,第二次在20000(1-x%)元基础上又降低x%,变为20000(1-x%)(1-x%)元,即220000(1-x%),进而可列出方程:220000(1x%)16000-=故选B【点睛】本题考查了由实际问题抽象出一元二次方程中增长率与下降率问题,关键是公式a(1x%)n b ±=的应用,理解公式是解决本题的关键.2.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( ) A .m <1B .m >﹣1C .m >1D .m <﹣1【答案】C【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根, ()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >故选C .3.代数式2x -4x +5的最小值是( )A .-1B .1C .2D .5【答案】B【解析】 2x -4x +5=2x -4x +4-4+5=2(2)x -+1∵2(2)x -≥0,∴2(2)x -+1≥1,∴代数2x -4x +5的最小值为1.故选B.点睛:解这类题时,通常先通过配方把原式化为“一个完全平方式”和“一个常数”的和的形式,再把完全平方式分解因式化为一个代数式的平方的形式,就可由“任何代数式的平方都是非负数”可知原式的最小值就是那个“常数”.4.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x , 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.5.若a,b为方程2x5x10--=的两个实数根,则22a3ab8b2a++-的值为()A.-41 B.-35 C.39 D.45【答案】C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a,b为方程2x5x10--=的两个实数根,∴a2-5a-1=0,a+b=5,ab=-1,∴22a3ab8b2a++-=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba-,x1·x2=ca;熟练掌握韦达定理是解题关键.6.某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1892 B.x(x−1)=1892×2C.x(x−1)=1892 D.2x(x+1)=1892【答案】C【解析】试题分析:∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1892.故选C.点睛:本题考查由实际问题抽象出二元一次方程组.计算全班共送多少张,首先确定一个人送出多少张是解题关键.7.已知x=1是一元二次方程的解,则b的值为()A .0B .1C .D .2【答案】C【解析】【分析】 根据一元二次方程解的定义,把x=1代入x 2+bx+1=0得关于b 的一次方程,然后解一次方程即可.【详解】解:把x=1代入x 2+bx+1=0得1+b+1=0,解得b=-2.故选:C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.9.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x ,则方程可以列为( ) A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=【答案】D【分析】用含x 的代数式表示出第二天和第三天的票房收入,三天的票房收入再相加即得答案.【详解】解:设平均每天票房收入的增长率记作x ,则233(1)3(1)10x x ++++=. 故选:D.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.10.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是( )A .20%B .22%C .25%D .44% 【答案】A【解析】【分析】设这个平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设这个平均增长率为x ,根据题意得:2000(1+x )2=2880,解得:x 1=20%,x 2=-2.2(舍去).答:这个平均增长率为20%.故选A .【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-,难度一般.11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.第一次降价后的价格为225×(1﹣x),第二次降价后的价格为225×(1﹣x)×(1﹣x),则225(1﹣x)2=196.故选A.【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7 B.8 C.9 D.10【答案】C【解析】试题分析:设这个小组的人数为x个,则每个人要送其他(x﹣1)个人贺卡,则共有(x﹣1)x张贺卡,等于72张,由此可列方程.解:设这个小组有x人,则根据题意可列方程为:(x﹣1)x=72,解得:x1=9,x2=﹣8(舍去).故选C.13.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是()A.8.5%B.9%C.9.5%D.10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x的话,经过第一次下降,成本变为100(1-x)元,再经过一次下降后成本变为100(1-x)(1-x)元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x,根据题意得100(1-x)(1-x)=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D.14.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【答案】A分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确;B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确;C 、根据根与系数的关系可得出x 1•x 2=﹣2,结论C 错误;D 、由x 1•x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误.综上即可得出结论.详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,结论A 正确;B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴B 结论不一定正确;C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,结论C 错误;D 、∵x 1•x 2=﹣2,∴x 1<0,x 2>0,结论D 错误.故选A .点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.15.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A .2524k ≤≤B .26k ≤≤C .24k ≤≤D .46k ≤≤【答案】A【解析】【分析】 由点C 的坐标结合直线AB 的解析式可得出点A 、B 的坐标,求出反比例函数图象过点C 时的k 值,将直线AB 的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k 的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB 上,综上即可得出结论.解:令y =−x +5中x =1,则y =4,∴B (1,4);令y =−x +5中y =2,则x =3,∴A (3,2), 当反比例函数k y x=(x >0)的图象过点C 时,有2=1k , 解得:k =2, 将y =−x +5代入k y x=中,整理得:x 2−5x +k =0, ∵△=(−5)2−4k≥0,∴k ≤254, 当k =254时,解得:x =52, ∵1<52<3, ∴若反比例函数k y x =(x >0)的图象与△ABC 有公共点,则k 的取值范围是2≤k≤254, 故选:A .【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A 、C 时的k 值以及直线与双曲线有一个交点时k 的值.16.两个不相等的实数m ,n 满足2265,65m m n n +=+=,则mn 的值为( ) A .6B .-6C .5D .-5 【答案】D【解析】【分析】根据题意得到m ,n 可看作方程x 2-6x-5=0的两根,然后根据根与系数的关系求解即可.【详解】∵两个不相等的实数m ,n 满足22650, 650m m n n +-=+-=,∴m ,n 可看作方程x 2-6x-5=0的两根,∴mn=-5故选:D.【点睛】此题考查了一元二次方程的根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,12b x x a +=-,12c x x a=.17.已知24b ac -是一元二次方程()200++=≠ax bx c a 的一个实数根,则ab 的取值范围为( )A .18ab ≥ B .18ab ≤ C .14ab ≥ D .14ab ≤ 【答案】B【解析】【分析】设u 的两个一元二次方程,并且这两个方程都有实根,所以由判别式大于或等于0即可得到ab≤18. 【详解】因为方程有实数解,故b 2-4ac≥0.24b ac =-24b ac =-,设 则有2au 2-u+b=0或2au 2+u+b=0,(a≠0),因为以上关于u 的两个一元二次方程有实数解,所以两个方程的判别式都大于或等于0,即得到1-8ab≥0,所以ab≤18. 故选B .【点睛】 本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:(b 2-4ac≥0).18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =1+2(1﹣2<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为1+2或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=【答案】B【解析】【分析】 根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.20.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.。
完整版)一元二次方程难题集锦
![完整版)一元二次方程难题集锦](https://img.taocdn.com/s3/m/f2422e10492fb4daa58da0116c175f0e7cd1191a.png)
完整版)一元二次方程难题集锦
1.已知方程$x^2-x-1=0$的两个实数根为$\alpha$和$\beta$,则代数式$\alpha^2+\alpha(\beta^2-2)$的值为
2.
