轨迹问题的解法大全
小学数学10种经典行程问题解法总结
小学数学10种经典行程问题解法总结行程问题是小学数学应用题中的基本问题,它包含了简单的相遇及追及问题、多人相遇追及问题、多次相遇追及问题、流水行船问题、环形跑道问题、钟面行程问题、火车过桥问题、猎狗追兔问题等,但万变不离其宗。
行程问题是物体匀速运动的应用题。
不论是同向运动还是相向运动,最后反映出来的基本关系式都可以归纳为:路程=速度×时间。
要想解答行程问题,首先要弄清物体的具体运动情况,可以在纸上画出相应的运动轨迹,更方便观察思考。
以下是总结的10种经典行程问题的相关解法。
一、简单相遇及追及问题相遇问题:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)甲速或乙速=总路程÷相遇时间-乙速或甲速追及问题:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速相离问题:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间二、流水行船问题(1)船速+水速=顺水速度(2)船速-水速=逆水速度(3) (顺水速度+逆水速度)÷2=船速(4) (顺水速度-逆水速度)÷2=水速两船在水流中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系因为:甲船顺水速度+乙船逆水速度=(甲船速+水速) + (乙船速-水速)=甲船速+乙船速如果两只船在水流中同向运动,一只船追上另一只船的时间,也与水速无关因为:甲船顺水/逆水速度-乙船顺水/逆水速度=(甲船速+/-水速)-(乙船速+/-水速)=甲船速-乙船速三、环形跑道问题从同一地点出发(1)如果是相向而行,则每走一图相遇一次(2)如果是同向而行,则每追上一图相過一次四、多人相遇追及问题基本公式:路程和=速度和×相遇时间路程差=速度差×追及时间例题:有甲、乙、丙三人,甲每分钟走80米,乙每分钟走60米,丙每分钟走40米,现在甲从东端,乙、丙两人从西端同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
轨迹问题的解法大全
轨迹问题的求法
一、直接法
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.
定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.
将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。
四、几何法
几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.
五、参数法
参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程
例3.【2017年全国二卷文科】
六、交轨法
求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.
七、代入法
当题目中有多个动点时,将其他动点的坐标用所求动点的坐标来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点的轨迹方程,称之代入法,也称相关点法、转移法
.。
高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM yk x x =≠-+,直线BM 的斜率(3)3AM yk x x =≠- 由已知有4(3)339y y x x x ∙=≠±+-化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
轨迹方程的求法及典型例题含答案
轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。
高中数学求轨迹方程的六种常用技法
练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则
由
即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。
求轨迹方程的常用方法(经典)
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
求轨迹方程问题—6大常用方法
求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。
来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
高中数学解析几何|求轨迹方程方法最全总结
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
解轨迹问题4种方法
解轨迹问题4种方法求轨迹方程常用的方法:(1)结合解析几何中某种曲线的定义,从定义出发寻找解决问题的方法;(2)利用几何性质,若所求的轨迹与图形的性质相关,利用三角形或圆的性质来解问题;(3)如果点P 的运动轨迹或所在曲线已知,又点Q 与点P 之间的坐标可以建立某种关系,则借助点P 的轨迹可以得到点Q 的轨迹; (4)参数法. ●点击双基1.动点P 到直线x =1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是 A.中心在原点的椭圆 B.中心在(5,0)的椭圆C.中心在原点的双曲线D.中心在(5,0)的双曲线 解析:直接法. 答案:B2.(2005年春季北京,6)已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=2,则该双曲线的方程是A.22x -32y =1B.32x -22y =1C.42x -y 2=1D.x 2-42y =1解析:设双曲线的方程为22a x -22by =1.