线性代数函授自学周历及测验作业

合集下载

2021年10月自考线性代数经管类试卷及答案

2021年10月自考线性代数经管类试卷及答案

10月高等教诲自学考试全国统一命题考试线性代数(经管类) 试卷(课程代码04184)阐明:在本卷中。

A T表达矩阵A转置矩阵。

A*表达矩阵A随着矩阵,E是单位矩阵,︱A ︱表达方阵A行列式,r(A)表达矩阵A秩。

第一某些选取题一、单项选取题(本大题共5小题,每小题2分,共10分)在每小题列出四个备选项中只有一种是符合题目规定,请将其选出并将“答题卡”相应代码涂黑。

未涂、错涂或多涂均无分。

1.已知2阶行列式A.-2 B.-l C.1 D.23.设向量组可由向量组线性表出,则下列结论中对的是A.若s≤t,则必线性有关B.若s≤t,则必线性有关C.若线性无关,则s≤tD.若线性无关,则s≤t4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则下列结论中对的是A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一种特性值=第二某些非选取题二、填空题 (本大题共l0小题。

每小题2分,共20分)请在答题卡上作答。

6.设行列式中元素a ij代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________.8.设矩阵,若矩阵A满足AP=B,则A=________.9.设向量,,则由向量组线性表出表达式为=____________.10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k取值应满足__________.11.设3元非齐次线性方程组Ax=b增广矩阵(A,b)经初等行变换可化为若该方程组无解,则数k=_________.12.设=-2是n阶矩阵A一种特性值,则矩阵A—3E必有一种特性值是________.13.设2阶矩阵A与B相似,其中,则数a=___________.14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________.15.二次型f(x1,x2)=-2x12+x22+4x1x2规范形为__________.三、计算题(本大题共7小题,每小题9分,共63分)请在答题卡上作答。

《线性代数》函授自学周历及测验作业.

《线性代数》函授自学周历及测验作业.

《线性代数》函授自学周历及测验作业.《线性代数》函授自学周历及测验作业课程名称:线性代数专业:水工等本科教材名称及版本:《线性代数》朱永忠编,河海大学出版社2008 第二学期用说明:1 表中日期请同学自填;2 习题交函授站辅导老师批改;3 测验作业面授时交给函授站,由函授站集中与考试卷一起寄交河海大学函授部,由任课老师批改。

《线性代数》测验作业(水工,工管和水文等本科用)姓名:函授站:专业:得分:本作业记分,记入学期末总评成绩,不交不给分1. 计算行列式1310310112104121-=D 的值=。

2. 试计算出当a =时,齐次方程组=+-=-+=++0200321321321x x x x ax x x x ax 才有非零解。

3. 设()()T47252301==βα,,计算T T βα=。

4. 设A=??-021112111,则逆矩阵=-1A 。

4. 设A 为三阶方阵,且2A =,则-12A =,=*A 。

5. 设向量组321,,ααα线性无关,试用向量组线性相关与无关的定义判断向量组133221,,αααααα+++是线性相关,还是线性无关。

6. 试判断矩阵A=101210111是否为正交矩阵,说明理由。

7. 计算下列行列式的值:(1) 6741212060311512----- ; (2)3315112043512131------.8.已知=2A A ,则A 的特征值= 。

9. 求方程组-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x 的通解。

10. 求一个正交变换py x =,把二次型f =32222121442x x x x x x -+-化为标准形(写出f 的矩阵A ,求出A 的特征值λ和特征向量p ,写出正交变换py x =及f 的标准形)。