2.已知一元二次方程$2x^2-2x+3m-1=0$的两个实根为
$x_1$和$x_2$,且满足不等式$x_1<x_2$,则实数$m$的取值
范围为:
3.若$a$、$b$为质数,且方程$a^2-13a+m=0$和$b^2-
13b+m=0$有相同的实数根,则:
4.在直角三角形$\triangle ABC$中,$\angle C=90^\circ$,$a$、$b$、$c$分别为$\angle A$、$\angle B$、$\angle C$的对边,$a$、$b$是关于$x$的方程$x^2-7x+c+7=0$的两根,则$AB$边上的中线长为:
5.已知方程$x^2+(m-1)x+m-2=0$的两个实数根之和为5,
则$m$的值为:
6.在直角三角形$\triangle ABC$中,$CD$为斜边上的高线,$AD$、$BD$为方程$x^2-6x+4=0$的两根,则$\triangle
ABC$的面积为多少?
7.设$a$、$b$、$c$为三个不同的实数,使得方程
$x^2+ax+1=0$和$x^2+bx+c=0$有一个相同的实数根,且方程$x^2+x+a=0$和$x^2+cx+b=0$也有一个相同的实数根,则
$a+b+c$的值为:
8.设$m$是不小于$-1$的实数,且方程$x^2+2(m-2)x+m^2-
3m+3=0$有两个不相等的实数根$x_1$、$x_2$。
1)若$x_1^2+x_2^2=6$,求$m$的值;。
一元二次方程难题解析
![一元二次方程难题解析](https://img.taocdn.com/s3/m/1c171c51e87101f69e3195ac.png)
一元二次方程难题解答 (一)1.已知m 是方程022=--x x 的一个根,则代数式)12)((2+--mm m m 的值是______ 解: m 是方程022=--x x 的一个根∴022=--m m 即22=-m m 0≠m 方程两边除以m 得: 021=--mm 12=-m m∴4)11(2)12)((2=+⨯=+--m m m m 2.已知a x =是方程0120162=+-x x 的一个根,求代数式12016140312222+-+-a a a a 的值解: a x =是方程0120162=+-x x 的一个根∴0120162=+-a a ∴120162-=-a a 或a a 201612=+12016140312222+-+-a a a a =aa a a a 2016201614032222-++-a a a a -++-=1)2016(22 3.关于m 的方程02722=--m n nm 的一个根为2,求22-+n n 的值。
解:由题意得:2=m 把2=m 代入方程得:022742=--n n整理得:01722=+-n n 方程两边除以n 得:0172=+-n n 721=+nn 方程两边平方得:281222=++nn 2622=+∴-n n 4.已知36)41(222=-+m m ,求m m 1-的值。
解: 36)41(222=-+m m 64122±=-+∴m m10122=+∴m m 或2122-=+∴mm (舍去)102)1(2=+-∴m m 即8)1(2=-m m 221±=-∴mm 5.用换元法解下列方程:解:设y x =-12,则原方程为032=-y y 0)3(=-y y 3021==∴y y当0=y 时,012=-x 1±=x 当3=y 时,312=-x 2±=x∴原方程的解为22114321-==-==x x x x6.设y x 、为实数,求542222+-++y y xy x 的最小值,并求出此时x 与y 的值。
一元二次方程(较难)
![一元二次方程(较难)](https://img.taocdn.com/s3/m/1acd8f5877232f60ddcca1a8.png)
一元二次方程较难题型1 当x3+的值最小?最小值是多少?2已知282x x y x ++=+-+,求.33522a (≤≤).2若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A 、1B 、2C 、1或2D 、03试说明关于x 的方程012)208(22=+++-ax x a a 无论a 取何值,该方程都是一元二次方程;4(2011年重庆江津区七校联考)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A 、1B 、2C 、1或2D 、05已知,则的值是________。
6已知,则的值是( ) A. 1989 B. 1990 C. 1994 D. 19957设,则________。
8已知x 是一元二次方程0132=-+x x 的实数根,求代数式:⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.9先化简,再求值:235(2)362m m m m m -÷+---,其中m 是方程2310x x +-=的根.10已知a 是方程21=0x x +-的一个根,则22211a a a---的值为A B .251±- C .-1 D .1 11用因式分解法解方程。
12方程(x+1)(x ﹣2)=x+1的解是A 、2B 、3C 、﹣1,2D 、﹣1,313 方程x(x-2)+x-2=0的解是( )A .2B .-2,1C .-1D .2,-1 14方程2(34)34x x -=-的根是.15用换元法解方程x x x x 228812+++=16解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为:x 1=2,x 2=5.则利用这种方法求得方程 (2x+5)2﹣4(2x+5)+3=0的解为A 、x 1=1,x 2=3B 、x 1=﹣2,x 2=3C 、x 1=﹣3,x 2=﹣1D 、x 1=﹣1,x 2=﹣217解方程:2224510)0x y y --+--=18 阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程。
一元二次方程中考题目有难度
![一元二次方程中考题目有难度](https://img.taocdn.com/s3/m/be36835ee55c3b3567ec102de2bd960590c6d93c.png)
中考数学一元二次方程试题分类汇编一、选择题1、关于x 的方程20x px q ++=的两根同为负数,那么〔 〕A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <02、假设关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.那么k 的值为〔 〕〔A 〕-1或34 〔B 〕-1 〔C 〕34 〔D 〕不存在 3、以下关于x 的一元二次方程中,有两个不相等的实数根的方程是〔 〕 〔A 〕x 2+4=0 〔B 〕4x 2-4x +1=0 〔C 〕x 2+x +3=0 〔D 〕x 2+2x -1=04、某商品原价200元,连续两次降价a %后售价为148元,以下所列方程正确的选项是〔 〕A :200(1+a%)2=148B :200(1-a%)2=148C :200(1-2a%)=148D :200(1-a 2%)=1485、如果2是一元二次方程x 2=c 的一个根,那么常数c 是〔 〕。
A 、2B 、-2C 、4D 、-46.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,那么a 的值是A .1B .-1C .1或-1D . 27.假设一元二次方程式)2)(1()1(++++x x x ax bx +2)2(=+x 的两根为0、2,那么b a 43+之值为何?A .2B .5C .7D . 88、关于x 的方程x 2+bx +a =0有一个根是-a (a≠0),那么a -b 的值为A .-1B .0C .1D .29.设一元二次方程〔x -1〕〔x -2〕=m(m >0)的两实根分别为α,β,那么α,β满足A. 1<α<β<2B. 1<α<2 <βC. α<1<β<2D.α<1且β>210、方程x 2-3 2 x+1=0,求作一个一元二次方程使它的根分别是原方程各根的倒数,那么这个一元二次方程是〔 〕A .x 2+3 2 x+1=0;B .x 2+3 2 x-1=0C .x 2-3 2 x+1=0D .x 2-3 2 x-1=011、m 是方程x 2+x-1=0的根,那么式子m 3+2m 2+2021的值为( )A.2021B.2021C.2021D.202112、假设a 为方程(x 17)2=100的一根,b 为方程(y 3)2=17的一根,且a 、b 都是正数,那么a b 的值为〔 〕A .13B .7C . -7D . 1313、对于一元二次方程ax 2+bx+c=O(a≠0),以下说法:①假设c a +cb =-1,那么方程ax 2+bx+c=O 一定有一根是x=1;②假设c=a 3,b=2a 2,那么方程ax 2+bx+c=O 有两个相等的实数根;③假设a<0,b<0,c>0,那么方程cx 2+bx+a=0必有实数根;④假设ab-bc=0且c a <-l ,那么方程cx 2+bx+a=0的两实数根一定互为相反数.. 其中正确的结论是( )A .①②③④ B.①②④ C .①③ D.②④14.菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 等于() A .3- B .5 C .53-或 D .53-或15.假设t 是一元二次方程20 (0)ax bx c a ++=≠的根,那么判别式24b ac ∆=-与完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定16.假设实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,那么代数式1111b a a b --+--的值为() A .20- B .2 C .220-或 D .220或17.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,那么,,a b c 之间的关系是 ______18.一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,那么这个直角三角形的斜边长是 _______ .19.假设方程22(1)30x k x k -+++=的两根之差为1,那么k 的值是 _____ .20.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,那么p = _____ ,q = _____ .二、填空题1、关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1〔a ,m ,b 均为常数,a ≠0〕,那么方程2(2)0a x m b +++=的解是 。
备战中考数学一元二次方程(大题培优 易错 难题)及答案解析
![备战中考数学一元二次方程(大题培优 易错 难题)及答案解析](https://img.taocdn.com/s3/m/ebd232b0c281e53a5902ff34.png)
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了45m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值.【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50.【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.7.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值. 详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3, 将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.8. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的)则有151=1.7×80+(80-m )×即m 2-80m+1500=0 解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去. ∴m=50 【解析】9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩ 解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0 ∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴x=2b a-±∴x1x 2.。
专题12公式法解一元二次方程-重难点题型(学生版)
![专题12公式法解一元二次方程-重难点题型(学生版)](https://img.taocdn.com/s3/m/91723d79ac02de80d4d8d15abe23482fb4da0233.png)
专题2.4 公式法解一元二次方程-重难点题型【题型1 用公式法解一元二次方程】【例1】(2021春•淮北月考)用公式法解方程:x 2﹣5x ﹣1=0.【变式1-1】(2020秋•朝阳区期中)用公式法解方程:3x 2﹣x ﹣1=0.【变式1-2】(2020春•江干区期末)解下列一元二次方程:34x 2−2x −12=0(公式法).【变式1-3】(2020秋•达川区期末)解方程:3x 2﹣4√3x +2=0(用公式法解).【题型2 求根公式的应用】【例2】(2020秋•和平区期中)若一元二次方程x 2+bx +4=0的两个实数根中较小的一个根是m (m ≠0),则b +√b 2−16=( ) A .mB .﹣mC .2mD .﹣2m【变式2-1】(2020•福州模拟)关于x 的一元二次方程ax 2+bx +c =0的两根分别为x 1=−b+√b 2+42,x 2=−b−√b 2+42,下列判断一定正确的是( ) A .a =﹣1B .c =1C .ac =﹣1D .ca =−1【变式2-2】(2020秋•宜兴市校级月考)已知a 是一元二次方程x 2﹣4x +2=0的两个实数根中较小的根, (1)求a 2﹣4a +2013的值; (2)化简求值:√a 2−2a+1a−1−1−2a+a 2a−1.【变式2-3】先阅读下列材料,然后回答问题:在一元二次方程ax 2+bx +c =0(a ≠0)中,若各项的系数之和为零,即a +b +c =0,则有一根为1,另一根为ca .证明:设方程的两根为x 1,x 2,由a +b +c =0, 知b =﹣(a +c ),∵x=−b±√b2−4ac2a=(a+c)±√(a+c)2−4ac2a=(a+c)±(a−c)2a∴x1=1,x2=c a.(1)若一元二次方程ax2+bx+c=0(a≠0)的各项系数满足a﹣b+c=0,则两根的情况怎样,试说明你的结论;(2)已知方程(ac﹣bc)x2+(bc﹣ab)x+(ab﹣ac)=0(abc≠0)有两个相等的实数根,运用上述结论证明:2 b =1a+1c.【题型3 应用根的判别式判断方程根的情况】【例3】(2021•河南模拟)下列关于x的方程有两个不相等的实数根的是()A.x2﹣2x+2=0B.x(x﹣2)=﹣1C.(x﹣k)(x+k)=2x+1D.x2+1=0【变式3-1】(2021•滨城区一模)关于x的一元二次方程x2+(﹣k+2)x﹣4+k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【变式3-2】(2021•凉山州)函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【变式3-3】(2021春•鹿城区校级期中)已知a,b,c分别是△ABC的边长,则一元二次方程(a+b)x2+2cx+a+b =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【题型4 已知方程根的情况求字母系数的值或范围】【例4】(2021•菏泽)关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【变式4-1】(2021•广安)关于x的一元二次方程(a+2)x2﹣3x+1=0有实数根,则a的取值范围是()A.a≤14且a≠﹣2B.a≤14C.a<14且a≠﹣2D.a<14【变式4-2】(2021春•台江区校级月考)若关于x 的方程x 2−√m x +n =0有两个相等的实根,则m n= .【变式4-3】(2021•海门市模拟)关于x 的方程x 2+bx +c =0有两个相等的实数根,x 取m 和m +2时,代数式x 2+bx +c 的值都等于n ,则n = .【题型5 根的判别式的综合应用】【例5】(2021•海淀区二模)关于x 的一元二次方程x 2﹣mx +2m ﹣4=0. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m 的取值范围.【变式5-1】(2021春•萧山区期中)已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).【变式5-2】(2021•广东模拟)已知关于x 的一元二次方程x 2﹣(k +2)x +2k =0. (1)若x =1是这个方程的一个根,求k 的值和它的另一根; (2)求证:无论k 取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【变式5-3】(2020秋•安居区期末)已知关于x 的方程x 2﹣(m +3)x +4m ﹣4=0的两个实数根. (1)求证:无论m 取何值,这个方程总有实数根.(2)若等腰三角形ABC 的一边长a =5,另两边b ,c 的长度恰好是这个方程的两个根,求△ABC 的周长.【题型6 根的判别式中新定义问题】【例6】(2021•郑州模拟)定义新运算“a *b ”:对于任意实数a ,b ,都有a *b =a 2+b 2﹣2ab ﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x *k =xk (k 为实数)是关于x 的方程,则方程的根的情况为( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【变式6-1】(2020春•瑶海区期末)对于实数a、b,定义运算“★”:a★b={a2−b(a≤b)b2−a(a>b),关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是()A.t<154B.t>154C.t<−174D.t>−174【变式6-2】(2021春•瑶海区期中)对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△√32得值;(2)如果关于x的方程x△(a△x)=−14有两个相等的实数根,求实数a的值.【变式6-3】(2020春•丽水期中)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是全等的Rt △ABC和Rt△BED的边长,易知AE=√2c,这时我们把关于x的形如ax2+√2cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)求证:关于x的“勾系一元二次方程”ax2+√2cx+b=0必有实数根;(2)若x=﹣1是“勾系一元二次方程”ax2+√2cx+b=0的一个根,且四边形ACDE的周长是12,求△ABC的面积.。