由题意||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=(25)2.又∵|PF 1|·|PF 2|=2,∴a =2,b =1.故双曲线方程为42x -y 2=1.答案:C3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是A.y 2-482x =1(y ≤-1) B.y 2-482x =1 C.y 2-482x =-1 D.x 2-482y =1解析:由题意|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c =7,a =1,b 2=48,所以轨迹方程为y 2-482x =1(y ≤-1).答案:A4.F 1、F 2为椭圆42x +32y =1的左、右焦点,A 为椭圆上任一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:延长F 1D 与F 2A 交于B ,连结DO ,可知DO =21F 2B =2,∴动点D 的轨迹方程为x 2+y 2=4.答案:x 2+y 2=45.已知△ABC 中,B (1,0)、C (5,0),点A 在x 轴上方移动,且tan B +tan C =3,则△ABC 的重心G 的轨迹方程为________________.解析:设A (x 0,y 0),∵tan B +tan C =3,∴100-x y -500-x y =3,点A 的轨迹方程为y 0=-43(x 02-6x 0+5)(x 0≠1且x 0≠5).若 G (x ,y )为△ABC 的重心,则由重心坐标公式:x =3510x ++,y =30y,∴x 0=3x -6,且y 0=3y .代入A 点轨迹方程得G 的轨迹方程为y -1=-49(x -3)2(x ≠37且x ≠311).答案:y -1=-49(x -3)2(x ≠37且x ≠311)●典例剖析【例1】 在△PMN 中,tan ∠PMN =21,tan ∠MNP =-2,且△PMN 的面积为1,建立适当的坐标系,求以M 、N 为焦点,且过点P 的椭圆的方程.M N剖析:如上图,以直线MN 为x 轴,线段MN 的垂直平分线为y 轴,建立平面直角坐标系,则所求椭圆方程为22a x +22by =1.显然a 2、b 2是未知数,但a 2、b 2与已知条件没有直接联系,因此应寻找与已知条件和谐统一的未知元,或改造已知条件.解法一:如上图,过P 作PQ ⊥MN ,垂足为Q ,令|PQ |=m ,于是可得|MQ |=|PQ |cot ∠PMQ =2m ,|QN |=|PQ |cot ∠PNQ =21m . ∴|MN |=|MQ |-|NQ |=2m -21m =23m . 于是S △PMN =21|MN |·|PQ |=21·23m ·m =1.因而m =34,|MQ |=234,|NQ |=31,|MN |=3.|MP |=22||||PQ MQ +=34316+=3152,|NP |=22||||PQ NQ +=3431+=315.以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设椭圆方程为22a x +22b y =1(a >b >0).则2a =|MP |+|NP |=15,2c =|MN |=3,故所求椭圆方程为1542x +32y =1.解法二:设M (-c ,0)、N (c ,0),P (x ,y ),y >0,c x y + =21,cx y -=2, y ·c =1, 解之,得x =635,y =332,c =23.设椭圆方程为b 2x 2+a 2y 2=a 2b 2,则b 2·(635)2+a 2(332)2=a 2b 2, a 2-b 2=43, 解之,得a 2=415,b 2=3.(以下略)评述:解法一选择了与a 较接近的未知元|PM |、|PN |,但需改造已知条件,以便利用正弦定理和面积公式;解法二以条件为主,选择了与条件联系最直接的未知元x 、y 、c .本题解法较多,但最能体现方程思则想方法的、学生易于理解和接受的是这两种解法.深化拓展若把△PMN 的面积为1改为PM ·PN =38,求椭圆方程. 提示:由tan ∠PMN =21,tan ∠MNP =-2,易得sin ∠MPN =53,cos ∠MPN =54. 由PM ·PN =38,得|PM ||PN |=310.易求得|PM |=3152,|PN |=315.进而求得椭圆方程为1542x +32y =1.【例2】 (2004年福建,22)如下图,P 是抛物线C :y =21x 2上一点,直线l 过点P 且与抛物线C交于另一点Q .若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程.xyOQMTP Sl 剖析:欲求PQ 中点M 的轨迹方程,需知P 、Q 的坐标.思路一,P 、Q 是直线l 与抛物线C 的交点,故需求直线l 的方程,再与抛物线C 的方程联立,利用韦达定理、中点坐标公式可求得M 的轨迹方程;思路二,设出P 、Q 的坐标,利用P 、Q 的坐标满足抛物线C 的方程,代入抛物线C 的方程相减得PQ 的斜率,利用PQ 的斜率就是l 的斜率,可求得M 的轨迹方程.解:设P (x 1,y 1)、Q (x 2,y 2)、M (x 0,y 0),依题意知x 1≠0,y 1>0,y 2>0.由y =21x 2, ① 得y ′=x . ∴过点P 的切线的斜率k 切=x 1, ∴直线l 的斜率k l =-切k 1=-11x ,直线l 的方程为y -21x 12=-11x (x -x 1). ②方法一:联立①②消去y ,得x 2+12x x -x 12-2=0.∵M 为PQ 的中点, x 0=221x x +=-11x ,y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+221x +1(x 0≠0), ∴PQ 中点M 的轨迹方程为y =x 2+221x +1(x ≠0). 