自考4184线性代数(经管类)历年真题及答案

自考4184线性代数(经管类)历年真题及答案

全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .-108B .-12C .12D .108108)2(27||3|3|223=-⨯==A A A T .2.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k =( B )A .-2B .-1C .1D .20)1(1241434014013=+=-=--k kkk ,1-=k .3.设A 、B 为同阶方阵,下列等式中恒正确的是( D ) A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .12=*||A 82||||331===-A A n .5.设β可由向量)0,0,1(1=α,)1,0,0(2=α线性表示,则下列向量中β只能是( B ) A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-),0,(212211k k k k =+=ααβ.6.向量组s ααα,,,21 的秩不为s (2≥s )的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量s ααα,,,21 的秩不为s ⇔s ααα,,,21 线性相关.7.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关AX =0仅有零解⇔n A r =)(⇔A 的列向量组线性无关.8.设A 与B 是两个相似n 阶矩阵,则下列说法错误..的是( D ) A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101有相同特征值的同阶对称矩阵一定(正交)相似.10.设有二次型232221321),,(x x x x x x f +-=,则),,(321x x x f ( C ) A .正定 B .负定 C .不定 D .半正定当0,0,1321===x x x 时,0>f ;当0,1,0321===x x x 时0<f .总之,f 有正有负. 二、填空题(本大题共10小题,每小题2分,共20分) 11.若0211=k ,则k =21. 012211=-=k k ,21=k .12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623. AB =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023⎢⎣⎡⎥⎦⎤010201=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623. 13.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1. ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001220010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-120010001200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1100010001. 14.设A 为33⨯矩阵,且方程组Ax =0的基础解系含有两个解向量,则秩(A )= __1__. 秩(A )=123=-=-r n .15.已知A 有一个特征值2-,则E A B 22+=必有一个特征值__6__.2-=λ是A 的特征值,则62)2(222=+-=+λ是E A B 22+=的特征值.16.方程组0321=-+x x x 的通解是T T k k )1,0,1()0,1,1(21+-.⎪⎩⎪⎨⎧==+-=3322321x x x x x x x ,通解是⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-10101121k k . 17.向量组)0,0,1(1=α,)0,1,1(2=α,)0,2,5(3-=α的秩是__2__.⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-000010001025011001,秩是2. 18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(321++不全为零)(321,,k k k .2321===λλλ,⎪⎪⎪⎭⎫ ⎝⎛=-000000000A E λ,⎪⎩⎪⎨⎧===332211x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛001,⎪⎪⎪⎭⎫ ⎝⎛010,⎪⎪⎪⎭⎫ ⎝⎛100. 19.设三阶方阵A 的特征值分别为1,1,2-,且B 与A 相似,则=|2|B __-16__.=|2|B 16)2(810001000223-=-⨯=-.20.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值.解:1515000210002100021180021000210002110402100021000211002************-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X .解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---40021********304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k . 26.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012→⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫ ⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫ ⎝⎛-000210201,⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫⎝⎛-400010002. 四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系. 证:(1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.全国2008年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为( C ) A .-15B .-6C .6D .15D 1=620222555333231232221131211333131232121131111=+=+D a a a a a a a a a a a a a a a a a a . 2.设矩阵⎪⎪⎭⎫ ⎝⎛+d ba 04=⎪⎪⎭⎫ ⎝⎛-32c b a ,则( C ) A .3,1,1,3==-==d c b a B .3,1,3,1===-=d c b a C .3,0,1,3==-==d c b aD .3,0,3,1===-=d c b a3,0,4,2===-=+d c b a b a ⇒3,0,1,3==-==d c b a . 3.设3阶方阵A 的秩为2,则与A 等价的矩阵为( B )A .⎪⎪⎪⎭⎫⎝⎛000000111B .⎪⎪⎪⎭⎫⎝⎛000110111C .⎪⎪⎪⎭⎫⎝⎛000222111D .⎪⎪⎪⎭⎫⎝⎛3332221114.设A 为n 阶方阵,2≥n ,则=-|5|A ( A ) A .||)5(A n -B .||5A -C .||5AD .||5A n5.设A =⎪⎪⎭⎫ ⎝⎛4321,则=*||A ( B ) A .-4B .-2C .2D .424321||||||121-====--*A A A n . 6.向量组s ααα,,,21 (2>s )线性无关的充分必要条件是( D ) A .s ααα,,,21 均不为零向量B .s ααα,,,21 中任意两个向量不成比例C .s ααα,,,21 中任意1-s 个向量线性无关D .s ααα,,,21 中任意一个向量均不能由其余1-s 个向量线性表示7.设3元线性方程组b Ax =,A 的秩为2,1η,2η,3η为方程组的解,T )4,0,2(21=+ηη,T )1,2,1(31-=+ηη,则对任意常数k ,方程组b Ax =的通解为( D )A .T T k )1,2,1()2,0,1(-+B .T T k )4,0,2()1,2,1(+-C .T T k )1,2,1()4,0,2(-+D .T T k )3,2,1()2,0,1(+取b Ax =的特解:T )2,0,1()(2121=+=ηηη; 0=Ax 的基础解系含一个解向量:T )3,2,1()()(312132=+-+=-=ηηηηηηα.8.设3阶方阵A 的特征值为2,1,1-,则下列矩阵中为可逆矩阵的是( D ) A .A E -B .A E --C .A E -2D .AE --22-不是A 的特征值,所以0|2|≠--A E ,A E --2可逆.9.设λ=2是可逆矩阵A 的一个特征值,则矩阵12)(-A 必有一个特征值等于( A ) A .41 B .21 C .2 D .42=λ是A 的特征值,则41)(12=-λ是12)(-A 的特征值. 10.二次型432423222143212),,,(x x x x x x x x x x f ++++=的秩为( C )A .1B .2C .3D .4⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=00001100001000011100110000100001A ,秩为3. 二、填空题(本大题共10小题,每小题2分,共20分)11.行列式332313322212312111b a b a b a b a b a b a b a b a b a =__0__. 行成比例值为零.12.设矩阵A =⎪⎪⎭⎫ ⎝⎛4321,P =⎪⎪⎭⎫ ⎝⎛1011,则=TAP ⎪⎪⎭⎫ ⎝⎛4723. =T AP ⎪⎪⎭⎫ ⎝⎛4321⎪⎪⎭⎫ ⎝⎛1101=⎪⎪⎭⎫⎝⎛4723.13.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛111110100,则=-1A ⎪⎪⎪⎭⎫⎝⎛--001011110.⎪⎪⎪⎭⎫ ⎝⎛100010001111110100→⎪⎪⎪⎭⎫ ⎝⎛001010100100110111→⎪⎪⎪⎭⎫ ⎝⎛--001011101100010011→⎪⎪⎪⎭⎫⎝⎛--001011110100010001. 14.设矩阵A =⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax =0有非零解,则数t =__2__.02121412014022154332221||=-=----=----==t t t t A ,2=t .15.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=2111α,⎪⎪⎪⎭⎫ ⎝⎛-=1212α,⎪⎪⎪⎭⎫⎝⎛=113t α的秩为2,则数t =__-2__.⎪⎪⎪⎭⎫ ⎝⎛--11212111t →⎪⎪⎪⎭⎫ ⎝⎛+--123013011t t t →⎪⎪⎪⎭⎫ ⎝⎛+--20013011t t t ,秩为2,则2-=t . 16.已知向量T )3,0,1,2(=α,T k ),1,2,1(-=β,α与β的内积为2,则数k =32. 2),(=βα,即23022=++-k ,3/2=k .17.设向量Tb ⎪⎪⎭⎫⎝⎛=21,21,α为单位向量,则数b =__0__. 112121||22=+=++=b b α,0=b . 18.已知λ=0为矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-----222222220的2重特征值,则A 的另一特征值为__4__.021==λλ,220321++=++λλλ,所以43=λ.19.二次型32212322213212452),,(x x x x x x x x x x f +--+=的矩阵为⎪⎪⎪⎭⎫⎝⎛---510122021. 20.已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为2>k . ⎪⎩⎪⎨⎧>->->+020101k k k ,⎪⎩⎪⎨⎧>>->211k k k ,2>k . 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D =4001030100211111的值. 解:22000210011101111220021001110111131101210111011114001030100211111-=----=----=------=.22.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-210011101,B =⎪⎪⎪⎭⎫ ⎝⎛410011103,(1)求A 的逆矩阵1-A ;(2)解矩阵方程B AX =.解:(1)⎪⎪⎪⎭⎫ ⎝⎛-100010001210011101→⎪⎪⎪⎭⎫ ⎝⎛---100011001210110101→⎪⎪⎪⎭⎫ ⎝⎛----111011001100110101→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001→⎪⎪⎪⎭⎫ ⎝⎛-----111122112100010001,1-A =⎪⎪⎪⎭⎫ ⎝⎛-----111122112;(2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛-----111122112⎪⎪⎪⎭⎫ ⎝⎛410011103=⎪⎪⎪⎭⎫⎝⎛-----322234225.23.设向量)1,1,1,1(--=α,)1,1,1,1(--=β,求(1)矩阵βαT A =;(2)2A .解:(1)βαT A ===--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--)1,1,1,1(1111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------111111*********1; (2)2A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--------111111*********1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1111111111111111=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------4444444444444444. 24.设向量组T )4,2,1,1(1-=α,T )2,1,3,0(2=α,T )14,7,0,3(3=α,T )0,2,1,1(4-=α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--=01424271210311301),,,(4321αααα→⎪⎪⎪⎪⎪⎭⎫⎝⎛-4220011003301301→⎪⎪⎪⎪⎪⎭⎫⎝⎛-2110011001101301→⎪⎪⎪⎪⎪⎭⎫⎝⎛-2000000001101301→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100000000110131→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000100001101301, 向量组的秩为3,421,,ααα是一个极大线性无关组,=3α42103ααα++.25.已知线性方程组⎪⎩⎪⎨⎧=+-=-+--=+ax x x x x x x x 32132131522312 ,(1)求当a 为何值时,方程组无解、有解;(2)当方程组有解时,求出其全部解(要求用其一个特解和导出组的基础解系表示).解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛----a 51223111201→⎪⎪⎪⎭⎫ ⎝⎛+---211011101201a →⎪⎪⎪⎭⎫ ⎝⎛+--300011101201a .(1)3-≠a 时,方程组无解,3-=a 时,方程组有解;(2)3-=a 时,),(b A →⎪⎪⎪⎭⎫ ⎝⎛--000011101201,⎪⎩⎪⎨⎧=+=--=333231121x x x x x x ,全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-112011k .26.设矩阵A =⎪⎪⎭⎫⎝⎛2178,(1)求矩阵A 的特征值与对应的全部特征向量; (2)判定A 是否可以与对角阵相似,若可以,求可逆阵P 和对角阵Λ,使得Λ=-AP P 1. 解:)9)(1(9102178||2--=+-=----=-λλλλλλλA E ,特征值11=λ,92=λ.对于11=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛----=-00111177A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,对应的全部特征向量为11αk (1k 是任意非零常数);对于92=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--=-00717171A E λ,⎩⎨⎧==22217x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=172α,对应的全部特征向量为22αk (2k 是任意非零常数).令⎪⎪⎭⎫ ⎝⎛-=1171P ,⎪⎪⎭⎫ ⎝⎛=Λ9001,则P 是可逆矩阵,使得Λ=-AP P 1. 四、证明题(本题6分)27.设n 阶矩阵A 满足A A =2,证明A E 2-可逆,且A E A E 2)2(1-=--.证:由A A =2,得E A A E A A E A E A E =+-=+-=--4444)2)(2(2,所以A E 2-可逆,且A E A E 2)2(1-=--.全国自考2008年7月线性代数(经管类)试卷答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵A=[321,,ααα],其中i α(i=1, 2, 3)为A 的列向量,且|A|=2,则|B|=|[3221,,3ααα+α]|=( C ) A.-2 B.0 C.2 D.62.若方程组⎩⎨⎧=-=+0x kx 0x x 2121有非零解,则k=( A )A.-1B.0C.1D.23.设A ,B 为同阶可逆方阵,则下列等式中错误的是( C ) A.|AB|=|A| |B|B. (AB)-1=B-1A-1C. (A+B)-1=A-1+B-1D. (AB)T=BTA T4.设A 为三阶矩阵,且|A|=2,则|(A*)-1|=( D )A.41B.1C.2D.45.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( B ) A. 4321,,,αααα线性无关B. 4321,,,αααα线性相关C. 1α可由432,,ααα线性表示D. 43,αα线性无关 6.向量组s 21,,ααα 的秩为r ,且r<s ,则( C )A. s 21,,ααα 线性无关B. s 21,,ααα 中任意r 个向量线性无关C. s 21,,ααα 中任意r+1个向量线性相关D. s 21,,ααα 中任意r-1个向量线性无关 7.若A 与B 相似,则( D ) A.A ,B 都和同一对角矩阵相似 B.A ,B 有相同的特征向量C.A-λE=B-λED.|A|=|B|8.设1α,2α是Ax=b 的解,η是对应齐次方程Ax=0的解,则( B ) A. η+1α是Ax=0的解B. η+(1α-2α)是Ax=0的解C. 1α+2α是Ax=b 的解D. 1α-2α是Ax=b 的解 9.下列向量中与α=(1,1,-1)正交的向量是( D ) A. 1α=(1,1,1) B. 2α=(-1,1,1) C. 3α=(1,-1,1) D. 4α=(0,1,1)10.设A=⎥⎦⎤⎢⎣⎡--2111,则二次型f(x1,x2)=xTAx 是( B ) A.正定 B.负定 C.半正定D.不定二、填空题(本大题共10小题,每小题2分,共20分) 11.设A 为三阶方阵且|A|=3,则|2A|=__24_________.12.已知α=(1,2,3),则|αT α|=____0_______.13.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200030021,则A*=640020003-⎡⎤⎢⎥⎢⎥⎢⎥⎦⎣14.设A 为4×5的矩阵,且秩(A )=2,则齐次方程Ax=0的基础解系所含向量的个数是______3_____.15.设有向量1α=(1,0,-2),2α=(3,0,7),3α=(2,0,6). 则321,,ααα的秩是_____2______.16.方程x1+x2-x3=1的通解是12(1,0,0)(1,1,0)(1,0,1)T T Tk k η=+-+17.设A 满足3E+A-A2=0,则11()3A A E -=-18.设三阶方阵A 的三个特征值为1,2,3. 则|A+E|=_24__________.19. 设α与β的内积(α,β)=2,‖β‖=2,则内积(2α+β,-β)=___-8________.20.矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--221201113所对应的二次型是221312132332224x x x x x x x x +-++ 三、计算题21.计算6阶行列式1002000100000010*********00003000021=1822.已知A=⎥⎦⎤⎢⎣⎡3152,B=⎥⎦⎤⎢⎣⎡-3421,C=⎥⎦⎤⎢⎣⎡-2512,X 满足AX+B=C ,求X. 2813X --⎡⎤=⎢⎥⎣⎦23.求向量组1α=(1,2,1,3),2α=(4,-1,-5,-6),3α=(1,-3,-4,-7)的秩和其一个极大线性无关组.141141213095154000367000⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦ 秩为2,极大无关组为1α,2α24.当a, b 为何值时,方程组⎪⎩⎪⎨⎧+=+++=-=++3b x )2a (x 3x 21x x 1x x x 32132321 有无穷多解?并求出其通解.1,0a b =-=时有无穷多解。