专题11配方法解一元二次方程-重难点题型(学生版)
![专题11配方法解一元二次方程-重难点题型(学生版)](https://img.taocdn.com/s3/m/7268582bdf80d4d8d15abe23482fb4daa58d1d33.png)
专题2.3 配方法解一元二次方程-重难点题型将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型1 用配方法解二次项系数为1的一元二次方程】【例1】(2021春•上城区校级期中)用配方法解一元二次方程x2+2x﹣3=0,配方后得到的方程是()A.(x﹣1)2=4B.(x+1)2=4C.(x+2)2=1D.(x﹣2)2=1【变式1-1】(2020秋•隆回县期末)把x2﹣3x+1=0的左边配方后,方程可化为()A.(x−32)2=134B.(x+32)2=134C.(x−32)2=54D.(x+32)2=54【变式1-2】(2020秋•崂山区期末)解方程:x2﹣5x+1=0(配方法).【变式1-3】(2020秋•白银期末)解方程:x2+2=2√2x.【题型2 用配方法解二次项系数不为1的一元二次方程】【例2】(2020秋•陇县期中)用配方法解方程2x2=7x﹣3,方程可变形为()A.(x−72)2=374B.(x−72)2=434C.(x−74)2=116D.(x−74)2=2516【变式2-1】(2020秋•巩义市期中)用配方法解下列方程时,配方有错误的是()A.2m2+m﹣1=0化为(m+14)2=916B.x2﹣6x+4=0化为(x﹣3)2=5C.2t2﹣3t﹣2=0化为(t−32)2=2516D.3y2﹣4y+1=0化为(y−23)2=19【变式2-2】(2020秋•开江县期末)解方程:3x2+1=2√3x.【变式2-3】(2020春•朝阳区校级期中)已知y 1=13x 2+8x ﹣1,y 2=6x +2,当x 取何值时y 1=y 2.【题型3 利用一元二次方程的配方求字母的值】【例3】(2020秋•津南区期中)一元二次方程x 2﹣8x +c =0配方,得(x ﹣m )2=11,则c 和m 的值分别是( )A .c =5,m =4B .c =10,m =6C .c =﹣5,m =﹣4D .c =3,m =8【变式3-1】(2020•镇江校级期中)已知方程x 2﹣6x +q =0配方后是(x ﹣p )2=7,那么方程x 2+6x +q =0配方后是( )A .(x ﹣p )2=5B .(x +p )2=5C .(x ﹣p )2=9D .(x +p )2=7 【变式3-2】(2020秋•内江期末)如果x 2﹣8x +m =0可以通过配方写成(x ﹣n )2=6的形式,那么x 2+8x +m =0可以配方成( )A .(x ﹣n +5)2=1B .(x +n )2=1C .(x ﹣n +5)2=11D .(x +n )2=6 【变式3-3】(2020秋•邓州市期末)若一元二次方程x 2+bx +5=0配方后为(x ﹣4)2=k ,则k 的值为 .【题型4 利用一元二次方程的配方法解新定义问题】【例4】(2020秋•建平县期末)设a 、b 是两个整数,若定义一种运算“△”,a △b =a 2+b 2+ab ,则方程(x +2)△x =1的实数根是( )A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣2【变式4-1】(2021秋•北辰区校级月考)在实数范围内定义运算“☆”和“★”,其规则为:a ☆b =a 2+b 2,a ★b =ab 2,则方程3☆x =x ★12的解为 .【变式4-2】(2020秋•福州期中))将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成|a c bd |,定义|a c b d |=ad ﹣bc ,上述记号就叫做2阶行列式.若|x +11−x x −1x +1|=8x ,则x = .【变式4-3】(2020秋•市中区期中)阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,复数一般表示为a +bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加法,减法,乘法运算与整式的加法,减法,乘法运算类似.例如:解方程x 2=﹣1,解得:x 1=i ,x 2=﹣i .同样我们也可以化简√−4=√4×(−1)=√22×i 2=2i ;读完这段文字,请你解答以下问题:(1)填空:i3=,i4=,i6=,i2020=;(2)在复数范围内解方程:(x﹣1)2=﹣1.(3)在复数范围内解方程:x2﹣4x+8=0.【题型5 配方法的应用】【例5】(2021春•常熟市期中)我们知道“a2≥0”,其中a表示任何有理数,也可表示任意代数式.有时我们通过将某些代数式配成完全平方式进行恒等变形来解决符号判断、大小比较等问题,简称“配方法”.例如:x2+2x+2=x2+2x+1+1=(x+1)2+1.∵(x+1)2≥0,∴(x+1)2+1≥1.即:x2+2x+2≥1.试利用“配方法”解决以下问题:(1)填空:x2﹣2x+4=(A)2+B,则代数式A=,常数B=;(2)已知a2+b2=6a﹣4b﹣13,求a b的值;(3)已知代数式M=4x﹣5,N=2x2﹣1,试比较M,N的大小.【变式5-1】(2020秋•石狮市校级月考)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知△ABC的三边长a,b,c,且满足a2+b2﹣10a﹣12b+61=0,求c的取值范围;(2)已知P=2x2+4y+13,Q=x2﹣y2+6x﹣1,比较P,Q的大小.【变式5-2】(2021春•历城区期中)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,例如:x2﹣8x+17=x2﹣2•x•4+42﹣42+17=(x﹣4)2+1.根据以上材料,解答下列问题:(1)填空:将多项式x2﹣2x+3变形为(x+m)2+n的形式,并判断x2﹣2x+3与0的大小关系,∵x2﹣2x+3=(x﹣)2+;所以x2﹣2x+30(填“>”、“<”、“=”);(2)将多项式x2+6x﹣9变形为(x+m)2+n的形式,并求出多项式的最小值;(3)求证:x、y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数.【变式5-3】(2021春•南京月考)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式2x2+4x﹣6的最小值:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣6m﹣7.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+20有最小值,并求出这个最小值;(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+28有最小值,并求出这个最小值.【题型6 一元二次方程的几何解法】【例6】(2020秋•内江期末)《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6B.3√5−3C.3√5−2D.3√5−3 2【变式6-1】(2020春•丰台区期末)公元9世纪,阿拉伯数学家花拉子米在他的名著《代数学》中用图解一元二次方程.他把一元二次方程x2+2x﹣35=0写成x2+2x=35的形式,并将方程左边的x2+2x看作是由一个正方形(边长为x)和两个同样的矩形(一边长为x,另一边长为1)构成的矩尺形,它的面积为35,如图所示,于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表示为:x2+2x+=35+,整理,得(x+1)2=36.因为x表示边长,所以x=.【变式6-2】(2020秋•东海县期中)某“优学团”在社团活动时,研究了教材第12页的“数学实验室”他们发现教材阐述的方法其实是配方过程的直观演示.