2019年浙江省数学高考模拟精彩题选 解析几何解答题 含答案
浙江省2019高考数学优编增分练解析几何
![浙江省2019高考数学优编增分练解析几何](https://img.taocdn.com/s3/m/8b3105ee0b4e767f5bcfce71.png)
)解析几何(四2kkxpypFE 的=2作斜率分别为(的焦点1.(2018·浙江省台州中学模拟)过抛物线>0):,21CDABECDkklEABlll ,+相交于点=2,,以且与与相交于点,两条不同直线,,,212211lNMNM . ,圆为圆心(),为直径的圆的公共弦所在直线记为→→2pkkFMFN >0,证明:<2·;(1)若>0,2157EMl (2)若点的距离的最小值为到直线,求抛物线的方程.5p ????FE ,0 ,(1)证明 由题意知,抛物线的焦点为 ??2pxlyk . =直线+的方程为 112p ??xky ,+= 1222?ppkxx 0. =由-2得-1?2?pyx ,=2ABxyxy ),,设),,两点的坐标分别为((, 2211xx 是上述方程的两个实数根, ,则212pypkxxpky ==22,,+从而++122111p ??→22pkpk ??FMpkpkM +,).( ∴点,的坐标为,= 1111??2p ??2pkpk ??N +, 的坐标为同理可得点, 22??2→2pkpkFN ),,=( 22→→222FMFNpkkkk )(.于是 ·+=2211kkkkkk ,≠>0∵,+ =2,>0,221121→→22kkFMFNpp . 2=<1,故(1·+∴0<<1)21(2)解 由抛物线的定义得ppyFAyFB |+|=|,|=+, 21222pyAByppk +2+=2,+∴||=1122ppkMr . 的半径+=从而圆1132222pxpkxMypyk +故圆的方程为+-2-(20-1)=, 114. 32222pyxpkNxypk ,(2同理可得圆=的方程为++1)-20-- 22422ykklkxk )∴直线0的方程为(--)=+(,1122yx 0.2即=+2kkp 1|++|211dlM .的距离为∴点=到直线5p 71dk .=-故当时,取最小值 1458p 577p 8. =,解得=由已知得5582yEx .故所求抛物线的方程为16=22yx ??23)(()??EFCabF 点,>的两焦点分别是>0)2.已知椭圆+:=1(,022,0,-,2 2122ba ??2C 在椭圆上.C (1)求椭圆的方程;→→PFyPCMNMPPN 为直径的圆面(2)设是,使得轴上的一点,若椭圆,求以上存在两点=,21积的取值范围.c (1)由已知,得半焦距,=2解293EFEFa ,|==4|+|8|2=+2+2122222caab ,=6=8所以=22,所以-=2-22yxC 1. =的方程是所以椭圆+68tP )(2)设点,的坐标为(0,MN 斜率不存在时,当直线NM ,可得分别是短轴的两端点,262tt . 得到==±, 33MN 斜率存在时, 当直线MNykxtMxyNxy ),)的方程为=,+,,((, 设直线2211→→MPPNxx ,①2得 则由=-=221tkxy ,=+???22联立yx ,1=+? ?68222txktxk ,0=24-4+8+)4+(3得.2222tkkt )(4,4由题意,得Δ=64-24)>0-4(3+22kt 6<8,整理得+ 由根与系数的关系得kt 8-xx ,=+ 212k 43+2t -244xx =,②·212k 43+2t 6-+2kxx ,=得,由①②,消去 212t 812-2t 6+-??≥0,2t 8-122?2t <6由, 解得< 32t 6-+?2t ?,+6<8·2t 812-22t <6, 综上≤ 32t +2SFP ·,又因为以=π为直径的圆面积142π????S π2,.的取值范围是所以 ??322ymxmmCxy =-2与抛物线+3.(2018·浙江“超级全能生”联考)如图,已知直线:=-21????MAB 1,-.,两点,定点相交于 ??2AByx 平分; (1)证明:线段=-被直线MABm 的值. 面积取得最大值时(2)求△AxyBxy),( 设 (,,),(1)证明22112mmymx,2=-2+-??联立方程组?2xy,=??22mxmxm 0+2-得,+2=2mxxxmxm=-2-,·,=2∴+2211xx+21m,则=-2222xxxxxxyy++?-2+?22111122m,===222.mmAB,(-)∴线段,的中点坐标为xABy∴线段被直线平分.=-22yABxxy?=?--?+(2)解∵|?|221122mmmm 4,(0<-4<1)=1+4+2mm|+22-|1dMAB=的距离为,点到直线2m41+1dMABSAB |=|∴△的面积222mmmmm )|(0<|1-2(-,=-++<1)22tttmmS |1-令-2+=,,则|=11??3t??ttSt≤0< -=又∵0<2≤,∴,??221??23t??tttfttf≤0< 6,则′(令(,)=)-2=1-??2????6166????ttfft取得最大值,(上单调递减,故当在时,上单调递增,在则)(=),,06????266363±2mmmMAB. =+即△,解得面积取得最大值,此时有-=6622yxCMaCbABx的上顶点,,4.已知椭圆1(:+=轴的两个交点,>是椭圆与>0),为椭圆22ba2kkkMAkMB. ,,直线设直线=-的斜率为的斜率为22113C(1)求椭圆的离心率;→→OPQQDxDPQDPl的=(-3,0),交椭圆于3,,当△(2)设直线与两点,且满足轴交于点C的方程.面积最大时,求椭圆bbka,kbMAa,B 0),=(解 (1),(0,),,(-0),=-21aa2cbbb32ekk.=·=-=-=-,=212aaaa33c3e=知=,(2)由(1)a32222cbac=得2=3,,222cxCy=36可设椭圆2的方程为,+mylx,-设直线的方程为3=222cxy,=632+??由?myx,3-=222cmmyy=0,+得(2+3)6--436ylCPxyQx因为直线)与椭圆,相交于((两点,,,)2211222cmm )>0所以Δ=486-4(2,+3)(6-2cm6643-yyyy.=由根与系数的关系得,=+,212122mm322++3→→yQDDPy=3,所以,=-又3212m362c =-,6-6代入上述两式得2m32+??31m38??ySODy-||所以==||OPQ21△222m??32+m1212|| =,=≤62m33|2|+m|+2|m||3522mc=,时,等号成立,此时当且仅当=22代入Δ,此时Δ>0成立,22yx2C1.+所以椭圆=的方程为515yxNPxy1. 5.已知在平面直角坐标系中,动点≥0)到点(轴的距离大,(1,0))(的距离比到CP (1)求动点的方程;的轨迹→OAyABQxMC且满足1两点,设点=在直线(2)若过点0(2,0)的直线与轨迹+相交于上,,-→→tOOBtOQ)+,求实数=的最小值.(为坐标原点PNyyxNPx-所以|(1,0)的距离比到解 (1)方法一因为点|(轴的距离大,)(1≥0)到点,2xNyx. 的坐标代入,并整理得4|,将点1=|=2xyPC.=的轨迹的方程是故点4NPPNy的所以点方法二因为平面上动点(1,0)到点到点(1,0)的距离比到轴的距离大1,PPx焦点到准线的距离为的轨迹是以原点为顶点,1距离与点的距离相等,到直线即点=-2xyPC.的轨迹=的方程为2,并且为开口向右的抛物线,所以点42yABAByx:40且与抛物线有两个交点,设直线由题意知直线(2)=的斜率存在且斜率不为xyk,2??-=??2222kxxAykxyQBxyxkxk=,),(,,)+(,1)=(-2),(),由-4(得+4?21212xy ,4=??k ≠0). 0(2k 1)>0恒成立,Δ=16(2+2k ??+14xxxx 4·=所以+,=, 21122k →→→OAOBtOQxxyytxy ),(+ ,,因为++)==,所以(21212yykxkxkxxkxxk 4-+?4-+1?2+???-2?+?+4?21111222xy ===,=,即 ==2tktttttkQxy -1=0又点上,在 +2k 41??+40. 1=所以+-2kttk 1111????2????t ++1++3≥3.44 所以== 2kkk ????2t 的最小值为3.故实数2x 2CFAMy 作直线交椭圆于的右焦点两点.6.如图,过椭圆,:+=1 2ACxQAQFCQF ;,使得∠变化时,在 轴上求定点(1)当=∠,QAMBBFDABCD 的面当四边形,连接(2)设直线,交椭圆并延长交椭圆于点的另一个交点为AC 的方程. 积取得最大值时,求直线AxyCxyQq,0),((),,),( 解 (1)设,2112ACxACxty +1,当的方程为, 不在=轴上时,设直线22tyyMt 0. 2=的方程,可得(2+-)1+代入椭圆t 12-yyyy ,,+==- 211222tt +2+2yy 21kk =由意题知++ CQAQ qxxq --21yxqyxq ???--?+1212= qxxq ????--21ytyqytyq ?-?++??+1-11122= qqxx ?-??-?21tyyqyy ?1-2+??+?2211=0,= qxqx ????--21tyyqyy )=0)(,+即2 (1+-2211ttq )=0(1-,整理得-2-2tq =2,取何值,上式恒成立,则 由题知无论ACxQAQFCQFQ 的坐标是(2,0).=∠当成立,所以点,在 轴上时,定点(2,0)依然可使∠AQFCQFBQFDQF . ,∠由(2)(1)知∠=∠=∠BCxADx 轴对称,关于,轴对称,关于,所以.ABCD 是一个等腰梯形.所以四边形2ytyyABCDStxxy |·||-则四边形-的面积|(=)|=-||·|2111222tt ||1??+. =8· 22t ?+?224tt 23--tSt )=-8·′(,由对称性不妨设,求导可得>032t ??2+17+32tSt =,可得令,′()=02??17+3??tS 上单调递增,)由于(在,0??2??17+317+32??SABCDt 取得最大的面积上单调递减,所以当=在时,四边形,+∞2??2 值.173+yACx 1.的方程是此时,直线=±+2.。
