河南省天一大联考2017-2018学年高一下学期阶段性测试试题(四)数学试题及答案解析

合集下载

河南省天一大联考2017-2018学年高一下学期阶段性测试四化学试卷 含答案 精品

河南省天一大联考2017-2018学年高一下学期阶段性测试四化学试卷 含答案 精品

XCSYZX2017-2018学年下期质量调研试卷高 一 化 学说明: 1、本试卷分第I 卷(选择题)和第II 卷(非选择题)满分100分,考试时间90分钟。

2、将第I 卷的答案代表字母填(涂)在答题卡中。

可能用到的相对原子质量:H:1 C:12 N:14 O:16 Na:23 Mg:24 Al:27 Si:28S:32 Cl:35.5 Fe:56 Cu:64 Ba:137 K:39第I 卷(选择题,共48分)一、单项选择题:本题共16小题,每小题3分,共48分。

1. 化学科学需要借助化学专用语言来描述,下列有关化学用语正确的是( )A .CO 2的电子式:B .质量数为37的氯原子:1737ClC .NH 4Cl 的电子式:D .原子核内有10个中子的氧原子:O 1882.下列说法不.正确..的是( ) A .化学能可以转变成为热能、电能等 B .化学反应必然伴随发生能量变化C .化学反应中的能量变化主要是由化学键的变化引起的D .化学反应中能量变化的多少与反应物的质量无关 3.下列说法中正确的是( )A .原子及其离子的核外电子层数等于该元素所在的周期数B .元素周期表中从IIIB 族到IIB 族 10个纵行的元素都是金属元素C .第ⅠA 族元素的金属性比第ⅡA 族元素的金属性强D .在周期表里,主族元素所在的族序数等于原子核外电子数4.某元素的一种同位素X 原子的质量数为A ,含N 个中子,它与1H 原子组成H m X 分子,在ag H m X 分子中含电子的物质的量是( )A .a A+m (A-N+m)molB .a A (A-N)molC .a A+m (A-N)molD .aA(A-N+m)mol5.下表给出了X 、Y 、Z 、W 四种短周期常见元素的部分信息,请根据这些信息判断下列说法中正确的是( )A .3C .Z 的最高正价为+6D .原子序数X>Y>W>Z 6.元素砹(At)原子序数为85,下面关于该元素说法不正确的是( ).A.AgAt 不溶于水B .HAt 很不稳定C.At 的单质是白色固体 D .该元素位于元素周期表第六周期、第十七列 7.在四个不同容器中,不同条件下进行合成氨反应。

2018-2019学年河南省天一大联考高一期末数学试卷

2018-2019学年河南省天一大联考高一期末数学试卷

2018-2019学年河南省天一大联考高一(下)期末数学试卷(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018-2019学年河南省天一大联考高一(下)期末数学试卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41B.42C.43D.442.(5分)在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则x+y=()A.6B.5C.4D.33.(5分)设向量=(1,1),=(2,m),若∥(+2),则实数m的值为()A.1B.2C.3D.44.(5分)下列函数中是偶函数且最小正周期为的是()A.y=cos24x﹣sin24x B.y=sin4xC.y=sin2x+cos2x D.y=cos2x5.(5分)从装有4个红球和3个白球的口袋中任取2个球,那么互相对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球6.(5分)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s2为()A.B.3C.D.47.(5分)已知cosθ=,且θ∈(﹣,0),则tan(+θ)=()A.﹣7B.7C.﹣D.8.(5分)已知,是不共线的非零向量,=+2,=3﹣,=2﹣3,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.菱形9.(5分)执行如图所示的程序框图,则输出的s的值为()A.B.C.D.10.(5分)如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为3:2,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A.B.C.D.11.(5分)已知tanα=2,则=()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻的两个对称中心之间的距离为,且有一条对称轴为直线x=,则下列判断正确的是()A.函数f(x)的最小正周期为4πB.函数f(x)的图象关于直线x=﹣对称C.函数f(x)在区间[,]上单调递增D.函数f(x)的图象关于点(,0)对称二、填空题:本题共4小题,每小题5分,共20分13.(5分)已知变量x,y线性相关,其一组数据如表所示.若根据这组数据求得y关于x的线性回归方程为=+,则=x1245y14.(5分)已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|2+|=15.(5分)执行如图所示的程序框图,则输出的S的值是16.(5分)函数y=sin x cos x+cos2x在区间(0,)上的值域为三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.17.(10分)已知扇形的面积为,弧长为,设其圆心角为α(Ⅰ)求α的弧度;(Ⅱ)求的值.18.(12分)已知,,是同一平面内的三个向量,其中=(1,2).(Ⅰ)若=(2,λ),且∥,求||;(Ⅱ)若=(1,1),且m﹣与2﹣垂直,求实数m的值19.(12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW•h),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(Ⅰ)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(Ⅱ)求月平均用电量的中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户?20.(12分)已知函数f(x)=(Ⅰ)求f(x)的定义域;(Ⅱ)设α是第三象限角,且tanα=,求f(α)的值.21.(12分)某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如表(其中2018Q1表示2018年第一季度,以此类推):季度2018Q12018Q22018Q32018Q42019Q1季度编号x12345销售额y(百万元)4656678696(Ⅰ)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(Ⅱ)求y关于x的线性回归方程,并预测该公司2019Q3的销售额.附:线性回归方程:=x+其中==,=﹣参考数据:x i y i=118322.(12分)如图所示,在直角坐标系xOy中,点A(2,0),B(﹣2,0),点P,Q在单位圆上,以x轴正半轴为始边,以射线OP为终边的角为θ,以射线OQ为终边的角为φ,满足φ﹣θ=.(1)若θ=,求•(2)当点P在单位圆上运动时,求函数f(θ)=•的解析式,并求f(θ)的最大值.2018-2019学年河南省天一大联考高一(下)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)某班现有60名学生,随机编号为0,1,2,…,59.依编号顺序平均分成10组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,若在第1组中随机抽取的号码为5,则在第7组中随机抽取的号码为()A.41B.42C.43D.44【分析】计算分组间隔,利用第1组中抽取的号码求出第7组中抽取的号码数.【解答】解:由题意知分组间隔为=6,又第1组中抽取的号码为5,所以第7组中抽取的号码为6×6+5=41.故选:A.【点评】本题考查了系统抽样方法应用问题,是基础题.2.(5分)在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则x+y=()A.6B.5C.4D.3【分析】甲组数据的众数为11,得到x=1,乙组数据中间的两个数分别为6和10+x,由中位数是9,解得y=2,由此能求出x+y.【解答】解:由甲组数据的众数为11,得到x=1,乙组数据中间的两个数分别为6和10+x,∴中位数是:=9,解得y=2,∴x+y=3.故选:D.【点评】本题考查中位数、众数的和的求法,考查众数、中位数、茎叶图等基础知识,考查理解能力、运算求解能力,是基础题.3.(5分)设向量=(1,1),=(2,m),若∥(+2),则实数m的值为()A.1B.2C.3D.4【分析】由平面向量的坐标运算及共线的性质得:因为∥(+2),所以1×(2m+1)﹣5=0,解得m=2,得解.【解答】解:因为向量=(1,1),=(2,m),所以(+2)=(5,2m+1),又∥(+2),所以1×(2m+1)﹣5=0,解得m=2,故选:B.【点评】本题考查了平面向量的坐标运算及共线的性质,属简单题.4.(5分)下列函数中是偶函数且最小正周期为的是()A.y=cos24x﹣sin24x B.y=sin4xC.y=sin2x+cos2x D.y=cos2x【分析】利用三角函数的奇偶性和三角函数的周期公式逐一判断即可.【解答】解:A.y=cos24x﹣sin24x=cos8x,是偶函数,周期T=,符合条件;B.函数是奇函数,不符合条件;C.y=sin2x+cos2x=,是非奇非偶函数,不符合条件;D.函数是偶函数,周期T=,不符合条件.故选:A.【点评】本题考查了三角函数的奇偶性,三角恒等变换和三角函数的周期,属基础题.5.(5分)从装有4个红球和3个白球的口袋中任取2个球,那么互相对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球【分析】由已知条件依次分析四个选项中的两个事件,利用对立事件的定义进行判断.【解答】解:从装有4个红球和3个白球的口袋中任取2个球,至少有一个白球和都是白球可以同时发生,故A错误;至少有1个白球一至少有1个红球可以同时发生,故B错误;恰有1个白球和恰有2个白球不能同时发生,但其中一个事件发生时,另一个可能发生也可能不发生,故C是互斥但不对立事件,故C错误;至少有1个白球和都是红球不能同时发生,且其中一个事件发生时,另一个可能发生一定不发生,故D是对立事件,故D正确.故选:D.【点评】本题考查对立事件的判断,是基础题,解题时要认真审题,注意对立事件的定义的合理运用.6.(5分)已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差s2为()A.B.3C.D.4【分析】根据平均数和方差的定义,计算加入一个新数据后,这组数据的平均数和方差.【解答】解:因为7个数据的平均数为5,方差为4,又加入一个新数据5,则这8个数的平均数为==5,方差为s2=×[4×7+(5﹣5)2]=.故选:C.【点评】本题考查了平均数与方差的计算问题,是基础题.7.(5分)已知cosθ=,且θ∈(﹣,0),则tan(+θ)=()A.﹣7B.7C.﹣D.【分析】由已知结合同角基本关系可求sinθ,tanθ,然后利用两角和的正切公式可求tan(+θ).【解答】解:∵cosθ=,且θ∈(﹣,0),∴sinθ=,tan,则tan(+θ)==.故选:D.【点评】本题主要考查了同角三角函数的关系及两角和的正切公式的简单应用,属于基础试题》8.(5分)已知,是不共线的非零向量,=+2,=3﹣,=2﹣3,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.菱形【分析】本题考查了平面向量线性运算及共线的判断可得:=2,所以且||≠||,即四边形ABCD是梯形,得解.【解答】解:因为==()+(3)+(2﹣3)=2(3)=2,所以且||≠||,即四边形ABCD是梯形,故选:C.【点评】本题考查了平面向量线性运算及共线的判断,属中档题.9.(5分)执行如图所示的程序框图,则输出的s的值为()A.B.C.D.【分析】根据程序框图进行模拟运算即可.【解答】解:运行程序框图,s=,k=2,s==,k=3,s==,k=4,此时满足条件,程序结束,输出s=,故选:A.【点评】本题主要考查程序框图的识别和判断.利用模拟运算法是解决本题的关键.10.(5分)如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为3:2,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A.B.C.D.【分析】设大圆半径为3r,则小圆半径为2r,分别求出整个圆形的面积与白色部分的面积,再由测度比是面积比得答案.【解答】解:设大圆半径为3r,则小圆半径为2r,则整个圆形的面积为S=9πr2,白色部分的面积为.∴所求概率为P=.故选:B.【点评】本题考查几何概型概率的求法,明确测度比是面积比是关键,是基础题.11.(5分)已知tanα=2,则=()A.B.C.D.【分析】由已知求得tan2α,再由诱导公式及同角三角函数基本关系式化弦为切求解.【解答】解:∵tanα=2,∴tan2α=.则===.故选:D.【点评】本题考查三角函数的恒等变换与化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻的两个对称中心之间的距离为,且有一条对称轴为直线x=,则下列判断正确的是()A.函数f(x)的最小正周期为4πB.函数f(x)的图象关于直线x=﹣对称C.函数f(x)在区间[,]上单调递增D.函数f(x)的图象关于点(,0)对称【分析】根据条件确定函数的解析式,然后根据解析逐一判断,即可得出结论.【解答】解:∵图象相邻的两个对称中心之间的距离为,∴周期,∴,∴f(x)=sin(4x+φ),又f(x)有一条对称轴为直线x=,∴,∴,∵|φ|<,∴φ=,∴f(x)=sin(4x+),对照选项,可得C正确.故选:C.【点评】本题主要考查利用y=A sin(ωx+φ)的图象特征,由函数y=A sin(ωx+φ)的部分图象求解析式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分13.(5分)已知变量x,y线性相关,其一组数据如表所示.若根据这组数据求得y关于x的线性回归方程为=+,则=x1245y【分析】由表中数据计算、,得出样本中心点,代入线性回归方程中求得的值.【解答】解:由表中数据,计算=×(1+2+4+5)=3,=×(+++)=10,把样本中心点(3,10)代入线性回归方程=+中,计算=10﹣×3=.故答案为:.【点评】本题考查了线性回归方程过样本中心点的应用问题,是基础题.14.(5分)已知向量=(cos5°,sin5°),=(cos65°,sin65°),则|2+|=【分析】表示所求向量的表达式,然后求解向量的模即可.【解答】解:向量=(cos5°,sin5°),,=(cos65°,sin65°),,=cos5°cos65°+sin5°sin65°=cos60°=,则|2+|===.故答案为:.【点评】本题考查向量的数量积的应用,考查计算能力.15.(5分)执行如图所示的程序框图,则输出的S的值是4【分析】根据程序框图进行模拟运算即可.【解答】解:第一次循环,S=﹣1,i=2,第二次循环,S=,i=3,第三次循环,S=,i=4,第四次循环,S=4,i=5,……则S是关于以4为周期,最后跳出循环时,i=2021=1+4×505,此时S=4,故答案为:4【点评】本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.16.(5分)函数y=sin x cos x+cos2x在区间(0,)上的值域为(0,]【分析】y=sin x cos x+cos2x=,然后根据x的取值范围得到的范围从而得到y的值域.【解答】解:y=sin x cos x+cos2x==.∵x∈(0,),∴,∴,∴.故答案为:.【点评】本题考查了三角恒等变换和三角函数的单调性和最值,考查了整体法和整体思想,属基础题.三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤.17.(10分)已知扇形的面积为,弧长为,设其圆心角为α(Ⅰ)求α的弧度;(Ⅱ)求的值.【分析】(Ⅰ)由题意利用任意角的三角函数的定义,扇形面积公式、弧长公式,求得α的弧度数.(Ⅱ)由题意利用诱导公式、两角差的正切公式求得的值.【解答】解:(Ⅰ)∵扇形圆心角为α,设扇形半径为r,弧长为l,根据扇形的面积为=α•r2,弧长为=α•r,解得r=2,α=.(Ⅱ)===tanα=tan(﹣)===2﹣.【点评】本题主要考查任意角的三角函数的定义,扇形面积公式、弧长公式、诱导公式、两角差的正切公式的应用,属于基础题.18.(12分)已知,,是同一平面内的三个向量,其中=(1,2).(Ⅰ)若=(2,λ),且∥,求||;(Ⅱ)若=(1,1),且m﹣与2﹣垂直,求实数m的值【分析】(Ⅰ)根据即可得出4﹣λ=0,从而求出λ=4,从而求出向量的坐标,进而求出;(Ⅱ)可求出,,根据与垂直即可得出,进行数量积的坐标运算即可求出m的值.【解答】解:(Ⅰ)∵;∴4﹣λ=0;∴λ=4;∴;∴;(Ⅱ),;∵与垂直;∴;解得.【点评】考查平行向量的坐标关系,向量垂直的充要条件,根据向量坐标求向量长度的方法,以及向量减法、数乘和数量积的坐标运算.19.(12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW•h),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(Ⅰ)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(Ⅱ)求月平均用电量的中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户?【分析】(Ⅰ)由频率分布直方图的性质能求出月平均用电量在[240,260)的频率,设样本容量为N,则=30,由此能求出N的值.(Ⅱ)由(++)×20=<,得月平均用电量的中位数[220,240)内,由此能求出中位数.(Ⅲ)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为,,,,由此能求出月平均用电量在[260,280)的用户中应抽取的户数.【解答】解:(Ⅰ)由(++++x++)×20=1,解得x=,∴月平均用电量在[240,260)的频率为×20=,设样本容量为N,则=30,解得N=200.(Ⅱ)∵(++)×20=<,∴月平均用电量的中位数[220,240)内,设中位数a,则+×(a﹣220)=,解得a=224,∴中位数为224.(Ⅲ)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为:,,,,∴月平均用电量在[260,280)的用户中应抽取22×=4户.【点评】本题主要考查样本单元数、中位数的求法,考查频率分布直方图等基础知识,考查运算求解能力,是基础题.20.(12分)已知函数f(x)=(Ⅰ)求f(x)的定义域;(Ⅱ)设α是第三象限角,且tanα=,求f(α)的值.【分析】(Ⅰ)由题意利用诱导公式、三角函数的定义域,求出f(x)的定义域.(Ⅱ)由题意利用同角三角函数的基本关系求得α的正弦值和余弦值,再利用两角和差的三角公式、二倍角公式化简要求的式子,可得结果.【解答】解:(Ⅰ)对于函数f(x)==,应有cos x≠0,即x≠kπ+,k∈Z,故函数的定义域为{x|x≠kπ+,k∈Z}.(Ⅱ)设α是第三象限角,且tanα==,sin2α+cos2α=1,∴sinα=﹣,cosα=﹣,则函数f(α)=====2cosα+2sinα=﹣.【点评】本题主要考查诱导公式、三角函数的定义域,同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,属于基础题.21.(12分)某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如表(其中2018Q1表示2018年第一季度,以此类推):季度2018Q12018Q22018Q32018Q42019Q1季度编号x12345销售额y(百万元)4656678696(Ⅰ)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(Ⅱ)求y关于x的线性回归方程,并预测该公司2019Q3的销售额.附:线性回归方程:=x+其中==,=﹣参考数据:x i y i=1183【分析】(Ⅰ)利用列举法写出基本事件数,计算所求的概率值;(Ⅱ)计算平均数和回归系数,写出回归方程,利用回归方程计算x=7时的值,即可预测结果.【解答】解:(Ⅰ)从5个季度的数据中选取2个季度,这2个季度的销售数据有10种情况,(46,56),(46,67),(46,86),(46,96),(56,67),(56,86),(56,96),(67,86),(67,96),(86,96);设这两个季度的销售额都超过6千万元为事件A,则事件A包含(67,86),(67,96),(86,96)共3种情况;则所求的概率为P=;(Ⅱ)计算=×(1+2+3+4+5)=3,=×(46+56+67+86+96)=;====13,∴=﹣=﹣13×3=;∴y关于x的线性回归方程为:=13x+;利用回归方程计算x=7时,=13×7+=(百万元),即预测该公司2019Q3的销售额为百万元.【点评】本题考查了古典概型的概率计算问题,也考查了线性回归分析的应用问题,是基础题.22.(12分)如图所示,在直角坐标系xOy中,点A(2,0),B(﹣2,0),点P,Q在单位圆上,以x轴正半轴为始边,以射线OP为终边的角为θ,以射线OQ为终边的角为φ,满足φ﹣θ=.(1)若θ=,求•(2)当点P在单位圆上运动时,求函数f(θ)=•的解析式,并求f(θ)的最大值.【分析】(Ⅰ)由任意角的定义、平面向量的几何运算得:=•()=2=22﹣2×1×cos=4.(Ⅱ)由三角恒等变换及三角函数的性质得:f(θ)==(cosθ﹣2)(2﹣sinθ)+sinθcosθ=2sin()﹣4,当θ=2kπ(k∈Z)时,f(θ)取最大值2.【解答】解:(Ⅰ)由图可知,∠POA=θ=,∠QOA==,=•()=2=22﹣2×1×cos=4.(Ⅱ)由题意可知P(cosθ,sinθ),Q(cosφ,sinφ),因为cosφ=cos(θ+)=﹣sinθ,sinφ=sin(θ+)=cosθ,所以Q(﹣sinθ,cosθ),所以=(cosθ﹣2,sinθ),=(﹣sinθ+2,cosθ),所以f(θ)==(cosθ﹣2)(2﹣sinθ)+sinθcosθ=2sin()﹣4,当θ=2kπ(k∈Z)时,f(θ)取最大值2,故f(θ)=2sin ()﹣4,最大值为2.【点评】本题考查了任意角的定义、平面向量的几何运算、三角恒等变换及三角函数的性质.21。