他们查阅资料还发现,这种构图法有阿拉伯数学家阿尔花拉子米和我国古代数学家赵爽两种不同构图方法.该社团以方程x 2+10x ﹣39=0为例,分别进行了展示,请你完成该社团展示中的一些填空.因为x 2+10x ﹣39=0,所以有x (x +10)=39.展示1:阿尔•花拉子米构图法如图1,由方程结构,可以看成是一个长为(x +10),宽为x ,面积为39的矩形若剪去两个相邻的,长、宽都分别为5和x 的小矩形,重新摆放并补上一个合适的小正方形,可以拼成如图2的大正方形.(1)图2中,补上的空白小正方形的边长为 ;通过不同的方式表达大正方形面积,可以将原方程化为(x + )2=39+ ;展示2:赵爽构图法如图3,用4个长都是(x +10),宽都是x 的相同矩形,拼成如图3所示的正方形.(2)图3中,大正方形面积可以表示为( )2(用含x 的代数式表示);另一方面,它又等于4个小矩形的面积加上中间小正方形面积,即等于4×39+ ,故可得原方程的一个正的根为 .(3)请选择上述某一种拼图方法直观地表示方程x 2+2x =3的配方结果(请在相应位置画出图形,需在图中标注出相关线段的长度).【变式6-3】(2020春•杭州期中)如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ,连接CD .以点A 为圆心,AC 长为半径画弧,交线段AB 于点E ,连接CE .(1)求∠DCE 的度数.(2)设BC =a ,AC =b .①线段BE 的长是关于x 的方程x 2+2bx ﹣a 2=0的一个根吗?说明理由.②若D 为AE 的中点,求a b 的值.。
初中数学方程与不等式之一元二次方程难题汇编附解析
![初中数学方程与不等式之一元二次方程难题汇编附解析](https://img.taocdn.com/s3/m/9b5e3f7d31126edb6f1a10a0.png)
初中数学方程与不等式之一元二次方程难题汇编附解析一、选择题1.徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是 ( )A .8.5%B .9%C .9.5%D .10%【答案】D【解析】【分析】设平均每次降低成本的百分率为x 的话,经过第一次下降,成本变为100(1-x )元,再经过一次下降后成本变为100(1-x )(1-x )元,根据两次降低后的成本是81元列方程求解即可.【详解】解:设平均每次降低成本的百分率为x ,根据题意得100(1-x )(1-x )=81,解得x=0.1或1.9(不合题意,舍去)即x=10%故选D .2.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A .168(1+a %)2=128B .168(1-a %)2=128C .168(1-2a %)=128D .168(1-a 2%)=128【答案】B【解析】【分析】【详解】解:第一次降价a%后的售价是168(1-a%)元,第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2;故选B.3.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A .10%B .15%C .20%D .25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出()240001x -=2560,算出x .【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.4.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +,根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.6.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a 的取值范围为a≥1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.我市郊区大力发展全域旅游产业,打造了大来岗风景区、敖其湾赫哲族风景区等精品旅游 项目,郊区全年旅游人数逐年增加,据统计,2016年为30万人次,2018年为43.2万人次.设旅游人次的年平均增长率为x ,则可列方程为( )A .()30143.2x +=B .()30110.8x -=C .()230143.2x +=D .()()2301143.2x x ⎡⎤+++=⎣⎦【答案】C【分析】关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),旅游人次的年平均增长率为x ,然后根据已知可以得出方程.【详解】设旅游人次的年平均增长率为x ,那么根据题意得:()230143.2x +=.故选:C .【点睛】此题考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.8.用配方法解方程:x 2﹣2x ﹣3=0时,原方程变形为( )A .(x+1)2=4B .(x ﹣1)2=4C .(x+2)2=2D .(x ﹣2)2=3【答案】B【解析】试题分析:将原方程的常数项﹣3变号后移项到方程右边,然后方程两边都加上1,方程左边利用完全平方公式变形后,即可得到结果.解:x 2﹣2x ﹣3=0,移项得:x 2﹣2x=3,两边加上1得:x 2﹣2x+1=4,变形得:(x ﹣1)2=4,则原方程利用配方法变形为(x ﹣1)2=4.故选B .9.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1【答案】C【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根, ()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >故选C .10.关于方程x 2﹣x +9=0的根的情况,下列说法正确的是( )A .有两个相等实根B .有两个不相等实数根C .没有实数根D .有一个实数根【答案】C【分析】找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断.【详解】这里a=1,b=-42,c=9,∵△=b 2-4ac=32-36=-4<0,∴方程无实数根.故选:C .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2﹣2x +1=0C .2x 2﹣x ﹣1=0D .2x 2﹣x +1=0【答案】D【解析】【分析】根据判别式即可求出答案.【详解】A.△=4,故选项A 有两个不同的实数根;B.△=4﹣4=0,故选项B 有两个相同的实数根;C.△=1+4×2=9,故选项C 有两个不同的实数根;D.△=1﹣8=﹣7,故选项D 没有实数根;故选D .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.12.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A.2524k≤≤B.26k≤≤C.24k≤≤D.46k≤≤【答案】A【解析】【分析】由点C的坐标结合直线AB的解析式可得出点A、B的坐标,求出反比例函数图象过点C时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.【详解】解:令y=−x+5中x=1,则y=4,∴B(1,4);令y=−x+5中y=2,则x=3,∴A(3,2),当反比例函数kyx=(x>0)的图象过点C时,有2=1k,解得:k=2,将y=−x+5代入kyx=中,整理得:x2−5x+k=0,∵△=(−5)2−4k≥0,∴k≤254,当k=254时,解得:x=52,∵1<52<3,∴若反比例函数kyx=(x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤254,故选:A.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.13.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【答案】D【解析】∵△=24a+>0,∴方程有两个不相等的实数根.故选D.14.某新建火车站站前广场绿化工程中有一块长为20米,宽为12米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为112米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是( )A .2米B .323米C .2米或323米D .3米【答案】A【解析】【分析】 根据矩形面积的相关知识进行作答.【详解】设宽度为x ,将大矩形空地划分为两个相等的小矩形绿地和两个相等的细长矩形和三个相等的小细长矩形,运用大矩形空地面积等于划分的几个矩形面积之和建立方程式,即20121123122x 220x ⨯=+⨯-+⨯ ,解出x=2,所以,选A.【点睛】本题考查了矩形面积的相关知识,熟练掌握矩形面积的相关知识是本题解题关15.