方法二:由y 1=21x 12,y 2=21x 22,x 0=221x x +,得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2),则x 0=2121x x y y --=k l =-11x ,∴x 1=-01x .将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0), ∴∴PQ 中点M 的轨迹方程为y =x 2+221x+1(x ≠0). 评述:本题主要考查了直线、抛物线的基础知识,以及求轨迹方程的常用方法.本题的关键是利用导数求切线的斜率以及灵活运用数学知识分析问题、解决问题.深化拓展当点P 在抛物线C 上移动时,求点M 到x 轴的最短距离. 提示:∵x ≠0,x 2>0,∴y =x 2+221x +1≥221+1=2+1,当且仅当x 2=221x ,x =±214时等号成立,即点M 到x 轴的最短距离为2+1.【例3】 (2000年春季全国)已知抛物线y 2=4px (p >0),O 为顶点,A 、B 为抛物线上的两动点,且满足OA ⊥OB ,如果OM ⊥AB 于M 点,求点M 的轨迹方程.剖析:点M 是OM 与AB 的交点,点M 随着A 、B 两点的变化而变化,而A 、B 为抛物线上的动点,点M 与A 、B 的直接关系不明显,因此需引入参数.解法一:设M (x 0,y 0),则k OM =00x y ,k AB =-00y x ,直线AB 方程是y =-00y x(x -x 0)+y 0. 由y 2=4px 可得x =py 42,将其代入上式,整理,得x 0y 2-(4py 0)y -4py 02-4px 02=0. ①此方程的两根y 1、y 2分别是A 、B 两点的纵坐标,∴A (p y 421,y 1)、B (py422,y 2).∵OA ⊥OB ,∴k OA ·k OB =-1.∴14y p ·24y p=-1.∴y 1y 2=-16p 2. 根据根与系数的关系,由①可得y 1·y 2=02020)(4x y x p +-,∴02020)(4x y x p +-=16p 2.化简,得x 02+y 02-4px 0=0,即x 2+y 2-4px =0(除去原点)为所求.∴点M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法二:设A 、B 两点坐标为A (pt 12,2pt 1)、B (pt 22,2pt 2). ∴k OA =12t ,k OB =22t ,k AB =212t t +.∵OA ⊥OB ,∴t 1·t 2=-4.∴AB 方程是y -2pt 1=212t t +(x -pt 12), ① 直线OM 的方程是y =-221t t +x . ② ①×②,得(px )t 12+2pyt 1-(x 2+y 2)=0. ③ ∴直线AB 的方程还可写为 y -2pt 2=212t t +(x -pt 22). ④ 由②×④,得(px )t 22+(2py )t 2-(x 2+y 2)=0. ⑤由③⑤可知t 1、t 2是方程(px )t 2+(2py )t 2-(x 2+y 2)=0的两根.由根与系数的关系可得t 1t 2=pxy x )(22+-.又t 1·t 2=-4,∴x 2+y 2-4px =0(原点除外)为所求点M 的轨迹方程.故M 的轨迹是以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点. 解法三:设M (x ,y ),直线AB 方程为y =kx +b ,由OM ⊥AB 得k =-yx. 由y 2=4px 及y =kx +b 消去y ,得k 2x 2+x (2kb -4p )+b 2=0.所以x 1x 2=22k b .消去x ,得ky 2-4py +4pb =0.所以y 1y 2=k pb4.由OA ⊥OB ,得y 1y 2=-x 1x 2,所以k pk4=-22kb ,b =-4kp .故y =kx +b =k (x -4p ).用k =-yx代入,得x 2+y 2-4px =0(x ≠0). 解法四:设点M 的坐标为(x ,y ),直线OA 的方程为y =kx ,显然k ≠0,则直线OB 的方程为y =-k1x . y =kx , y 2=4px , 类似地可得B 点的坐标为(4pk 2,-4pk ), 从而知当k ≠±1时,yxABM Ok AB =)1(4)1(422k kp k k p -+=kk -11.故得直线AB 的方程为y +4pk =k k-11(x -4pk 2),即(k1-k )y +4p =x , ① 直线OM 的方程为y =-(k1-k )x . ② 可知M 点的坐标同时满足①②,由①及②消去k 便得4px =x 2+y 2,即(x -2p )2+y 2=4p 2,但x ≠0,当k =±1时,容易验证M 点的坐标仍适合上述方程. 故点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0), 它表示以点(2p ,0)为圆心,以2p 为半径的圆.评述:本题考查了交轨法、参数法求轨迹方程,涉及了类比、分类讨论等数学方法,消参时又用到了整体思想法,对含字母的式子的运算能力有较高的要求,同时还需要注意轨迹的“完备性和纯粹性”.此题是综合考查学生能力的一道好题.深化拓展本题中直线AB 恒过定点(4p ,0),读者不妨探究一番. ●闯关训练由 解得A 点的坐标为(24k p ,kp4),夯实基础1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是 A.双曲线 B.双曲线左边一支 C.一条射线 D.双曲线右边一支 解析:利用几何性质.答案:C2.