山财自考37线性代数考核作业(已填好答案)

山财自考37线性代数考核作业(已填好答案)

线性代数(经管类)综合试题一(课程代码 4184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设D==M≠0,则D1==( B ).A.-2MB.2MC.-6MD.6M2.设 A、B、C为同阶方阵,若由AB = AC必能推出B = C,则A应满足 ( D ).A. A≠ OB. A = OC.|A|= 0D. |A|≠03.设A,B均为n阶方阵,则 ( A).A.|A+AB|=0,则|A|=0或|E+B|=0B.(A+B)2=A2+2AB+B2C.当AB=O时,有A=O或B=OD.(AB)-1=B-1A-14.二阶矩阵A,|A|=1,则A-1= ( B).A. B. C. D.,则下列说法正确的是( B ).A.若两向量组等价,则s = t .B.若两向量组等价,则r()= r()C.若s = t,则两向量组等价.D.若r()=r(),则两向量组等价.6.向量组线性相关的充分必要条件是 ( C ).A. 中至少有一个零向量B. 中至少有两个向量对应分量成比例C. 中至少有一个向量可由其余向量线性表示D. 可由线性表示7.设向量组有两个极大无关组与,则下列成立的是( C ).A. r与s未必相等B. r + s = mC. r = sD. r + s > m8.对方程组Ax = b与其导出组Ax = o,下列命题正确的是( D ).A. Ax = o有解时,Ax = b必有解.B. Ax = o有无穷多解时,Ax = b有无穷多解.C. Ax = b无解时,Ax = o也无解.D. Ax = b有惟一解时,Ax = o只有零解.9.设方程组有非零解,则k = ( D).A. 2B. 3C. -1D. 110.n阶对称矩阵A正定的充分必要条件是( D ).A. |A|>0B.存在n阶方阵C使A=C T CC.负惯性指标为零D.各阶顺序主子式均为正数二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2019年自考历年线性代数考试试题及答案解析精选

2019年自考历年线性代数考试试题及答案解析精选

2016年自考历年线性代数考试试题及答案解析精选第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数 课后作业及参考答案

线性代数 课后作业及参考答案

《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。

全国自考历年线性代数试题及答案

全国自考历年线性代数试题及答案

全国2010年1月高等教育自学考试 《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式==1111034222,1111304z y x zy x则行列式( )A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数B周历

线性代数B周历
同上
同上
同上
第9周
4
第四章矩阵的特征与特征向量
§4.1向量的内积
§4.2施密特正交化方法
同上
同上
同上
第10周
4
第四章矩阵的特征值与特征向量
§4.3矩阵的特征值与特征向量
§4.4相似矩阵
同上
同上
同上
第11周
4
第四章矩阵的特征值与特征向量
§4.5实对称矩阵的对角化
同上
同上
同上
第12周
4
第六章二次型
§6.1二次型及其基本问题
同上
第5周
4
第二章矩阵
§2.5初等变换与初等矩阵§2.6矩阵的秩
同上
同上
同上
第6周
4
第三章向量与线性方程组
§3.1用消元法解线性方程组§3.2 n维向量
同上
同上
同上
第7周
4
第三章向量与线性方程组
§3.3向量组的线性相关性§3.4向量组的秩
同上
同上
同上
第8周
4
第三章向量与线性方程组
§3.5向量空间§3.6线性方程组解的结构
标准化作业
按照学院要求安排辅导答疑
《线性代数》
程美玉,李锐主编
北京大学出版社
黑龙江大学出版社
第2周
4
第一章行列式
§1.3行列式行列式按一行(列)展开§1.4克莱姆法则
同上
同上
同上
第3周
4
第二章矩阵
§2.1矩阵的概念§2.2矩阵的运算
同上
同上
同上
第4周
4
第二章矩阵
§2.3逆矩阵§2.4矩阵的分块

赵林《线性代数》

赵林《线性代数》

安徽建筑工业学院继续教育学院自学周历及作业安排课程名称:线性代数注:作业面授时交批作业:1、计算下列各行列式:(1)265232112131412-; (2)dc b a 10110011001---.2、证明(1)y x z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++ (2)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a 3. 计算下列各行列式(D k 为k 阶行列式):(1)x a aa x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; (2)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111124. 用克莱姆法则解下列方程组:⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;5. λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?6.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .7. 计算下列乘积:(1)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;(2)⎪⎪⎭⎫⎝⎛123)321(;(3))21(312-⎪⎪⎭⎫⎝⎛ 8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 9.求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221;(2)⎪⎪⎭⎫⎝⎛---145243121; 10. 解下列矩阵方程:(1)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X 11. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.12. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.13.设⎪⎪⎭⎫ ⎝⎛=101020101A ,且AB +E =A 2+B , 求B .14. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B .15. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 16.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A 且ABA -1=BA -1+3E ,求B .17. 把下列矩阵化为行最简形矩阵:⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.18. 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .19. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:⎪⎪⎭⎫⎝⎛323513123;20. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .21. 求下列矩阵的秩, 并求一个最高阶非零子式:⎪⎪⎭⎫ ⎝⎛-------815073*********; 22.设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 23. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;(2)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x24. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x(2)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x . 25. λ取何值时, 非齐次线性方程组:⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解?26. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.27. 已知向量组:A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T ,证明:B 组能由A 组线性表示,但A 组不能由B 组线性表示. 28. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.29. 判定下列向量组是线性相关还是线性无关: (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; 30. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 31. 求下列向量组的秩, 并求一个最大无关组:a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 32. 利用初等行变换求下列矩阵的列向量组的一个最大无关组:⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125;33. 设向量组:(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T 的秩为2, 求a ,b .34. 求下列齐次线性方程组的基础解系:⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ;35. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1, 4)T , 及b =(1, β, -1)T , 问α, β为何值时 (1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一; (3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.36. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;(2)⎪⎪⎭⎫⎝⎛633312321; 37. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 38. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2. 39. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |. 40. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;(2)问A 能不能相似对角化?并说明理由. 41.设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似,求x , y ; 并求一个正交阵P , 使P -1AP =Λ.42. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A . 43. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .44.设⎪⎪⎭⎫⎝⎛-=340430241A ,求A 100.45. 求一个正交变换将下列二次型化成标准形: f =2x 12+3x 22+3x 33+4x 2x 3;编者:赵林。

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案

全国自学考试线性代数历年考试真题及答案20XX年4月全国自学考试线性代数答案第一部分选择题(共20分)一、单项选择题(本大题共10小题。

每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.对任意n阶方阵A、B总有( )A.AB=BA B.|AB|=|BA|2.在下列矩阵中,可逆的是 ( )3.设A是3阶方阵( )A.-2D.24.设A是m×n矩阵,则齐次线方程线Ax=0仅有零解的充分必要条件是 ( ) A.A的行向量组线性无关 B.A的行向量组线性相关C.A的列向量组线性无关 D.A的列向量组线性相关5.设有m维向量组,则 ( )A.当m<n时,(I)一定线性相关 B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关 D.当m>n时,(I)一定线性无关6.已知是非齐次线性方程组Ax=b的两个不同的解,是其导出组Ax=0的一个基础解系,为任意常数,则方程组Ax=b的通解可表成 ( )7.设n阶可逆矩阵A有一个特征值为2,对应的特征向量为x,则下列等式中不正确的是( )A.Ax=2x8.设矩阵的秩为2,则λ= ( )A.2 8.1C.0 D.-l9.二次型的矩阵是( )10.二次型是 ( )A.正定的 B.半正定的C.负定的 D.不定的第二部分非选择题(共80分)二、填空题(本大题共10小题。