2022-2023学年河南省天一大联考高一(下)期末数学试卷【答案版】

2022-2023学年河南省天一大联考高一(下)期末数学试卷【答案版】

2022-2023学年河南省天一大联考高一(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i •z =4﹣2i ,则|z |=( ) A .2√3B .2√5C .4D .52.一组数据a ,5,6,7,7,8,11,12的平均数为8,则这组数据的中位数为( ) A .6.5B .7C .7.5D .83.已知向量a →=(2,4),b →=(2,λ),若(a →+2b →)∥(2a →+b →),则实数λ的值为( ) A .4B .﹣4C .2D .﹣24.设α,β是两个不同的平面,l ,m 是两条不同的直线,下列结论: ①若l ⊥α,l ⊥β,则α∥β;②若m ⊥β,α⊥β,则m ∥α;③若l ∥β,l ⊂α,则β∥α;④若α∩β=l ,m ∥l ,则m 至少与α,β中一个平行. 则下列说法正确的是( ) A .①②B .①③C .①④D .②③5.1748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式:e ix =cos x +i sin x (x ∈R ,i 为虚数单位),这个公式在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式,可知(√22+√22i)4=( )A .﹣1B .1C .﹣iD .i6.某圆台的侧面展开是一个半圆环(如图所示),且其中内、外半圆弧所在圆的半径分别为2和6,则该圆台的体积为( )A .14√33π B .26√33π C .263π D .523π7.甲班和乙班同学在体育课上进行拔河比赛,比赛采取三场两胜制(当一个班获得两场胜利时,该班获胜,比赛结束),假设每场比赛甲班获胜的概率为35,每场比赛结果互不影响,则甲班最终获胜的概率为( )A .727B .925C .36125D .811258.在△ABC 中,AB =2,cos (A ﹣B )cos (B ﹣C )cos (C ﹣A )=1,P 为△ABC 所在平面内的动点,且P A=1,则PB →⋅PC →的取值范围是( ) A .[−32,92]B .[−12,112] C .[3−2√3,3+2√3] D .[3−√3,3+√3]二、多项选择题;本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知z 1,z 2为复数,则下列说法正确的是( ) A .若z 1=z 2,则z 1=z 2B .若z 1+z 2∈R ,则z 1与z 2的虚部相等C .若z 1z 2=0,则z 1=0或z 2=0D .若z 12+z 22=0,则z 1=z 2=010.某校组织“校园安全”知识测试,随机调查600名学生,将他们的测试成绩(满分100分)按照[50,60),[60,70),⋯,[90,100]分成五组,得到如图所示的频率分布直方图,则下列说法正确的是( )A .图中x =0.1B .估计样本数据的第60百分位数约为85C .若每组数据以所在区间的中点值为代表,则这600名学生成绩的平均数约为79.5D .若按各组人数比例用分层随机抽样的方法抽取30名成绩低于80分的学生,则成绩在[60,70)内的学生应抽取10人11.已知正方形ABCD 的边长为2,向量a →,b →满足AB →=2a →,BC →=b →−2a →,则( ) A .|b →|=2B .a →⋅b →=2C .a →在b →上的投影向量的模为√2D .(b →−4a →)⊥b →12.如图,已知点P 在圆柱O 1O 的底面圆O 的圆周上,AB 为圆O 的直径,A 1A ,B 1B 为圆柱的两条母线,且A 1A =3,OA =1,∠BOP =60°,则( )A .PB ⊥平面A 1APB .直线A 1P 与平面ABP 所成的角的正切值为√32C .直线A 1P 与直线AB 所成的角的余弦值为√34D .点A 到平面A 1BP 的距离为32三、填空题:本题共4小题,每小题5分,共20分.13.如图,一个水平放置的△ABO 的斜二测画法的直观图是等腰直角三角形A ′B ′O ′,若B ′A ′=B ′O ′=1,则原三角形ABO 的面积为 .14.甲、乙各自从“篮球”“足球”“排球”“游泳”“体操”5个社团中随机选择1个社团加入,且他们加入的社团不同,则他们加入的都是球类运动社团的概率是 .15.在△ABC 中,点D 满足DC →=2AD →,若线段BD 上的一点P 满足AP →=xAB →+yAC →(x >0,y >0),则y ﹣x 的取值范围是 .16.如今中国被誉为“基建狂魔”,可谓逢山开路,遇水架桥.高速公路里程、高铁里程双双都是世界第一.建设过程中研制出的用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先水平.如图是某重器上一零件结构模型,中间大球为正四面体的内切球,小球与大球相切,同时与正四面体的三个面相切.设AB =a ,则该模型中5个球的表面积之和为 .四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知复数z =m +(4﹣m 2)i (m 为正实数),且z +5i ∈R . (1)求z ;(2)若z 1=z(a +i)在复平面内对应的点位于第二象限,求实数a 的取值范围.18.(12分)如图所示,在多面体ABCDEF 中,四边形ABCD 是正方形,△ABF 是等边三角形,EF ∥AD ,且EF =12AD =2,M ,N 分别是AD ,CB 的中点. (1)证明:平面NMF ∥平面ECD ;(2)若平面ABF ⊥平面ABCD ,求四棱锥E ﹣ABCD 的体积.19.(12分)根据城市空气质量污染指数的分级标准,空气污染指数(API )不大于100时,空气质量为优良.某城市环境监测部门从上个月的空气质量数据中随机抽取5天的空气污染指数,所得数据分别为90,110,x ,y ,150,已知这5天的空气污染指数的平均数为110. (1)若x <y ,从这5天中任选2天,求这2天空气质量均为优良的概率; (2)若90<x <150,求这5天空气污染指数的方差的最小值. 20.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a−b+c c=b a+b−c.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.21.(12分)为了保护一件珍贵文物,博物馆需要用一个密封的玻璃罩罩住文物,玻璃罩的几何模型如图,上部分是正四棱锥P ﹣A 1B 1C 1D 1,下部分是正四棱柱ABCD ﹣A 1B 1C 1D 1,正四棱柱的高O 1O 是正四棱锥的高PO 1的52倍.(1)若AB =6dm ,OO 1=5dm ,求玻璃罩的容积是多少升(玻璃厚度不计);(2)若P A 1=4dm ,当PO 1为多少时,下部分的正四棱柱侧面积最大,最大侧面积是多少?22.(12分)某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了200人,分别对这两家餐厅进行评分,满分为60分.整理评分数据,将评分分成6组:[0,10),[10,20),⋯,[50,60],得到A餐厅评分的频率分布直方图,以及B餐厅评分的频数分布表如下:B餐厅评分的频数分布表根据学生对餐厅的评分定义学生对餐厅的“满意度指数”如下:(1)在调查的200名学生中,求对A餐厅的满意度指数为2的人数;(2)从该大学再随机抽取1名在A,B餐厅都用过餐的学生进行调查,用样本中不同的满意度指数的频率估计这名学生对应的满意度指数的概率,假设他对A,B餐厅的评分互不影响,求他对A餐厅的满意度指数比对B餐厅的满意度指数低的概率.2022-2023学年河南省天一大联考高一(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i •z =4﹣2i ,则|z |=( ) A .2√3 B .2√5C .4D .5解:z =4−2ii=−2−4i ,所以|z|=√(−2)2+(−4)2=2√5. 故选:B .2.一组数据a ,5,6,7,7,8,11,12的平均数为8,则这组数据的中位数为( ) A .6.5 B .7C .7.5D .8解:由题意得a+5+6+7+7+8+11+128=8,解得a =8,故这组数据的中位数为7+82=7.5.故选:C .3.已知向量a →=(2,4),b →=(2,λ),若(a →+2b →)∥(2a →+b →),则实数λ的值为( ) A .4B .﹣4C .2D .﹣2解:因为a →=(2,4),b →=(2,λ),所以a →+2b →=(6,2λ+4),2a →+b →=(6,λ+8),又(a →+2b →)∥(2a →+b →),∴6×(λ+8)﹣(2λ+4)×6=0,解得λ=4. 故选:A .4.设α,β是两个不同的平面,l ,m 是两条不同的直线,下列结论: ①若l ⊥α,l ⊥β,则α∥β;②若m ⊥β,α⊥β,则m ∥α;③若l ∥β,l ⊂α,则β∥α;④若α∩β=l ,m ∥l ,则m 至少与α,β中一个平行. 则下列说法正确的是( ) A .①②B .①③C .①④D .②③解:对于①,垂直于同一条直线的两个平面平行,所以①正确; 对于②,若m ⊥β,α⊥β,则m ⊂α或m ∥α,所以②错误; 对于③,由l ∥β,得β∥α或β与α相交,故③错误;对于④,α∩β=l ,m ∥l ,则m 至少与α,β中一个平行,故④正确. 故选:C .5.1748年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式:e ix =cos x +i sin x (x ∈R ,i 为虚数单位),这个公式在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”.根据此公式,可知(√22+√22i)4=( ) A .﹣1B .1C .﹣iD .i解:由题意可知,(√22+√22i)4=(cos π4+isin π4)4=(e π4i )4=e πi =cosπ+isinπ=−1.故选:A .6.某圆台的侧面展开是一个半圆环(如图所示),且其中内、外半圆弧所在圆的半径分别为2和6,则该圆台的体积为( )A .14√33π B .26√33π C .263π D .523π解:设圆台的上底面半径为r ,下底面半径为R , 则2πr =12×2π×2,2πR =12×2π×6, 所以r =1,R =3,且圆台的母线长为6﹣2=4, 则圆台的高为ℎ=√42−(3−1)2=2√3,所以圆台的体积为V =13(π⋅12+π⋅32+√π⋅12⋅π⋅32)×2√3=26√33π. 故选:B .7.甲班和乙班同学在体育课上进行拔河比赛,比赛采取三场两胜制(当一个班获得两场胜利时,该班获胜,比赛结束),假设每场比赛甲班获胜的概率为35,每场比赛结果互不影响,则甲班最终获胜的概率为( )A .727B .925C .36125D .81125解:甲班最终获胜有三种情况: ①甲班前两场获胜;②甲班第1场和第3场获胜,第2场输; ③甲班第1场输,第2场和第3场获胜.故甲班最终获胜的概率为(35)2+35×(1−35)×35+(1−35)×(35)2=81125.故选:D .8.在△ABC 中,AB =2,cos (A ﹣B )cos (B ﹣C )cos (C ﹣A )=1,P 为△ABC 所在平面内的动点,且P A =1,则PB →⋅PC →的取值范围是( ) A .[−32,92]B .[−12,112]C .[3−2√3,3+2√3]D .[3−√3,3+√3]解:∵A ,B ,C ∈(0,π),∴A ﹣B ∈(﹣π,π),B ﹣C ∈(﹣π,π),C ﹣A ∈(﹣π,π),可得cos (A ﹣B )∈(﹣1,1],cos (B ﹣C )∈(﹣1,1],cos (C ﹣A )∈(﹣1,1], 若cos (A ﹣B )cos (B ﹣C )cos (C ﹣A )=1,则cos (A ﹣B )=1,cos (B ﹣C )=1,cos (C ﹣A )=1, 可得A ﹣B =0,B ﹣C =0,C ﹣A =0, 所以A =B =C ,所以△ABC 是等边三角形. 建立如图所示的平面直角坐标系,∵AB =2,∴B (2,0),C(1,√3).由题意设P (cos θ,sin θ)(0≤θ<2π),则PB →=(2−cosθ,−sinθ),PC →=(1−cosθ,√3−sinθ),∴PB →⋅PC →=(2−cosθ)(1−cosθ)−sinθ(√3−sinθ)=3−2√3cos(θ−π6). 因为cos(π6−θ)∈[−1,1],所以3−2√3cos(θ−π6)∈[3−2√3,3+2√3]. 故选:C .二、多项选择题;本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知z1,z2为复数,则下列说法正确的是()A.若z1=z2,则z1=z2B.若z1+z2∈R,则z1与z2的虚部相等C.若z1z2=0,则z1=0或z2=0D.若z12+z22=0,则z1=z2=0解:对于A,若z1=z2,则z1和z2互为共轭复数,所以z1=z2,故A正确;对于B,若z1+z2∈R,则z1与z2的虚部互为相反数,故B错误;对于C,若z1z2=0,则|z1z2|=|z1|•|z2|=0,所以|z1|=0或|z2|=0,可得z1=0或z2=0,故C正确;对于D,取z1=1,z2=i,可得z12+z22=1−1=0,故D错误.故选:AC.10.某校组织“校园安全”知识测试,随机调查600名学生,将他们的测试成绩(满分100分)按照[50,60),[60,70),⋯,[90,100]分成五组,得到如图所示的频率分布直方图,则下列说法正确的是()A.图中x=0.1B.估计样本数据的第60百分位数约为85C.