浙江省杭州市2019届高考数学命题比赛模拟试题6及参考答案
![浙江省杭州市2019届高考数学命题比赛模拟试题6及参考答案](https://img.taocdn.com/s3/m/2c3ad2e0ddccda38376baf9f.png)
浙江省杭州市2019届高考数学命题比赛模拟试题6试卷命题双向细目表2019年高考模拟试卷数学卷考试时间 120分钟 满分150分 命题报告一、命题特色:(1)本模拟试卷严格按照浙题序 考查内容 分值 难易程度 1 复数及复数模的运算 5 容易题 2 充要关系的判定 5 容易题 3 数列的基本性质5 容易题 4 线面垂直、线面平行的判定 5 中档题 5 线性规划问题的求解5 中档题 6空间中的点、线、面的位置关系,同时考查空间想象能力和逻辑推理能力 5中档题 7 组合计数在求解概率问题中的应用 5 中档题 8 函数性质以及方程零点问题 5 较难题 9 基本不等式、函数的性质5难题 10分段函数、三次函数的图像和性质,不等式恒成立和不等式的存在性问题 5难题 11 函数的周期性 6 中档题 12 三角函数性质6 中档题 13 利用三视图求几何体的体积和表面积 4 中档题 14 直线与圆 4 中档题 15 等比数列4 较难题 16 平面向量与三角函数 14 容易题 17 解三角形15 中档题 18 三角恒等变换、余弦定理、三角形的面积 15 中档题 19数列的递推公式和等比数列的求和公式以及累乘法的应用 15 较难题 20 线线垂直的判定,考查线面角 15 较难题 21 椭圆的标准方程与几何性质、直线方程 15 较难题 22导数在研究函数性质中的应用15 较难题江省高考信息进行命题,遵循浙江省高考试题命制的特点;(2)试卷注重考查学生对基础知识、基本方法和基本技能的掌握情况,侧重对通性通法的考查;(3)注重在知识点的交汇处命题,侧重于学生数学学科素养的考查。
二、好题展示:第10题将分段函数、三次函数的图像和性质,不等式恒成立与不等式的存在性问题交汇在一起,考查考生的综合处理能力,考查的核心素养是数学抽象和数学运算;第13题以全新的视角考查了三视图的知识,对考生的空间想象能力要求较高,考查形式新颖,考查的核心素养是数学运算;第22题是考查导数判断函数单调性,函数的最值与零点,不等式的证明等,考查推理论证能力、运算求解能力等,考查函数与方程思想、化归和转化思想、数形结合思想等,考查的核心素养是数学运算与逻辑推理能力,试题短小精悍,但思维量大,值得考生深思熟虑,符合浙江省高考特色。
2019年浙江省高考数学(含解析版)
![2019年浙江省高考数学(含解析版)](https://img.taocdn.com/s3/m/98ea14183868011ca300a6c30c2259010302f354.png)
【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
3.若实数 满足约束条件 ,则 的最大值是( )
A. B.1
C.10D.12
【答案】C
【解析】
【分析】
本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.
【详解】方法1:由分布列得 ,则
,则当 在 内增大时, 先减小后增大.
方法2:则
故选D.
【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.
8.设三棱锥 的底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A.当 B.当
C.当 D.当
非选择题部分(共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.复数 ( 为虚数单位),则 ________.
12.已知圆 的圆心坐标是 ,半径长是 .若直线 与圆相切于点 ,则 _____, ______.
13.在二项式 的展开式中,常数项是________;系数为有理数的项的个数是_______.
C. 先增大后减小D. 先减小后增大
8.设三棱锥 底面是正三角形,侧棱长均相等, 是棱 上的点(不含端点),记直线 与直线 所成角为 ,直线 与平面 所成角为 ,二面角 的平面角为 ,则( )
A. B.
C. D.
9.已知 ,函数 ,若函数 恰有三个零点,则( )
2019年浙江省数学高考模拟精彩题选解析几何解答题含答案
![2019年浙江省数学高考模拟精彩题选解析几何解答题含答案](https://img.taocdn.com/s3/m/34b0650a0b4c2e3f572763e9.png)
l 的对称点,设
.
(Ⅰ)若
l
3 = ,求椭圆
C 的离心率;
4
(Ⅱ)若 DPF1F2
x2 y2 2.( 2016 温州一模 19).(本题满分 15 分)如图,已知椭圆 C : a2 b2 1(a b 0) 经过点
(1, 6 ) ,且离心率等于 2 .点 A, B分别为椭圆 C 的左、右顶点, M , N 是椭圆 C 上非
7 ,3
时,求实数
2
的取值范围.
解:(Ⅰ) 由离心率为 6 ,得 a2 3b2 . 3
………………2 分
设 A x1, y1 , B x2, y2 ,联立
x2 3y2 x y1
3b2 0,
0,消去 y 得 4x2
6x
3 1 b2
0
故 x1 x2
3 2 , x1x2
3 1 b2 ,
4
所以 x1 x2
3
1 2kO2N
1 2kO2N
作 MM ' x 轴 , NN ' x轴 , M ', N ' 是垂足 ,
S S S S OMN = 梯形 MM 'N 'N
OMM '
ONN '
1 [( yM
2
y N )( xM
xN ) xM yM
xN y N ]
1 (xM yN xN yM )
2
1(
4kON
2
1
2k
2 OM
2
2
2k 2 1
2
化得 m4 ( 4k2
2)m2
(2k 2
2
1)
0 ,得 m2
2k 2
1
……………………… 13
专题08平面解析几何-2019届浙江省高考数学复习必备高三优质考卷分项解析(Word版含解析)
![专题08平面解析几何-2019届浙江省高考数学复习必备高三优质考卷分项解析(Word版含解析)](https://img.taocdn.com/s3/m/7724de072e3f5727a5e9625b.png)
一.基础题组1. 【浙江省“七彩阳光”联盟2019届高三期初联考】双曲线的一条渐近线方程为,则正实数的值为()A.9 B.3 C.D.【答案】D【解析】【分析】求出双曲线的渐近线方程,即可得到结果【详解】2. 【浙江省“七彩阳光”联盟2019届高三期初联考】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,则满足的点的轨迹的圆心为____________,面积为____________.【答案】【解析】【分析】由阿波罗尼斯圆求出点的轨迹的圆的方程,就可以得到圆心坐标和圆面积【详解】设,即化简可得故圆心坐标为面积为【点睛】本题考查了阿波罗尼斯圆,即一动点到两定点的距离之比是个常数时其轨迹是圆,运用两点间的距离公式就可以求出圆的标准方程,从而得到结果.3.【浙江省杭州市第二中学2018届高三6月热身考】如图,已知椭圆,双曲线,若以为长轴的直径的圆与的一条渐近线交于两点,且与该渐近线的两交点将线段三等分,则的离心率为()A.B.C.D.【答案】A【解析】分析:设直线与椭圆在第一象限内的交点为,则且,根据这个关系我们能得到的坐标,从而得到的大小.详解:设直线与椭圆在第一象限内的交点为且设,其中则,故,所以,也就是,所以,选A.点睛:圆锥曲线中的离心率的计算,关键是利用题设条件构建关于的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于的不等式或不等式组.4. 【浙江省“七彩阳光”联盟2019届高三期初联考】直线与椭圆相交于两点,与轴、轴分别相交于两点.如果是线段的两个三等分点,则直线的斜率为_____________.【答案】【解析】【分析】设直线的方程为,联立椭圆方程,是线段的两个三等分点,则线段的中点与线段的中点重合,得到关系式求出斜率【详解】由题意,设直线的方程为,,则,联立椭圆方程可得,由韦达定理可得,,是线段的两个三等分点线段的中点与线段的中点重合,解得故答案为【点睛】本题考查了直线与椭圆的位置关系,由题目中“是线段的两个三等分点”出发,联立直线方程与椭圆方程,求得线段中点坐标,得到方程求出结果,解题关键是找出相等的量。
浙江省杭州市2019届高三高考命题比赛模拟数学试卷15Word版含答案
![浙江省杭州市2019届高三高考命题比赛模拟数学试卷15Word版含答案](https://img.taocdn.com/s3/m/694e228c14791711cc7917f3.png)
=5, 3
ξ
1
2
3
P
a
b
c
13. [ 原创 ] 多项式 x 2 2 x x 1 6 的展开式中常数项 _______ ,是 x 6 项的系数是 _______。 14. [ 原创 ] 已知直线 l : mx y 1, 若直线 l 与直线 x my 1 0 平行,则 m 的值为 ________,动直线 l 被圆 x2 2 x y2 24 0 截得的弦长最短为 ________
] (本题满分 15 分)已知正四棱锥
P ABCD 中,底面是边长为 2 的正方形,高为 2 , M 为线段 PC 的中P点。
(1) 求证: PA ∥平面 MDB ;
N
(2) N 为 AP 的中点,求 CN 与平面 MBD 所成角的正弦值。
5. [ 原创 ] 为了得到函数 y sin 3x - cos3x 的图象,可将函数 y 2 sin 3x的图象(
)
A. 左平移 个单位
B.