每小题2分,共20分)请在每小题的空格中填上正确答案。

错选、不填均无分。

1 1.行列式的值为___.12.设向量a=(2,1,2),则与它同方向的单位向量为__.13.设α=(2,1,-2),β=(1,2,3),则2α=3β=____.14.向量组a=(1,2,3,4,5)的秩为____.15.设m×n矩阵A的,m个行向量线性无关,则矩阵的秩为____.16.若线性方程组无解,则=______.17.设2阶方阵均为2维列向量,且|A|=|B|=1,则|A+B|=_______.18.设矩阵,则A的全部特征值为___.19.设P为n阶正交矩阵,α、β为n维列向量,已知内知(α,β)=-l,则(Pa,Pβ)________20.设二次型的正惯性指数为P,负惯性指数为q,则p-q=______.三、计算题(本大题共8小题,每小题6分,共48分)21.设向量22.设,矩阵X满足方程求矩阵X.23.当t取何值时,向量组线性相关?24.求下列矩阵的秩:25.设矩阵矩阵A由矩阵方程确定,试求的通解(要求用它的一个特解和导出组的基础解系表示).27.设3阶方阵A的三个特征值为的特征向量依次为求方阵A.28.设为正定二次型,试确定实数a的最大取值范围.四、证明题(本大题共2小题,每小题6分,共12分)30.设向量β可由向量组线性表示.试证明:线性表示法唯一的充分必要条件是线性无关.参考答案一、单项选择题1.B 2.D 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.A二、填空题11.O13.(1,-4,-l3)14.115.ml6.017.418.1,1,-l19.-l20.O三、计算题知当且仅当t=3时该向量组线性相关.所求通解x=都是非零列向量,故题设条件说明A有特征值对应的特征向量分别为因为A为3阶方阵.故1,0.-l就是A的全部特征值,因A的特征值互不相同,于是由推论4.1知A可对角化,令矩阵由上式得28.解,的矩阵为,A的顺序主子式为四、证明题所以30.证由条件,存在常数若表示法唯一,设有一组数20XX年10月自考线性代数试题答案全国20XX 年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。