(2003年河南)已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M 、N 两点,MN 中点的横坐标为-32,则此双曲线的方程是 A.32x -42y =1 B.42x -32y =1 C.52x -22y =1 D.22x -52y =1解析:设双曲线方程为22a x -22b y =1.将y =x -1代入22a x -22b y =1,整理得(b 2-a 2)x 2+2a 2x -a 2-a 2b 2=0.由韦达定理得x 1+x 2=2222b a a -,221x x +=222ba a -=-32.由c 2=a 2+b 2求得a 2=2,b 2=5.答案:D 3.曲线x 2+4y 2=4关于点M (3,5)对称的曲线方程为____________.解析:代入法(或相关点法).答案:(x -6)2+4(y -10)2=44.与圆x 2+y 2-4x =0外切,且与y 轴相切的动圆圆心的轨迹方程是____________.解析:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.答案:y 2=8x (x >0)或y =0(x <0)5.自抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连结顶点O 与P 的直线和连结焦点F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x 1,y 1)、R (x ,y ),则Q (-21,y 1)、F (21,0), ∴OP 的方程为y =11x y x , ① FQ 的方程为y =-y 1(x -21). ② 由①②得x 1=x x212-,y 1=xy 212-,代入y 2=2x ,可得y 2=-2x 2+x . 6.求经过定点A (1,2),以x 轴为准线,离心率为21的椭圆下方的顶点的轨迹方程.解:设椭圆下方的焦点F (x 0,y 0),由定义2||AF =21,∴|AF |=1,即点F 的轨迹方程为(x 0-1)2+(y 0-2)2=1. 又设椭圆下方顶点为P (x ,y ),则x 0=x ,y 0=23y , ∴点P 的轨迹方程是(x -1)2+(23y -2)2=1. 培养能力7.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如下图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ .∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |. ∴x 2+y 2=a |y |,即 x 2+(y ±2a )2=(2a)2. 轨迹是分别以CO 、OD 为直径的两个圆.8.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y =k (x -1),代入y 2=4x , 得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点, ∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),根据韦达定理,有x 1+x 2=22)2(2kk +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),x =3021x x ++=32+234k,y =3021y y ++=k34,∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x -98,因此所求轨迹C 的方程为y 2=34x -98.探究创新9.(2004年春季安徽)已知k >0,直线l 1:y =kx ,l 2:y =-kx .(1)证明:到l 1、l 2的距离的平方和为定值a (a >0)的点的轨迹是圆或椭圆; (2)求到l 1、l 2的距离之和为定值c (c >0)的点的轨迹. (1)证明:设点P (x ,y )为动点,则221||k kx y +-+221||kkx y ++=a ,整理得2222)1(k a k x ++2)1(22a k y +=1. 因此,当k =1时,动点的轨迹为圆;当k ≠1时,动点的轨迹为椭圆. (2)解:设点P (x ,y )为动点,则|y -kx |+|y +kx |=c 21k +.当y ≥k |x |时,y -kx +y +kx =c 21k +,即y =21c 21k +; 当y ≤-k |x |时,kx -y -y -kx =c 21k +,即y =-21c 21k +;当-k |x |<y <k |x |,x >0时,kx -y +y +kx =c 21k +,即x =k21c 21k +;则消去k ,得x =32+34(43y )2,当-k |x |<y <k |x |,x <0时,y -kx -y -kx =c 21k +,即x =-k21c 21k +. 综上,动点的轨迹为矩形. ●思悟小结1.求轨迹方程的一般步骤是:建系、设点、列式、代入、化简、检验.检验就是要检验点的轨迹的纯粹性和完备性.2.如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.3.如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.4.如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.5.如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.6.注意参数的取值范围对方程的影响. 教学点睛1.已知曲线求方程或已知方程画曲线是解析几何中的两个基本问题.如何探求动点的轨迹方程呢?①从定义出发,还本索源.在探求动点的轨迹方程时,如能结合解析几何中某种曲线的定义,也就能寻找到解决问题的钥匙;②利用平面几何的性质.动点的轨迹与图形的性质相关,若某些轨迹与直线或圆有关,则可以利用三角形或圆的性质来帮助分析;③伴随曲线的思想和方法.