4
向右平移 个单位
4
C. 向左平移
个单位
D.
12
向右平移
个单位
12
2x 4 y 7,
6. [ 原创 ] 若 x, y 满足约束条件 2x 3y 9, 则 z 10 x 10 y 的最大值是(
x2
y2
a2 的切线,切点为 E ,延长 FE 交双曲线右支于点 P ,若 OP 2OE OF ,则
4
2
双曲线的离心率为
()
A. 10
B
. 10
C
. 10
5
2
D
.2
9. [ 改编自步步高 ] 如图 Rt ABC 中, ACB 90 ,直线 过点 A 且垂直于平面 ABC ,
2019年高考真题+高考模拟题 专项版解析汇编 文数——专题05 平面解析几何(解析版)
![2019年高考真题+高考模拟题 专项版解析汇编 文数——专题05 平面解析几何(解析版)](https://img.taocdn.com/s3/m/9923ca8ade80d4d8d15a4ffe.png)
专题05 平面解析几何1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==Q ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.2e ∴=,故选A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又453OP OF ==+=,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=OP OF ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c ==12a =, 故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-,双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a a===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=. 【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x∴+=,解得03x=(3x=-舍去),M\的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF、,设出M的坐标,结合三角形面积可求出M的坐标. 11.【2019年高考江苏卷】在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是▲.【答案】y=【解析】由已知得222431b-=,解得b=b=因为0b>,所以b=因为1a=,所以双曲线的渐近线方程为y=.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b密切相关,事实上,标准方程中化1为0,即得渐近线方程.12.【2019年高考江苏卷】在平面直角坐标系xOy中,P是曲线4(0)y x xx=+>上的一个动点,则点P到直线x+y=0的距离的最小值是▲.【答案】4【解析】当直线x+y=0平移到与曲线4y xx=+相切位置时,切点Q即为点P,此时到直线x+y=0的距离最小.由2411yx'=-=-,得)x x==,y=Q,则切点Q到直线x+y=04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-, 从而可求得3152P ⎛- ⎝⎭,所以1521512PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁.15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M e 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M e 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M e 与直线x +2=0相切,所以M e 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥u u u u r u u u r ,故可得2224(2)a a +=+,解得=0a 或=4a .故M e 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M e 的半径为=|+2|,||=2r x AO .由于MO AO ⊥u u u u r u u u r,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x .因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C 的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b +=,即||16c y =,① 222x y c +=,②22221x y a b +=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥时,存在满足条件的点P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM u u u u r =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||EM =u u u u r 22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2),则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.|2||OA OB=(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线x=4上,且OC AP∥,求椭圆的方程.【答案】(1)12;(2)2211612x y+=.【解析】(1)设椭圆的半焦距为c2b=,又由222a b c=+,消去b得2222a a c⎛⎫=+⎪⎪⎝⎭,解得12ca=.所以,椭圆的离心率为12.(2)由(1)知,2,a c b==,故椭圆方程为2222143x yc c+=.由题意,(, 0)F c-,则直线l的方程为3()4y x c=+,点P的坐标满足22221,433(),4x yc cy x c⎧+=⎪⎪⎨⎪=+⎪⎩消去y并化简,得到2276130x cx c+-=,解得1213,7cx c x==-.代入到l的方程,解得1239,214y c y c==-.因为点P在x轴上方,所以3,2P c c⎛⎫⎪⎝⎭.由圆心C在直线4x=上,可设(4, )C t.因为OC AP∥,且由(1)知( 2 , 0)A c-,故3242ctc c=+,解得2t=.因为圆C与x轴相切,所以圆的半径长为2,又由圆C 与l 相切,得23(4)242314c +-=⎛⎫+ ⎪⎝⎭,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c . 因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C:221 43xy+=.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(−1,0),由221431xx y⎧⎪⎨+==-⎪⎩,得32y=±.又因为E是线段BF2与椭圆的交点,所以32y=-.因此3(1,)2E--.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为31,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24Bty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=+++++…当m =时,12S S取得最小值1G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.22.【辽宁省丹东市2019届高三总复习质量测试数学(二)】经过点(3,0)M 作圆22243x y x y +---0=的切线l ,则l 的方程为A .30x y +-=B .30x y +-=或3x =C .30x y --=D .30x y --=或3x =【答案】C【解析】22222430(1)(2)8x y x y x y +---=⇒-+-=,所以圆心坐标为(1,2),半径为当过点()3,0M 的切线存在斜率k ,切线方程为(3)30y k x kx y k =-⇒--=,圆心到它的距离为1k ==,即切线方程为30x y --=,当过点()3,0M 的切线不存在斜率时,即3x =,显然圆心到它的距离为2≠,所以3x =不是圆的切线.因此切线方程为30x y --=,故本题选C.【名师点睛】本题考查了求圆的切线.本题实际上是过圆上一点求切线,所以只有一条.解答本题时,设直线l 存在斜率k ,点斜式设出方程,利用圆心到直线l 的距离等于半径求出斜率k ,再讨论直线l 不存在斜率时,是否能和圆相切,如果能,写出直线方程,综合求出切线方程.23.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学试题】已知椭圆22221x y a b+=(0)a b >>的离心率为3,椭圆上一点P 到两焦点距离之和为12,则椭圆短轴长为A .8B .6C .5D .4【答案】A【解析】椭圆()222210x y a b a b +=>>的离心率:c e a ==,椭圆上一点P 到两焦点距离之和为12,即212a =,可得:6a =,c =,4b ∴===,则椭圆短轴长为28b =. 本题正确选项为A.【名师点睛】本题考查椭圆的定义、简单几何性质的应用,属于基础题.