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A .438(1+x )2=389B .389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=389【答案】B【解析】【分析】【详解】解:因为每半年发放的资助金额的平均增长率为x ,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389 (1+x) 元,则今年上半年发放给每个经济困难学生389 (1+x) (1+x) =389(1+x)2元.据此,由题设今年上半年发放了438元,列出方程:389(1+x )2=438.故选B .16.两个不相等的实数m ,n 满足2265,65m m n n +=+=,则mn 的值为( ) A .6B .-6C .5D .-5【答案】D【解析】【分析】根据题意得到m ,n 可看作方程x 2-6x-5=0的两根,然后根据根与系数的关系求解即可.【详解】∵两个不相等的实数m ,n 满足22650, 650m m n n +-=+-=,∴m ,n 可看作方程x 2-6x-5=0的两根,∴mn=-5故选:D.【点睛】此题考查了一元二次方程的根与系数的关系:x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,12b x x a +=-,12c x x a=.17.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .()2100181x +=B .()2811100x +=C .()2811100x -=D .()2100181x -=【答案】D【解析】【分析】此题利用基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】由题意可列方程是:()2100181x -=.故选:D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于列出方程18.深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x ,可列方程为( )A .8(1﹣x )=5.12B .8(1+x )2=5.12C .8(1﹣x )2=5.12D .5.12(1+x )2=8【答案】C【解析】【分析】一般用降低后的量=降低前的量×(1-降低率),降低前的价格设为1,则第一次降价后的价格是(1-x ),第二次降价后的价格是(1-x )2,可得出方程.【详解】设平均每次降价的百分比为x ,则根据题意可得出方程为:8(1﹣x)2=5.12;故选C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).19.对于两个不相等的实数a,b,我们规定符号max{a,b}表示a、b中的较大的数,如:max{2,4}=4,按照这个规定,方程max{x,﹣x}=x2﹣x﹣1的解为()A.或1B.1或﹣1 C.1或1 D.或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x的分式方程求解,结合x的取值范围确定方程max{x,﹣x}=x2﹣x﹣1的解即可.【详解】解:①当x≥﹣x,即x≥0时,∵max{x,﹣x}=x2﹣x﹣1,∴x=x2﹣x﹣1,解得:x=(1<0,不符合舍去);②当﹣x>x,即x<0时,﹣x=x2﹣x﹣1,解得:x=﹣1(1>0,不符合舍去),即方程max{x,﹣x}=x2﹣x﹣1的解为或﹣1,故选:D.【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.20.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是( ) A.a>1 B.a=1 C.a<1 D.a<1且a≠0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是a≠0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以a≠0;∵原方程有两个不相等的实数根,∴△=b2-4ac=4-4a>0,解得a<1;综上,可得a≠0,且a<1;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.。
一元二次方程练习题(较难)
![一元二次方程练习题(较难)](https://img.taocdn.com/s3/m/8f89beaafc0a79563c1ec5da50e2524de518d00a.png)
一元二次方程练习题(较难)一元二次方程练习题1.关于X的方程式x2已知吗?2(k?1)x?k2?0有两个实根x1,x2⑴、求k的取值范围;⑵、若x1?x2?x1?x2?1,求k的值。
2.已知关于X的一元二次方程有两个实数根x1与x2(1)求实数m的取值范围;(2)如果(x1?1)(x2?1)?7.找出M的值。
3.已知a(x1,y21),b(x2,y2)是反比例函数y??x图象上的两点,且x2?x1??2,x1?x2?3(1)求y1?y2的值及点a的坐标;(2)若-4<y≤-1,直接写出x的取值范围.4.(本主题得8分)关于X的方程式x2已知吗?(k?1)x?k24?1.0是矩形两个相邻边的长度。
(1)k为何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值。
初中数学试卷第1页,共4页.5.已知关于X的一元二次方程(1)求证:方程总有两个不相等的实数根;(2)当rt△abc的斜边长当两条直角边之和为方程的两条时,求出其周长和面积△ 基础知识.x16。
如果二次方程是AX?bx?C如果0的X1和X2都是正数,并且满足1<<2(其中X1>X2),则称为x22个方程有“邻近根”.(1)判断方程x2?(3?1)x?3.0是否有“相邻根”,并说明原因;(2)已知关于x的一元二次方程mx2?(m?1)x?1?0有“邻近根”,求m的取值范围.7.让一元二次方程x2?2件?1.0有两个实根,一个大于1,另一个小于1。
试着找出实数P的范围8.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?初中数学试卷第2页,共4页9.本小题满分8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长ab,bc各为多少米?10.提出的问题是:“给定一个任意矩形a,是否还有另一个矩形B的周长和面积分别为已知矩形周长和面积的三分之一?”为了解决上述问题,我们首先研究了几个简单的情况:(1)假设矩形a的边长分别为12和1,是否还有另一个矩形B的周长和面积分别为已知矩形周长和面积的三分之一?解决方案:让矩形B两侧的长度分别为x和Y2,消除y,并将其简化为3x-13x+12=0∵ △ = 169-144>0,X1=uuu___________________;。
中考数学一元二次方程(大题培优 易错 难题)附详细答案
![中考数学一元二次方程(大题培优 易错 难题)附详细答案](https://img.taocdn.com/s3/m/48ea14884b35eefdc8d333ed.png)
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x1+x2=﹣26aa+,x1x2=6aa+,由(x1+1)(x2+1)=x1x2+x1+x2+1=﹣66a-是是负整数,即可得66a-是正整数.根据a是整数,即可求得a的值2.【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=﹣,x1x2=,∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.∵(x1+1)(x2+1)是负整数,∴﹣是负整数,即是正整数.∵a是整数,∴a﹣6的值为1、2、3或6,∴a的值为7、8、9或12.【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.2.解方程:(3x+1)2=9x+3.【答案】x1=﹣13,x2=23.【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.解方程: 2212x x 6x 9-=-+() 【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-, 4.关于x 的方程()2204k kx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
专题9 一元二次方程-重难点题型(学生版)
![专题9 一元二次方程-重难点题型(学生版)](https://img.taocdn.com/s3/m/cc44902753ea551810a6f524ccbff121dd36c5d5.png)
