华侨大学大一高数(上)期末14级试卷(A)答案
(完整word版)大一第一学期期末高等数学(上)试题及答案
第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分) 1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分).d )1(22x x x⎰+求3、(本小题5分)求极限lim arctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分).求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分).求⎰ππ2121cos 1dx x x8、(本小题5分)设确定了函数求.x e t y e t y y x dy dx t t==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分).求dx x x ⎰+3110、(本小题5分)求函数 的单调区间y x x =+-422 11、(本小题5分).求⎰π+202sin 8sin dx x x12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分)设函数由方程所确定求.y y x y y x dy dx =+=()ln ,22614、(本小题5分)求函数的极值y e e x x =+-2 15、(本小题5分)求极限lim()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分).d cos sin 12cos x x x x⎰+求二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分).8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→limx xx 261218 =2 2、(本小题3分)⎰+xx xd )1(22⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分)因为arctan x <π2而lim arcsin x x →∞=1故lim arctan arcsin x x x →∞⋅=14、(本小题3分)⎰-x x xd 1xx x d 111⎰----=⎰⎰-+-=x xx 1d d=---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分)⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分)原式=-⎰cos ()1112x d x ππ=-sin112xππ=-1 8、(本小题4分)解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )22229、(本小题4分)令 1+=x u原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分)),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当(][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302lncos cos x x π=162ln 12、(本小题6分)dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分)2265yy y y x '+'='=+y yx y 315214、(本小题6分)定义域,且连续(),-∞+∞'=--y e e x x 2122()驻点:x =1212ln由于''=+>-y e e x x 2022)21ln 21(,,=y 故函数有极小值15、(本小题8分)原式=++++++++--→∞lim()()()()()()x x x x x x x 112131*********2222=⨯⨯⨯⨯=1011216101172 16、(本小题10分)dxxxdx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=xx d 2sin 211)12sin 21( =++ln sin 1122x c二、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,=(完整word 版)大一第一学期期末高等数学(上)试题及答案2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dxx =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题 ( 本 大 题10分 )证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03 又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。
大一第一学期期末高数A试卷及答案
高等数学I1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是无穷小.(A) ()()x x βα+(B)()()x x 22βα+ (C)[])()(1ln x x βα⋅+(D) )()(2x x βα2. 极限ax a x a x -→⎪⎭⎫ ⎝⎛1sin sin lim 的值是( C ). (A ) 1(B ) e(C ) aecot (D ) aetan3.⎪⎩⎪⎨⎧=≠-+=001sin )(2x a x xe x xf ax 在0x =处连续,则a =( D ). (A ) 1(B ) 0(C ) e (D ) 1-4. 设)(x f 在点x a =处可导,那么=--+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f '(C) )(a f ' (D ) )(31a f '二、填空题(本大题有4小题,每小题4分,共16分)5. 极限)0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1.6. 由x x y e yx 2cos ln =+确定函数y (x ),则导函数='y xxe ye x y x xyxyln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直线l 的方程为 131211--=--=-z y x . 8. 求函数2)4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) .三、解答题(本大题有4小题,每小题8分,共32分)9. 计算极限10(1)limxx x ex →+-.解:11ln(1)12000(1)1ln(1)limlim lim2x xxx x x x e e x x ee e x xx +-→→→+--+-===-10. 设)(x f 在[a ,b ]上连续,且],[)()()(b a x dtt f t x x F xa∈-=⎰,试求出)(x F ''。
大一(第一学期)高数期末考试题及答案【范本模板】
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。
(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D)()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。
3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A)函数()F x 必在0x =处取得极大值; (B)函数()F x 必在0x =处取得极小值;(C)函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
大一上学期高数期末考试题
大一上学期(第一学期)高数期末考试题(有答案)(总5页)-本页仅作为预览文档封面,使用时请删除本页-大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数.求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
2014级高数一期末A解答(多学时)1.6
(1)试求 D1 绕 y 轴旋转一周而成的旋转体体积V1 ;D2 绕 x 轴旋转一周而成的旋转体的体
积V2 ;
(2)问 t 为何值时,V1 V2 取得最大值?
解:(1)V1
t 2 xydx t4
0
(或V1 t2 2t2
2t2 y dy t 4 ) 02
2014 级本科高等数学(一)期末试题解答与评分标准 A
(理工类多学时)
一、单项选择题(本大题共 6 小题,每小题 3 分,共 18 分)
题号
1
2
3
4
5
6
答案
C
B
A
B
D
C
1.已知函数
y
x2
x2 1 3x
2
,则
x
1 是该函数的(
C
).