解答本题时,利用椭圆的定义以及离心率,求出,a c ,然后求解椭圆短轴长即可.24.【山东省德州市2019届高三第二次练习数学试题】已知椭圆22221x y a b+=(a >b >0)与双曲线222212x y a b -=(a >0,b >0)的焦点相同,则双曲线渐近线方程为A.y x = B.y =C.2y x =± D.y =【答案】A【解析】依题意椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)2x y a b a b -=>>即22221(0,0)22x y a b a b-=>>的焦点相同,可得:22221122a b a b -=+,即223a b =,∴b a ==∴双曲线的渐近线方程为:x y x ==, 故选A .【名师点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.解答本题时,由题意可得22221122a b a b -=+,即223a b =,代入双曲线的渐近线方程可得答案.25.【江西省新八校2019届高三第二次联考数学试题】如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若4BC BF =,且6AF =,则p 为A .94B .92C .9D .18【答案】B【解析】设准线与x 轴交于点P ,作BH 垂直于准线,垂足为H .由4BC BF =,得:45BH BC PF CF ==, 由抛物线定义可知:BF BH =,设直线l 的倾斜角为θ,由抛物线焦半径公式可得:41cos 5pBF BF PF p p θ+===,解得:1cos 4θ=, 46131cos 3144p p p AF p θ∴=====--,解得:92p =, 本题正确选项为B.【名师点睛】本题考查抛物线的定义和几何性质的应用,关键是能够利用焦半径公式中的倾斜角构造出方程,从而使问题得以解决.26.【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】双曲线M 的焦点是12,F F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为2π3的等腰三角形,则M 的离心率是______.【解析】根据双曲线的对称性可知,等腰三角形的两个腰应为2PF 与12F F 或1PF 与12F F ,不妨设等腰三角形的腰为2PF 与12F F ,且点P 在第一象限, 故2||2PF c =,等腰12PF F △有一内角为2π3,即212π3PF F ∠=,由余弦定理可得,1PF ==||,由双曲线的定义可得,1PF PF c a -=-=2||||22,即1)c a =,解得:12e =. 【名师点睛】本题考查了双曲线的定义、性质等知识,解题的关键是要能准确判断出等腰三角形的腰所在的位置.解答本题时,根据双曲线的对称性可知,等腰三角形的腰应该为2PF 与12F F 或1PF 与12F F ,不妨设等腰三角形的腰为2PF 与12F F ,故可得到2PF 的值,再根据等腰三角形的内角为2π3,求出1PF 的值,利用双曲线的定义可得双曲线的离心率.27.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知椭圆22221(0)x y C a b a b +=>>:的左顶点为(20)M -,,离心率为2. (1)求椭圆C 的方程;(2)过点(10)N ,的直线l 交椭圆C 于A ,B 两点,当MA MB ⋅u u u r u u u r取得最大值时,求MAB△的面积.【答案】(1)22142x y +=;(2.【解析】(1)由题意可得:2a =,c a =,得c =2222b a c =-=. 所以椭圆22:142x y C +=.(2)当直线l 与x 轴重合时,不妨取(2,0),(2,0)A B -,此时0MA MB ⋅=u u u r u u u r ;当直线l 与x 轴不重合时,设直线l 的方程为:1x ty =+,1122(,),(,)A x y B x y ,联立221142x ty x y =+⎧⎪⎨+=⎪⎩得22(2)230t y ty ++-=,显然>0∆,12222t y y t -+=+,21232y y t -⋅=+. 所以1212(2)(2)MA MB x x y y ⋅=+++u u u r u u u r1212(3)(3)ty ty y y =+++ 21212(1)3()9t y y t y y =++++22232(1)3922t t t t t --=+++++ 22233692t t t ---=++ 229392t t --=++2152t =+. 当0t =时,MA MB ⋅u u u r u u u r 取最大值152.此时直线l 方程为1x =,不妨取(1,),(1,)22A B -,所以AB =又3MN =,所以MAB △的面积132S ==. 【名师点睛】本题考查椭圆的基本性质,运用了设而不求的思想,将向量和圆锥曲线结合起来,是典型考题.(1)由左顶点M 坐标可得a =2,再由ce a=可得c ,进而求得椭圆方程. (2)设l 的直线方程为1x ty =+,和椭圆方程联立221142x ty x y =+⎧⎪⎨+=⎪⎩,可得22(2)230t y ty ++-=,由于>0∆,可用t 表示出两个交点的纵坐标12y y +和12y y ⋅,进而得到MA MB ⋅u u u r u u u r 关于t 的一元二次方程,得到MA MB ⋅u u u r u u u r取最大值时t 的值,求出直线方程,而后计算出MAB △的面积.28.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试数学试题】已知抛物线()2:20C y px p >=的焦点为F ,直线4y =与y 轴的交点为P ,与抛物线C 的交点为Q ,且2QF PQ =. (1)求p 的值;(2)已知点(),2T t -为C 上一点,M ,N 是C 上异于点T 的两点,且满足直线TM 和直线TN 的斜率之和为83-,证明直线MN 恒过定点,并求出定点的坐标. 【答案】(1)4;(2)证明过程见解析,直线MN 恒过定点()1,1--. 【解析】(1)设()0,4Q x ,由抛物线定义知02QF p x =+, 又2QF PQ =,0PQ x =, 所以0022p x x =+,解得02p x =, 将点,42p Q ⎛⎫⎪⎝⎭代入抛物线方程,解得4p =. (2)由(1)知,C 的方程为28y x =,所以点T 坐标为1,22⎛⎫- ⎪⎝⎭,设直线MN 的方程为x my n =+,点()11,M x y ,()22,N x y ,由28x my ny x=+⎧⎨=⎩ 得2880y my n --=,264320m n +=>∆.所以128y y m +=,128y y n =-, 所以121222121222221111228282MT NT k k y y y y y y x x +++++=+=+----()()1212121288228+3224y y y y y y y y -=-++--+= 6432881643m n m -==---+,解得1n m =-,所以直线MN 的方程为1(1)x m y +=+,恒过定点()1,1--.【名师点睛】本题考查抛物线的定义,直线与抛物线相交,直线过定点问题,属于中档题.(1)设Q 点坐标,根据抛物线的定义得到Q 点横坐标,然后代入抛物线方程,得到p 的值;(2)()11,M x y ,()22,N x y ,直线和曲线联立,得到1212,y y y y +,然后表示出MT NT k k +,化简整理,得到m 和n 的关系,从而得到直线MN 恒过的定点.。
浙江省2019 年高考模拟训练卷数学(三)及解析
![浙江省2019 年高考模拟训练卷数学(三)及解析](https://img.taocdn.com/s3/m/f318c1d50740be1e650e9af4.png)
○…………外………○…………装…………○学校:___________姓名:___________班○…………内………○…………装…………○浙江省2019 年高考模拟训练卷数学(三)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合U={1,2,3,4,5},A ={0,1,2,3},B ={1,2,3,4},则C U (A ∩B )=( (A. {1,2,3}B. {3,4,5}C. {4,5}D. ∅ 2.已知双曲线C:x 2a 2−y 2a 2=1,则C 的离心率是( )A. √52B. √2C. 2D. √5 3.已知a +bi =2−i 1+i(i ((((((((√a 2+b 2( (A.3√22 B. √102 C. 92 D. 524.函数f (x )=cosx x 2的图像可能是( )A. B.C. D.5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )答案第2页,总17页…………○……※※在※※装※※订※※线…………○……A. 2 B. √3 C. √32 D. √366.已知5辆不同的白颜色和3辆不同的红颜色汽车停成一排,则白颜色汽车至少2辆停在一起且红颜色的汽车互不相邻的停放方法有( ) A. 1880 B. 1440 C. 720 D. 2567.在ΔABC 中,“sinA<cosB ”是“ΔABC 为钝角三角形”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.设函数f (x )={e x +x 2(x ≥0)1ex+x 2(x <0) .已知对任意的a ∈[√3,2√3],若x 1∈[a −k a ,a −k 2a ](x 2∈[a −k 3a ,a −k4a ],恒有f (x 1)≥f (x 2),则正实数k 的取值范围是( )A. (0,4]B. (0,8]C. [8,+∞)D. [32,+∞)9.