历年自考04184线性代数试题真题及答案分析解答推荐文档

历年自考04184线性代数试题真题及答案分析解答推荐文档

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关一、单项选择题(本大题共 10小题,每小题 1.已知2阶行列式a 〔 a 2 m ,b 1 b 2t h b 2C 1 C 2A . m nB. nm2分,共20分)bi b 2n ,贝U( B )a i C i a2 C 2C. m nD. (m n)2 .设 A , B , C 均为 n 阶方阵,AB BA , AC CA ,则 ABC ( D )ABC (AB)C (BA)C B(AC) B(CA) BCA .3 .设A 为3阶方阵,B 为4阶方阵,且|A| 1, |B| 2,则行列式||B|A|之值为(A ) A.8 B.2C. 2D. 8an a 12 a 13 an 3a 12 a 131 0 01 0 04. Aa 21 a 22 a 23 ,Ba 21 3a 22 a 23 , P0 3 0 , Q 3 1 0,则 B ( B )a 31a 32a 33a 313a 32 a 330 0 10 01 A . PAB. APC. Q AD. AQ5.已知A 是一个3 4矩阵,下列命题中正确的是( C )A. 若矩阵A 中所有3阶子式都为0,则秩(A )=2B. 若A 中存在2阶子式不为0,则秩(A )=2C. 若秩(A )=2,则A 中所有3阶子式都为0D. 若秩(A )=2,则A 中所有2阶子式都不为0 6 .下列命题中错误的是(C )b 1 b 2 C i a ?C 2b 1 b 2b i b 2C 1 C 2A . ACBB. CABC. CBAD. BCAC.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7. 已知向量组 1,2,3线性无关,1 ,2 ,3 ,线性相关,则 (D)A . 1必能由2, 3,线性表出 B . 2必能由1, 3,线性表出C. 3必能由 1, 2,线性表出D.必能由1 , 2, 3线性表出注:1,2, 3是1,2, 3,的一个极大无关组.8 .设A 为m n 矩阵,m n ,则方程组Ax =0只有零解的充分必要条件是 A 的秩(D ) A .小于 mB.等于 mC.小于nD.等于n注:方程组 Ax =0有n 个未知量.9 .设A 为可逆矩阵,则与 A 必有相同特征值的矩阵为( AT21A. AB. AC. AD. A| E A T | | ( E A )T | | E A|,所以A 与A T 有相同的特征值.10.二次型 f (X 「X 2,X 3) X ; X ; x f 2X 1X 2 的正惯性指数为(C ) A . 0 B. 1C. 2D. 32 2 2 2f (X 1,X 2,X 3) (X 1 X 2) X 3 y 1 y 2,正惯性指数为 2.二、填空题(本大题共 10小题,每小题2分,共20分)1 1 32 012.设矩阵 A 20 1,B 0 1,则 A T B -----------------------------------A T B十T T13.设 (3, 1,0,2) ,(3,1, 1,4),若向量 满足 2 3 ,贝U ___________ .11.行列式2007 2009 2008 2010的值为2007 20082009 20102000 2000 2000 2000 7 89 1014•设 A 为n 阶可逆矩阵,且| A| 1,则| | A 1 | _____________________n15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则 |A| _____________ n 个方程、n 个未知量的Ax =0有非零解,则|A| 0.x 1 x 2 x 30 16•齐次线性方程组123的基础解系所含解向量的个数为 _________________ .2x 1 x 2 3x 3 01 1 1 1 1 1 A,基础解系所含解向量的个数为 n r 3 2 1 .21 30 3 1117.设n 阶可逆矩阵A 的一个特征值是3,则矩阵 1A 2 必有一个特征值为3 111 1A 有特征值 3,则A 2有特征值(3)2 3, A 2 有特征值 . 33 3 31 2 2 18 .设矩阵A 2x0 的特征值为4,1, 2,则数x ____________________________20 0由 1x0412,得 x 2.a 1 /、219•已知 A 1/--2b0是正交矩阵,则 a b ________________ . 011由第1、2列正交,即它们的内积(a b ) 0,得a b 0.20.二次型 f (x 1 ,x 2, x 3) 4x 1x 2 2XM 3 6x 2x 3 的矩阵是 ___________________IA 1 |1|A|3计算题(本大题共 6小题,每小题 共 54 分)bb 2 3a bca b c1 1 1解:D2.22a bc2 .2 2a b cabcabca ab bc c3 .33a b c2 .2 2abc1 1 1b a caabc 0b ac aabc ,2 2220 .2 22 2b ac ab ac a11abc(ba)(c a)b a cabc(ba)(c a)(ca22. 已知矩阵B (2,1,3), (1,2,3)(1)AB TC ; (2) A 2 .解: (1)A B T C1 3(1,2,3) (2) 注意到CB T(1,2,3)13 所以A 2 (B T C)(B T C)计算行列式 的21 .3 b b a c 2aa 32 c3 cb).23•设向量组 i (2,1,3,1)T , 2 (1,2,0,1)T , 3 (1,1, 3,0)T , 4 (1,1,1,1)T ,求向量组的秩2 1 1 1 解:A (1 2 1 1 1, 2, 3, 4) 3 0 3 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量. 一个极大无关组, 1 1 0 1 110 11 2 1 1 0 110 3 0 3 1 0 3 3 22 1 1 1 0 111 1 0 1 10 1 1 0,向量组的秩为 3,1, 2,4是 0 0 0 10 0 0 01 2 3 1 24 •已知矩阵A 0 1 2 , B 2 0 0 1 1 3 1 2・ 45・(1 )求A 1 ; (2)解矩阵方程AX B ・ 3 1 2 3 1 0 0 解:(1) (A, E) 0 1 2 0 1 0 0 0 1 0 0 1 12 010 3 0 10 0 1 2 0 0 10 0110 0 1 0 10 0 0 0 1012 1 1 4 1(2) X A 1B0 1 2 2 511325 •问a 为何值时,线性方程组 4 9 0 11 1 3x 1 2x 2 3x 342x 2 ax 3 2有惟一解?有无穷多解?并在有解时求出 2x 1 2x 2 3x 3 6 1 2 3 4 1 2 3 4 1 2 3 4 解:(A,b)0 2 a 20 2 a 2 0 2 a 22 23 60 2320 0 a 3 0其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)P 1AP 0 23 a 2 222(9 a 2) 1 2 5,得 a 2 4, a 2 .a 320 0 E A 03 2 023对于 1 1,解(E A)x 0 : 1 0 0 11 2 3 4 1 2 0 4 a 3时,r(A,b) r(A) 3,有惟一解,此时(A,b)0 2 a 2 0 2 0 20 1 00 0 1 010 0 21 2 3 4 a 3时,r(A,b) r(A) 2 n ,有无穷多解,此时 (A,b)0 2 3 20 0 00 0 101 0 02 捲 2 0101 , x 21 ; 0 010 x 31 0 0 21 00 2X 1 0 2 3 2 0 1 3/2 1 , X 2 0 0 0 00 0X 3意吊21 3 x 3,通解为21 k 3/2 ,其中k 为任2 01X 32 0 026 .设矩阵A 03 a 的三个特征值分别为 0 a 31,2,5,求正的常数 a 的值及可逆矩阵 P,使解:由|A| 2 0 0 0 3a 0 a 3E A0 2 20 2 2 0 0 0X 1 0 01 1 , X2 X3 ,取 P 1 1 ;0 0X 3X 311 0 0对于 22,解(E A)x 0 :B. 63 0 2 02 10 5 00 0 2 02 3 2 3C. 120D. 12 D. 1800 0 0 0 1 0 X1 X1 1E A 0 1 2 0 0 1 ,X2 0,取p20 ;0 2 1 0 0 0 X3 0 0对于 3 5,解( E A)x 0 :3 0 0 1 0 0 x0 0E A 0 2 2 0 1 1 ,X2 X3,取P3 1 •0 2 2 0 0 0 X3 X3 10 1 0 1 0 0令P (P i,P2,P3) 1 0 1 ,则P是可逆矩阵,使P 1AP 0 2 01 0 1 0 0 5四、证明题(本题6分)27•设A, B, A B均为n阶正交矩阵,证明(A B) 1 A 1 B 1.证:A, B,A B均为n阶正交阵,则A T A 1,B T B 1,(A B)T(A B) 1,所以(A B) 1 (A B)T A T B T A 1 B 1•全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1 •设3阶方阵A ( 1,2,3),其中i ( i 1,2,3 )为A的列向量,若|B| |( 1 2 2, 2, 3)1 6,则| A|| A| |( 1, 2, 3)| |( 1 2 2, 2, 3)| 6 •A. 122 •计算行列式C. 6(A )B. 120A. 1803 •若A 为3阶方阵且| A 1 | 2,则|2A|( C )1A . _B. 2C. 4D. 82 1 31 |A|, |2A| 2 |A| 84 .224 •设1 , 2, 3, 4都是3维向量,则必有(B ) A . 1, 2,3,4线性无关 B . 1, 2,3,4线性相关C 1可由2, 3,4线性表示D.1不可由2, 3, 4线性表示5 .若A 为6阶方阵,齐次方程组 Ax =0基础解系中解向量的个数为 2,则r(A) ( C ) A . 2B. 3C. 4D. 5由 6 r(A) 2,得 r(A) 4.6 .设A B 为同阶方阵,且r(A) r(B),则(C ) A . A 与B 相似B. | A| |B|C. A 与B 等价D. A 与B 合同注:A 与B 有相同的等价标准形.7 .设A 为3阶方阵,其特征值分别为 2,1,0,贝U |A 2E| ( D ) A . 0B. 2C. 3D. 24A 2E 的特征值分别为4,3,2,所以| A 2E| 4 3 224 .8 .若A B 相似,则下列说法错误.的是(B ) A . A 与B 等价B. A 与B 合同C. |A||B|D. A 与B 有相同特征值注:只有正交相似才是合同的.3 0 2 10 0 02 33(2) 30 180 •2 0 5 0 2 0 2 33 0 2 109.若向量(1,2,1)与(2,3,t)正交,则t ( D )A. 2B. 0C. 2D. 416.125-17•若A 、B 为5阶方阵,且Ax 0只有零解,且r(B) 3,则r(AB) _______________________ Ax 0只有零解,所以 A 可逆,从而r(AB) r(B) 3 • 18 •实对称矩阵 2 1 0 1 0 1所对应的二次型f (x 1 ,x 2 ,x 3) 0 1 1 2 2 f(X 1,X 2,X 3) 2X 1 X 3 2X 1X 2 2X 2X 3 • 1 19 .设3元非齐次线性方程组 Ax b 有解1 2 , 2312,且r(A) 2,则Ax b 的通 3解是 _______________ 1 1 1 1 -(1 2) 0是Ax 0的基础解系,Ax b 的通解是 2 k 0 2 03 01 20 •设 2,则A T的非零特征值是 ________________ .3 三、计算题(本大题共 6小题,每小题9分,共54分) 21 •计算5阶行列式D2 0 0 0 1 0 2 0 0 00 0 2 0 0 0 0 0 2 0 1 0 0 0 2解: 连续3次按第2行展开, 22. 设矩阵X满足方程解:23.解:2 0 1 2 14 0 2 0 81 21 0 20 13,求X.28 31/21CB1/2求非齐次线性方程组(A,b)120 1 0 0 1 40X0 0 1 2 02 0 1 0 1 21 0 0 1 4 30 0 1 ,C 2 00 1 0 1 2 01 0 0B10 0 1 ,0 1 00 1 4 3 1 0 00 2 0 1 0 0 11 12 0 0 1 00 011 3 40 1 — 4 2 0 .21 0 1 0 2X2 3x3 x4 1X2 3X34x4 4 的通解.5x29X38X4 01 1 1 1 3 14 0 4 6 70 0 4 6 74 0 6 35 10 4 6 7 1 00 0 0 0 0 01 0 0 21 10 0则B 1211 1148 11X13x1AXB3/23/23/4 5/47/4 1/4出对应于这个特征值的全部特征向量.21 2 1 1解:设 是所对应的特征值,则A,即 5a 3 11 ,从而1b211a 1 2可得a 3 ,b 0 ,1 ;b 1对于1, 解齐次方程组(E A)X 0 :2 1 23 1 2 1 0 1 1 0 1 E A5 33 5 2 3 5 2 3 0 2 21 02 11 013 120 111 0 1X 1 X 3110 1 1X 2X 3,基础解系为1 ,属于1的全部特征向量为k1k 为任意0 0 0X 3 X 3 115 3 3x 1 4 X32 35/4 3/2 3/4 1 371/4 3/27/4 X 2 4 X 32 3 X 4,通解为 4 40 k11k 2 0 , k 1, k 2都是任意常数X 3X 31X 4X 424.求向量组 1 (1,2, 1,4),2(9,100,10,4),1 92 解:(;,T 2 ,T )2 10041 10 244 8 1 9 2 1 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 00 0 025.已知A192 1 92 1 50 2 0 41 0 1 10 2 0 19 01128 0向量组的秩为 2,1,曰 2是 「个极大无关组3( 2, 4,2, 8)的秩和一个极大无关组.2 1 25 a 3 的一个特征向量(1,1, 1)T ,求a,b 及所对应的特征值,并写非零实数. 2 11 2 26. 设A1 2 1 a ,试确定a 使r (A ) 2 .1 12221 1 21 12 21 12 2 解: A1 2 1a 2 1 1 2 0 3 3211 22121a3 3a 21 12 20 3 3 2 a0 时 r(A) 2 .0 00 a四、 证明题 (本大题共 1 小 、题,6分)27. 若1, 2 , 3是Ax b (b 0)的线性无关解,证明 21,31 是对应齐次线性方程组Ax 0的线性无关解.证:因为1, 2, 3是Ax b 的解,所以21 , 3k 1 k 2 0关,得k 10 ,只有零解k 1 k 2 0,所以21, 3k 2 0设 k 1 ( 21)k 2( 31) 0 ,即(k 1 k 2) 1k 1 2 k 2 3,由 1,2 ,3 线性无1是Ax 0的解;1线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题 课程代码:04184|A 表示方阵A 的行列式•10小题,每小题2分,共20 分)ana 12a 131.设行列式a21 a22a23=4,a 31 a 32a33A.122a 112a 122a 13则行列式a21 a22 a23=(3a 31 3a 32 3a 33B.24C.36A .A 1CB C.B 1A 1C3. 已知 A"+A - E =0,则矩阵 A -1=( A. A E C.A +E4. 设1 , 2, 3, 4, 5是四维向量,A. 1 ,2,3,4,5 —定线性无关B. cA B 1D .CB 1A 1) B. -A -E D.-A +E则( )B. 1,2 ,3 ,4 ,5 —定线性相关5. 设A 是n 阶方阵,若对任意的 n 维向量x 均满足Ax =0,则( )A.A =0B.A =EC.r (A )= n D.0<r (A )<( n )6. 设A 为n 阶方阵,r ( A )< n ,下列关于齐次线性方程组 Ax =0的叙述正确的是(A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C. Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7. 设1, 2是非齐次线性方程组Ax =b 的两个不同的解,则()说明:本卷中, A 1表示方阵A 的逆矩阵,r(A 表示矩阵A 的秩,表示向量 与 的内2.设矩阵A, B, C, X 为同阶方阵,且 A, B 可逆,AXE =C,则矩阵X =(C. 5 —疋可以由1 , 2, 34线性表示 D. 1 —疋可以由 2 , 3 4, 5线性表出A. 2是Ax =b 的解B. 12是Ax =b 的解积,E 表示单位矩阵, 、单项选择题(本大题共D.48C. 3 i 2 2 是 Ax =b 的解D. 2 1 3 2 是 Ax =b 的解19. 设向量(-1 , 1,-3 ),(2, -1 ,)正交,则3 9 08.设1 ,2 , 3为矩阵A = 04 5的三个特征值,则 1 2 3=()0 0 2A.20B.24C.28D.309.设P 为正交矩阵,向量 ,的内积为(,)=2,则(P ,P )=( )A. 1B.12C.-D.2210.二次型 f (X 1, X 2, X 3)= x j2 2X 2 X 3 2X 1X 22X 1 X 3 2X 2X 3 的秩为( )A.1B.2C.3D.4、填空题(本大题共 10小题,每小题2分,共20 分) 请在每小题的空格中填上正确答案。

自学考试 线性代数试卷及答案集合

自学考试 线性代数试卷及答案集合

2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。

说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。

一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】A.1-B.0C.1D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错误、不填均无分、6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值范围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。