若每组数据以所在区间的中点值为代表,则这600名学生成绩的平均数约为79.5D.若按各组人数比例用分层随机抽样的方法抽取30名成绩低于80分的学生,则成绩在[60,70)内的学生应抽取10人解:对于A,由图知10×(x+0.015+0.02+0.03+0.025)=1,解得x=0.01,A错误;对于B,成绩在[50,80)内对应的频率为0.1+0.15+0.2=0.45<0.6,成绩在[50,90)内对应的频率为0.1+0.15+0.2+0.3=0.75>0.6,因此第60百分位数m位于区间[80,90)内,m=80+0.6−0.450.3×(90−80)=85,所以估计样本数据的第60百分位数约为85,B正确;对于C,平均数约为x=55×0.1+65×0.15+75×0.2+85×0.3+95×0.25=79.5,C正确;对于D,成绩低于80分的三组学生的人数之比为0.1:0.15:0.2=2:3:4,则应选取成绩在[60,70)内的学生人数为30×32+3+4=10,D 正确. 故选:BCD .11.已知正方形ABCD 的边长为2,向量a →,b →满足AB →=2a →,BC →=b →−2a →,则( ) A .|b →|=2B .a →⋅b →=2C .a →在b →上的投影向量的模为√2D .(b →−4a →)⊥b →解:对于A ,由已知可得b →=2a →+BC →=AB →+BC →=AC →, 在正方形ABCD 中可得|AC →|=2√2,故A 错误;对于B ,a →⋅b →=12AB →⋅AC →=12|AB →||AC →|cos45°=12×2×2√2×√22=2,故B 正确;对于C ,a →在b →上的投影向量的模为|a →⋅b →||b →|=2√2=√22,故C 错误;对于D ,(b →−4a →)⋅b →=b →2−4a →⋅b →=0, 又b →−4a →与b →均不是零向量, 所以(b →−4a →)⊥b →,故D 正确. 故选:BD .12.如图,已知点P 在圆柱O 1O 的底面圆O 的圆周上,AB 为圆O 的直径,A 1A ,B 1B 为圆柱的两条母线,且A 1A =3,OA =1,∠BOP =60°,则( )A .PB ⊥平面A 1APB .直线A 1P 与平面ABP 所成的角的正切值为√32C .直线A 1P 与直线AB 所成的角的余弦值为√34D .点A 到平面A 1BP 的距离为32解:对于A ,由已知得AA 1⊥平面ABP ,PB ⊂平面APB ,所以AA 1⊥PB , 又因为AB 是底面圆的直径,P 在圆周上且异于A 、B 两点,所以BP ⊥AP , 又A 1A ∩AP =A ,AA 1、AP ⊂平面A 1AP ,所以PB ⊥平面A 1AP ,故A 正确; 对于B ,因为AA 1⊥平面ABP ,所以直线A 1P 与平面ABP 所成的角为∠A 1P A , 因为∠BOP =60°,则∠PAO =12∠BOP =12×60°=30°, 所以PB =12AB =12×2=1,PA =√AB 2−PB 2=√22−12=√3,AA 1=3,故tan ∠APA 1=AA 1AP =33=√3,故直线A 1P 与平面ABP 所成的角的正切值为√3,故B 错误; 对于C ,连接B 1P ,因为AA 1∥BB 1且AA 1=BB 1,故四边形AA 1B 1B 为平行四边形, 所以AB ∥A 1B 1,所以直线A 1P 与直线AB 所成的角为∠B 1A 1P 或其补角, 在△A 1B 1P 中,A 1P =√AP 2+A 1A 2=√(√3)2+32=2√3, B 1P =√BP 2+B 1B 2=√12+32=√10,所以cos ∠B 1A 1P =A 1B 12+A 1P 2−B 1P 22A 1B 1⋅A 1P =22+(2√3)2−(√10)22×2×2√3=√34,故C 正确; 对于D ,设点A 到平面A 1PB 的距离为h , 则V A−A 1PB =V A 1−APB ,即13⋅S △A 1PB ⋅ℎ=13⋅S △APB ⋅AA 1,又S △APB =12AP ⋅BP =12×√3×1=√32,S △A 1PB =12A 1P ⋅PB =12×2√3×1=√3, 所以13×√3×ℎ=13×√32×3,解得ℎ=32,故D 正确.故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.如图,一个水平放置的△ABO 的斜二测画法的直观图是等腰直角三角形A ′B ′O ′,若B ′A ′=B ′O ′=1,则原三角形ABO 的面积为 √2 .解:根据题意可得O ′A ′=√2, 在△ABO 中,OB =O ′B ′=1, OA =2O ′A ′=2√2, 所以△ABO 的面积为S =12×1×2√2=√2 故答案为:√2.14.甲、乙各自从“篮球”“足球”“排球”“游泳”“体操”5个社团中随机选择1个社团加入,且他们加入的社团不同,则他们加入的都是球类运动社团的概率是310.解:总的样本点的个数为A 52=20,事件“他们加入的都是球类运动社团”包含的样本点有A 32=6个,故所求概率为620=310.故答案为:310.15.在△ABC 中,点D 满足DC →=2AD →,若线段BD 上的一点P 满足AP →=xAB →+yAC →(x >0,y >0),则y ﹣x 的取值范围是 (−1,13) .解:∵DC →=2AD →,∴AC →=3AD →,∴AP →=xAB →+3yAD →. ∵B ,P ,D 三点共线,∴x +3y =1,∵x >0,∴y =13(1−x)<13,∴0<y <13, ∴y −x =y −(1−3y)=4y −1∈(−1,13).故答案为:(−1,13).16.如今中国被誉为“基建狂魔”,可谓逢山开路,遇水架桥.高速公路里程、高铁里程双双都是世界第一.建设过程中研制出的用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先水平.如图是某重器上一零件结构模型,中间大球为正四面体的内切球,小球与大球相切,同时与正四面体的三个面相切.设AB =a ,则该模型中5个球的表面积之和为π3a 2 .解:如图所示,设O 为大球的球心,大球的半径为R ,大正四面体的底面中心为E ,棱长为a ,高为h ,CD 的中点为F ,连接OA ,OB ,OC ,OD ,OE ,BF , 则BE =23BF =√33a ,正四面体的高ℎ=AE =√AB 2−BE 2=√63a , 因为V 正四面体=4V O ﹣ABC ,所以13×S △ABC ℎ=4×13×S △ABC ×R ,所以R =14ℎ=√612a ,设小球的半径为r ,小球也可看作一个小的正四面体的内切球,且小正四面体的高ℎ小=ℎ−2R =√66a ,所以r =14ℎ小=√624a =R2,故该模型中5个球的表面积之和为4πR 2+4×4πr 2=8πR 2=8π×6144a 2=π3a 2. 故答案为:π3a 2.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)已知复数z =m +(4﹣m 2)i (m 为正实数),且z +5i ∈R . (1)求z ;(2)若z 1=z(a +i)在复平面内对应的点位于第二象限,求实数a 的取值范围. 解:(1)由z +5i =m +(9﹣m 2)i 为实数,可得9﹣m 2=0, 解得m =±3,因为m >0,所以m =3, 所以z =3﹣5i ;(2)由(1)可知z =3+5i ,所以z 1=z(a +i)=(3+5i)(a +i)=(3a −5)+(5a +3)i , 因为z 1在复平面内对应的点在第二象限, 所以{3a −5<05a +3>0,解得−35<a <53,故实数a 的取值范围为(−35,53).18.(12分)如图所示,在多面体ABCDEF 中,四边形ABCD 是正方形,△ABF 是等边三角形,EF ∥AD ,且EF =12AD =2,M ,N 分别是AD ,CB 的中点. (1)证明:平面NMF ∥平面ECD ;(2)若平面ABF ⊥平面ABCD ,求四棱锥E ﹣ABCD 的体积.解:(1)证明:因为EF ∥AD ,EF =12AD =2,M 是AD 的中点, 所以EF ∥DM ,且EF =DM , 所以四边形DEFM 是平行四边形, 从而MF ∥DE .因为MF ⊄平面ECD ,DE ⊂平面ECD , 所以MF ∥平面ECD . 同理NF ∥平面ECD , 又MF ∩NF =F ,所以平面NMF ∥平面ECD .(2)设AB 的中点为H ,连接FH ,则FH ⊥AB .因为平面ABF ⊥平面ABCD , 平面ABF ∩平面ABCD =AB , FH ⊂平面ABF , 所以FH ⊥平面ABCD ,因为EF ∥AD ,EF ⊄平面ABCD , 所以EF ∥平面ABCD ,所以E 到平面ABCD 的距离为FH =2√3, 所以V E−ABCD =13×(4×4)×2√3=32√33. 19.(12分)根据城市空气质量污染指数的分级标准,空气污染指数(API )不大于100时,空气质量为优良.某城市环境监测部门从上个月的空气质量数据中随机抽取5天的空气污染指数,所得数据分别为90,110,x ,y ,150,已知这5天的空气污染指数的平均数为110. (1)若x <y ,从这5天中任选2天,求这2天空气质量均为优良的概率; (2)若90<x <150,求这5天空气污染指数的方差的最小值. 解:(1)由题意知15(90+110+x +y +150)=110,则x +y =200.因为x <y ,所以x <100<y .从这5天中任选2天,所有的结果为:(90,110),(90,x ),(90,y ),(90,150),(110,x ),(110,y ),(110,150),(x ,y ),(x ,150),(y ,150),共10种, 这2天的空气质量均为优良的结果为(90,x ),只有1种, 故所求的概率为P =110. (2)方差s 2=15×[(90−110)2+(110−110)2+(x −110)2+(y −110)2+(150−110)2] =15[2000+(x −110)2+(90−x)2]=25(x −100)2+440,因为90<x <150,所以当x =100时,s 2的值最小,最小值为440. 20.(12分)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a−b+c c=b a+b−c.(1)求A ; (2)若b −c =√33a ,证明:△ABC 是直角三角形. 解:(1)∵a−b+c c=b a+b−c,∴bc =b 2+c 2﹣a 2,由余弦定理得cosA =b 2+c 2−a 22bc =bc 2bc =12, 又0<A <π,∴A =π3; (2)证明:∵b −c =√33a , 由正弦定理得sinB −sinC =√33sinA =12,∴sinB −sin(2π3−B)=sinB −√32cosB −12sinB =12sinB −√32cosB =sin(B −π3)=12, ∵B ∈(0,2π3), ∴B −π3∈(−π3,π3), ∴B −π3=π6,即B =π2, 故△ABC 是直角三角形.21.(12分)为了保护一件珍贵文物,博物馆需要用一个密封的玻璃罩罩住文物,玻璃罩的几何模型如图,上部分是正四棱锥P ﹣A 1B 1C 1D 1,下部分是正四棱柱ABCD ﹣A 1B 1C 1D 1,正四棱柱的高O 1O 是正四棱锥的高PO 1的52倍.(1)若AB =6dm ,OO 1=5dm ,求玻璃罩的容积是多少升(玻璃厚度不计);(2)若P A 1=4dm ,当PO 1为多少时,下部分的正四棱柱侧面积最大,最大侧面积是多少?解:(1)(1)∵OO 1=5dm ,∴PO 1=2dm .∴玻璃罩的容积V =13×62×2+62×5=24+180=204(dm 3)=204(L). (2)连接A 1O 1,设PO 1=xdm (0<x <4),则O 1O =52xdm ,A 1O 1=√16−x 2dm ,A 1B 1=√2√16−x 2dm , ∴正四棱柱的侧面积S =4⋅52x ⋅√2√16−x 2=10√2√(16−x 2)x 2.∵S ≤10√2×x 2+16−x 22=80√2,当且仅当x =√16−x 2,即x =2√2时,取等号.∴当PO 1=2√2dm 时,正四棱柱侧面积最大,最大为80√2dm 2.22.(12分)某大学为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了200人,分别对这两家餐厅进行评分,满分为60分.整理评分数据,将评分分成6组:[0,10),[10,20),⋯,[50,60],得到A 餐厅评分的频率分布直方图,以及B 餐厅评分的频数分布表如下: B 餐厅评分的频数分布表根据学生对餐厅的评分定义学生对餐厅的“满意度指数”如下:(1)在调查的200名学生中,求对A 餐厅的满意度指数为2的人数;(2)从该大学再随机抽取1名在A,B餐厅都用过餐的学生进行调查,用样本中不同的满意度指数的频率估计这名学生对应的满意度指数的概率,假设他对A,B餐厅的评分互不影响,求他对A餐厅的满意度指数比对B餐厅的满意度指数低的概率.解:(1)学生对A餐厅的评分在[30,50)的频率为(0.02+0.02)×10=0.4,即学生对A餐厅的满意度指数为2的频率为0.4,所以对A餐厅的满意度指数为2的人数为200×0.4=80;(2)设“对A餐厅的满意度指数比对B餐厅的满意度指数低”为事件M,记“对A餐厅的满意度指数为1”为事件A1,“对A餐厅的满意度指数为2”为事件A2,“对B餐厅的满意度指数为2”为事件B2,“对B餐厅的满意度指数为3”为事件B3,则P(A1)=(0.003+0.005+0.012)×10=0.2,P(A2)=0.4,P(B2)=30+80200=0.55,P(B3)=70200=0.35,所以P(M)=P(A1B2+A1B3+A2B3)=P(A1)P(B2)+P(A1)P(B3)+P(A2)P(B3)=0.2×0.55+0.2×0.35+0.4×0.35=0.32.。