如图,C,D 是以AB 直径的圆O 上的动点,已知|AB |=2,则AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ 的最大值是( )A. 12B. √5−√3C. √22 D. √3−1 10.已知数列{a n }满足a 1>0(a 11=4(a n+1=a n +12a n 2,数列{b n }满足b n >0(b 1=a 12(b n =b n+1+12b n+12,n ∈N ∗若存在正整数m,n (m ≤n ),使得b m +b n =14,则( ) A. m=10,n =12 B. m =9,n =11 C. m =4,n =6 D. m =1,n =3第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.已知函数f (x )={log 2x,x >02x ,x ≤0,则f (4)=__________;f (f (13))=__________(12.若实数x,y (((((({2x +y +2≥0x +y −1≤0y ≥0,则z =y −2x (((((__________(13.若(x −2)8=a 0+a 1(x −1)+a 2(x −1)2+⋯+a 8(x −1)8,则a 0+a 1+a 2+⋯+……外……………○…………订……___班级:___________考号:___……内……………○…………订……a 8=__________(14.在ΔABC 中,角A,B,C 所对的边a,b,c ,点E 为边AC 上的中点,已知a=2,b =4,c =3,则cosC =__________;BE =__________(15.((x,y∈R ,若x +2y =4((x 2+4y 2(((((__________((x 2+4y 2=4,则x +y (((((__________(16.已知直线l:y=x +1与抛物线C:x 2=y 交于A,B 两点,点P (0,1),Q (−1,0),且PQ⃑⃑⃑⃑⃑⃑⃑ =λQA ⃑⃑⃑⃑⃑⃑⃑ =μQB⃑⃑⃑⃑⃑⃑⃑ (λ,μ∈R ),则λ+μ=__________( 17.如图,在三棱锥P−ABC 中,点O 为AB 的中点,点P 在平面ABC 的投影恰为OB 的中点.已知AB =2PO =2,点C 到OP 的距离为√3,则当∠ACB 最大时,二面角P −AC −B 的余弦值是__________(三、解答题(题型注释)18.已知函数f (x )=√2sin (2x +π4),x ∈R .(1)求函数f (x )在[0,π4]上的值域; (2)若f (x 0)=13,求tanx 0.19.在三棱锥P−ABC 中,平面PAC ⊥平面ABC ,AQ =QC ,PA =PC =AB =2,BC =1,PB =√3.(1)证明:BC ⊥BQ ((2)求直线AC 与平面PAB 所成角的正弦值. 20.已知数列{a n }的前n 项为S n=3a n −2n ,n ∈N ∗.答案第4页,总17页订…………○………※※答※※题※※订…………○………(1)证明:{a nn−1}为等比数列; (2(((({na n2n}的前n (((T n . 21.如图,直线l:y =kx +m (k >0,m <0)交椭圆C:x 24+y 23=1于A,B 两点,点E 是线段AB 的中点,连接EO 并延长EO 交椭圆C 于点F .(1)设直线EF 的斜率为k ′,求kk ′的值; (2)若k=32,求ΔFAB 面积的最大值.22.知函数f (x )=x 2+a x+a,g (x )=2lnx +2a (a ∈R ).(1)求f (x )的单调区间; (2)证明:存在a∈(0,1),使得方程f (x )=g (x )在(1,+∞)上有唯一解.参数答案1.C【解析】1.先求出A ∩B ,然后再在全集U ={1,2,3,4,5}下求∁U (A ∩B ). ∵A ={0,1,2,3},B ={1,2,3,4},∴A ∩B ={1,2,3},又∵全集U ={1,2,3,4,5}, ∴∁U (A ∩B )={4,5}. 故选:C . 2.B【解析】2.由题意知双曲线为等轴双曲线,由此得离心率. ∵双曲线方程为C:x 2a 2−y 2a 2=1,∴双曲线为等轴双曲线, ∴e=√2. 故选B. 3.B【解析】3. 由于a +bi =1−3i 2,故有a =12,b =-32,即可得结果. 由于a +bi =2−i 1+i =(2−i )(1−i )(1+i )(1−i )=1−3i 2, ∴a +bi =1−3i2,∴a =12,b =-32,∴√a 2+b 2=√102故选B . 4.C答案第6页,总17页装…………○………※※要※※在※※装※※订※※线装…………○………【解析】4.利用奇偶性及函数值的正负进行排除即可. ∵f (x )=cosx x 2=cos (−x )(−x)2=f (−x ),∴函数f (x )为偶函数,排除A 、B , 又当0<x<π2时,f (x )>0,排除D ,故选C. 5.D【解析】5.由已知中的三视图可得该几何体是一个以俯视图为底面高为1的棱锥,利用锥体体积公式可得到答案. 由三视图可知:该几何体是如下的一个三棱锥,如图:∴该几何体的体积=13×12×1×√3×1=√36.故选:D . 6.B【解析】6.先从5辆白色汽车选3辆全排列后视为一个整体,再将剩余2辆白色汽车全排列后视为一个整体,再将这两个整体全排列,共有3个空,3辆不同的红颜色汽车插空排列即可.由题意知,白颜色汽车按3,2分两组,先从5辆白色汽车选3辆全排列共A 53种排法,再将剩余2辆白色汽车全排列共A 22种排法,再将这两个整体全排列,共A 22种排法,排完后有3个空,3辆不同的红颜色汽车插空共A 33种排法,由分步计数原理得共A 53A 22A 22A 33=1440 种.故选B. 7.A【解析】7.先由诱导公式将正弦化余弦,利用余弦函数的单调性得到角A 或角C 为钝角,再举反例说明必要性不成立即可. ∵sinA<cosB ⇔cos (π2−A)<cosB ,且B 必为锐角,可得π2−A >B 或A −π2>B ,即角A 或角C 为钝角;反之,当A=100°,B =30°时,cosB =√32,而sinA>sin120°=√32=cosB ,所以sinA <cosB 不成立,所以“sinA <cosB ”是“ΔABC 为钝角三角形”的充分不必要条件,故选A . 8.D【解析】8.利用函数的性质将不等式转化为|x 1|≥|x 2|,由对称性结合区间端点的大小得到a 与k 的关系,即8a 2≤3k 在a ∈[√3,2√3]上恒成立,求得8a 2的最值即可得到k 的范围. 因为f (−x )={e −x +(−x )2(−x ≥0)1e−x+(−x )2(−x <0) ={e x +x 2(x >0)1e x +x 2(x ≤0) =f (x ), ∴f (x )为偶函数且在(0,+∞)上单调递增, 由对称性得在(−∞,0)上单调递减, ∴f (x 1)≥f (x 2)⇔|x 1|≥|x 2|,又a −k 3a>a −k 2a,只需-(a −k 2a)≥a −k 4a,即2a −3k 4a≤0,即8a 2≤3k 在a ∈[√3,2√3]上恒成立,∴3k≥8×12,则正实数k 的取值范围是[32,+∞).答案第8页,总17页…………订………※订※※线※※内※※答※※题…………订………故选D. 9.A【解析】9.过点O 作AC 的平行线交圆O 于点E ,交BC 于M ,且M 为垂足,设D 在OE 的投影为N ,由向量的几何意义可知,AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ =|AC ⃑⃑⃑⃑⃑⃑ |∙|MN |,只需当N 落在E 处时,MN 最大,求得AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ =2cosθ∙(1−cosθ),再由θ∈[0,π2)求得最值即可. 如图,先将C 视为定点,设∠CAB =θ,θ∈[0,π2),则AC=2cosθ,连接CB ,则CB ⊥AC ,过O 作AC 的平行线交圆O 于E ,交BC 于M ,且M 为垂足, 又知当D 、C 在AB 同侧时,AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ 取最大值, 设D 在OE 的投影为N ,当C 确定时,M 为定点,则当N 落在E 处时,MN 最大,此时AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ 取最大值, 由向量的几何意义可知,AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ =|AC ⃑⃑⃑⃑⃑⃑ |∙|MN |,最大时为|AC ⃑⃑⃑⃑⃑⃑ |∙|ME |, 又OM=|OB |cosθ, ∴|ME |=1−cosθ,∴AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ 最大为|AC ⃑⃑⃑⃑⃑⃑ |∙|ME |=2cosθ∙(1−cosθ)≤2×[cosθ+(1−cosθ)2]2=12,当且仅当cosθ=12时等号成立,即θ=π3, ∴ AC ⃑⃑⃑⃑⃑⃑ •BD ⃑⃑⃑⃑⃑⃑⃑ 的最大值为12.故选A. 10.D【解析】10.由题意得a n+1>a n >⋯>a 1>0,b 1>b 2>⋯>b n >0,利用单调性可得b 1=a 12,代入已知求得b 2=a 11=4,b 3=a 10=2,…,b m =a 13−m ,又a 12=12,得到b m +b n =a 10+a 12,可得所求. 