A. 无穷间断点;
B. 跳跃间断点;
C. 可去间断点;
D. 振荡间断点.
2.当 x 0 时,函数 ln(1 x3 ) 是 tan2 x 的( B ).
A. 同阶无穷小,但不是等价无穷小; C. 低阶无穷小;
B. 高阶无穷小; D. 等价无穷小.
3.已知 F(x) 是 sin x2 的一个原函数,则 dF (x2 ) ( A ).
A. 2x sin x4dx ; B. sin x4dx ; C. 2x sin x2dx ; D. sin x2dx2 .
(3 分)
V2
2 y2dx 128 4 t5
t
55
(3 分)
(2)
d dt
(V1
V2 )
4 t 3
4 t 4
高等数学期末考试试题及答案(大一考试)
(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
大学第一学期高等数学期末考试A(含答案)打印
第一学期期末考试机电一体化专业《 高等数学 》 试卷( A )1.函数()314ln 2-+-=x x y 的定义域是(),2[]2,(∞+--∞Y )。
2.若函数52)1(2-+=+x x x f ,则=)1(f ( -5 )。
3.=→xx x 20lim ( 0 ) 4.函数xxx f -=)(的间断点是x =( 0 )。
5. 设735223-+-=x x x y 则y '=( 31062+-x x )。
1、设()00=f , 且()00='f 存在, 则()=→xx f x 0lim ( C );A. ()x f ' B. ()0f ' C. ()0f D. ()021f 2、17下列变量中是无穷小量的有 ( C ); A. )1ln(1lim0+→x x B. )1)((2()1)(1(lim 1-++-→x x x x x C. x x x 1cos 1lim ∞→ D. xx x 1sin cos lim 0→3、下列各组函数为同一函数的原函数的是 ( C );A. 31)(x x F =与324)(x x F -= B. 31)(x x F =与32214)(x x F -=C. C x x F +=21sin 21)(与x C x F 2cos 41)(2-=D.x x F ln )(1=与22ln )(x x F =4、在函数()x f 连续的条件下, 下列各式中正确的是 ( C );A. ()()x f dx x f dx d b a =⎰ B. ()()x f dx x f dx d ab =⎰C. ()()x f dt t f dx d x a =⎰ D. ()()x f dt t f dxd ax =⎰ 5、下列说法正确的是 ( D ); A. 导数不存在的点一定不是极值点 B. 驻点肯定是极值点 C. 导数不存在的点处切线一定不存在D. ()00='x f 是可微函数()x f 在0x 点处取得极值的必要条件1、函数的三要素为: 定义域, 对应法则与值域. (√ )2、函数)(x f 在区间[]b a ,上连续是)(x f 在区间[]b a ,上可积的充分条件。
大一(第一学期)高数期末考试题及答案
创作编号:BG7531400019813488897SX 创作者: 别如克*大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnnππππ.8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++创作编号:BG7531400019813488897SX 创作者: 别如克*7712ln ||ln |1|77x x C =-++11.解:1033()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一(第一学期)高数期末考试题及答案【呕心沥血整理版】
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。
(A )(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A)()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
大一(第一学期)高数期末考试题及答案(完整版).doc
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
13~14(一)高数(工)1期末考试(A)试卷解答
上海应用技术学院2013—2014学年第一学期《高等数学(工)1》期(末)试卷A一、单项选择题(本大题共10小题,每小题2分,共20分) 1.B ; 2.A ; 3.B ; 4.C ; 5.C ; 6.C ; 7.D ; 8.B ; 9.D ; 10.A .二.填空题(本大题共6小题,每小题3分,共18分),请在每小题的空格中填上正确答案,错填、不填均无分. 11.a be; 12.2; 13.1111(1)e e y x y x e e e++-=-=-或;14.4e-; 15.43; 16.122(1)y x -=+.三.计算题(本大题共8小题,每小题6分,共48分). 17.求极限111lim 1ln x x x →⎛⎫-⎪-⎝⎭. 解:1111ln 1lim lim 1ln (1)ln x x x x x x x x →→-+⎛⎫-=⎪--⎝⎭................(1分) 111lim 1ln x xx x x →-=-+................................(2分) 2121lim 11x xx x →-=+................................(2分) 12=- ................................(1分)18.设arctan ln(y x x =+,求221x d ydx=.解:2211111y x x ⎛⎫'=+=++................(2分) 332222222221122121(3)(3)x xx y x x x x x --''=-=-++++()()................(3分)158x y =''=-................................................(1分)19.设函数)2arcsin(2)1(x x y +=,求dxdy. 解:2ln arcsin(2)ln(1)y x x =+.......................................(2分)2212)arcsin(2)1xy x x y x '=+++..............................(3分)2arcsin(2)222(1))arcsin(2)1x x y x x x x ⎛⎫'=+++⎪+⎭........(1分) 另解:2arcsin(2)ln(1)x x y e+=.......................................(2分)()2arcsin(2)ln(1)2arcsin(2)ln(1)x xy e x x +''=+............................(1分)2arcsin(2)222=(1))arcsin(2)1x x x x x x ⎛⎫+++⎪+⎭..............(3分)20.判定曲线2()(714)xf x e x x =-+的凹凸性与拐点.解:22()(714)(27)(57)x x x f x e x x e x e x x '=-++-=-+...................(1分)22()(57)(25)(32)(2)(1)x x x x f x e x x e x e x x e x x ''=-++-=-+=--.......(1分)令()0f x ''=,得到1,2x x ==..............................................(1分).....................................................................(2分)在(,1)-∞内,曲线2()(714)x f x e x x =-+是凹的;在(1,2)内,曲线2()(714)x f x e x x =-+是凸的;在(2,)+∞内,曲线2()(714)x f x e x x =-+是凹的;拐点2(1,8),(2,4)e e ..............................................