西安石油大学函授《线性代数》作业全

西安石油大学函授《线性代数》作业全

作业1 行列式矩阵基础运算1 / 25 单选题(4分)正确答案 BA9B10C11D122 / 25 单选题(4分)正确答案 CA4312B51432C45312D6543213 / 25 单选题(4分)正确答案 C若是5阶行列式中带有正号的一项,则的值是( ).ABCD4 / 25 单选题(4分)正确答案 D设为阶行列式,则在行列式中的符号为( ).A正B负CD5 / 25 单选题(4分)正确答案 B行列式,. 若,则的取值为( ).ABCD6 / 25 单选题(4分)正确答案 A设为行列式中元素()的代数余子式,则( ). A0B1C2D37 / 25 单选题(4分)正确答案 A行列式( ).A0B1C2D38 / 25 单选题(4分)正确答案 B 行列式( ).ABCD9 / 25 单选题(4分)正确答案 C 排列的逆序数是( ).A10B11C12D1310 / 25 单选题(4分)正确答案 D行列式( ).A10B20CD11 / 25 单选题(4分)正确答案 C行列式( ).A20B200C2000D2000012 / 25 单选题(4分)正确答案 D行列式( ).A30B50C70D9013 / 25 单选题(4分)正确答案 D行列式( ).ABCD14 / 25 单选题(4分)正确答案 C行列式( ).A512B1024C1536D204815 / 25 单选题(4分)正确答案 C阶行列式( ).ABCD16 / 25 单选题(4分)正确答案 A为阶方阵,为阶单位矩阵,则下面等式正确的是( ). ABCD17 / 25 单选题(4分)正确答案 CABCD18 / 25 单选题(4分)正确答案 C设阶方阵的伴随矩阵为,且,则( ).ABCD19 / 25 单选题(4分)正确答案 BAB,则称为的逆矩阵CD方阵可逆的充分必要条件是20 / 25 单选题(4分)正确答案 B设方阵经若干次初等变换变成方阵,则必成立( ). AB若,则C若,则D21 / 25 判断题(4分)标准排列是偶排列.( )正确错误正确答案正确22 / 25 判断题(4分)正确错误正确答案正确23 / 25 判断题(4分)( ) 正确错误正确答案错误24 / 25 判断题(4分)正确错误正确答案错误25 / 25 判断题(4分)一个阶行列式与一个阶行列式,必不相等.( )正确错误正确答案错误作业2 矩阵性质向量基本运算1 / 25 单选题(4分)正确答案 C设和均为阶矩阵,则必有( ).ABCD2 / 25 单选题(4分)正确答案 D设均为阶方阵,且,则必有( ).ABCD3 / 25 单选题(4分)正确答案 B为阶矩阵,下列运算正确的是( ).AB若可逆,,则CD4 / 25 单选题(4分)正确答案 C为阶方阵,则( ).A或可逆必有可逆B与都可逆,必有可逆C或不可逆,必有不可逆D与都不可逆,必有不可逆5 / 25 单选题(4分)正确答案 DA非零矩阵的秩必大于零B如果阶方阵可逆,则的秩为C如果可逆,则D如果不可逆,则6 / 25 单选题(4分)正确答案 D设矩阵,且矩阵的秩,则( ). ABCD7 / 25 单选题(4分)正确答案 DA若且,则B若,则或C若,则D若,则8 / 25 单选题(4分)正确答案 C设为3阶方阵,且,则( ).A1BCD9 / 25 单选题(4分)正确答案 B设是矩阵,且,而,则( ).A1B2C3D410 / 25 单选题(4分)正确答案 B设阶方阵都是非零矩阵,若,则与的秩( ). A必有一个等于B都小于C一个小于,一个等于D都等于11 / 25 单选题(4分)正确答案 A已知,满足,则( ).ABCD12 / 25 单选题(4分)正确答案 B已知,,则( ).ABCD13 / 25 单选题(4分)正确答案 D设向量组Ⅰ:可由向量组Ⅱ:线性表示,则( ). A当时,向量组Ⅱ必线性相关B当时,向量组Ⅱ必线性相关C当时,向量组Ⅰ必线性相关D当时,向量组Ⅰ必线性相关14 / 25 单选题(4分)正确答案 B向量组的秩为,则必有( ).ABCD15 / 25 单选题(4分)正确答案 A线性相关的向量组的秩为,则必有( ).ABCD16 / 25 单选题(4分)正确答案 C线性无关的向量组的秩为,则必有( ).ABCD以上均有可能17 / 25 单选题(4分)正确答案 D维向量组线性无关的充要条件是( ). A中任何两个向量都线性无关B存在不全为零的个数,使得C中存在一个向量不能用其余向量线性表示D中任何一个向量都不能用其余向量线性表示18 / 25 单选题(4分)正确答案 D设向量组的秩为,则( ).A必有B向量组中任意个数小于的部分组线性无关C向量组中任意个向量线性无关D若,则向量组中任意个向量必线性相关19 / 25 单选题(4分)正确答案 BA不含零向量的向量组一定线性无关B含有零向量的向量组一定线性相关C不含零向量的向量组一定线性相关D含有零向量的向量组一定线性无关20 / 25 单选题(4分)正确答案 C设向量组线性无关,则下列向量组中线性相关的是( ). ABCD21 / 25 判断题(4分)若,则或.( )正确错误正确答案错误22 / 25 判断题(4分)若均为阶方阵,则有.( )正确错误正确答案错误23 / 25 判断题(4分)若,且,则有.( )正确错误正确答案错误24 / 25 判断题(4分)若均为阶方阵,则有.( )正确错误正确答案错误25 / 25 判断题(4分)若阶方阵的秩为,则的伴随矩阵的秩也为.( )正确错误正确答案正确作业3 向量组的线性相关性方程组可解性判断1 / 25 单选题(4分)正确答案 B设为维向量组,且秩为(),则( ).A线性无关B线性相关C任一向量都可以表示为其余向量的线性组合D任一向量都不可以表示为其余向量的线性组合2 / 25 单选题(4分)正确答案 C若向量组线性无关,向量组线性相关,则( ).A必可由线性表示B必不可由线性表示C必可由线性表示D必不可由线性表示3 / 25 单选题(4分)正确答案 C若矩阵中个列向量线性无关,则的秩( ).A大于B大于C等于D等于4 / 25 单选题(4分)正确答案 C至多为( ).A1B2C3D45 / 25 单选题(4分)正确答案 CA若向量与正交,则对任意实数,与也正交B若向量与向量都正交,则与的任一线性组合也正交C若向量与正交,则,中至少有一个是零向量D若向量与任意同维向量正交,则是零向量6 / 25 单选题(4分)正确答案 A若为阶方阵,,则齐次线性方程组的基础解系含有的解向量个数为( ).BCD不确定7 / 25 单选题(4分)正确答案 A设矩阵,方程组仅有零解的充分必要条件是( ).A的列向量组线性无关B的列向量组线性相关C的行向量组线性无关D的行向量组线性相关8 / 25 单选题(4分)正确答案 B齐次线性方程组,其中为矩阵,且,是该方程组的三个线性无关的解向量,则下列选项中哪个是的基础解系( ).ABCD9 / 25 单选题(4分)正确答案 B已知是非齐次线性方程组的两个不同解,是其对应的齐次线性方程组的基础解系,为任意常数,则方程组的通解为( ).ABCD10 / 25 单选题(4分)正确答案 C设为阶方阵,且的秩,是的两个不同的解,则的通解为( ).BCD11 / 25 单选题(4分)正确答案 D已知齐次线性方程组有非零解,则为( ).A3B4CD12 / 25 单选题(4分)正确答案 D设为阶方阵,且的秩,则的基础解系( ).A仅有唯一向量B有有限个向量C有无限个向量D不存在13 / 25 单选题(4分)正确答案 D为阶方阵,则可逆的充要条件是( ).A任一行向量都是非零向量B任一列向量都是非零向量C有解D14 / 25 单选题(4分)正确答案 D元线性方程组有唯一解的充要条件是( ).ABC为方阵且D,且可由的列向量线性表示15 / 25 单选题(4分)正确答案 D设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( ).A若仅有零解,则有唯一解B若有非零解,则有无穷多个解C若有无穷多个解,则仅有零解D若有无穷多个解,则有非零解16 / 25 单选题(4分)正确答案 C设为4元非齐次线性方程组的三个解向量,且,若,,为任意常数,则线性方程组的通解为( ).ABCD17 / 25 单选题(4分)正确答案 B若方程组无解,则( ).A1BCD18 / 25 单选题(4分)正确答案 D设是齐次线性方程组的一个基础解系,则该方程组的基础解系也可以是( ). A用表示出的向量组B与秩相同的向量组C与等价的一个向量组D与等价的一个线性无关向量组19 / 25 单选题(4分)正确答案 C与向量都正交的全部向量为( ).ABCD20 / 25 单选题(4分)正确答案 B若为阶方阵,,则齐次线性方程组的基础解系含有的向量个数为( ).A1B3CD21 / 25 判断题(4分)若两个维向量组等价,则这两个向量组的秩相等.( )正确错误正确答案正确22 / 25 判断题(4分)若两个维向量组的秩相等,则这两个向量组等价.( )正确错误正确答案错误23 / 25 判断题(4分)量.( )正确错误正确答案错误24 / 25 判断题(4分)若向量组线性相关,则必含有零向量.( )正确错误正确答案错误25 / 25 判断题(4分)若向量组线性无关,则必不含有零向量.( )正确错误正确答案正确作业4 线性方程组求解矩阵对角化1 / 25 单选题(4分)正确答案 D设是的特征值,则矩阵的一个特征值为( ).ABCD2 / 25 单选题(4分)正确答案 C设是非奇异矩阵的特征值,则矩阵有一个特征值为( ).ABCD3 / 25 单选题(4分)正确答案 C已知3阶矩阵的三个特征值分别为,则( ).ABCD4 / 25 单选题(4分)正确答案 C设是方阵的一个特征值,则矩阵的一个特征值为( ).ABCD5 / 25 单选题(4分)正确答案 A如果矩阵与相似,则( ).ABCD6 / 25 单选题(4分)正确答案 C已知3阶方阵的特征值分别为,,则( ).A3BCD17 / 25 单选题(4分)正确答案 C3阶方阵的特征值分别为,,则的特征值为( ). ABCD8 / 25 单选题(4分)正确答案 D已知与相似,则( ).A1B2C3D69 / 25 单选题(4分)正确答案 D三阶方阵的特征值为,则的特征值为( ).ABCD10 / 25 单选题(4分)正确答案 C设为阶可逆矩阵,是的一个特征值,则的伴随矩阵的特征值之一是( ). ABCD11 / 25 单选题(4分)正确答案 B若是矩阵的特征值,则( ).A0B1C2D312 / 25 单选题(4分)正确答案 C设为阶方阵,且为的个特征值,与相似,则( ).A0BCD13 / 25 单选题(4分)正确答案 D若为阶正交矩阵,则( ).A0B1CD14 / 25 单选题(4分)正确答案 B若方阵相似,则下列结论不正确的是( ).A的秩必定相等B均可逆C必定等价D的行列式必定相等15 / 25 单选题(4分)正确答案 B若方阵可对角化,则满足的条件为( ).ABCD16 / 25 判断题(4分)若,则方程组仅有零解.( )正确错误正确答案错误17 / 25 判断题(4分)若方程组有非零解,则方程组有无穷多解.( ) 正确错误正确答案错误18 / 25 判断题(4分)若方程组有无穷多解,则方程组有非零解.( ) 正确错误正确答案正确19 / 25 判断题(4分)若,则的列向量都是方程组的解.( )正确错误正确答案正确20 / 25 判断题(4分)若,则的列向量都是方程组的解.( )正确错误正确答案错误21 / 25 判断题(4分)若是阶方阵的一个特征值,则.( )正确错误正确答案正确22 / 25 判断题(4分)设,则的内积等于0.( )正确错误正确答案正确23 / 25 判断题(4分)若为正交矩阵,则也是正交矩阵.( )正确错误正确答案正确24 / 25 判断题(4分)若可对角化,则必定可逆.( )正确错误正确答案错误25 / 25 判断题(4分)若可逆,则必可对角化.( )正确错误正确答案错误作业5 二次型1 / 20 单选题(5分)正确答案 A二次型的秩为2,则( ).A0B1C2D32 / 20 单选题(5分)正确答案 B实二次型的秩为2,则( ).A0B1C2D33 / 20 单选题(5分)正确答案 B设是正定矩阵,则应满足的条件是( ). ABCD4 / 20 单选题(5分)正确答案 B已知矩阵为正定矩阵,则一定满足条件( ).ABCD5 / 20 单选题(5分)正确答案 C矩阵正定,则满足( ).ABCD6 / 20 单选题(5分)正确答案 B二次型正定,则满足( ).ABCD7 / 20 单选题(5分)正确答案 C二次型为正定二次型,则满足( ).ABCD8 / 20 单选题(5分)正确答案 C若二次型为正定二次型,则应该满足条件( ).ABCD9 / 20 单选题(5分)正确答案 C二次型的矩阵是( ).ABCD10 / 20 单选题(5分)正确答案 C矩阵对应的二次型是( ).ABCD11 / 20 单选题(5分)正确答案 A已知方阵合同,则( ).A必定等价B必定相似C都可逆D都不可逆12 / 20 单选题(5分)正确答案 C二次型,下列哪个是它的标准型( ). ABCD13 / 20 单选题(5分)正确答案 D二次型的规范型为( ).ABCD14 / 20 单选题(5分)正确答案 A若是阶正定矩阵,则( ).A必为正定矩阵B必为负定矩阵C必为半正定矩阵D必为半负定矩阵15 / 20 单选题(5分)正确答案 B二次型的正定性是( ). A正定B负定C半正定D半负定16 / 20 判断题(5分)二次型的矩阵一定是对称矩阵.( )正确错误正确答案正确17 / 20 判断题(5分)若正定,则必定可逆.( )正确错误正确答案正确18 / 20 判断题(5分)若可逆,则必为正定矩阵.( )正确错误正确答案错误19 / 20 判断题(5分)正确错误正确答案正确20 / 20 判断题(5分)正确错误正确答案错误。