因为a n+1=a n +12a n 2,b n =b n+1+12b n+12,则有a n+1>a n >⋯>a 1>0,b 1>b 2>⋯>b n >0,且函数y =12x 2+x 在(0,+∞)上单调递增,故有b 1=a 12=b 2+12b 22=a 11+12a 112,得b 2=a 11=4, 同理有b 3=a 10=2,…,b m =a 13−m , 又因为a 12=a 11+12a 112=12, 故b m +b n =a 10+a 12,所以m=1,n =3.故选D. 11.2 13【解析】11.由已知利用分段函数及对数函数的性质求解.∵函数f (x )={log 2x,x >02x ,x ≤0,∴f (4)=log 24=2,f (f (13))=f (log 213)=2log 213=13, 故答案为:(1). 2 (2). 1312.10【解析】12.作出不等式组对应的平面区域,利用数形结合即可得到结论. 由z =y ﹣2x ,得y =2x +z , 作出不等式对应的可行域, 平移直线y =2x +z ,由平移可知当直线y =2x +z 经过点A 时,答案第10页,总17页线y =2x +z 的截距最大,此时z 取得最大值, 由{2x +y +2=0x +y −1=0,得{x =−3y =4 ,即A (-3,4)代入z =y ﹣2x ,得z =4﹣2×(-3)=10, 即z =y ﹣2x 的最大值为10. 故答案为:10. 13.0【解析】13.利用二项式定理可知,对已知关系式中的x 赋值,即可求得a 0+a 1+a 2+⋯+a 8的值. ∵(x −2)8=a 0+a 1(x −1)+a 2(x −1)2+⋯+a 8(x −1)8令x =2得:0=a 0+a 1+a 2+⋯+a 8,即a 0+a 1+a 2+⋯+a 8=0; 故答案为:0. 14.1116 √102【解析】14.直接利用余弦定理可得cosC ,利用中线定理的向量表示法将BE ⃑⃑⃑⃑⃑⃑⃑ 表示出,平方可得模. 在ΔABC 中,cosC=a 2+b 2−c 22ab=1116,同理可得cosB =-14, 又BE ⃑⃑⃑⃑⃑⃑⃑ =12(BA ⃑⃑⃑⃑⃑⃑⃑ +BC ⃑⃑⃑⃑⃑⃑⃑ ),平方得BE ⃑⃑⃑⃑⃑⃑⃑ 2=14(4+9+2×2×3×cosB )=104, 所以BE=√102,故答案为(1). 1116 (2). √102 15.8 √5【解析】15.根据题意,由基本不等式的性质可得4=x +2y ≥2√2xy ,变形可得2xy ≤4,进而可得x 2+4y 2=(x +2y )2﹣4xy =16﹣4xy ,分析可得第一个空;再利用柯西不等式求得第二个式子的最值.根据题意,x ,y ∈R +,且x +2y =4,则有4=x +2y ≥2√2xy ,变形可得2xy ≤4,(当且仅当x =2y =2时等号成立)x 2+4y 2=(x +2y )2﹣4xy =16﹣4xy ,又由4xy ≤8,则有x 2+4y 2≥8, 即x 2+4y 2的最小值为8; 若x 2+4y 2=4,则由柯西不等式得(x 2+4y 2)(1+14)≥(x +y)2,(当且仅当x =4y =4√55时等号成立),所以(x +y)2≤4×54即x+y 的最大值为√5,故答案为:(1). 8 (2). √5. 16.-3【解析】16.设A (x 1,y 1),B (x 2,y 2),将条件坐标化,利用向量相等与点在抛物线上,得到λ2+3λ+1=0,μ2+3μ+1=0,构造方程x 2+3x +1=0,求得结果.设A (x 1,y 1),B (x 2,y 2),则PQ ⃑⃑⃑⃑⃑⃑⃑ =(−1,−1),λQA ⃑⃑⃑⃑⃑ =λ(x 1+1,y 1),μQB⃑⃑⃑⃑⃑ =μ(x 2+1,y 2),则有x 1=−1λ−1,y 1=−1λ,代入方程x 2=y ,故有λ2+3λ+1=0,同理μ2+3μ+1=0,有,即可视λ,μ为方程x 2+3x +1=0的两根,则λ+μ=−3.故答案为-3. 17.3√1313【解析】17.由条件得到点C 的轨迹是以AB 为长轴的椭圆,利用椭圆的对称性知当∠ACB 最大时有AC =BC ,做出二面角P −AC−B 的平面角,在ΔPFE 中求解即可.因为点C 到OP 的距离为√3,则点C 是以OP 为旋转面的轴的圆柱与平面ABC 的公共点,答案第12页,总17页即点C 的轨迹是以AB 为长轴,以2√3为短轴长的椭圆,又由椭圆的对称性可知, 则当∠ACB 最大时有AC=BC =2.如图,在AC 上取一点F ,满足|AF |=34, 连接EF,PF ,则有EF ⊥AC ,又因为PE ⊥AC ,则∠PFE 是二面角P−AC −B 的平面角,在ΔPEO 中,OP=1,OE=12, ∴PE=√32, ∴PF=√PE 2+EF 2,在ΔPFE 中,EF =3√34,∴PF =√394,故二面角的余弦值是3√1313. 故答案为3√1313. 18.(1)[1,√2](2)3±√174【解析】18.(1)根据正弦函数的定义域求得2x+π4的范围,利用正弦函数在[π4,3π4]的图像特点求得函数f (x )=√2sin (2x +π4)的值域.(2)将f (x )展开,结合二倍角公式及同角基本关系式,将弦化切,直接解方程即可. (1)因为x ∈[0,π4],∴π4≤2x +π4≤3π4, 当2x +π4=π2时,f (x )最大为√2,当2x+π4=π4时,f (x )最小为1,所以f (x )在[0,π4]的值域为[1,√2]; (2)因为f (x )=√2sin (2x +π4)=sin2x +cos2x =2sinxcosx+cos 2x−sin 2xcos 2x+sin 2x=13,即2tan 2x −3tanx −1=0, 所以tanx =3±√174.∴tanx 0=3±√174.19.(1)详见解析(2)3√9191【解析】19.(1)利用面面垂直,可证PQ⊥平面ABC ,从而有PQ ⊥BC ,再利用勾股定理证明PB ⊥BC ,可证BC ⊥平面PQB ,证得结论.(2)先证得平面PHQ⊥平面PAB ,过点Q 作QO ⊥PH 于点O ,有QO ⊥平面PAB ,可证明∠QAO 是AC 与平面PAB 所成的角,在△ABC 中,求得QH ,可得PH ,由等面积法知OQ ,即可求解直线AC 与平面PAB 所成角的正弦值. (1)由题意平面PAC ⊥平面ABC ,PQ ⊂平面PAC ,平面PAC⋂平面ABC =AC ,又PA =PC ,AQ =QC ( ∴PQ ⊥AC ,∴PQ⊥平面ABC ,从而有PQ ⊥BC ,又由勾股定理得PB ⊥BC ,PB ∩PB =P ,∴BC⊥平面PQB ,即BC ⊥BQ ;(2)设BO=x ,则AQ =QC =2+1,在ΔABC 中,222=4(x 2+1)+4−12,即BO =x =√32.故AQ=√72,PQ =32,过Q 作QH ⊥AB 于点H ,连接PH ,过点Q 作QO ⊥PH 于点O ,连接AO ,因为PQ ⊥AB 且QP ∩QH =Q ,故AB⊥平面PQH ,又因为AB ⊂平面PAB ,所以平面PHQ ⊥平面PAB , 进而有QO⊥平面PAB ,故∠QAO 是AC 与平面PAB 所成的角, 在ΔABC 中,有cos∠CAB =2√7=AH AQ,得AH =54,故QH=√34,PH =√394, 由等面积法知OQ =3√1326,所以sin∠QAO=OQ AQ=3√9191,故直线AC 与平面PAB 所成角的正弦值为3√9191.答案第14页,总17页20.(1)详见解析(2)T n =12−(12+3n )(34)n+n 2+n2.【解析】20.(1)由已知数列递推式求出数列首项,进一步可得当n ≥2时,S n ﹣1=3a n ﹣1﹣2n−1,与原递推式联立可得结论;(2)把(1)中求得的数列通项公式代入na nn,利用分组求和及错位相减法即可求得T n . (1)当n =1时,a 1=12,当n ≥2时,S n ﹣1=3a n ﹣1﹣2n−1, ∴a n=S n −S n−1=3a n −3a n−1−2n−1, 即2a n =3a n−1+2n−1,故a n2n=34•a n−12n−1+14, 所以a n2n−1=34(a n−12n−1−1), 故{a n 2n −1}是−34为首项,以34为公比的等比数列; (2)由(1)知a n2n=1−(34)n ,故na n2n=n −n (34)n,令数列{n },{n (34)n}的前n 和为A n ,B n ,则T n=A n −B n ,因为A n =n 2+n2, B n =1•(34)1+2•(34)2+⋯+n (34)n,34B n =1•(34)2+2•(34)3+⋯+(n −1)(34)n +n (34)n+1, 则14B n =34+(34)2+(34)3+⋯+(34)n −n (34)n+1,即B n =12−(12+3n )(34)n ,故T n=12−(12+3n )(34)n+n 2+n2. 21.(1)−34(2)92【解析】21.(1)设A (x 1,y 1),B (x 2,y 2),代入椭圆方程,利用点差法能得到kk ′的值.(2)由(1)知k ′,则可求点F 坐标,利用点F 到直线AB 的距离公式求得ΔFAB 的高,联立{y =32x +m 3x 2+4y 2=12,由韦达定理求得|AB |,将面积表示为关于m 的函数,求导求得最值. (1)设A (x 1,y 1),B (x 2,y 2), 则E (x 1+x 22,y 1+y 22),将A 、B 点坐标代入椭圆方程,有x 124+y 123=1……①,x 224+y 223=1……②,①-②得x 12−x 224+y 12−y 223=0,即y 1−y 2x 1−x 2•y 1+y2x 1+x 2=−34,即kk ′=−34;(2)由(1)知,当k =32时,有k ′=12,则有直线l:y =32x +m ,直线EF:y =−12x , 不妨设m<0,则有F (−√3,√32),故点F 到直线AB 的距离d =√3−2m|13,联立方程组{y =32x +m 3x 2+4y 2=12, 即3x 2+3mx +m 2−3=0,则|AB |=√132√m 2−4m 2−33=√132√12−m 23,故ΔFAB 面积S =12(2√3−√12−m 2√3=2√3(2√3−m)2(12−m 2),令f (m )=(2√3−m)2(12−m 2),则f ′(m )=2(2√3−m )(2m 2−2√3m −12),令f ′(m )=0,则m =−√3或2√3(舍去)∴m=−√3时,f (m )有最大值243,即ΔFAB 面积的最大值为92. 