如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立起某种关系,则借助于点P 的运动轨迹,我们便可以得到点Q 的运动轨迹,这便是伴随曲线的思想方法.2.在探求轨迹的过程中,需要注意的是轨迹的“完备性”和“纯粹性”,也就是说既不能多,也不能少,因此,在求得轨迹方程之后,要深入地再思考一下:①是否还遗漏了一些点?是否还有另一个满足条件的轨迹方程存在?②在所求得的轨迹方程中,x 、y 的取值范围是否有什么限制?拓展题例【例1】 是否存在同时满足下列条件的抛物线?若存在,求出它的方程;若不存在,请说明理由. (1)准线是y 轴; (2)顶点在x 轴上;(3)点A (3,0)到此抛物线上动点P 的距离最小值是2. 解:假设存在这样的抛物线,顶点为(a ,0),则方程为y 2=4a (x -a )(a ≠0), 设P (x 0,y 0),则y 02=4a (x 0-a ),|AP |2=(x 0-3)2+y 02 =[x 0-(3-2a )]2+12a -8a 2,令f (a )=|AP |2, ①当a >0时,有x 0≥a ,当3-2a ≥a 即a ∈(0,1]时,|AP |2=f (3-2a ),∴a =1或a =21;抛物线方程为y 2=4(x -1)或y 2=2(x -21). 当3-2a <a 即a >1时,|AP |2=f (a ).∴a =5或a =1(舍),抛物线方程为y 2=20(x -5).②当a <0时,显然与已知矛盾,∴所求抛物线方程为y 2=4(x -1)或y 2=2(x -21)或y 2=20(x -5). 【例2】 (2003年太原市模拟题)已知椭圆的焦点为F 1(-1,0)、F 2(1,0),直线x =4是它的一条准线.(1)求椭圆的方程;(2)设A 1、A 2分别是椭圆的左顶点和右顶点,P 是椭圆上满足|P A 1|-|P A 2|=2的一点,求tan ∠A 1P A 2的值;(3)若过点(1,0)的直线与以原点为顶点、A 2为焦点的抛物线相交于点M 、N ,求MN 中点Q 的轨迹方程.解:(1)设椭圆方程为22a x +22by =1(a >b >0).c =1,ca 2=4,c =1, a =2,所求椭圆方程为42x +32y =1.(2)由题设知,点P 在以A 1、A 2为焦点,实轴长为2的双曲线的右支上.由(1)知A 1(-2,0),A 2(2,0),设双曲线方程为22mx -22n y =1(m >0,n >0).2m =2, m =1,m 2+n 2=4, n =3.∴双曲线方程为x 2-32y =1.由42x +32y =1, x 2-32y =1,解得P 点的坐标为(5102,553)或(5102,-553).当P 点坐标为(5102,553)时,tan∠A 1P A 2=12121PA PA PA PA k k k k +-=-45.同理当P 点坐标为(5102,-353)时,tan ∠A 1P A 2=-45. 故tan ∠A 1P A 2=-45.(3)由题设知,抛物线方程为y 2=8x .设M (x 1,y 1)、N (x 2,y 2),MN 的中点Q (x ,y ), 当x 1≠x 2时,有y 12=8x 1, ① y 22=8x 2, ②x =221x x +, ③ y =221y y +, ④2121x x y y --=1-x y. ⑤①-②,得2121x x y y --(y 1+y 2)=8,将④⑤代入上式,有1-x y·2y =8,即y 2=4(x -1)(x ≠1).当x 1=x 2时,MN 的中点为(1,0),仍满足上式.故所求点Q 的轨迹方程为y 2=4(x -1).由题设有解得 ∴b 2=3.则解得。
求点的轨迹方程的六种常见方法
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,
几种常见求轨迹方程的方法
几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。
求轨迹方程的五种方法
求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。
1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。
例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。
参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。
2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。
例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。
一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。
3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。
极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。
通过给定极径和极角的值可以唯一确定一个点的位置。
例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。
极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。
4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。
隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。
通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。