专题2.1 一元二次方程-重难点题型【题型1 判断一元二次方程的个数】【例1】(2020秋•昭阳区期末)下列方程中,一元二次方程共有()①3x2+x=20;②2x2﹣3xy+4=0;③x2−1x=4;④x2﹣3x=4;⑤x2−x3+3=0.A.2个B.3个C.4个D.5个【变式1-1】(2020秋•扬州期末)下列方程中,一元二次方程共有()个.①x2﹣2x﹣1=0;②ax2+bx+c=0;③2x2+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.4【变式1-2】(2021春•仓山区校级月考)下列关于x的方程:①ax2+bx+c=0;②x2+2x−4=0;③2x2﹣3x+1=0;④x2﹣2+x3=0.其中是一元二次方程的个数是()A.1B.2C.3D.4【变式1-3】(2020秋•茌平区期末)下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x2+1x+5=0;④x2+5x3﹣6=0;⑤3x2=3(x﹣2)2;⑥12x﹣10=0.是一元二次方程个数是()A.1B.2C.3D.4【题型2 利用一元二次方程的概念求字母的值】【例2】(2020秋•昌图县期末)已知(m﹣1)x|m+1|+2mx+4=0是关于x的一元二次方程,则m的值是.【变式2-1】(2020秋•铁锋区期末)若关于x的方程(a﹣1)x a2+1−7x+3=0是一元二次方程,则a=.【变式2-2】(2020秋•扬州期末)已知关于x的方程(a−3)x2+√a−1x=3为一元二次方程,则a的取值范围是【变式2-3】(2020秋•新都区校级月考)关于x的方程(m2﹣4)x2+(m﹣2)x﹣2=0,当m满足时,方程为一元二次方程,当m满足时,方程为一元一次方程.【知识点2 一元二次方程的一般形式】一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a,b,c是常数,a≠0).这种形式叫一元二次方程的一般形式.其中叫做二次项,叫做二次项系数;叫做一次项;叫做常数项.【题型3 一元二次方程的一般形式】【例3】(2021春•拱墅区校级期中)方程(3x+2)(2x﹣3)=5化为一般形式是;其中二次项系数是.【变式3-1】(2020秋•乌苏市月考)将一元二次方程13x(x﹣2)=5化为二次项系数为“1”的一般形式是,其中二次项系数是,一次项系数是,常数项是.【变式3-2】(2020秋•渝北区校级月考)若关于x的一元二次方程(a+12)x2﹣(4a2﹣1)x+1=0的一次项系数为0,则a的值为.【变式3-3】(2020秋•南岗区校级月考)阅读理解:定义:如果关于x的方程a1x2+b1x+c1=0(a1≠0,a1、b1、c1是常数)与a2x2+b2x+c2=0(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则这两个方程互为“对称方程”.比如:求方程2x2﹣3x+1=0的“对称方程”,这样思考:由方程2x2﹣3x+1=0可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个方程的“对称方程”.请用以上方法解决下面问题:(1)填空:写出方程x2﹣4x+3=0的“对称方程”是.(2)若关于x的方程5x2+(m﹣1)x﹣n=0与﹣5x2﹣x=1互为“对称方程”,求(m+n)2的值.【知识点3 一元二次方程的解】能使一元二次方程左右两边的未知数的值是一元二次方程的解.一元二次方程的解也称为一元二次方程的.【题型4 利用一元二次方程的解求字母的值】【例4】(2021春•黄冈月考)关于x的方程3x2﹣2(3m﹣1)x+2m=15有一个根为﹣2,则m的值等于()A.2B.−12C.﹣2D.12【变式4-1】(2020秋•兰州期末)若2+√3是方程x2﹣4x+c=0的一个根,c的值是()A.2−√3B.2+√3C.﹣1D.1【变式4-2】(2021春•东城区期中)若关于x的一元二次方程(a﹣2)x2+2x+a2﹣4=0有一个根为0,则a的值为()A.﹣2B.2C.±2D.±√2【变式4-3】(2021春•柯桥区月考)若t是方程ax2+2x+c=0(a≠0)的一个根,设P=1﹣ac,Q=(at+1)2,则P与Q的大小关系正确的是()A.P<Q B.P=Q C.P>Q D.不确定【题型5 利用一元二次方程的解求代数式的值】【例5】(2021春•招远市期中)已知m是方程x2﹣3x﹣2=0的根,则代数式1+6m﹣2m2的值为()A.5B.﹣5C.3D.﹣3【变式5-1】(2021春•阜阳月考)若a是一元二次方程x2﹣3x+1=0的一个根,则代数式2−1a−a的值为()A.﹣2B.﹣1C.1D.5【变式5-2】(2020秋•平邑县期末)若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020B.﹣2020C.2019D.﹣2019【变式5-3】(2020秋•麦积区期末)已知a是方程x2﹣2020x+1=0的一个根,则a2−2019a+2020a2+1的值为()A.2017B.2018C.2019D.2020【题型6 赋值法求一元二次方程的定根】【例6】(2021春•余杭区月考)若a﹣b+c=0,则一元二次方程ax2﹣bx+c=0(a≠0)必有一根是()A.0B.1C.﹣1D.无法确定【变式6-1】(2021春•唐山月考)关于x的一元二次方程ax2﹣bx﹣2020=0满足a+b=2020,则方程必有一根为()A.1B.﹣1C.±1D.无法确定【变式6-2】(2021春•萧山区期中)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2021,则一元二次方程a(x﹣1)2+bx﹣b=﹣2必有一根为()A.2019B.2020C.2021D.2022【变式6-3】(2021春•瑶海区期中)若方程ax2+bx+c=0(a≠0),满足3a﹣b+13c=0,则方程必有一根为.【题型7 根据面积问题列一元二次方程】【例7】(2020秋•官渡区期末)《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m的矩形场地ABCD (如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为()A.(32﹣x)(20﹣x)=95B.(32﹣2x)(20﹣x)=95C.(32﹣x)(20﹣x)=95×6D.(32﹣2x)(20﹣x)=95×6【变式7-1】(2021春•鹿城区校级期中)在长为30m,宽为20m的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m2,求道路的宽度设道路的宽度为x(m),则可列方程()A.(30﹣2x)(20﹣x)=468B.(20﹣2x)(30﹣x)=468C.30×20﹣2•30x﹣20x=468D.(30﹣x)(20﹣x)=468【变式7-2】(2021春•瓯海区期中)如图,在一块长方形草地上修建两条互相垂直且宽度相同的平行四边形通道,其中∠KHB=60°,已知AB=20米,BC=30米,四块草地总面积为503m2,设GH为x米,则可列方程为()A.(20﹣x)(30﹣x)=503B.(20−√32x)(30−√32x)=503C.20x+30x﹣x2=97D.20x+30x−34x2=97【变式7-3】(2021春•蜀山区校级期中)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x的长方形,剩余的部分面积为64,则根据题意可列出方程为.(方程化为一般式)【题型8 根据实际问题列一元二次方程】【例8】(2021春•瓯海区期中)某市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2019年投入10亿元,若每年的增长率相同,预计2021年投资14.4亿元,设年平均增长率为x,则由题意可列方程.【变式8-1】(2021春•长兴县月考)2021年元旦,某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.设全班有x名同学,则可列方程为.【变式8-2】(2021春•西湖区校级期中)某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x,根据题意得方程()A.10(1+x)2=33.1B.10(1+x)+10(1+x)2=33.1C.10+10(1+x)2=33.1D.10+10(1+x)+10(1+x)2=33.1【变式8-3】(2021春•海淀区校级期中)《九章算术》内容丰富,与实际生活联系紧密,在书上讲述了这样一个问题“今有垣高一丈.倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?”其内容可以表述为:“有一面墙,高1丈.将一根木杆斜靠在墙上,使木杆的上端与墙的上端对齐,下端落在地面上.如果使木杆下端从此时的位置向远离墙的方向移动1尺,则木杆上端恰好沿着墙滑落到地面上.问木杆长多少尺?”(说明:1丈=10尺)设木杆长x尺,依题意,下列方程正确的是()A.102+(x﹣1)2=x2B.(x+1)2=x2+102C.x2=(x﹣1)2+12D.(x+1)2=x2+12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学《一元二次方程》(C )课标版
课前巩固提高 1当x 取何值时,
9X •1 • 3的值最小?最小值是多少?