22.(1)详见解析(2)详见解析【解析】22.(1)求出函数f (x )的定义域,对函数f (x )求导得到y=x 2+2ax −a ,分Δ≤0与Δ>0,得到导函数在各区间段内的符号,得到函数f (x )的单调区间; (2)构造ℎ(x )=f (x )−g (x ),求导分析ℎ(x )的单调性,找到12≤a<1时,ℎ(x )<0在(1,1+√1+a )上恒成立,在(1+√1+a,+∞)上递增,而h(x 1)<0,ℎ(e 2)>0,由函数零点存答案第16页,总17页在定理得到存在a 0∈(0,1),使得方程ℎ(x )=0在(1,+∞)上有唯一解,即证得结论.(1)函数f (x )的定义域为(−∞,−a )∪(−a,+∞), 因为f ′(x )=x 2+2ax−a(x+a )2, 令y =x 2+2ax −a ,则Δ=4a 2+4a ≤0,即−1≤a ≤0,则f ′(x )≥0在(−∞,−a )∪(−a,+∞)上恒成立, 当a<−1或a >0,由x 2+2ax −a >0有x >−a +√a 2+a 或x <−a −√a 2+a ,由x 2+2ax −a <0有−a −√a 2+a <x <−a +√a 2+a ,综上,当−1≤a ≤0时,f (x )的递增区间是(−∞,−a ),(−a,+∞),当a<−1或a >0时,f (x )的递增区间是(−∞,−a −√a 2+a ),(−a +√a 2+a,+∞),递减区间是(−a −√a 2+a,−a ),(−a,−a +√a 2+a ); (2)令ℎ(x )=f (x )−g (x )=x 2+a x+a−2lnx −2a , 当a∈(0,1)时,则ℎ′(x )=x 2+2ax−a (x+a )2−2x=(x+2a )(x 2−2x−a )(x+a )2x=(x+2a )[x−(1−√1+a)][x−(1+√1+a)](x+a )2x,因为x∈(1,+∞),故当1<x <1+√1+a 时,ℎ′(x )<0,当1+√1+a <x 时,ℎ′(x )>0,所以ℎ(x )在(1,1+√1+a )上递减,在(1+√1+a,+∞)上递增,即当x 1=1+√1+a 时,ℎ(x )有最小值,又h (1)=1-2a , 当12≤a<1时,h (1)≤0,即ℎ(x )<0在(1,1+√1+a )上恒成立,又12≤a<1时,ℎ(x )=x 2+a x+a−2lnx −2a >x 2x−2lnx −2a >x 2x−2lnx −2=x −2lnx −2,取x=e 2,则x−2lnx −2=e 2−4−2=e 2−6>0,即ℎ(e 2)>0,又ℎ(x )在(1+√1+a,+∞)上递增,而h(x 1)<0,由函数零点存在定理知ℎ(x )在(1+√1+a,+∞)上存在唯一零点, 所以当12≤a<1时即存在a∈(0,1),使得方程ℎ(x )=0在(1,+∞)上有唯一解,即方程f (x )=g (x )在(1,+∞)上有唯一解.。
浙江省2019届高考模拟卷(一)数学试卷(含精品解析)
![浙江省2019届高考模拟卷(一)数学试卷(含精品解析)](https://img.taocdn.com/s3/m/d186e023f12d2af90242e6a3.png)
浙江省2019年高考全真模拟卷(一)数学试卷第Ⅰ卷(选择题部分,共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】因为,,所以.故选A.2.若复数满足,在复数的虚部为()A. B. 1 C. -1 D.【答案】C【解析】【分析】由复数的除法运算公式可得,从而可求出z的共轭复数,即可得出结果.【详解】由题意可知,,故,所以其虚部为-1.【点睛】本题主要考查复数的四则运算和共轭复数的概念,属于基础题型.3.已知是双曲线渐近线上的点,则双曲线的离心率是()A. 2B.C.D.【答案】A【解析】【分析】由在双曲线的渐近线上,得=,由e=计算可得.【详解】因为双曲线的渐近线方程为y=,在渐近线上,所以=,则e==2.故选:A.【点睛】本题考查了双曲线的离心率求法,也考查了渐近线方程的应用,属于基础题.4.设,满足约束条件,则的最小值是()A. 1B.C.D.【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】满足约束条件的可行域如图:化为,平移直线,经过可行域的时,目标函数取得最小值,由,解得,则的最小值是,故选C .【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.已知圆.设条件,条件圆上至多有个点到直线的距离为,则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】解:圆C:(x−1)2+y2=r2(r>0).圆心(1,0)到直线的距离.由条件q:圆C上至多有2个点到直线x−y+3=0的距离为1,则0<r<3.则p是q的充要条件。
浙江省杭州市2019届高三高考命题比赛模拟数学试卷2 Word版含答案
![浙江省杭州市2019届高三高考命题比赛模拟数学试卷2 Word版含答案](https://img.taocdn.com/s3/m/2ee5a7e426fff705cc170af9.png)
2019年5月2019年浙江省普通高校招生考试模拟卷数学卷双向细目表2019年浙江省普通高校招生考试模拟卷数学试题卷本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页;非选择题部分3至6页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式: 如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )= P (A )+ P (B )V =Sh如果事件A 、B 相互独立,那么其中S 表示柱体的底面积,h 表示柱体的高 P (A •B )= P (A )•P (B )锥体的体积公式如果事件A 在一次试验中发生的概率为p , V =13Sh那么n 次独立重复试验中事件A 恰好发生 其中S 表示锥体的底面积,h 表示锥体的高.k 次的概率 球的表面积公式P n (k )=(1)(0,1,2,,)k k n k n C p p k n --= S =4πR 2 台体的体积公式球的体积公式V =13(S 1+S 2) h V =43πR 3其中S 1、S 2表示台体的上、下底面积, 其中R 表示球的半径 h 表示棱台的高.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创题)已知集合{}3P x x =->,104x Q x x ⎧-⎫=≤⎨⎬+⎩⎭,则()R C P Q =A.(]3,1-B.(],4-∞-C.(]1-∞,D.[)1+∞,【命题意图】本题主要考查集合的交、并、补的运算,检测对基础知识的了解程度. 2.(原创题)抛物线24y x =的焦点坐标 A.()1,0B.()0,1C.1016⎛⎫⎪⎝⎭,D.1016⎛⎫⎪⎝⎭,【命题意图】本题主要考查抛物线的基本概念.3.(原创题)复数z 满足()122i z +=(i 为虚数单位),则z 的虚部是 A.45- B.45i-C.43D.43i 【命题意图】本题主要考查复数的概念及代数运算.4.(原创题)已知{}n a 是公比不为1的等比数列且公比为q ,前n 项和为n S ,则“10a >”是“4652S S S +>” 的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题主要考查充要条件的相关知识以及逻辑推理、判断的思维能力.5.(原创题)函数sin ln 2y x x π⎛⎫=-⋅ ⎪⎝⎭的图像可能是AB高三数学试题卷第1页,共6页CD【命题意图】本题主要考查三角函数的图像与性质,图像的平移变换等.6.(原创题)某几何体的三视图如图所示,则该几何体的体积为A.【命题意图】本题主要考查关于“几何体的三视图”与“三视图的几何体”的相互转化和空间想象能力.7.(改编自2017年清华大学自主招生暨领军计划第30题)已知ξ为随机变量,则下列说法错误的是A.21122P P ξξ⎛⎫⎛⎫≤≤≤ ⎪ ⎪⎝⎭⎝⎭ B.()()()221D D ξξ=-C.()()1D D ξξ=-D.()()()22E E ξξ≤【命题意图】本题主要考查概率、随机变量的分布列、数学期望和方差的概念.8.(原创题)若0,0a b ≥≥,当11x y x y m ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,且以,a b 为坐标点(),P a b 所形成的平面区域的面积为16,则m = A.136B.133C.3D.6【命题意图】本题主要考查数形结合的思想,以及综合运用函数思想解题的能力.113高三数学试题卷第2页,共6页9.(原创题)已知123,,e e e 为空间单位向量,1223311===2e e e e e e ⋅⋅⋅.若空间向量a 满足1233==a e a e ⋅⋅,且 对于任意,x y R ∈,()124a xe ye -+≥,则3a e λ-的最小值为【命题意图】本题考查向量的基本运算、向量的几何意义,以及基本的数学方法.10.(原创题)三棱锥P ABC -中,三个侧面与底面所成角相等,三个侧面的面积分别为12,16,20且底面面积为24,则三棱锥P ABC -的外接球的表面积为 A.193πB.793πC.763πD.3163π【命题意图】本题考查学生的空间想象能力、抽象概括能力.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.