例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。
5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。
线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。
通过求解线性方程组可以得到轨迹上的点的坐标。
线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。
以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。
轨迹问题的解法举例
轨迹问题的解法举例【问题1】.已知B 为圆122=+y x 上的一个动点,A (2,0),△ABC 是以BC 为斜边的等腰直角三角形(A ,B ,C 按顺时针排列),如图,求点C 的轨迹方程。
分析:根据求轨迹方程的一般步骤,求C 设C (y x ,),B 是所谓的相关点,设为(11,y x )AC 和|AB|=|AC|和12121=+y x 解:设C (y x ,),B (11,y x ),则12121=+y x ,∵△ABC 是以BC 为斜边的等腰直角三角形, ∴12211-=-⨯-x y x y ① ∴222121)2()2(y x y x +-=+- ②由①得yx x y )2)(2(11---= ③ 把③代入②得221)2(y x =-,∵0,21><y x ,∴y x -=-21,21+-=y x ,把21+-=y x 代入①得21-=x y ,从而所求的轨迹方程为1)2()2(22=-+-y x . 解题过程看上去不太麻烦,12121=+y x ,得出1x ,这种方法虽然可行,算量比较大。
上述方法是把1y 和21-x 一种基本方法,考试中可能最先想到它,要是计算、变形能力差,中途放弃也有可能,但无论如何是我们必须掌握的一种方法。
请看下面的解法: 解法2:如图2,作PA ⊥x 轴于A ,且|PA|=2,连结OB ,则|OA|=|PA|, 由∠BAC =∠PAO =900,得∠PAC =∠OAB ,又|BA|=|CA|,于是△OAB ≌△PAC ,从而|PC|=|OB|=1,故C 点轨迹是以P 为圆心,1为半径的圆,由于P 点坐标为(2,2),因此点C 的轨迹方程为1)2()2(22=-+-y x .这种方法显然简单! 这是有一点,这种方法是如何想到的呢?实际上,有了第一种方法的结论,我们会根据结论去寻找方法,解法2就是这样产生的!因此我们说,解法1是根本,解法2具有启发性。
轨迹方程的五种求法
轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =u u u r u u u r·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r·,得22(2)(3)x x y x ---+=,即26y x =+,P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r·,求直线AP与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta =+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变. 五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD =u u u r ,1()2AE AB AD =+u u u r u u u r u u u r.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+u u u r u u u r u u u r知E 为BD 中点,易知(222)D x y -,.又2AD =u u u r,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =.将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
初三轨迹问题解题技巧
初三轨迹问题解题技巧如下:
1. 直接法:根据动点所满足的等量关系列出方程,通过化简得到轨迹方程。
2. 定义法:根据各种已知曲线(直线、圆、圆锥曲线等)的定义,结合题意直接设出这些曲线的方程,再利用已知条件求出方程中各项系数的方法。
3. 相关点法:当曲线上一个动点的变动与另外一个动点相关时,可用曲线上该动点的坐标表示出另外一个点的坐标,把此点的坐标代入制约条件就可得到所求曲线的方程,这种方法就叫相关点法(又叫代入法)。
4. 参数法:参数法就是把曲线上动点的坐标先用相关参数表示出来,然后消去参数就得到。
以上是初三轨迹问题解题的一些技巧,希望对解决您的问题有所帮助。
招式八:轨迹问题
招式八:轨迹问题轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特 殊的技巧,易于表述成含 x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、直角坐标系中,点 Q (2, 0),圆C 的方程为X 2 y2 1 ,动点M 到圆C 的切线长与l MQ l的比等于常数(0),求动点M 的轨迹.222【解析】设MN 切圆C 于N,那么|MN ||MO||ON|.设M(x,y),那么◎ ◎如图,圆.1与圆.2的半径都是1,.1.2 4.过动点P 分别作圆.2、圆.2的切线PM , PN ( M ,N 分别为切点),使得PM 虚PN .试建立适当的坐标系,并求动点P 的轨迹方程【解析】以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如下图的平面直角坐标系,那么 01( 2,0), .2(2,0).