电气工程及其自动化函授本科线性代数作业

电气工程及其自动化函授本科线性代数作业

继 续 教 育 学 院函授站(点): 课程:线性代数(作业考核 线下)院校学号: 专业: 班 级: 姓名:一、选择题1. 已知矩阵m n n m B A ⨯⨯,,则下列( )运算结果为n 阶矩阵。

(A) AB (B) BA (C) T AB )( (D) T T A B2. 如果0333231232221131211≠==M a a a a a a a a a D ,2322213332311312111222222a a a a a a a a a D =,则=1D ( )(A) M 4 (B) M 4- (C) M 8 (D) M 8-3. 设A 为三阶矩阵,a A =||,•A 为A 的伴随矩阵,则=•||A ( ) (A) a (B) 2a (C) 3a (D) 4a4. 下列矩阵( )是初等矩阵。

(A) ⎪⎪⎪⎭⎫ ⎝⎛001100010 (B) ⎪⎪⎪⎭⎫ ⎝⎛010001100 (C) ⎪⎪⎪⎭⎫ ⎝⎛1000210002 (D) ⎪⎪⎪⎭⎫⎝⎛-1004100015. 设齐次线性方程组0=⨯x A n m ,且3)(-=n A R ,321,,ξξξ是方程组的三个线性无关的解向量,则( )不是0=⨯x A n m 的基础解系 (A)321,,ξξξ (B) 133221,,ξξξξξξ+++ (C) 321211,,ξξξξξξ+++ (D) 133221,,ξξξξξξ---6.四阶行列式112233440000000a b a b b a b a 的值等于( )。

()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; ()C 12123434()()a a b b a a b b --; ()D 23231414()()a a b b a a b b --.7.设A 为四阶矩阵且A b =,则A 的伴随矩阵*A 的行列式为( )。

线性代数函授自学周历及测验作业

线性代数函授自学周历及测验作业

河海大学函授2011水利水电工程专业、工程管理专业、土木工程专业、机械工程及自动化专业、会计学专业《线性代数》函授自学周历及测验作业课程名称:线性代数(专升本)2011级各专业教材名称及版本:朱永忠编著《线性代数》,河海大学出版社,函授站要求:1、测验卷做好后务必于集中上课的第一天直接交给函授站,由函授站统一集中寄给河海大学老师批改。

测验不交或迟交者无平时成绩,考试无效!2、各位函授生要克服一切困难,排除各种干扰,自我约束,按照各门课程教学周历的要求,抓紧平时自学。

大学的关键就是自学,以平时自学为主,仅仅靠集中上课的学习是完不成学业的。

河海大学函授2011水利水电工程专业、工程管理专业、土木工程专业、机械工程及自动化专业、会计学专业《线性代数》测验作业站名:安徽水院站专业:姓名学号成绩(告示:请各位同学一定要把姓名、学号和专业写清、写对,出现错误者作零分处理,特此告示)一、填空题(本题满分14分,每空2分)1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5000400031A ,则=A ;2.设)2,5,3(=A ,)3,2,1(=B ,则=B A T ,=T AB ; 3.设A 为3阶矩阵,且|A |=2,则=|)(|**A ,=--|23|*1A A ;4.设二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 应满足;5.若3阶矩阵A 与B 相似,且A 的特征值为1、21、31,则行列式=--||1E B 。

二、选择题(本题满分12分,每小题3分)1.设A 与B 均为n 阶矩阵,则下列结论中正确的是( )。

(A )若|AB |=0,则A =O 或B =O ; (B )若|AB |=0,则|A |=0或|B |=0; (C )若AB =O ,则A =O 或B =O ; (D )若AB ≠O ,则A ≠O 或B ≠O 。