河南天一大联考2024届高一数学第二学期期末考试试题含解析

河南天一大联考2024届高一数学第二学期期末考试试题含解析

河南天一大联考2024届高一数学第二学期期末考试试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .125- D .1252.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .3.下列函数中,既是偶函数又在(,0)-∞上是单调递减的是A .cos y x =-B .lg y x =C .21y x =-D .x y e -=4.在正方体1111ABCD A B C D -中,M 、N 分别是棱1AA 和AB 的中点,P 为上底面1111D C B A 的中心,则直线PB 与MN 所成的角为( ) A .30° B .45° C .60° D .90°5.若a 、b 、c >0且a (a +b +c )+bc =4-32a +b +c 的最小值为( ) A . 3-1B . 3 1C .3 2D .3 26.已知直线1:230l x ay +-=与()2:110l a x y -++=,若12l l //,则a =( ) A .2 B .1 C .2或-1 D .-2或17.若两个球的半径之比为1:3,则这两球的体积之比为( )A .1:3B .1:1C .1:27D .1:98.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,5sin 7A =,5a =,7b =,则sin B 等于( )A .35B .45C .37D .19.函数tan()42y x ππ=-的部分图像如图所示,则()OA OB AB +⋅的值为( )A .1B .4C .6D .710.下列命题正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。

2020届河南省天一大联考高三阶段性测试(四) 数学(理)

2020届河南省天一大联考高三阶段性测试(四) 数学(理)

绝密★启用前天一大联考2019-2020学年高中毕业班阶段性测试(四)理科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={x|(x -1)(x -4)≥0},N ={x|y =ln(2-x)},则M ∩N =A.(1,2)B.[1,2]C.(-∞,1]D.(2,4]2.复数z 满足1212i i z+=-,则z 的共轭复数z = A.-3+4i B.-3-4i C.3455i -+ D.3455i -- 3.已知两个平面α,β,直线l ⊂α,则“l //β”是“α//β”的A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 4.42)1(x x+-展开式中的常数项为 A.-11 B.11 C.70 D.-70 5.已知正实数a ,b ,c 满足(12)a =log 3a ,(14)b =log 3b ,c =log 32,则 A.a<b<c B.c<b<a C.b<c<a D.c<a<b6.已知向量a ,b 的夹角为135°,|a|=,|b|=3,且a +λb 与a -b 垂直,则λ= A.1415 B.56 C.23 D.167.设不等式组21022020x y x y x y +-≥-+≥+-≤⎧⎪⎨⎪⎩,表示的平面区域为D ,命题p :点(2,1)在区域D 内,命题q :点(1,1)在区域D 内。

则下列命题中,真命题是A.(⌝p)∨qB.p ∨(⌝q)C.(⌝p)∧(⌝q)D.p ∧q8.函数f(x)=333x xx --+的图象大致是9.已知F 1,F 2为双曲线E :22221(0,0)x y a b a b-=>>的左、右焦点,点M 为E 右支上一点。

河南省天一大联考2021届高三阶段性测试(四)

河南省天一大联考2021届高三阶段性测试(四)

河南省天一大联考2021届高三阶段性测试(四)一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1—3题。

史诗是一种庄严的文学体裁,不仅表现当时人类生存状态和生活形态,更体现人类发展内在的心灵史。

创作历史题材的影视剧,要达到“史诗”这个高度并不容易,但必须有书写史诗的胸怀和决心。

比如赵氏孤儿这个故事。

西方思想家、史学家伏尔泰以此为基础写就《中国孤儿》,影响甚广。

艺术家们在创作时几乎产生同样的困惑:一个人怎么会为救别人的儿子献出自己的骨肉?这就需要对故事发生时特定的历史背景和文化形态有所了解。

故事发生在分封制的春秋战国时期,那时士以下的人没有自己的土地,都依附宗主生存。

赵盾家族是晋国最大宗主,所以当赵家面临灭顶之灾时,为其留下宗嗣以期东山再起便成为赵家门人唯一的希望。

程婴献子就发生在这样的历史背景和生活形态下。

他们当时的行为不只是为赵家,还为许多依附于赵家生存的门人、为晋国,这就体现出中国人的大义精神。

提炼出历史中蕴含的精神,也就找到了创作这部历史题材的史诗胸怀。

(摘编自刘和平《创作历史剧当有史诗胸怀》)1.下列关于原文内容的理解和分析,不正确的一项是(3分)2.下列对原文论证的相关分析,不正确的一项是(3分)A.文章开头提出了创作历史剧应具有史诗胸怀的观点,然后从史诗胸怀的建立和有效传达两个方面来阐述。

B.文中以伏尔泰《中国孤儿》与一些历史剧的对比,是为了论述伏尔泰对中国历史有正确的认知。

C.文中提到历史剧本不同于历史学术论文,论证了文艺创作要遵循文学和美学创作规律。

D.义章举传统戏曲的例子说明创作要根据审美需求变化,引用苏轼的话说明创作要灵活自然。

3.根据原文内容,下列说法不正确的一项是(3分)A.优秀的历史剧有助于人们了解过去的历史、文化,可以让人们体味、思考历史剧中蕴含的现代价值,因比受到大众喜爱。

B.历史上出现程婴献子的行为是因为受当时的历史背景和文化形态的影响,其中蕴含着中国人的大义精神。

河南省天一大联考高一下学期段考数学试卷(解析版)

河南省天一大联考高一下学期段考数学试卷(解析版)
( I)求x的值;
( II)若tanθ=2,求 的值.
20.已知ω>0,平面向量 =(2sinωx, ), =(2cos(ωx+ ),1),函数f(x)= 的最小正周期是π.
( I)求f(x)的解析式和对称轴方程;
( II)求f(x)在 上的值域.
21.已知 .
( I)求sin2α的值;
( II)求 的值.
又角A是△ABC的一个内角,
∴90°<A<180°,
∴△ABC是钝角三角形.
故选:C.
3.已知向量 =(k,cos ),向量 =(sin ,tan ),若 ,则实数k的值为()
A. B.﹣1C. D.1
【考点】96:平行向量与共线向量.
【分析】利用向量平行的性质直接求解.
【解答】解:∵向量 =(k,cos ),向量 =(sin ,tan ), ,
∴ = ,
解得实数k= .
故选:C.
4.已知向量 =( , ), =( , ),则∠ABC=()
A. B. C. D.
【考点】9R:平面向量数量积的运算.
【分析】根据题意,设向量 与 的夹角为θ,则∠ABC=π﹣θ,由向量 、 的坐标计算可得cosθ的值,结合θ的范围可得θ的值,又由∠ABC=π﹣θ,计算可得答案.
∴m+n=﹣1.
故选:B.
2.已知角A是△ABC的一个内角,且 ,则△ABC的形状是()
A.直角三角形B.锐角三角形
C.钝角三角形D.无法判断△ABC的形状
【考点】GZ:三角形的形状判断.
【分析】利用倍角公式得到tanA= = =﹣4 <0.由此推知三角形ABC的形状.
【解答】解:∵ ,
∴tanA= = =﹣4 <0.

【天一大联考】2017-2018学年高一年级阶段性测试(一)生物试题(含答案)(201711)

【天一大联考】2017-2018学年高一年级阶段性测试(一)生物试题(含答案)(201711)

【天一大联考】2017-2018学年高一年级阶段性测试(一)生物试题(含答案)(201711)绝密☆启前用天一大联考2017-2018学年高一年级阶段性测试(一)生物一、选择题:本题共20小题,每小题2分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列有关生命和生命系统的说法,错误的是A.金鱼和金鱼藻具有的生命系统结构层次不完全相同B.HIV、乳酸菌和草履虫都属于个体层次C.培养皿中的大肠杆菌菌落属于种群层次D.人工合成了具有活性的蛋白质,不意味着人工制造了生命2.下列有关蓝藻和黑藻的比较,错误的是A.蓝藻细胞内没有染色体,黑藻细胞内有染色体B.蓝藻细胞内只有一种细胞器,黑藻细胞内有多种细胞器C.蓝藻细胞内只有一种核酸,黑藻细胞内有两种核酸D.蓝藻和黑藻都含有叶绿素,都是能进行光合作用的自养生物3.阿斯巴甜是一种人造甜味剂,其甜度约为蔗糖的200倍。

阿斯巴甜的分子结构式如图中c所示,其合成所需的主要原料是a和b。

下列说法错误的是A.用于合成阿斯巴甜的主要原料a和b都属于氨基酸B.—分子a和一分子b脱水缩合形成的二肽中含有1个氨基、2个羧基C.阿斯巴甜不属于糖类,可作为糖尿病患者食品的甜味剂D.将一分子XXX的肽键水解,可得到一分子a和一分子b4.现有两个姑且装片,材料划分取自菜青虫和卷心菜,在显微镜下对这两个装片进行观察。

以下观察成效和对应的判别,错误的有①若发觉细胞中含有叶绿体,可判别该细胞来自卷心菜②若发觉细胞中不含叶绿体,可判别该细胞来自菜靑虫③若发觉细胞中含有纤维素,可判别该细胞来自卷心菜④若发觉细胞中含有中央体,可判别该细胞来自菜靑虫A.0个B.1个C.2个D.3个5.建立于19世纪的细胞学说,是自然科学史上的一座丰碑。

①—④为细胞学说建立和发展过程中的重大事件,正确的时间排序是①德国科学家XXX提出“细胞是构成动物体的基本单元”②英国科学家XXX用显微镜观察植物的木栓组织,发现“小室”,并把“小室”命名为“细胞”③比利时的XXX通过大量的尸体剖解,揭露了人体在器官程度的布局A.③②④①B.②③①④C.②③④①D.③②①④6.下列关于组成人体细胞的主要元素及化合物的叙述,错误的是A.人体细胞干重中含量最多的元素,在地壳中的含量并不是最多的B.人体活细胞中含量最多的元素,其在细胞鲜重中所占的百分比比其他元素的总和还要多C.细胞干重中含量最多的化合物,一定含有的元素为C、H。

【全国校级联考】河南省天一大联考2017-2018学年高一下学期阶段性测试(三)数学试题

【全国校级联考】河南省天一大联考2017-2018学年高一下学期阶段性测试(三)数学试题

【全国校级联考】河南省天一大联考2017-2018学年高一下学期阶段性测试(三)数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 转化为十进制数是( )A.46 B.47 C.66 D.672. 为了得到函数的图象,只需把函数的图象上所有的点( )A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度3. 如图所示,该程序框图输出的结果为( )A.9 B.8 C.4 D.34. 已知在长为的线段上任取一点,并以线段为半径作圆,则这个圆的面积介于与之间的概率为( )A.B.C.D.5. 为了解某校学生的视力情况,随机地抽查了该校100名学生的视力情况,得到的频率分布直方图如下图,但不慎将部分数据丢失,仅知道后5组频数之和为70,则视力在4.6到4.7之间的学生数为( )A.14 B.16 C.30 D.326. 用系统抽样(等距)的方法从含有120个个体的总体中抽取容量为10的样本,将总体编号为1-120,若编号为114的个体被抽到,则以下编号未被抽到的是( )A.30 B.40 C.66 D.907. 在如图所示的茎叶图中,若甲组数据的众数为14,则甲组数据的平均数与乙组数据的中位数之和为( )A.25 B.24 C.21 D.208. 已知,则的大小关系是( )A.B.C.D.9. 已知,则( )A.B.C.D.10. 点在边长为2的正方形内运动,则动点到定点的距离的概率为( )A.B.C.D.11. 对于具有线性相关关系的变量,有以下一组数据:1 2 3 4 52 3.4 5.2 6.4 8根据上表,用最小二乘法求得回归直线方程为,则当时,的预测值为( )A.11 B.10 C.9.5 D.12.512. 已知函数满足,函数图象上距轴最近的最高点坐标为,则下列说法正确的是( )A.为函数图象的一条B.的最小正周期为对称轴C.为函数图象的一个D.对称中心二、填空题13. 甲、乙两支足球队进行比赛,根据赛前的数据分析,甲队赢球的概率为0.55,乙队赢球的概率为0.2,则两支球队踢成平局的概率为__________.14. 已知函数的最小正周期为,当时,函数取得最小值,则__________.15. 一组样本数据按从小到大的顺序排列为:,,,,,,已知这组数据的平均数与中位数均为,则其方差为__________.16. 执行如图所示的程序框图,输出值为__________.三、解答题17. 已知.(1)求的值;(2)求的值.18. 某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?19. 在试制某种洗涤剂新产品时,不同添加剂的种类以及添加的顺序对产品的性质都有影响,需要对各种不同的搭配方式做实验进行比较.现有芳香度分别为1,2,3,4,5,6的六种添加剂可供选用,根据试验设计原理,需要随机选取两种不同的添加剂先后添加进行实验.(1)求两种添加剂芳香度之和等于5的概率;(2)求两种添加剂芳香度之和大于5,且后添加的添加剂芳香度较大的概率.学历35岁以下35-55岁55岁及以上本科60 40硕士80 40(1)若随机抽取一人,年龄是35岁以下的概率为,求;(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.21. 函数的部分图象如图所示.(1)求的解析式;(2)求的单调递增区间;(3)先将的图象向右平移个单位长度,再将图象上所有点的纵坐标扩大到原来的2倍得到函数的图象,求在区间上的值域.22. 某商店对新引进的商品进行合理定价,将该产品按事先拟定的价格进行试定价9 9.2 9.4 9.6 9.8 10(元)销量100 94 93 90 85 78 (件)(1)求回归直线方程;(2)假设今后销售依然服从(Ⅰ)中的关系,且该商品金价为每件5元,为获得最大利润,商店应该如何定价?(利润=销售收入-成本)参考公式:.。