即(x 6)2 y 2 33.(或 x 2 y 2 12x 3 0) 评析:1、用直接法求动点轨迹一般有建系 意挖〞与补〞.2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义) ,可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.由 PM J2P N 』I|PM 2 2PN 2. 由于两圆半径均为 1,所以____ 2_ _______ 2PO 1 1 2(PO 21).设 P(x, y),那么_ 22(x 2)2 y 2 122[(x 2)21],■-22-22-J x y 1 J (x 2) y化简得(511) 当 1时,万程为x表示一条直线.221)(x1时, 方程化为(x2 2.22y(2 1)2,设点,列式,化简,证实五个步骤,最后的证实可以省略,但要注 表不一"个-,0 ,且与直线x E 相切,其中p 0.求动圆圆心C 的轨迹的方程; 2 2为动圆圆心,2,0为记为F ,过点M 作直线x p 的垂线,2 2垂足为N ,由题意知:|MF| |MN|即动点M 到定点F 与定直线x p 的距离相等,2由抛物线的定义知,点 M 的轨迹为抛物线,其中 F 上,0为焦点,2xR 为准线,所以轨迹方程为 y 2 2px(P 0);2OM 于点P,求点P 的方程.由切线的性质知:|BA|=|BD| , |PD|=|PE| , |CA|=|CE| ,故 |PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC| ,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,22可求得动点P 的轨迹方程为: —支一181 72评析:定义法的关键是条件的转化一一转化成某一根本轨迹的定义条件.三、相关点法: 动点所满足的条件不易表述或求出,但形成轨迹的动点 P(x,y)^随另一动点 Q(x', y')的运动而有规律的运动, 且动点Q 的轨迹为给定或容易求得, 那么可先将x',表示为x,y 的式子,再代入Q 的 轨迹方程,然而整理得 P 的轨迹方程,代入法也称相关点法.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程.例3、如图,从双曲线 x 2-y 2=1上一点Q 引直线x+y=2的垂线,垂足为 No 求线段QN 的中点P 的轨迹 方程. 【解析】设动点 P 的坐标为(x,y),点Q 的坐标为(x 1,y 1)第2页共6页◎ ◎圆O 的方程为x 2+y 2=100,点A 的坐标为(-6, 0), M 为圆O 上任一点, AM 的垂直平分线交例2、动圆过定点【解析】如图,设M【解析】由中垂线知,|PA |PM | 故 |PA |PO ||PM| |PO | |OM| 10,即P 点的轨迹为以 A 、 O 为焦点的椭圆,中央为( -3, 0),故P 点的方程为(x 3)2 252y 16125 ◎ ◎ A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6 , 0O'切直线l 于点A,又 过B 、C 作.O'异于l 的两切线,设这两切线交于点P,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切.O'于D 、E 两点,两切线交于点P.p 2贝U N ( 2x-x i,2y-y i)代入x+y=2得2x-x i+2y-y i=2①又PQ垂直于直线x+y=2,故^y一y1 1,即x-y+y i-x i=0② x x i_ ............ __ ________ 3 i i 3由①②解方程组得x i 3x」y i,y i ,x 3y i,2 2 2 2代入双曲线方程即可得P点的轨迹方程是2x2-2y2-2x+2y-i=02 2◎ ◎椭圆 : 与i〔a b 0〕的左、右焦点分别是a b F i 〔―c, 0〕、F2 〔c, 0〕, Q是椭圆外的动点,满足|F i Q| 2a.点P是线段F i Q与该椭圆的交点,点T在线段F2Q上,并且满足PT TF2 0,|TF2 | 0.求点T的轨迹C的方程;【解析】解法一:〔相关点法〕设点T的坐标为〔x, y〕.当|PT| 0时,点〔a, 0〕和点〔一a, 0〕在轨迹上当| PT | 0且|TF2 | 0时,由PT TF2 0 ,得PT TF2 .又| PQ| | PF? | ,所以T为线段F2Q的中点.设点Q的坐标为x c 2 y . 2因此2x c, 2y.由|EQ| 2a 得(x c)2 y 2 4a2.将①代入②,可得x2 y2 a2.综上所述,点T的轨迹C的方程是x2 y2 a2.解法二:〔几何法〕设点T的坐标为〔x, y〕.当|所| 0时,点〔a, 0〕和点〔—a, 0〕在轨迹上当| PT | 0且|TF2 | 0时,由|PT| |TF2 | 0,得PT TF2. 又|PQ| |PF z|,所以T为线段F2Q的中点.在△ QF1F2 中,—— 1|OT | -| F I Q | a ,所以有综上所述,点T的轨迹C的方程是x2 y2评析:一般地: 定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法.四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,那么可借助中间变量〔参数〕,使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程.例4、在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B 满足AO± BO〔如图4所示〕.求△ AOB的重心G 【解析】〔即三角形三条中线的交点〕的轨迹方程;解法一:以OA的余^率k为参数由k x 解得A (k, k2) x•.OA, OB, ..OB: y 1 -x 2k x设△ AOB勺重心G 〔x, y),那么k21J?