(1分)21.计算不定积分()cos ln 2x x dx x+⎰.解:()()2cos ln 2cos ln ln (1)x x dx x d x x x+=++⎰⎰........(4分) (注:加号前后各2分)3222sin(ln )(1)3x x C =+++..............................................(2分)(注:前两个一个一分,但是两个都写对了C 漏写还是要扣一分)22.计算定积分2. 解: sec x t =令,sec tan dx t tdt =,23x t π=→=,4x t π=→=........(2分)22334344tan tan sec sec t t tdt dt t t ππππ==⎰⎰....................(1分) 234sin cos t tdt ππ=⎰.....................................(1分) 234sin sin td t ππ=⎰.....................................(1分) ()334sin 324t ππ==..........................(1分)23.计算定积分1320arctan()x x dx ⎰.解:1320arctan()x x dx ⎰1241arctan()4x dx =⎰..................................(1分)()142142001arctan()arctan()4x x x d x =-⎰.................(1分) 144012441x x dx x π⎛⎫=- ⎪+⎝⎭⎰...............................(1分) 14012441x x dx x π⎛⎫⎛⎫=-- ⎪ ⎪+⎝⎭⎝⎭⎰...........................(1分) 112400112441xdx dx x π⎛⎫=-+ ⎪+⎝⎭⎰⎰.........................(1分) 1122001arctan()44x x π⎛⎫=-+ ⎪⎝⎭1214448πππ-⎛⎫=-+=⎪⎝⎭ (注:或者11arctan124-).......(1分)24.求微分方程2223,xdy xy x e dx-=满足初始条件01==x y 的特解.解:(解法一)dyxy dx=.............................................................(1分) dy xdx y = dy xdx y⇒=⎰⎰ 2l n l n 2x y C ⇒=+ 22xy C e ⇒=..........(1分) 令原方程的通解为22()x y C x e =...........................................(1分)则2222()()x x y C x e C x e x ''=+,代入原方程得222222222()()()3x x x x C x e C x e x xC x e x e '+-=2()3C x x '⇒=.........................................................(1分) 23()3C x x dx x C ==+⎰通解为232()x y x C e =+...................................................(1分)由01==x y ,则1C =-232(1)x y x e =-....................................(1分) (解法二)令()P x x =-,222()3x Q x x e =............................(1分)通解()()(())P x dx P x dx y e Q x e dx C -⎰⎰=+⎰...................................(1分) 222(3)x xdxxdxe x e e dx C -⎰⎰=+⎰.....................................(1分)2222222(3)x x x e x e edx C -=+⎰...........................................(1分)222(3)x e x dx C =+⎰232()x e x C =+....................................(1分)由于01==x y ,则1C =-,所以特解为232(1)x y e x =-.................(1分)四.应用与证明题(本大题共2小题,每小题7分,共14分). 25.求由曲线xy 1=,直线x y +=1,1=x 及2=x 所围图形的面积,并求该图形绕x 轴旋转一周所得的旋转体的体积. 解:(1)22111(1)S x dx dx x=+-⎰⎰..........................................(2分) 22211(1)5ln ln 222x x +=-=-....................................(1分) (2) 2222111(1)x V x dx dx x ππ=+-⎰⎰..................................(2分) 22311(1)13x x ππ+=+...........................................(1分) 278135(1)326πππ-=+-=.....................................(1分) (注:如果公式全写错但图形画对了但可以给1分)26.设)(x f 在[0,1]上可导,且11(1)022f f ⎛⎫=≠ ⎪⎝⎭.又设 212()()x x F x f t dt +=⎰. (1)求()F x ';(2)证明:至少存在一点(0,1)ξ∈,使得()0F ξ'=;(3)证明:至少存在一点(0,1)η∈,使得()()0F F ηηη'''+=.证:(1)211()()2()22x F x f x x f +'=-;..................................(2分) (2)13(1)2(1)(1)(1)22F f f f '=-=且11(0)()22F f '=-,....................(1分)则()23(1)(0)(1)02F F f ''=-<,由于()F x '在[0,1]上连续,由零点存在定理,存在一点(0,1)ξ∈,使得()0F ξ'=。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试之南宫帮珍创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '=(B )(0)1f '=(C )(0)0f '=(D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小;(B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小;(D )()x β是比()x α高阶的无穷小. 3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则().(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x -(D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ.7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分) 5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:10330()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华侨大学本科考试卷 2014 —2015学年第 一 学期
高等数学A(一) 期末考试试题【A 卷】
参考答案与评分标准
一. 填空题【共5小题,每小题4分,共20分】
1、2;
2、12;
3、14;
4、349e -;
5、2()(cos )sin 2x x e f e f x x dx ''-⎡⎤⎣⎦.