2023-2024学年河南省商丘市天一大联考高一(上)段考数学试卷(一)+答案解析(附后)

2023-2024学年河南省商丘市天一大联考高一(上)段考数学试卷(一)+答案解析(附后)

2023-2024学年河南省商丘市天一大联考高一(上)段考数学试卷(一)1.已知集合,,则( )A. B. C. D.2.已知集合,若,则满足条件的集合B的个数为( )A. 1B. 2C. 3D. 43.已知全集,集合,,则( )A. B. C. D.4.下列命题是真命题的是( )A. B. ,C. ,D. ,5.已知p:,q:关于x的不等式的解集为R,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充要条件6.若,则的最小值为( )A. 2B.C.D.7.已知集合,若,则实数a的值为( )A. 1B. 2C. 3D. 48.已知关于x的不等式的解集为,则下列结论正确的是( )A.B.C. 不等式的解集为D. 不等式的解集为9.已知集合,则下列关系正确的是( )A. B. C. D.10.已知,,则下列关系正确的是( )A. B. C. D.11.下列说法正确的是( )A. 命题p:,使得,则p的否定:,B. 命题p:,,则p的否定:,C. 命题“任意一个平行四边形的四个顶点都在同一个圆上”的否定是假命题D. 命题“存在两个不全等三角形的面积相等”的否定是假命题12.已知关于x的方程,则下列结论正确的是( )A. 方程有一正一负两个实数根的充要条件是B. 方程有两个不相等的正实数根的充要条件是C. 方程无实数根的一个充分条件是D. 当时,方程的两实数根之和为113.不等式的解集为______ .14.已知集合,,且,则实数a的最大值为______ .15.若命题“,”是假命题,则实数m的最小值是______ .16.已知a,b为正实数,且满足,若存在a,b使不等式成立,则实数k的取值范围是______ .17.判断下列命题是全称量词命题还是存在量词命题,请写出它们的否定,并判断否定的真假.对任意,;存在,18.已知命题p:“,”,命题q:“,”,若p是真命题,q是假命题,求实数m的取值范围.19.已知集合,若,求;若中有且仅有一个元素,求实数m的值.20.已知集合,若,求a的取值范围;若是的充分不必要条件,求a的取值范围.21.某人投资180万元建成一座海水养殖场用于海参养殖,建成后每年可获得销售收入130万元,同时,经过预算可知年内须另外投入万元的经营成本.该海水养殖场从第几年起开始盈利总利润为正?该海水养殖场总利润达到最大时是第几年?请求出总利润的最大值.该海水养殖场年平均利润达到最大时是第几年?请求出年平均利润的最大值注:总利润=销售总收入-经营成本-投资费用22.已知关于x的方程其中m,p,q均为实数有两个不等实根,若,求m的取值范围;若,为两个整数根,p为整数,且,求,;若,满足,且,求p的取值范围.答案和解析1.【答案】D【解析】解:,,则故选:根据已知条件,结合并集的定义,即可求解.本题考查并集及其运算,属于基础题.2.【答案】C【解析】解:由,得,所以,又,则集合B可以为,或,故有3个.故选:求得集合,根据真子集的概念即可得出集合B的个数.本题考查真子集的概念,属基础题.3.【答案】B【解析】解:因为,,所以,又因为,所以故选:根据补集的概念与交集的运算,求解即可.本题考查了补集的概念与交集的运算问题,是基础题.4.【答案】C【解析】解:对于A,,当时,,该命题为假命题;对于B,因为,所以是无理数,该命题为假命题;对于C,是非负整数,也即自然数,所以该命题是真命题;对于D,因为,所以方程没有实数解,该命题为假命题.故选:结合绝对值的代数意义检验选项A;结合数的分类检验选项BC;结合二次方程根的存在条件检验选项本题考查量词及命题的真假关系的判断,属于基础题.5.【答案】A【解析】解:p:,即p:,因为关于x的不等式的解集为R,所以,即,解得,因为可以推出,而推不出,所以p是q的充分不必要条件.故选:先求出p,q中m的取值范围,再结合充分条件和必要条件的定义判断.本题主要考查了一元二次不等式的解法,考查了充分条件和必要条件的定义,属于基础题.6.【答案】D【解析】解:因为,所以,当且仅当,即时取等号,所以的最小值为故选:化,利用基本不等式求最小值即可.本题考查了利用基本不等式求最值的应用问题,是基础题.7.【答案】B【解析】解:由题意得,即,解得,因为,所以,而,故故选:由已知结合集合相等条件即可求解.本题考查集合相等以及集合中元素的特性.8.【答案】C【解析】解:由已知可得,3是关于x的一元二次方程的两根,且,由根与系数的关系可得,所以,,故A错误;因为,所以,故B错误;因为,所以不等式可化为,而,所以,故C正确;不等式可化为,即,解得或,故D错误.故选:由题意可得,3是关于x的一元二次方程的两根,且,再利用韦达定理,以及一元二次不等式的解法求解即可.本题主要考查了“三个二次”的关系,考查了一元二次不等式的解法,属于基础题.9.【答案】ABC【解析】解:集合A中有两个元素:0和,则A,B正确,D错误;是任何非空集合的真子集,故C正确.故选:根据元素与集合,集合与集合的关系逐一检验选项即可.本题考查元素与集合,集合与集合的关系,属于基础题.10.【答案】BCD【解析】解:对于A,不妨设,,满足,,但,故A错误;由,得,故B正确;,因为,,,,所以,故C正确;,因为,,,,所以,故D正确.故选:根据已知条件,结合不等式的性质,以及特殊值法,即可求解.本题考查不等式的基本性质,属于基础题.11.【答案】AD【解析】解:对于A,“,使得”的否定为“,”,故A 正确;对于B,命题p:,,故p的否定为“,”,故B错误;对于C,原命题的否定为“存在一个平行四边形的四个顶点不在同一个圆上”,为真命题,故C错误;对于D,对于两个等底等高的三角形,它们面积相等但不全等,故原命题为真命题,其否定为假命题,故D 正确.故选:根据已知条件,结合命题否定的定义,即可求解.本题主要考查命题的真假判断与应用,属于基础题.12.【答案】ABC【解析】解:对于A,由题意得,解得,故A正确.对于B,由题意得,解得,故B正确.对于C,若方程无实数根,则,解得,故该条件的一个充分条件可以是,故C正确;对于D,当时,,方程无实数根,故D错误.故选:由题意,利用一元二次方程根的分布与系数的关系,得出结论.本题考查解一元二次方程和充要条件,属于基础题.13.【答案】【解析】解:由可得,解得故答案为:利用移项通分化简可求.本题考查解分式不等式的求解,属于基础题.14.【答案】【解析】解:由题意得因为,所以,解得,故a的最大值为故答案为:求出集合A的补集,根据已知包含关系列不等式,可得实数a的最大值.本题考查集合间的关系及集合的运算,属于基础题.15.【答案】【解析】解:因为命题,是假命题,所以命题,是真命题,当时,,所以,即m的最小值是故答案为:题意得,是真命题,然后结合含有量词的命题的真假关系与最值关系的转化即可求解.本题考查量词和命题的真假判断.16.【答案】或【解析】解:因为a,b为正实数,且满足,所以,当且仅当,即,时,等号成立.因为存在a,b使成立,故只需,即,解得或故答案为:或利用基本不等式求的最小值,再解一元二次不等式,从而求得k的取值范围.此题考查了基本不等式求最值问题,考查了函数恒成立问题,考查了转化思想,属于中档题.17.【答案】解:对任意,为全称量词命题.其否定为:存在,,由方程可得,所以对任意,为假命题,故否定为真命题.存在,为存在量词命题.其否定为:对任意,,因为,所以对任意,,故否定为真命题.【解析】根据全称命题和命题否定的定义,并判断真假,即可求解;根据特称命题和命题否定的定义,并判断真假,即可求解;本题主要考查命题的真假判断与应用,属于基础题.18.【答案】解:根据题意,命题p:“,”,命题q:“,”,若p为真命题,即恒成立,又由,则有,故要使恒成立,则须若q是假命题,所以q的否定为真命题,即命题“,使得”为真命题,故有实根,所以,解得或综上,实数m的取值范围为【解析】根据题意,分析命题p是真命题,q是假命题时m的取值范围,综合可得答案.本题考查命题的真假判断,涉及存在量词命题和全称量词命题的定义,属于基础题.19.【答案】解:已知集合,当时,,联立消去y得,解得或当时,;当时,故联立,得,因为中有且仅有一个元素,所以方程有唯一解.可以分两种情况考虑:①当时,方程只有一个根,符合题意;②当时,方程有两个相等的实数根,即,从而可得,解得,故实数或【解析】联立求解即可;联立,得,因为中有且仅有一个元素,所以方程有唯一解,然后求解即可.本题考查集合的运算,重点考查了解方程,属中档题.20.【答案】解:,,,或,当时,,集得,当时,,且或,解得或,实数a的取值范围是或;由是的充分不必要条件,得,即,由知,又,,解得,故实数a的取值范围为【解析】先求出集合A,B,再利用集合的基本运算求解;由题意可知,即,列出关于a的不等式组,求出a的取值范围即可.本题主要考查了一元二次不等式的解法,考查了集合的基本运算,属于中档题.21.【答案】解:设第x年时,该海水养殖场的总利润为y万元,由题意可得,令,得,解得因为,所以该海水养殖场从第3年起开始盈利;,所以当,y取得最大值320,即第10年时,总利润达到最大,最大值为320万元;设年平均利润为W万元,则,当且仅当,即时等号成立,所以第6年时,年平均利润达到最大,最大值为40万元.【解析】设第x年时,该海水养殖场的总利润为y万元,由题意可得,解出x的范围即可;利用二次函数的性质求解;利用基本不等式求解.本题主要考查了函数的实际应用,考查了一元二次不等式和基本不等式的应用,属于中档题.第11页,共11页22.【答案】解:当,原方程为,由于该方程有两个不等实根,故有,解得,故实数m 的取值范围为将代入方程,可得,再根据,且,解得或因为,为两个整数根,p 为整数,所以为整数,所以或把代入方程,可得,解得,把代入方程,得,解得,综上,当时,,;当时,,因为,所以又方程有两个不等实根,,所以,整理得由根与系数的关系得由足整理可得,整理得,所以,解得则,解得,即p 的取值范围为【解析】由题意,利用判别式大于零,求得m 的取值范围.先利用判别式大于零,求出p 的范围,再利用韦达定理从而判断或1,再分别代入方程,求出,先利用判别式大于零,整理得,再利用由根与系数的关系,求得p 的取值范围.本题主要考查一元二次方程中根与系数的关系,韦达定理,属于中档题.。