、4a 2
-12a +9- + 4a 2 -20a +25(3 < a < 5) 3化简 2
2
考点 --- 元二次方程定义的考查
2若关于x 的一元二次方程(m -1)x 2 • 5x • m 2 - 3m • 2 = 0的常数项为0,则m 的值等于()
A 、1
B
、2 C 、1 或 2 D 、0
3试说明关于x 的方程(a 2 -8a ■ 20)x 2 2ax 1=0无论a 取何值,该方程都是一元二次方程;
4(2011年重庆江津区七校联考) 若关于x 的一元二次方程(m 「1)x 2 • 5x • m 2 -3m - 2=0的常数项为0, 则m 的值等于() A 、1
B 、2
C 、1 或 2
D 、0
考点二利用一元二次方程三种变形巧解等式求值问题
5已知/ +兀+ 1二0 ,则F + X + 2忑+ ?的值是 ________________ 。
6已知II ,则J -.」•「!」的值是() A. 1989 B. 1990 C. 1994 D. 1995
-
+ 3 + ——-
7 设 x a -5x + l = 0 ,则
x 十 1 _______ 。
2已知 y 二 x 2 - 4
4 -x 2
x 2 x 8
求x y y x -2 14的值
2
8 (重庆一中初2011级10—11学年度下期3月月考)已知x 是一元二次方程
x ,3x-1=0的实数根,
5
I
x
- 2的值.
9 (2012黑龙江省绥化市,21, 5分)先化简,再求值:
:_3 (m 2
),其中 m 是方程
3m -6m
m — 2
x 2 • 3x -1 = 0 的根.
考点三一元二次方程的解法技巧
12 ( 2011四川南充3分)方程(x+1) (x - 2) =x+1的解是
5, 3分)方程x (x-2)+x-2=0 的解是(
D .2, — 1
求代数式:
x -3
3x 2
-6x
10 (2011山东淄博4 分) 已知a 是方程x 2
x -1=0的一个根,则
2
a 2 -1 J —的值为
a 「a
B. -------
2
C.— 1
D.
11用因式分解法解方程
B 3
C 、- 1, 2
D - 1, 3
13(2012四川省南充市, A.2
14 (2011年海宁市盐官片一模)方程(3x _4)2二3x _4的根是
15 (北京四中模拟7)用换元法解方程x28x X2• 8X =12
16( 2011湖北恩施3分)解方程(x - 1)2- 5 (x- 1)+4=0时,我们可以将x- 1看成一个整体,设x- 1=y, 则原方程可化为y2- 5y+4=0,解得y1=1, y2=4.当y=1时,即x - 1=1,解得x=2 ;当y=4时,即x -仁4, 解得x=5,所以原方程的解为:X1=2, X2=5.则利用这种方法求得方程(2x+5))- 4 (2x+5)+3=0的解为
A、X1=1, X2=3 B X1= - 2, X2=3 C 、X1= - 3, X2 = - 1 D X1 = - 1, X2= - 2
17 (2011湖北黄石8分)解方程: x2 _y2 _4 (3、. 5x_5y _10)2 =0
18 (2011四川自贡10分)阅读下面例题的解答过程,体会、理解其方法,并借鉴该例题的解法解方程。
例:解方程x2—x—1—1=0
19 解方程:X2+2X+2_4=0
考点四一元二次方程根的判断
15 (2011重庆江津4分)已知关于X的一元二次方程 a -1 X2 -2x • 1 =0有两个不相等的实数根,则a的
B a > 2
C 、a v 2 且 a 工1
D 、 a v — 2
16 ( 2011江苏苏州3分)下列四个结论中,正确的是
1
A •方程x - 2有两个不相等的实数根
x 1 B •方程x 1有两个不相等的实数根
x 1 C.
方程x 2有两个不相等的实数根
x 1
D. 方程x 十一 =a (其中a 为常数,且a >2 )有两个不相等的实数根
x
17 (2011年重庆江津区七校联考)已知关于 x 的一元二次方程(m 「2)2x 2 • (2m ■ 1)x 1 = 0有两个不相 等的实数根,贝U m 的取值范围是(
3
A. m —
4 3
C. m 且 m = 2
4
18(201 1浙江杭州模拟)已知关于
19 ( 2012湖北襄阳,12, 3分)如果关于x 的一元二次方程kx 2- x + 1= 0有两个不相等的实数根,
那么k 的取值范围是
1
1 1 1 1 1
A. k v
B. k v 且 k z 0
C.—丄 w k v
D.—丄 w k v 且 k 工 0
2 2 2 2 2 2
20 ( 2011辽宁盘锦3分)关于x 的方程(k — 2)x 2 — 4x + 1 = 0有实数根,则k 满足的条件是 ▲ .
21(2011浙江杭州模拟)下列命题:
1 一 2
① 若b=2a+ c,则一兀二次方程 a x +bx+c=O 必有一根为-2 ;
2
② 若ac<0,则方程c x +bx+a=O 有两个不等实数根; ③ 若b -4ac=0,则方程c x +bx+a=O 有两个相等实数根; 其中正确的个数是(
)
A. O 个 B 」 个 C.2 个 D . 3个
22(2012山东德州中考,15,4,)若关于x 的方程ax 2 2(a 2)x
0有实数解,那么实数 a 的取值范围
取值范围是
)
、3
B. m -
4
3
D. m 且 m = 2
4
x 的一元二次方程
(k -1)x 2 • kx • 2 = 0有解,求
k 的取值范
是 ______________ .
23 (2012 湖北随州,16,4 分)设a2• 2 a -1 =0 b - b - 1,且1 - ab2= 0 ,则
;
ab 2+b 2-3a+1_
------------------------ = 。
I a
丿 考点五韦达定理
2
24 (2012四川省南充市,18, 8分)关于x 的一元二次方程 x +3x + m —1=0的两个实数根分别为 x ,,x 2 .
(1)求m 的取值范围;
(2)若 2(x 1 x 2) x 1x 2 • 10 = 0 ,求 m 的值.
25(2011新疆乌鲁木齐4分)关于x 的一元二次方程(a-1)x 2+x +a-1 =0的一个根为0,则实数a 的 值为
A.
-1 B . 0 C. 1 D. -1 或 1
26 (2012黑龙江省绥化市,5, 3分)设a , b 是方程x 2 x-2013 =0的两个不相等的实数根, a 2 2a b
的值
2
1 1
x
一2011—0的两根,则a+b 的值为
【解析】根据一元二次方程根与系数的关系得:
m • n - -21 2 , mn = 1.
J m 2 + n 2+3 mn = p (m + n f+m n= *"(_2逅了+1 =3
30 ( 2011山东德州4分)若X 1, X 2是方程x 2+x -仁0的两个根,则 X 12+X 22=
▲
27 ( 2011贵州黔东南4分)若a 、 b 是一元二次方程
A 、 2010
、2011
1 2010
1
2011
28 ( 2011四川自贡 3分) 已知音、 x 2是方程x 2 6x ^0的两个实数根,则
翌-昼的值等于
X 1 X 2
-6 B
C . 10
D . -10
知m 、n 是方程x 2
■ 2 2x 1=0的两根,则代数式.m 2 • n 2 • 3mn 的值为
A. 9 B -3 C . 3 D . 5
31已知关于x的方程x2 2(a -1)x • a2 - 7a - 4 = 0的两根为x,、x2,且满足x1x2 - 3x^ 3x2 - 0 .求(1 .身)2的值。
a -4 a
【答案】
32 ( 2012,湖北孝感,24, 12分)已知关于x的一元二次方程x2+(m+3)x+m+仁0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若刘,X2是原方程的两根,且捲-X2 =2 2,求m的值,并求出此时方程的两根. (8 分).。