二. 试解下列各题【共6小题,每小题7分,共42分】
1
、解:原式lim lim lim lim x x x x e e e e →+∞=====. (7)
2、解:32
00sin 1cos 1lim lim 63x x x x x x x →→--==原式=…….【7】, 3
、解:令t =,则31x t =-,23dx t dt =……….…【3】,
2223111333(133ln 11112
t dt t dt t dt t t t C t t t -+===-+=-+++⎰⎰⎰+++原式
1C =+++. …..【7】 4、解:原式化为2221()22y x dy x y dx xy y x
++==,令y u x =,则,dy du y xu u x dx dx ==+ ….…【3】 代入原式得:212du u u x dx u ++=,整理得221udu dx x u
=-,解得221ln |1|ln ||,(1)u x C x u C --=+-=, 代入1|0x y ==,得1C =,故特解为22x y x -= (7)
5、解:方程两边同时对x 求导得 y y dy dy e xe dx dx =+,解得1y y
dy e dx xe =- ……..…【3】 所以切线斜率(0,1)
dy k e dx ==,法线斜率为1e - ……..…【5】 所求切线方程为1y ex =+,法线方程为11y x e =-
+ ...........【7】 6、解:212111()()()f x dx f x dx f x dx --=+⎰⎰⎰ . (2)
21122211111(sin cos cos sin )sin sin 2x x x x dx xd x --=++=-⎰⎰
⎰⎰
1331
12sin sin 133x -==+ (7)
三、【8分】解:2321(31)(1)y x x x x '=--=+-,令0y '=,得121
,13
x x =-=. 622(31)y x x ''=-=-,令0y ''=,得13
x = …【4】 (,13)(13,1)(1,)
y -∞--+∞'+-+(,13)(13,)y -∞+∞''-+
由此,函数y 单调增区间为(,1-∞-和[1,)+∞,单调减区间[13,1]-
曲线y 的凸区间为(,13]-∞,凹区间为[13,)+∞ (8)
四、【8分】解: 234200144S x dx x ==
=⎰;…【2】 22
32700
1128()77x V x dx x πππ⎡⎤===⎰⎢⎥⎣⎦;……..…【5】 2
2
35001642255y V x x dx x πππ⎡⎤=⋅==⎰⎢⎥⎣⎦. …….【8】 五、【8分】解:()()()()()()[2()]()b b b
a a a x a x
b df x x a x b f x x a b f x dx '''=--=----+⎰⎰原式.…【4】 [2()]()[2()]()2()2()6b b b b
a a a a x a b df x x a b f x f x dx f x dx =--+=--++==⎰⎰⎰ (8)
六、【8分】证:令()(1)ln(1)arctan f x x x x =++-...【2】 则2221()1ln(1)ln(1)011x f x x x x x '=++-=++>++(0x >).......【6】 所以()f x 在[0,)+∞上单调递增,从而当0x >时,()(0)0f x f >=,原不等式成立. (8)
七、【6分】证: ()x e f x x =,1()F x x
=,显然(),()f x F x 在[,]a b 上满足柯西中值定理条件.…【3】 22
1(),()x x xe e f x F x x x -''==-,由柯西中值定理可得:(,)a b ξ∃∈,使得()()()()()()f b f a f F b F a F ξξ'-='-, 即22111b a e e e e b a b a ξξξξξ
--=--,整理可得结论. (6)。