天一大联考2018高一阶段考试

天一大联考2018高一阶段考试

2018届语文模拟试题考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。

两河流域的楔形文字、古埃及的圣书字和中国的汉字,是世界上最古老的三大自源文字体系,但唯有汉字沿用至今。

这不应该是侥幸,而是源自于汉字的特质。

早期文字大都是象形、表意的,追根溯源,现在绝大多数仍在使用的拼音文字,其表音符号很多都是衍生自象形表意符号。

即便是汉字,占绝大比例的形声字的声符,也大多来自表意成分。

在长期发展中,汉字表音的因素在汉字体系中大大增强,表现出明显的表音化倾向,正因为如此,有的学者把汉字认定为“意音文字”,而不是纯粹的“表意文字”。

当然也有学者认为,汉字中的“表音”要素,原本也是表意字,所以归根到底,汉字还是“表意”的。

那么,汉字的生命力何在?若在汉字和汉语的关联中寻找原因,这首先是因为汉字的适用性。

汉字能够很好地记录汉语,这是汉字不废的重要原因之一。

汉字作为语素文字,一个字表示一个意思,在语音上没有什么变动,汉字和汉语匹配十分得当。

其次是汉字具有包容性。

孔子云:“三人行,必有我师焉。

”我们一看就懂,但如果当年有录音机录下老夫子的话,我们可能难以听懂。

因为语音是不断变化的,春秋时代的语音系统和现代普通话的语音系统大不一样。

然而,不管语音发生了何种变化,字仍然是这些字,意思始终不会改变,这就是时间的包容性。

如果当年《论语》和《史记》是用拼音文宇书写的,那么现在我们根本无法阅读,这一点对中华典籍的传承十分重要。

汉字承载了历史悠久、内容丰富且比较容易解读的文献,这也成为汉字不废的重要原因。

2024年河南省中考天一大联考数学试题

2024年河南省中考天一大联考数学试题

2024年河南省中考天一大联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.−32的相反数是()A.32B.23C.−23D.−322.据公安部消息,截至2023年底,我国新能源汽车保有量达2041万辆.数据“2041万”用科学记数法表示为()A.20.41×106B.2.041×108C.2.041×107D.0.2041×108 3.洛阳开工建设的地铁3号线,预计2025年基本建成.如图是施工现场的一个螺栓(其底部为正六棱柱),则它的左视图是()A.B.C.D.4.下列运算正确的是()A.x2⋅x3=x6B.3x+2x2=5x3C.(x−1)2=x2−1D.(−22−1)(1−22)=75.已知直线a∥b,一副三角板按照如图所示摆放,若∠1=57°,则∠2的度数为()A.72°B.57°C.50°D.48°6.小明统计了2024年年假期间(大年初二到初八)郑州市每天的最高气温(单位:℃):18,19,20,19,12,14,17,则这组数据的平均数(单位:℃)与众数(单位:℃)分别是()A.19,17 B.17,19 C.17,18 D.18,197.下列关于x的方程中一定没有实数根的是()A.x2−1=0B.x2−2x=0C.x2+kx−1=0D.x2+x+2=08.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=−1,给出下列四个结论:①a>0;②2a−b=0;③b2−4ac>0;④3a+c<0.其中结论正确的个数有()A.1个B.2个C.3个D.4个9.如图,点A,B,C分别在⊙O上,连接OA,OB,AC,BC,若cos∠AOB=513,则tan C的值为()A.15B.13C.23D.6510.如图1,动点P从矩形ABCD的顶点A出发,沿A→B→C的方向以1cm/s的速度匀速运动到点C.设点P运动所用时间为t s,△APC的面积为S cm2,图2是点P运动时S cm2随t s变化的关系图象,则点D到AC的距离为()A.3cm B.3.5cm C.65cm D.125cm二、填空题11.若一次函数y=x−b的图象与y轴交于负半轴,则b的值可以是.(写出一个即可)12.不等式组−2x+2≥02x+32>−2的整数解的个数为个.13.琪琪和妈妈玩摸纸牌游戏,先从一副扑克牌中抽出1张黑桃、3张红桃,然后把它们背面朝上洗匀放在桌子上,随机从中摸取两张,规定两次摸到的扑克牌花色不一样琪琪赢,否则妈妈赢,则琪琪赢的概率是.14.如图,在▱ABCD中,AB=2,∠BAD=60°,在AD上取一点E,以点E为圆心,DE的长为半径作弧,与BC边恰好相切于点B,则图中阴影部分面积为.15.如图,菱形ABCD中,∠ABC=60°,G是对角线AC的中点,△BEF是等腰直角三角形,∠EBF=90°,将△BEF绕点B顺时针旋转,连接AE,EG.已知AB=6,EF=6,在旋转过程中,当△AEG为直角三角形时,EG的长为.三、解答题16.(1)计算:−83−(−1)2024+(π−3.14)0;(2)化简:aa2+2a+1÷1−1a+1.17.为提高我市中学生的思维创新能力,市教育局举办了思维创新数学竞赛,竞赛设定满分100分,学生得分均为整数.在八年级初赛中,甲、乙两校各随机抽取40名学生,并对其成绩x(单位:分)进行整理、描述和分析.其部分信息如下.a.甲校学生成绩的扇形统计图(A组:0≤x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E组:90<x≤100).b.甲校学生成绩在70<x≤80这一组的成绩是(单位:分):73,77,73,78,72,75,77,78.c.甲、乙两校抽取学生成绩的平均数、中位数(单位:分)如下表:(1)以上成绩统计图表中m=,n=.(2)在抽取的同学中,参加竞赛的甲校同学,成绩高于平均分的人数有p人,参加竞赛的乙校同学,成绩高于平均分的人数有q人,比较p,q的大小,并说明理由.(3)通过以上数据分析,你认为哪个学校学生的“思维创新能力”更强?请说明理由.并为另一所学校提出一条合理化教学建议.18.如图,在△ABC中,AB=AC,BD平分∠ABC.(1)请用无刻度的直尺和圆规过点D作DE∥BC(保留作图痕迹,不写作法).(2)若(1)中所作DE交AB于点F,求证:CD=DF.19.位于卫辉市东南隅的镇国塔,是河南省重点保护文物.镇国塔为七层六角楼阁式砖塔,塔每层的六个角上都悬挂着一个风铃,风吹起的时候叮当作响,悦耳动听.某数学小组在老师的指导下,测算镇国塔的高度.如图,已知AD=2m,在点D处测得镇国塔的顶端E的仰角为33°,自A向镇国塔走30m到达点B,测得镇国塔的顶端E的仰角为60°(点A,B,C在一条直线上).则数学小组测算的镇国塔的高度CE是多少?(结果精确到0.1m.参考数据:sin33°≈0.545,cos33°≈0.839,tan33°≈0.649,3≈1.732)的图像交于点A(−3,1)和点B,四边形ACDE是正20.如图,直线y=mx与反比例函数y=kx方形,其中点C,D分别在x轴的负半轴和y轴的正半轴上,过点D作DF∥AB,与反比例函数图象在第二象限内的部分相交于点F.(1)求m和k的值.(2)求点D的坐标.(3)连接AF,BF,求△ABF的面积.21.为了让学生德智体美劳全面发展,提高学生们的动手能力,致远中学成立了烹饪社闭.为满足社团活动的需求,计划购买炒锅20口,通过市场调查了解到:若购进A种炒锅10口,B种炒锅5口,需要1325元;若购进A种炒锅4口,B种炒锅3口,需要595元.(1)求购进A,B两种炒锅每口分别需要多少元?(2)商家了解到学校社团实际需求,特推出以下优惠措施:根据需求,要求购买B种炒锅的数量不多于A种炒锅数量的1,请你帮忙设计出最省钱的购3买方案,并求出其所需费用.22.某公园雕塑OA的顶端点A处安装有喷水装置,喷出的水呈抛物线形.测得雕塑OA的高度为2m,当喷出的水柱与OA的水平距离为4m时,达到最大高度3.6m.以点O为原点,OA所在直线为y轴建立平面直角坐标系.(1)求水柱所在抛物线的函数表达式.(2)求水柱落地点与雕塑OA的水平距离.(3)为实现动态喷水效果,公园管理处决定对该喷水设施做如下设计改进:在喷出水柱所在抛物线y=ax2+bx+c形状不变的前提下,把喷水距离(动态喷水时,点B到OA的距离)控制在5m到10m之间(包含5m和10m),求改进后b的取值范围.23.综合与实践AB .如图1,在等腰直角三角形ABC中,∠ACB=90°,点D为AB边上的动点 BD<12(1)操作发现按下列步骤操作:第一步:将△BCD沿CD折叠,点B落在点G处,CG与AB相交于点O;第二步:取AD上一点E,连接CE,将△ACE沿CE折叠,使点A与点G重合.根据以上操作,∠DCE与∠DGE之间的数量关系为__________;线段DE与BD,AE之间的数量关系为__________.(2)深入探究如图2,在(1)的基础上,过点D作DF∥BC交CG于点F,连接EF.试判断△DEF的形状,并说明理由.(3)问题解决在(2)的条件下,当AB=12,CF:FG=5:7时,请直接写出折痕CD的长.。

河南省天一大联考2024届高一数学第二学期期末学业水平测试试题含解析

河南省天一大联考2024届高一数学第二学期期末学业水平测试试题含解析

河南省天一大联考2024届高一数学第二学期期末学业水平测试试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知偶函数()y f x =在区间[0,)+∞上单调递增,且图象经过点(1,0)-和(3,5),则当[3,1]x ∈--时,函数()y f x =的值域是( ) A .[0,5]B .[1,5]-C .[1,3]D .[3,5]2.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h ),其中:三棱锥的体积为V ,四棱锥的底面是边长为a 的正方形,圆锥的底面半径为r ,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是( ) A .3V a h =,3V r π=,1a r π= B .3V a h =,3V r h π=,ar π= C .3V a h =,3Vr hπ=,1a r π=D .3V a h =,3Vr h π=,a rπ= 3.一个三角形的三边长成等比数列,公比为x ,则函数25y x x =-的值域为( ) A .(54-,+∞) B .[ 54-,+∞) C .(54-,-1) D .[54-,-1) 4. 过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 间的距离为( ) A .4B .2C .D .5.一个正方体内接于一个球,过球心作一个截面,如图所示,则截面的可能图形是( )A .①③④B .②④C .②③④D .①②③6.过两点A (2,)m -,B(m ,4)的直线倾斜角是045,则m 的值是( ) A .1- B .3 C .1 D .3-7.若{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9=( ) A .39B .20C .19.5D .338.为了得到函数2cos 23y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( )A .向左平移6π个单位长度 B .向左平移3π个单位长度 C .向右平移6π个单位长度 D .向右平移3π个单位长度 9.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若ABC 的面积为2224b c a +-,则角A =( )A .π2 B .π3 C .π4D .π610.若线性方程组的增广矩阵是,解为,则的值为( )A .1B .2C .3D .4二、填空题:本大题共6小题,每小题5分,共30分。

2019届河南省天一大联考高三阶段性测试(四)(b卷) 数学(理)试卷【含答案及解析】

2019届河南省天一大联考高三阶段性测试(四)(b卷) 数学(理)试卷【含答案及解析】

2019届河南省天一大联考高三阶段性测试(四)(b 卷)数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设全集,集合,则图中的阴影部分表示的集合为()A. B. C. D.2. 已知是虚数单位,复数满足,则的虚部是()A. B. C. D.3. 若,则()A. B. C. D.4. 在区间上任选两个数和,则的概率为()A. B. C. D.5. 将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A. 的最小值为________B. 的最小值为C. 的最小值为________D. 的最小值为6. 执行如图所示的程序框图,若输入,则输出()A. 184B. 183C. 62D. 617. 在的展开式中,所有项的二项式系数之和为4096,则其常数项为()A. -220B. 220C. 110D. -1108. 已知是抛物线上一点,是抛物线的焦点.若是抛物线的准线与轴的交点,则()A. 60°B. 45°C. 30°D. 15°9. 函数(其中)的图象不可能是()A. B.C. D.10. 已知为矩形所在平面内一点,,则()A. 0B. -5或0C. 5D. -511. 某几何体的三视图如图所示,则该几何体的体积为()A. 2B. 1C.D.12. 已知函数,则方程的根的个数为()A. 5B. 4C. 3D. 2二、填空题13. 双曲线的一条渐近线与直线平行,则此双曲线的离心率为 __________ .14. 若实数满足,则的取值范围是 __________ .15. 《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米 __________ 斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率)16. 在中,内角的对边分别为,且 . 的外接圆半径为1, .若边上一点满足,且,则的面积为 __________ .三、解答题17. 已知数列的前项和为,且满足 .(1)求数列的通项公式;(2)若,求数列的前项和 .18. 某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照,分成9组,制成了如图所示的频率直方图.(1)求直方图中的值并估计居民月均用电量的中位数;(2)从样本里月均用电量不低于700度的用户中随机抽取4户,用表示月均用电量不低于800度的用户数,求随机变量的分布列及数学期望.19. 在三棱柱中,,侧面是边长为2的正方形,点分别在线段上,且 .(1)证明:平面平面;(2)若,求直线与平面所成角的正弦值.20. 已知圆:过椭圆: ( )的短轴端点,,分别是圆与椭圆上任意两点,且线段长度的最大值为 3.(Ⅰ)求椭圆的方程;(Ⅱ)过点作圆的一条切线交椭圆于,两点,求的面积的最大值.21. 已知函数在点处的切线方程为 .(1)求的值,并讨论在上的增减性;(2)若,且,求证: .(参考公式)22. 选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为 .(1)判断直线与圆的交点个数;(2)若圆与直线交于两点,求线段的长度.23. 选修4-5:不等式选讲已知函数 .(1)若,求不等式的解集;(2)若方程有三个实根,求实数的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)数学试卷

河南省天一大联考2017-2018学年高一上学期阶段性测试(一)数学试卷

=-)]2([f f 绝密☆启前用天一大联考2017-2018学年高一年级阶段性测试(一)数 学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条码粘贴在答题卡上的制定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}41{≤≤-∈=x Z x A ,}9,8,4,12{--=,B ,设B A C ⋂=,则集合C 的非空子集的个数为A. 8B. 7C. 4D. 32. 函数xx x -+-=41)3lg()(f 的定义域为 A. [0,1] B. (3,4] C. (3,4) D.[3,4)3. 函数x x x f 29)(3++-=的零点位于区间A. )(1,0B. )21(,C. )(3,2 D .)(4,3 4.已知函数⎩⎨⎧<≥=0log 0,2)(,2x x x f x ,则A. 4B. 3C. 2D.15.若定义在R 上的奇函数)(x f y =在[)+∞,0上单调递减,则不等式)1()(log 3-<f x f 的解集是 A. ⎪⎭⎫ ⎝⎛∞+⋃⎪⎭⎫ ⎝⎛-∞-,,3131 B. ⎪⎭⎫ ⎝⎛∞+,31 C. ⎪⎭⎫ ⎝⎛-3131, D. ⎪⎭⎫ ⎝⎛310,6.函数0(3)3(log )(>++=t x x f t 且)1≠t 的图像恒过点P ,则下列函数中图像不经过点P 的是 A. 1-=x y B. )42(log 2+=x yC. 52+=x yD.12-=-x y7.已知集合}{⎭⎬⎫⎪⎩⎪⎨⎧<<=+≤≤=+31)31(271,133121x x B a x a x A ,若B A ⊆,则a 的取值范围是A. )(0,2-B. )(1,0 C. []1,0 D. ()∞+,1 8.若幂函数322)562()(-+-=m x m m x f 没有零点,则)(x f 的图像A. 关于原点对称B. 关于x 轴对称C. 关于y 轴对称D. 不具有对称性9.若函数)1ln()1ln()(x m x x f ++-=为奇函数,则m=A. 2B. 1C.-1D. -210.函数13)1(log 10)(22++=x x x f 的图像大致为11.已知0(2749>==m m y x 且)1≠m ,且211=+yx ,则m = A. 14 B. 7 C. 4 D.212.已知函数⎩⎨⎧≤<-≤=,21),1ln(,1,2)(x x x x f x 若不等式mx x f -≤4)(恒成立,则实数m 的取值范围是A. [)∞+,2 B. [)0,2- C. []2,2- D. []2,0 二、填空题:本题4小题,每小题5分,共20分。

河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

河南省天一大联考高一上学期第一次阶段性测试数学试题(解析版)