消去参数k得重心G的轨迹方程为y3x2解法二:设^ AOB的重心为G〔x,y〕,A〔x i,y i〕,B 〔x2,y2〕,那么…(1)小y23-• OA± OB k OA k OB 1,即x1x2 y〔y21, (2)又点A, B在抛物线上,有y1 2X I , y2 代入〔2〕化简得x〔x2y1 y2 1/2 •• y -;- -(x13 3 x;)13[(x1x2)22x1x2 ] 3 (3x)23x2所以重心为G的轨迹方程为y3x2◎ ◎如图,设抛物线C : y x2的焦点为F,动点P在直线l : x y 0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.求△ APB的重心G的轨迹方程.【解析】设切点A、B坐标分别为〔x,x;〕和〔X1,X12〕〔〔X1 X o〕, ,切线AP的方程为:2x0x y x20;2 _切线BP的万程为:2x1 x y x1 0;解得P点的坐标为:x P Xo——X~,y P x o x12所以△ APB的重心G的坐标为x G ^0一X1一X P X P,V G v.必y p32 2X0 % X0X13〔X0 %〕2X0X1 4x P2y p所以y p 3V G 4x G,由点p在直线i上运动,从而得到重心G的轨迹方程为:1x 〔 3y 4x2〕 2 0,即y -〔4x2x 2〕.五、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法, 也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程.可以说是参数法的一种变种.2例5、抛物线y 4Px〔P 0〕的顶点作互相垂直的两弦OA、OB,求抛物线的顶点O在直线AB上的射影M的轨迹.2 2 解1〔交轨法〕:点A、B在抛物线y2 4px〔p 0〕上,设A〔无,y A〕,B〔34p 4p ,y B〕所以k oA= _P k OB=V A4p .-- 油OA垂直OB得k OA k OB = -1,得y A y B= -16p,又AB方程可求得y y A y B2 V A V B入,V A、〔x4p 4py--4px--y A y B=0,把y A y B= -16p2代入得AB 方程〔y A+y B〕y--4px+16p2=0 ① 又OM 的方程为y V A V B --- X4P由①②消去得y A+y B即得x2 y2 4px 0, 2 2.2即得〔x 2p〕 y 4p.所以点M的轨迹方程为〔X 2p〕2 2 ,2 ................ ....... _ _ ,一 , ,,一一一 ...y 4p,其轨迹是以〔2p,0〕为圆心,半径为2 P的圆,除去点〔0, 0〕.评析:用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可.交轨法实际上是参数法中的一种特殊情况.3以由圆的几法性质可知:M点的轨迹是以(2p,0)为圆心,半径为2P的圆.所以方程为2 2.2(x 2p) y 4p ,除去点(0, 0).1、定点F(1, 0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且P M PF 0,|而| | PN|. (1)动点N的轨迹方程;(2)线l与动点N的轨迹交于A, B两点,假设OA OB 4,且4j6 | AB| 4^30 ,求直线l的斜率k的取值范围.⑴ 设动点N的坐标为(x,y),那么M( x,0), P(0,-y)(x 0), PM* ( x, -y), 2 22PF (1,)),由丽PF 0得x 匕0,因此,动点的轨迹方程为y24x(x 0).2 4(2)设l与抛物线交于点A (x1,y1),B(x2,y2),当l与x轴垂直时, 那么由OAOB 4,得y1 2< 2, y2 2j2,|AB|4四4®不合题意,故与l与x轴不垂直,可设直线l的方程为y=kx+b(k W0那么由OA OB 4,得X1X2y1 y2 4由点A, B在抛物线y2 4x(x 0)上,有y; 4x, y; 4x2,故yy? 8.又y2=4x, y=kx+b 得ky2—4y+4b=0,所以,, / , 2 〞4b 2 2 1 k 16一8,b 2k. 16(1 2k ),|AB| —— (— 32)内为k k k4 , 21 k 164^6 | AB | 4430,所以96 ——(― 32) 480.k2 k2解得直线l的斜率的取值范围是[1 1] [1,1].’2 2第6页共6页。
高中数学考前归纳总结求轨迹方程的常用方法
求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轨迹问题的求法
一、直接法
当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程,称之直接法.
定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.
将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。
四、几何法
几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.
五、参数法
参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程
例3.【2017年全国二卷文科】
六、交轨法
求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.
七、代入法
当题目中有多个动点时,将其他动点的坐标用所求动点的坐标来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点的轨迹方程,称之代入法,也称相关点法、转移法
.。