2.设A 是5×6矩阵,则下列结论正确的是( )。

历年自考04184线性代数试题真题及答案分析解答

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-m n n m c c b b a a b b c a c a b b -=+-=+=++21212121221121.2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCABCA CA B AC B C BA C AB ABC =====)()()()(.3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .88||)2(|2|||||3-=-=-=A A A B .4.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a AP ⎪⎪⎪⎭⎫ ⎝⎛100030001B a a a a a a a a a =⎪⎪⎪⎭⎫⎝⎛=333231232221131211333. 5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出注:321,,ααα是βααα,,,321的一个极大无关组.8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n注:方程组Ax =0有n 个未知量.9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A|||)(|||A E A E A E T T -=-=-λλλ,所以A 与T A 有相同的特征值.10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3222123221321)(),,(y y x x x x x x f +=++=,正惯性指数为2.二、填空题(本大题共10小题,每小题2分,共20分) 11.行列式2010200920082007的值为_____________. 21098720002000200020002010200920082007-=+=.12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________. ⎪⎪⎪⎭⎫ ⎝⎛-=130121B A T ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛1602221002. 13.设T )2,0,1,3(-=α,T )4,1,1,3(-=β,若向量γ满足βγα32=+,则=γ__________.T T T )8,3,5,3()4,0,2,6()12,3,3,9(23-=---=-=αβγ.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________. n A A -==-||1||1. 15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.n 个方程、n 个未知量的Ax =0有非零解,则=||A 0.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=130111312111A ,基础解系所含解向量的个数为123=-=-r n .17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_________.A 有特征值3-,则231A 有特征值3)3(312=-,1231-⎪⎭⎫⎝⎛A 有特征值31.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.由21401-+=++x ,得=x 2.19.已知⎪⎪⎪⎪⎭⎫⎝⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________. 由第1、2列正交,即它们的内积0)(21=+b a ,得=+b a 0.20.二次型323121321624),,(x x x x x x x x x f ++-=的矩阵是_____________.⎪⎪⎪⎭⎫ ⎝⎛--031302120. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C ) 6|),,2(||),,(|||3221321=+==αααααααA .A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .18018030)2(310203)2(32005102203332320200051020203-=⨯-⨯=⨯-⨯=--⨯=----. 3.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .821||=A ,4218||2|2|3=⨯==A A . 4.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .5由2)(6=-A r ,得=)(A r 4.6.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同注:A 与B 有相同的等价标准形.7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24E A 2+的特征值分别为2,3,4,所以24234|2|=⨯⨯=+E A .8.若A 、B 相似,则下列说法错误..的是( B ) A .A 与B 等价B .A 与B 合同C .||||B A =D .A 与B 有相同特征值注:只有正交相似才是合同的.9.若向量)1,2,1(-=α与),3,2(t =β正交,则=t ( D )A .2-B .0C .2D .4由内积062=+-t ,得=t 4.10.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定对应的规范型002232221≥⋅++z z z ,是半正定的. 二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.=AB ⎪⎪⎪⎭⎫ ⎝⎛-421023⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛--224010356010112. 12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.9313||13||3|3|33131=⋅=⋅==--A A A . 13.三元方程1321=++x x x 的通解是______________.⎪⎩⎪⎨⎧==--=33223211x x x x x x x ,通解是⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101100121k k . 14.设)2,2,1(-=α,则与α反方向的单位向量是______________.)2,2,1(31||||1--=-αα.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.}0|{==Ax x W 的维数等于0=Ax 基础解系所含向量的个数:235=-=-r n .16.1251)2/1(25||15|5|331-=⨯⨯-=⋅=-A A .17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.0=Ax 只有零解,所以A 可逆,从而=)(AB r 3)(=B r .18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.32212321321222),,(x x x x x x x x x f +-+=.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.⎪⎪⎪⎭⎫ ⎝⎛=-001)(2121αα是0=Ax 的基础解系,b Ax =的通解是⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛001321k . 20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.由14321)3,2,1(=⎪⎪⎪⎭⎫ ⎝⎛=ααT ,可得A A T T T 1414)(2===αααααα,设A 的非零特征值是λ,则λλ142=,14=λ.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、(本题满分12分) 求向量组,,,,的秩和极大无关组。
八、(本题满分16分)证明题 (1)设维向量组线性无关,,,,,, 证明:线性无关。 (2)设阶矩阵A满足方程O,证明矩阵A可逆并求出其逆矩阵。

2.2 矩阵的运算 2.3 方阵
方阵及逆矩阵 难点:矩阵的乘法和逆矩阵
10
至 2.4 逆矩阵


第4 周

月 2.6 初等变换与初等 重点:初等变换的灵活应用
矩阵
矩阵的秩
10
日 2.7 矩阵的秩 至 月 日
难点:矩阵的秩的求法
第5


月 日 至
第3章 线性方程组 3.1线性方程组的基 本概念 3.2 高斯消元法

生需按期完成教学周历规定的自学计划,并完成书上相应的习题。新
业 要
生必须依据本周历先看书,后做作业,养成自学习惯。

②面授的第一天前须按期上交作业,作业占课程成绩的30%。
③本课程考试为闭卷考试。
函授站要求: 1、测验卷做好后务必于集中上课的第一天直接交给函授站,由函
授站统一集中寄给河海大学老师批改。测验不交或迟交者无平时成 绩,考试无效!
河海大学函授2011水利水电工程专业、工程管理专业、土木工
程专业、机械工程及自动化专业、会计学专业
《线性代数》函授自学周历及测验作业
课程名称:线性代数 (专升本) 2011级各专业 教材名称及版本:朱永忠编著《线性代 数》,河海大学出版社,
日 期
章节内容提要
自学重点、难点
自学学 时
第1


第1章 行列式
难点:实对称矩阵化对角阵
10
自 月 日 至
第6章 二次型 6.1 二次型的矩阵表 示 6.2 化二次开型为标 准型 6.3 正定二次型
重点:二次型及其标准形的定义 化二次型成标准形 正定二次型
难点:化二次型为标准型 正定二次型的判定及应用
10


注:①本教学周历为专升本各专业《线性代数》函授教学进度表,所有学
2、各位函授生要克服一切困难,排除各种干扰,自我约束,按照 各门课程教学周历的要求,抓紧平时自学。大学的关键就是自学,以 平时自学为主,仅仅靠集中上课的学习是完不成学业的。
河海大学函授2011水利水电工程专业、工程管理专业、土木工
程专业、机械工程及自动化专业、会计学专业
《线性代数》测验作业
站名:安徽水院站 专业:
姓名
学号
成绩
(告示:请各位同学一定要把姓名、学号和专业写清、写对,出现错误者作零分处理,特此告 示)
一、填空题(本题满分14分,每空2分) 1.设,则; 2.设,,则,; 3.设A为3阶矩阵,且|A|=2,则,; 4.设二次型为正定二次型,则应满足; 5.若3阶矩阵A与B相似,且A的特征值为1、、,则行列式。
3.对于n阶实对称矩阵A,下列结论正确的是( )。
(A)一定有n个不同的特征值; (B)存在正交矩阵P,使为对角 矩阵;
(C)它的特征值一定是整数; (D)对应不同特征值的特征向量 不一定正交。
4.设A是n阶矩阵,且A的行列式|A|=0,则A中( )。
(A)必有一列元素全为零; (B)必有两列元素对应成比例; (C)必有一列向量是其余列向量的线性组合; (D)任一列向量是其余列向量的线性组合。 三、(本题满分12分)
重点:向量组的线性相关与线性无 关的定义及判定
难点:向量组的线性相关与线性无 关的判定
10


第8

重点:齐次线性方程组的基础解系

的概念
月 日 至
4.4 向量空间 4.5 线性方程组解的 结构
利用初等变换求解齐次线性方 程组的基础解系
非齐次线性方程组解的结构及 其求法
难点:利用基础解系表示线性方程
重点:线性方程组的矩阵表示法 高斯消元法
难点:高斯消元法
10


第6


月 日 至
3.3 线性方程组的解 第4章 n维向量空间 4.1 n维向量
重点:齐次线性方程组的求解 非齐次线性方程组的求解
难点:齐次线性方程组的求解 非齐次线性方程组的求解
10


第7


月 日 至
4.2 向量组的线性相 关性 4.3 向量组的秩
二、选择题(本题满分12分,每小题3分) 1.设A与B均为n阶矩阵,则下列结论中正确的是( )。 (A)若|AB|=0,则A=O或B=O; (B)若|AB|=0,则|A|=0或|B|=0; (C)若AB=O,则A=O或B=O; (D)若ABO,则AO或BO。 2.设A是5×6矩阵,则下列结论正确的是( )。 (A)若R(A)= 4,则A中5阶子式都为0; (B)若R(A)= 4,则A中4阶子式都不为0; (C)若A中5阶子式都为0,则R(A)= 4; (D)若A中存在不为0的4阶子式,则R(A)= 4。

1.1二阶与三阶行列 式
重点:行列式的定义及性质
日 1.2 n阶行列式的定 难点:行列式的定义及性质
10

义 1.3行列式的性质


第2 周

月 1.4 行列式的计算 重点:各种行列式的计算
日 1.5 克莱姆法则
难点:各种行列式的计算
10



第3


第2章 矩阵
月 2.1 矩阵的概念
重点:矩阵的各种运算
10

组的通解

第9

自 第5章 矩阵的对角

化 5.1 向量的内积
重点:方阵的特征值及特征向量的 定义及求法
日 5.2 矩阵的特征值和 难点:特征值和特征向量的求法
10

特征向量 5.3 相似矩阵
相似矩阵的判定



10

自 月 日
5.4 矩阵可对角化的 条件
5.5 实对称矩阵的对 角化
重点:矩阵可对角化的条件 实对称矩阵化对角化
1.; 2.

四、(本题满分10分) 设矩阵和满足关系式,其中,求。
五、(本题满分12分) 设线性方程组为
1.试证该线性方程组有无穷多解; 2.试求该线性方程组的通解。
六、(本题满分12分) 已知二次型,
(1)写出二次型的矩阵表达式A; (2)求矩阵A的特征值和特征向量; (3)写出该二次型的标准形。
相关文档
最新文档