河南省天一大联考高一上学期第一次阶段性测试数学试题一、单选题1.已知集合{1,0,1,2,3,4},{|3}A B x x =-=<,则A B ⋂=( ) A .{1,0,1,2}- B .{1,0,1}- C .{0,1,2} D .{|3}x x <【答案】A【解析】根据集合的交运算,结合已知,进行求解. 【详解】由集合的交运算,可得{}1,0,1,2A B ⋂=-.故选:A. 【点睛】本题考查集合的交运算,属基础题.2.已知22,0,()log ,0x x f x a x x ⎧≤=⎨+>⎩,若()(2)1f f -=-,则实数a 的值为( )A .2-B .2C .0D .1【答案】D【解析】由已知条件,利用分段函数性质,先求出1(2)4f -=,再算出14f ⎛⎫⎪⎝⎭,即可求出a . 【详解】 由题意得:已知函数22,0,()log ,0,x x f x a x x ⎧≤=⎨+>⎩所以1(2)4f -=,则()1(2)214f f f a ⎛⎫-==-=- ⎪⎝⎭得1a =, 故选:D. 【点睛】本题考查分段函数的概念,还涉及函数的性质和函数值的求法,同时考查运算能力.3.函数1()lg f x x=+ ) A .(],2-∞- B .(]0,2C .()(]0,11,2D .(]1,2-【答案】C【解析】由函数解析式可知,根据对数真数大于0,分母不为0和二次根式的被开方数大于等于0,即可求出定义域. 【详解】由题意可得0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,化简得02x <≤且1x ≠,即()(]0,11,2x ∈⋃.故选:C. 【点睛】本题考查求具体函数的定义域的方法,注意函数的定义域是函数各个部分的定义域的交集.4.若()y f x =的定义域为R ,值域为[1,2],则(1)1y f x =-+的值域为( ) A .[2,3] B .[0,1] C .[1,2] D .[1,1]-【答案】A【解析】根据函数的平移规则,结合原函数的值域求解. 【详解】因为(1)1y f x =-+是将原函数()f x ,向右平移1个单位, 再向上平移1个单位得到,但是左右平移不改变值域, 故(1)1y f x =-+的值域为[]2,3. 故选:A. 【点睛】本题考查函数图像的上下平移和左右平移对函数值域的影响. 5.函数21()log 1xf x e x=--的零点所在的区间是( ) A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(1,2)【答案】C【解析】将选项中区间左右端点代入函数解析式,若发现两端函数值异号,则零点就在该区间. 【详解】因为1202f ⎛⎫=<⎪⎝⎭,而()110f e =-> 则()1102f f ⎛⎫⋅<⎪⎝⎭,根据零点存在性定理可知 函数零点所在区间为:1,12⎛⎫ ⎪⎝⎭.故选:C. 【点睛】本题考查函数零点所在区间的确定,判断依据是零点存在性定理.6.设0.20.343,log 0.4,log 0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .c a b << D .b c a <<【答案】B【解析】将,,a b c 与1和0进行比较,从而得出结果. 【详解】0.20331a =>=,0.30.3log 0.4log 0.31?b =<=且0b >, 44log 0.2log 10c =<=,故a b c >>, 故选:B. 【点睛】本题考查指数式和对数式大小的比较,一般地,先与1和0进行比较,即可区分. 7.设m R ∈,幂函数1()(22)m f x m x +=+,且(1)(2)f a f a +>-,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .1,22⎛⎤⎥⎝⎦C .(1,2]-D .[2,)+∞【答案】B【解析】由()f x 是幂函数,求得参数的值,再求解不等式即可. 【详解】因为1()(22)m f x m x+=+是幂函数,故221m +=,解得12m =-, 则()f x x =,其在[)0,+∞为单调增函数,则不等式(1)(2)f a f a +>-等价于102012a a a a+≥⎧⎪-≥⎨⎪+>-⎩,解得1,22a ⎛⎤∈ ⎥⎝⎦.故选:B. 【点睛】本题考查幂函数解析式的求解,以及利用函数单调性求解不等式. 8.函数|1|1()10x f x -=的图象大致为( ) A . B .C .D .【答案】A【解析】根据函数的定义域,以及单调性,结合选项进行选择. 【详解】 因为|1|1()10x f x -=定义域为R ,故排除C 、D 选项; 又1101x ->,故()()0,1f x ∈,故排除B . 故选:A. 【点睛】本题考查由函数的解析式,选择函数的图像.一般地,要从定义域、值域、单调性、特殊点出发进行选择.9.已知函数()22()log 2f x x x a =-+的最小值为3,则a =( ) A .6 B .7C .8D .9【答案】D【解析】判断函数的单调性,找到最小值点对应的自变量,代值计算即可. 【详解】若220x x a -+>在R 上恒成立, 则根据复合函数的单调性可知,()f x 区间(),1-∞单调递减,则()1,+∞单调递增,故()()()21log 13min f x f a ==-=,解得9a =,此时满足2290x x -+>在R 上恒成立, 若220x x a -+>在R 上不恒成立,则该函数没有最值. 综上所述:9a =. 故选:D. 【点睛】本题考查对数型复合函数的单调性的判断,遵循同增异减的原则.10.常见的三阶魔方约有194.310⨯种不同的状态,将这个数记为A ,二阶魔方有85603⨯种不同的状态,将这个数记为B ,则下列各数与AB最接近的是( )(参考数据:43 4.3log 10 2.1,0.63560-≈≈⨯) A .280.63-⨯ B .280.610⨯ C .280.63⨯ D .320.63⨯【答案】C【解析】根据题意,结合参考数据,应用对数运算法则,对数据进行估算. 【详解】由题可知:A B =1984.3105603⨯两边取对数可得1933384.310log log log 5603A B =+4198333333log log log 3log 10log 35A B -≈++- 333log log 419 2.185A B -≈-+⨯-35log 27.93A B ⨯≈故27.9533A B ≈⨯ 解得:27.90.63A B ≈⨯,故与之最接近的为280.63⨯. 故选:C. 【点睛】本题考查对数的运算,涉及数据的估算;要结合参考数据进行处理,是解决本题的重要思路.11.已知函数2()x x x xe e xf x e e--++=+的最大值为M ,最小值为m ,则M m +=( ) A .1 B .2C .211e e ++ D .221ee ++ 【答案】B【解析】对()f x 分离参数,构造一个奇函数,再进行求解. 【详解】因为2()x x x xe e xf x e e--++=+=1+2x x x e e -+ 不妨令()2x xxh x e e-=+,显然()h x 为奇函数, 故()()max 0min h x h x +=,则()()()()max 22max min min f x f x h x h x +=++=. 故选:B. 【点睛】本题考查函数的奇偶性与函数最值之间的关系,本题的难点在于分离常数,构造奇函数.12.设函数222,2,()54, 2.x a x f x x ax a x ⎧-<=⎨-+⎩若()f x 有两个零点,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2(2,)2⎡⎫⋃+∞⎪⎢⎣⎭C .1,2[4,)2⎡⎫⋃+∞⎪⎢⎣⎭D .1,2(4,)2⎡⎫⋃+∞⎪⎢⎣⎭【答案】C【解析】分段考虑函数的零点,结合一元二次方程根的分布,对参数进行讨论. 【详解】为方便说明,不妨令()22?(2)?h x a x =-<,()()22542g x x ax ax =-+≥因为()h x 是单调函数,故其在定义域上的零点个数可以是0或1; 对()g x ,因为290a =≥,故其可以在定义域有1个零点,或2个零点;故当()f x 有两个零点,只有下面两种可能: ①当()40,4a -∈时,即()0,4a ∈时,()h x 在其定义域内有1个零点,此时只要保证()g x 在其定义域1个零点即可,等价于方程22540x ax a -+=有1个根在区间[)2,+∞, 只需()20g <,即:241040a a -+<,解得1,22a ⎛⎫∈ ⎪⎝⎭或()20g =且522a <,解得12a =, 故1,22a ⎡⎫∈⎪⎢⎣⎭②当()40,4a -∉,即(][),04,a ∈-∞⋃+∞时,()h x 在其定义域内没有零点,此时只要保证()g x 在其定义域2个零点即可等价于方程22540x ax a -+=有2个根在区间[)2,+∞,只需()52220ag ⎧>⎪⎨⎪≥⎩,解得[)4,a ∈+∞综上所述:[)1,24,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故选:C. 【点睛】本题考查根据函数的零点个数求参数的范围,涉及二次方程根的分布,其难点是对参数进行分类讨论.二、填空题13.已知函数2(0,1)x y a a a =+>≠且的图象恒过点M ,则M 的坐标为________. 【答案】(0,3)【解析】根据函数平移,结合指数函数恒过定点()0,1即可求得. 【详解】因为xy a =恒过定点()0,1,又函数2x y a =+是由xy a =向上平移2个单位得到, 故2xy a =+恒过定点()0,3.故答案为:()0,3. 【点睛】本题考查指数型函数恒过定点的问题,其一般思路为,根据函数图像变换进行求解. 14.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的值为___________. 【答案】3【解析】由集合A 的元素,以及2A ∈,分类讨论,结合集合元素互异性,即可得出实数m 的值. 【详解】由题可得,若2m =,则2320m m -+=,不满足集合元素的互异性,舍去; 若2322m m -+=,解得3m =或0m =,其中0m =不满足集合元素的互异性,舍去, 所以3m =. 故答案为:3. 【点睛】本题考查集合元素的互异性,结合元素与集合关系以及通过对集合中元素构成的特点求参数值.15.已知函数()log (0,1)a f x x b a a =+>≠的定义域、值域都是[1,2],则a b +=__________.【答案】52或3. 【解析】分析:分类讨论a 的取值范围,得到函数的单调性,代入数据即可求解. 详解:当01a <<时,易知函数()f x 为减函数,由题意有()()122log 21a fb f b ===+=,解得:1,22a b ==,符合题意,此时52a b +=; 当1a >时,易知函数()f x 为增函数,由题意有()()112log 22a fb f b ===+=,解得2,1a b ==,符合题意,此时3a b +=.综上可得:+a b 的值为52或3. 故答案为:52或3. 点睛:在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为{x |x >0}.对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.16.已知()f x 是定义在R 上的奇函数,且当0x 时,2log (1),01,()31,1,x x f x x x +<⎧=⎨--⎩则方程1()2f x =的所有实根之和为________. 21【解析】画出分段函数的图像,根据图像,结合解析式,进行求解. 【详解】根据分段函数的解析式,以及函数为奇函数,作图如下:由图容易知,因为31y x =--在区间[)1,+∞上,关于3x =对称, 且31y x =---+在区间(],1-∞上,关于3x =-对称, 故其与直线12y =的所有交点的横坐标之和为0. 故1()2f x =所有根之和,即为当()0,1x ∈时的根, 此时()21log 12x +=,解得21x =.21. 【点睛】本题考查函数图像的交点,涉及函数图像的绘制,函数奇偶性的应用,属函数综合题.三、解答题17.计算(1)142110.2542216--⎛⎫⎛⎫⨯--÷- ⎪ ⎪⎝⎭⎝⎭ (2)()()3334839322log 2log log 8log 3log 3log 2log 29-+-++ 【答案】(1)4-(2)34【解析】(1)根据指数运算法则,直接计算即可得出结果; (2)根据对数运算法则,直接计算即可得出结果. 【详解】解:(1)原式14421242444⎛⎫-⨯- ⎪⎝⎭=⨯--=--22=-4(2)原式232233log 2log 3log 328log log 2322329⨯⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭323111533log 9log 3log 212232624⎛⎫⎛⎫=-⨯+⨯⨯+=-⨯= ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查指数运算以及对数运算,熟记运算法则即可,属于基础题型.18.已知集合{}2{|32},|log 3,{|13}A x x B x x C x m x m =-<<=<=-<<+. (1)求R A C B ⋂;(2)若()C A B ⊆,求实数m 的取值范围.【答案】(1){|30}x x -<(2)(,4]-∞【解析】(1)求解对数不等式,再求补集和交集即可;(2)先求并集,对集合C 是否为空集进行讨论,分别求解.【详解】(1)∵函数2log y x =在(0,)+∞上单调递增,∴由2log 3x <得08x <<,∴{|08}B x x =<<.∴{|08}R B x x x =或.∴(){|30}R A B x x ⋂=-<.(2){|38}A B x x ⋃=-<<.若C =∅,则13m m -+,解得1m -.若C ≠∅,则13,13,38,m m m m -<+⎧⎪--⎨⎪+≤⎩,解得14m -<.∴实数m 的取值范围为(,4]-∞.【点睛】本题考查集合的运算,以及集合之间的包含关系,涉及对数不等式的求解.19.已知函数21()2x x f x a-=+的图象经过点11,3⎛⎫-- ⎪⎝⎭. (1)求a 的值;(2)求函数()f x 的定义域和值域;(3)判断函数()f x 的奇偶性并证明.【答案】(1)1;(2)定义域为R ,值域为(1,1)-;(3)()f x 是奇函数,证明见详解.【解析】(1)将函数过的点的坐标代入函数解析式,求解参数;(2)利用分母不为零求定义域,采用不等式法求函数值域;(3)先判断函数的定义域是否关于原点对称,再判断()f x 与()f x -之间的关系.【详解】(1)由题意知11112112(1)1232f a a -----===-++, 解得1a =.(2)因为212()12121x x x f x -==-++. ∵20x >,∴211x +>,∴()f x 的定义域为R .∵2(0,)x ∈+∞,∴2(0,2)21x ∈+, ∴()f x 的值域为(1,1)-.(3)函数()f x 是奇函数.证明如下:∵()f x 的定义域为R ,关于原点对称, 且2112()()2112x x x xf x f x -----===-++, ∴()f x 是奇函数,即证.【点睛】本题考查函数解析式,定义域和值域的求解,以及函数奇偶性的证明,涉及指数运算,属函数综合基础题.20.某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益P 与投入a满足30P =-,乙项目的收益Q 与投入a 满足1505Q a =+.设甲项目的投入为x . (1)求两个项目的总收益关于x 的函数()F x .(2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为“万元”)【答案】(1)1()260,3009005F x x x =-+≤≤;(2)甲项目投资500万元,乙项目投资700万元;360万元【解析】(1)由题意得,分别代入甲和乙的收益函数即可得出两个项目的总收益关于x 的函数()F x ;(2)利用换元法,令t x =,则103,30t ⎡⎤∈⎣⎦,得出关于t 的二次函数,根据已知区间内的二次函数即可求出最大值以及对于的x 值,即可得出答案.【详解】(1)由题知,甲项目投资x 万元,乙项目投资1200x -万元.所以11()4530(1200)504526055F x x x x x =-+-+=-++ 依题意得3001200300x x ≥⎧⎨-≥⎩解得300900x ≤≤. 故1()45260,3009005F x x x x =-++≤≤ (2)令t x =,则103,30t ⎡⎤∈⎣⎦.221145260(105)36055y t t t =-++=--+ 当105t =,即500x =,y 的最大值为360.所以当甲项目投资500万元,乙项目投资700万元时,总收益最大,最大总收益为360万元.【点睛】本题考查函数模型的应用以及二次函数的性质,利用换元法及二次函数求最值. 21.已知函数2()22f x x kx =-+.(1)若函数(1)f x -是偶函数.求k 的值,并在坐标系中画出()y f x =的大致图象; (2)若当[]1,2x ∈-时,()4f x ≥-恒成立,求k 的取值范围.【答案】(1)4k =-,图像见解析;(2)8,43⎡-⎣【解析】(1)根据(1)f x -是偶函数,得出()f x 的对称轴,结合二次函数对称轴,求出k ,便可以得出()f x 解析式,即可画出二次函数图像;(2)由条件,得出min ()4f x ≥-,分类讨论对称轴和所给区间比较,结合单调性,分别求出每种情况的最小值,分析加以排除,即可得出k 的取值范围.【详解】(1)由题得,函数(1)f x -是偶函数,可得函数()f x 的图象关于1x =-对称, 即14k =-,得4k =- 则2()242y f x x x ==++的大致图象如图所示.(2)因为当[]1,2x ∈-时,()4f x ≥-恒成立,所以min ()4f x ≥-.由题可知()f x 的对称轴为4k x =. 当14k ≤-,即4k ≤-时,()f x 在[]1,2-上单调递增, 此时min ()(1)224f x f k =-=++≥-,得8k ≥-,所以84k -≤≤-; 当24k ≥,即8k ≥时,()f x 在[]1,2-上单调递减, 此时min ()(2)8224f x f k ==-+≥-,得7k ≤,不符合条件; 当124k -<<,即48k -<<时,()f x 在(1,)4k -上单调递减,在,24k ⎛⎫ ⎪⎝⎭上单调递增, 此时22min()()24484k k k f x f ==-+≥-,得4343k -≤≤443k -<≤综上所述,k 的取值范围是8,43⎡-⎣.【点睛】本题考查二次函数的图像与性质,利用偶函数性质以及二次函数的对称轴、单调性、最值,同时还考查二次函数图像的画法和分类讨论思想,以及数形结合思想.22.设a R ∈,函数 ()1,11ln ,1ax x f x x a x x +⎧<⎪=-⎨⎪-≥⎩,且()()3f f e -=()1求()f x 的最大值()2若方程()()0f x f x --=在区间[)(),1k k k Z +∈上存在实根,求出所有可能的k 值【答案】(1)3;(2)3,0,2-【解析】(1)由(3)()f f e -=求得a ,分段考查函数值的取值范围可得最大值.(2)由()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩,分类讨论,分11x -<<,1x ≥和1x ≤-三类讨论其零点,其中1x ≤-可由1x ≥得出,主要是()()0f x f x --=的解都是成对出现的.【详解】(1)由()()3f f e -=得31131a a -+=---,解得3a = 当1x <时,()3143311x f x x x +==+<-- 当1x ≥时,()3ln f x x =-单调递减,()()13f x f ≤=所以()f x 的最大值为3(2)由(1)知()31,113ln ,1x x f x x x x +⎧<⎪=-⎨⎪-≥⎩ 当11x -<<时,11x -<-<由()()0f x f x --=得3131011x x x x +-+-=---,解得0x =,因为[)00,1∈,故可取0k = 当1x >时,1x -<-,由()()0f x f x --=得313ln 01x x x -+--=--,整理得4ln 01x x -=+ 设()()4ln 11g x x x x =-≥+,易知()g x 在[)1,+∞上单调递减 又因为()()42ln 20,31ln 303g g =->=-<,所以()g x 在[)2,3上存在唯- -点, 从而原方程在[)2,3,上有且仅有一个实根.故可取2k =当非零实数0x 满足()()000f x f x --=时,0x -也满足()()000f x f x --=,即原方程的非零实根总是成对出现,所以在[)3,2--上也仅有一个实根,故可取3k =-. 综上所述,k 的值可以为3,0,2-.【点睛】本题考查对数型复合函数的最值,考查函数的零点问题.通过零点存在定理可确定函数零点所在区间.对分段函数一般需要分类讨论.。

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)

2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.32.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.94.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.67.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.411.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.312.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为.14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是.15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是.16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.2017-2018学年河南省天一大联考高三(上)10月段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)已知向量,若,则m=()A.﹣4 B.4 C.﹣3 D.3【解答】解:根据题意,向量,若,则•=2×(﹣6)+(﹣3)m=0,解可得m=﹣4,故选:A.2.(5分)函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选B;3.(5分)已知等比数列{a n}的前n项和为S n,若a5=3,S6=28S3,则a3=()A.B.C.3 D.9【解答】解:若q=1时,a5=3,∴a1=3,∴6a1=28a1,显然不成立,∴q≠1,由a5=3,S6=28S3,可得,解得q=3,a1=,∴a3=×9=,故选:B4.(5分)将函数f(x)=3sin(5x+φ)的图象向右平移个单位后关于y轴对称,则φ的值可以是()A. B.C. D.【解答】解:将函数f(x)=3sin(5x+φ)的图象向右平移个单位,得到:y=3sin[5(x﹣)+φ]=3sin(5x﹣+φ),得到的图象关于y轴对称,则:φ﹣=k(k∈Z),解得:φ=k(k∈Z),当k=﹣2时,φ=﹣.故选:D.5.(5分)已知m>n>0,则下列说法错误的是()A. B.C.D.【解答】解:根据对数函数的单调性可得A正确,∵m>n>0,∴m+1>n+1∴m(m+1)>n(n+1),∴>,故B正确,根据幂函数的单调性可得C正确,对于D,﹣==,∵1﹣mn与0无法比较大小,故D错误,故选:D.6.(5分)已知等差数列{a n}的前n项和为S n,若S6=4a2,a3=3,则a10=()A.﹣3 B.3 C.﹣6 D.6【解答】解:设等差数列{a n}的公差为d,∵S6=4a2,a3=3,∴6a1+d=4(a1+d),a1+2d=3,解得a1=,d=﹣.则a10=﹣×9=﹣3.故选:A.7.(5分)已知函数,若a<﹣2,b>2,则“f(a)>f(b)”是“a+b<0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由2|x|﹣4>0,解得x>2或x<﹣2,关于原点对称.又f(﹣x)=f(x).可得函数f(x)在定义域内为偶函数.x>2时,f(x)=5x﹣在(2,+∞)上单调递增.∴a+b<0⇔2<b<﹣a⇔f(b)<f(﹣a)=f(a),∴“f(a)>f(b)”是“a+b<0”的充要条件.故选:C.8.(5分)已知函数f(x)=,若关于x的方程f(x)﹣k(x+2)=0有3个实数根,则实数k的取值范围是()A.(0,)B.(0,)C.(0,1) D.(0,)【解答】解:在同一坐标系中画出分段函数y=f(x)的图象与y=k(x+2)的图象,由图可知:当k∈(0,k AQ)时,分段函数f(x)的图象与y=k(x+2)的图象有三个交点,A(0,1),Q(﹣2,0),k AQ==,实数k的取值范围是(0,).故选:D.9.(5分)已知sinα=﹣(α∈[,2π]),若=2,则tan(α+β)=()A.B.C.﹣D.﹣【解答】解:∵sinα=﹣(α∈[,2π]),∴cosα==,∴tanα==﹣,∵==sinα+cosα•tanβ═﹣+tanβ=2,∴tanβ=,则tan(α+β)===,故选:A.10.(5分)已知实数x,y满足,若z=mx+y的最大值为10,则m=()A.1 B.2 C.3 D.4【解答】解:由实数x,y满足,作出可行域如图,易知A(3,1),B(3,4),C(0,1).化目标函数z=mx+y为y=﹣mx+z,当直线z=mx+y经过B点时,取得最大值10;∴10=3m+4,解得m=2.故选:B.11.(5分)已知数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,其前n项和为S n,则下列说法正确的个数为()①数列{a n}是等差数列;②a n=3n﹣2;③S n=.A.0 B.1 C.2 D.3【解答】解:数列{a n}满足a1=﹣1,a n+1=|1﹣a n|+2a n+1,可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,a3=|1﹣a2|+2a2+1=0+2+1=3,a4=|1﹣a3|+2a3+1=2+6+1=9,则a4﹣a3=6,a3﹣a2=2,即有a4﹣a3≠a3﹣a2,则数列{a n}不是等差数列,故①不正确;a n=3n﹣2,不满足a1=﹣1,故②不正确;若S n=满足n=1时,a1=S1=﹣1,但n=2时,a2=S2﹣S1=﹣(﹣1)=1,当n≥2时,a n=S n﹣S n﹣1=﹣=3n﹣2,n≥2,n∈N*.=|1﹣a n|+2a n+1,代入a n+1左边=3n﹣1,右边=3n﹣2﹣1+2•3n﹣2+1=3n﹣1,=|1﹣a n|+2a n+1恒成立.则a n+1故③正确.故选:B.12.(5分)已知m,n∈(0,+∞).若m=+2.则当+2n2﹣﹣取得最小值时,m+n=()A.2 B.4 C.6 D.8【解答】解:m,n∈(0,+∞).若m=+2.则m=>0,解得n>1.则+2n2﹣﹣=+2n2﹣﹣=+2n2=f(n).f′(n)==,令f′(n)≥0,解得n≥2,可得n=2,m=4时,f(n)取得最小值时,m+n=6.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)不等式2x2﹣9x+9>0的解集为(﹣∞,)∪(3,+∞).【解答】解:不等式2x2﹣9x+9>0,即为(x﹣3)(2x﹣3)>0,解得x>3或x<,解集为(﹣∞,)∪(3,+∞).故答案为:(﹣∞,)∪(3,+∞).14.(5分)已知实数a∈(﹣3,1),b∈(,),则的取值范围是(﹣12,8).【解答】解:∵b∈(,),∴∈(4,8),∵a∈(﹣3,1),∴∈(﹣12,8).故答案为:(﹣12,8).15.(5分)若函数在(1,+∞)上单调递增,则实数m的取值范围是[,+∞).【解答】解:∵函数在(1,+∞)上单调递增,∴≥0在(1,+∞)上恒成立,即m≥在(1,+∞)上恒成立,令g(x)=,则g′(x)=,当x∈(1,)时,g′(x)>0,当x∈(,+∞)时,g′(x)<0,故当x=时,g(x)取最大值,故实数m的取值范围是[,+∞),故答案为:[,+∞).16.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若,且,记h为AC边上的高,则h的取值范围为(0,] .【解答】解:∵,∴sinBcosC=2sinAcosB﹣sinCcosB,即sinBcosC+sinCcosB=2sinAcosB,∴sin(B+C)=2sinAcosB,即sinA=2sinAcosB,∴cosB=,∴B=.=acsinB=bh,∵S△ABC∴h=,由余弦定理可得cosB==,∴a2+c2=ac+3≥2ac,∴0<ac≤3.∴0<h≤.故答案为:(0,].三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)已知数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).(1)求数列{a n}的通项公式;(2)若,求数列的前n项和T n.【解答】解:(1)数列{a n}的首项为a1=1,且a n+1=2(a n+1)(n∈N*).+2=2(a n+2),则:a n+1所以:{a n+2}是以3为首项,2为公比的等比数列.则:,解得:.(2)由于=n,则:=,所以:+…+,解得:.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a=4,D在线段AC上,∠DBC=.(1)若△BCD的面积为24,求CD的长;(2)若,且c=12,求CD的长.【解答】解:(1)由S=•BD•BC•=24,△BCD解得:BD=12,在△BCD中,CD2=BC2+BD2﹣2BC•BD•cos45°,即CD2=32+BD2﹣8BD,故CD2=32+144﹣8×12,解得:CD=4;(2)∵tanA=,且A∈(0,π),故sinA=,cosA=,由题意得=,即=,解得:sinC=,∵C∈(0,),∴cosC=,∴sin∠BDC=sin(C+)=,在△BCD中,由正弦定理得=,解得:CD=2.19.(12分)已知向量.(1)若m=4,求函数f(x)=的单调递减区间;(2)若向量满足,求m的值.【解答】解:(1)向量.∴函数f(x)==4sinxcosx+msin2x=2sin2x﹣当m=4时,可得f(x)=2sin2x﹣2cos2x+2=2sin(2x﹣)+2.由≤2x﹣,得:≤x≤+kπ.∴函数f(x)=的单调递减区间为[,],k∈Z.(2)由=(),即,∵x∈(0,)由sin2x+cos2x=1可得sinx=,cosx=.那么m=sin2x=.20.(12分)已知等比数列{a n}的前n项和为,等差数列{b n}的前5项和为30,b7=14.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)等比数列{a n}的前n项和为,∴n≥2时,a n=S n﹣S n=﹣=3n﹣1,﹣1n=1时,a1=S1=1对于上式也成立.∴a n=3n﹣1.设等差数列{b n}的公差为d,∵前5项和为30,b7=14.∴5b1+=30,b1+6d=14,联立解得:b1=d=2.∴b n=2+2(n﹣1)=2n.(2)a n b n=2n•3n﹣1.∴T n=2(1+2×3+3×32+…+n•3n﹣1),3T n=2[3+2×32+…+(n﹣1)•3n﹣1+n•3n],﹣2T n=2(1+3+32+…+3n﹣1)﹣2n•3n=﹣2n•3n,解得:T n=+.21.(12分)已知函数.(1)讨论函数f(x)的单调性;(2)已知点M(1,0),曲线Y=f(x)在点P(x0,y0)(﹣1≤x0≤1)处的切线l与直线x=1交于点N,求△OMN(O为坐标原点)的面积最小时x0的值,并求出面积的最小值.【解答】解:(1)由题意得:f′(x)=e x﹣x,令m(x)=e x﹣x,故m′(x)=e x﹣1,令m′(x)=0,解得:x=0,故m(x)在(﹣∞,0)递减,在(0,+∞)递增,故[m(x)]min=m(0)=1,故e x﹣x>0,即f′(x)>0,故函数f(x)在R递增;(2)由题意,切线l的斜率为f′(x0)=﹣x0,由此得切线l的方程为y=(﹣)=(﹣x0)(x﹣x0),令x=1,得y=(2﹣x0)(﹣x0),=|OM|•|y|=|(1﹣x0)(﹣x0)|,x0∈[﹣1,1],∴S△MON设g(x)=(1﹣x)(e x﹣x),x∈[﹣1,1],则g′(x)=﹣(x﹣1)(e x﹣1),令g′(x)=0,解得:x=0或x=1,故g(x)在(﹣1,0)递减,在(0,1)递增,故g(x)min=g(0)=1,即x0=1时,△MON的面积有最小值1.22.(12分)已知函数.(1)若m=1,求曲线y=f(x)在(2,f(2))处的切线方程;(2)探究函数F(x)=xf(x)的极值点的情况,并说明理由.【解答】解:(1)由题意,f′(x)=+1,故f′(2)=2,由f(2)=3,故所求切线方程为:y﹣3=2(x﹣2),即2x﹣y﹣1=0,∴曲线y=f(x)在(2,f(2))处的切线方程2x﹣y﹣1=0;(2)F(x)=xf(x)=xln(x﹣1)+x2+mx,F′(x)=ln(x﹣1)++2x+m,记g(x)=F′(x)﹣m,g′(x)=﹣+2=,令g′(x)=0,则x=,当x∈(1+,)时,g′(x)<0,当x∈(,e+1)时,g′(x)>0,∴当x=时,g(x)取的极小值6﹣ln2,由g(+1)=e++2,g(e+1)=2e++4,F′(x)=0,则g(x)=﹣m,①当﹣m≤6﹣ln2,即m≥ln2﹣6,F′(x)≥0恒成立,函数F(x)在(+1,e+1)上无极值点,②当6﹣ln2<﹣m<e++2,即﹣e﹣﹣2<m<ln2﹣6,F′(x)有两个不同解,函数F(x)在区间(+1,e+1)有两个极值点;③当e++2≤﹣m<2e++4,即﹣2e﹣﹣4<m<﹣e﹣﹣2时,F′(x)有一个解,函数F(x)在区间(+1,e+1)有一个极值点;④当﹣m≥2e++4,即m≤﹣2e﹣﹣4,F′(x)≤0,函数F(x)在区间(+1,e+1)上无极值点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档