(原创题)计算:3log = ,93log4log 43+= .【命题意图】本题考查指数和对数的基本运算.12.(原创题)已知()()()sin sin cos sin 0x x x A wx b A ϕ⋅+=++>,则A = ,=b.【命题意图】本题考查三角函数的基本运算和变形能力.13.(原创题)已知多项式()()32234567012345671+12x x x a a x a x a x a x a x a x a x ++=+++++++,则3a =,7a =.【命题意图】本题考查二项式定理的基础概念及运算能力.14.(原创题)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若4,3b c ==,3CD BD =,3cos 8A =,则=a ,=AD .高三数学试题卷第3页,共6页【命题意图】本题考查解三角形思想及平面向量的几何意义.15.(原创题)若a 为实数,且关于x的方程x 有实数解,则a 的取值范围是.【命题意图】本题考查函数与方程的相关知识,及利用导数知识来解方程的能力.16.(原创题)某校共开设了六门选修课:物理、化学、生物、政治、历史、地理,要求每名学生选三门课,其中物理、化学、生物中至少要选两门.现有A 、B 、C 三人选课,则任意一名学生与其他两名学生均至少有两门选修课相同的概率为.【命题意图】本题考查概率、排列、组合知识的综合应用,同时考查学生分类讨论思想和解决问题的能力.17.(2018年浙江省新名校第一次联考第17题改编)设函数()2()=,f x x a x b a b R +++∈,当[]2,2x ∈-时,记()f x 的最大值为258,则a 的值为 .【命题意图】本题考查含有绝对值不等式的解法,以及数形结合、等价转化、分类讨论等数学思想和能力.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(原创题)(本题满分14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边上有一点P 的坐标是()3,a a ,其中0a ≠. (1)求cos α的值;(2)若()tan 21αβ+=,求tan β的值.【命题意图】本题考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.高三数学试题卷第4页,共6页19.(原创题)(本题满分15分)如图,已知多面体1111ABCD A B C D -,1111,,,AA BB CC DD 均垂直于平面ABCD ,AD BC ∥,11=2AB BC CD AA CC ====,1=1BB ,14AD DD ==.(1)证明:11AC ⊥平面11CDD C .(2)求直线1BC 与平面111A B C 所成角的正弦值.【命题意图】本题考查空间、点、线、面位置关系,线面角等基础知识,同时考查空间想象能力和运算求解能力.20.(原创题)(本题满分15分)已知数列{}n a 满足2112331++3+332nn n a a a a -⎛⎫++= ⎪⎝⎭(n N *∈),数列{}n b 满足1=1b ,()+1=n n n b a b n N *-∈,n n n a b c =,n S 为数列{}n c 的前n 项和.(1)求数列{}n b 的前2019项和;(2)求32nn nb S -⋅. 【命题意图】本题考查数列的概念及通项公式的求解,前n 项求和问题,同时考查转化与化归、整体思想的能力.21.(原创题)(本题满分15分)已知抛物线C :28y x =的焦点为F ,过F 作直线l 与抛物线C 交于,A B 两点,分别过,A B 作抛物线C 的切线,交y 轴于,M N 两点,且两切线相交于点E .1A 高三数学试题卷第5页,共6页(1)证明:点E 在定直线上,并求该直线方程. (2)求四边形AM NB 面积的最小值.【命题意图】本题考查抛物线的几何性质、直线与抛物线的位置关系 等基础知识,同时考查解+析几何的基本思想方法和综合解题能力.22.(原创题)(本题满分15分)已知函数()()()=11x f x x e +-. (1)求()f x 在点()1,(1)f --处的切线方程;(2)若1a e ≤-,证明:()ln 22f x a x ex ≥+-在[)1,x ∈+∞上恒成立. (3)若方程()f x b =有两个实数根12,x x ,且12x x <,证明:2111311b e ebx x e e ++-≤++--. 【命题意图】本题考查导数在单调性与最值、极值、切线问题中的应用,及不等式性质、恒成立等基础知识,同时考查推理论证能力,分类讨论及分析问题和解决问题的能力.高三数学试题卷第6页,共6页2019年浙江省普通高校招生考试模拟卷数学答题卷选择题1 [ A ] [ B ] [ C ] [ D ] 6 [ A ] [ B ] [ C ] [ D ]2 [ A ] [ B ] [ C ] [ D ] 7 [ A ] [ B ] [ C ] [ D ]3 [ A ] [ B ] [ C ] [ D ] 8 [ A ] [ B ] [ C ] [ D ]4 [ A ] [ B ] [ C ] [ D ] 9 [ A ] [ B ] [ C ] [ D ]5 [ A ] [ B ] [ C ] [ D ] 10 [ A ] [ B ] [ C ] [ D ]非选择题18.(本小题满分14分)高三数学答题卷第1页,共4页21.(本小题满分15分)20.(本小题满分15分)高三数学答题卷第2页,共4页高三数学答题卷第3页,共4页22.(本小题满分15分)2019年浙江省普通高校招生考试模拟卷 数学答案解+析选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 由(]4104,1414x x Q x x ≠-⎧-≤⇒⇒=-⎨-≤≤+⎩,(]=,3R C P -∞-,所以()(]1R C P Q =-∞,,选C. 2.【答案】D24y x =,焦点在y 轴上且焦点坐标为1016⎛⎫⎪⎝⎭,,选D. 3.【答案】A221224241212121455i i i z i i i --==⋅==-++-+,所以虚部为45-,选A.4.【答案】C()()()()41244651112111001a q S S S q a q q a q-+=⋅-=--⇔-->>,所以选C.5.【答案】Dsin ln cos ln 2y x x x x π⎛⎫=-⋅=-⋅ ⎪⎝⎭为偶函数,且0x +→,y →+∞,选D.另解:,0x y π=≠,选D.6.【答案】B如下图所示,该几何体是一个三棱柱截去一个三棱锥.体积2211232332V ⎫⎛⎫=⋅-⋅=⎪ ⎪⎪ ⎪⎝⎭⎝⎭B. 7.【答案】B高三数学答题卷第4页,共4页对于选项A ,由于21122ξξ≤⇒≤,命题正确; 对于选项B ,考虑举反例:取()()1112P P ξξ===-=,则()()()220,10D D ξξ=-≠,命题错误;对于选项C ,()()()()211D D D ξξξ-=-=,命题正确; 对于选项D ,()()()()220E E D ξξξ-=≥,命题正确;8.【答案】C只要()max 1ax by +≤,显然线性目标函数ax by +最大值在可行域的边界取到,有 ()()11111a b m a b a b m ⎧+≤⎪-+≤⎨⎪+-≤⎩,所以点(),P a b 所形成的平面区域为关于y x =轴对称的四边形, ()11111232116S m m m m m =⨯⋅⋅==⇒=--,选C.9.【答案】A由题意123,,e e e 两两夹角为60︒,记123=,,e O Ae O Be O C ==,以O 为原点建立空间直角坐标系,()1233131=,,0,0,1,0,=22e e e ⎛⎫⎛= ⎪⎪⎝⎭⎝⎭,,,设()=,,a x y z 则 1233=33322,2y x a e x a z y a e y ⎧⎧=⋅+⎪⎪⎛⎫⎪⎪⇒= ⎪⎨⎨ ⎪⎝⎭⎪⎪=⋅=⎪⎪⎩⎩. 又()124a xe ye z -+≥=,不妨取333=42a ⎛⎫⎪ ⎪⎝⎭,.则33=a e λ⎛--10.【答案】D设侧面与底面所成角均为θ,由射影面积法知241cos 12162023πθθ==⇒=++,且点P 在底面上的射影恰为ABC 的内心I .又三个侧面的面积分别为12,16,20知高三数学答案解析第1页,共7页ABC三边之比为3:4:5.注意到底面面积为24,所以ABC三边为6,8,10为直角三角形,内切圆半径为2,三棱锥P ABC-的高为设三棱锥P ABC-的外接圆圆心为O,半径为R,且ABC内心I与外心'O由球心在三棱锥P ABC-的外面构成直角三角形易得(2222279316+433R R S Rππ=⇒=⇒==.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【答案】12-,8由对数运算知1231log log32-==-,93333log4log4log2log4log83338++===.12.,12()1cos2sin211 sin sin cos222422x xx x x x A bπ-⎛⎫⋅+=+-+⇒==⎪⎝⎭. 13.【答案】19,2由()()()()()()33333 22222 1+1211+21+121x x x x x x x x x x x x x⎡⎤⎡⎤++=⋅+++=+++++⎣⎦⎣⎦知()()11031002332333233219a C C C C C C C C=+++=,7=2a.14.【答案】42222cos16a b c bc A=+-⋅=,解得4a=;由3144AD AB AC=+,平方得22291331=cos=161684AD ABAC AB AC A++.所以AD=15.【答案】34a≥高三数学答案解析第2页,共7页记(f x x (1x ≥),则'()10f x =>,所以()f x单调递增.当1a ≥时,01f a ≤⇒≥;当1a <时,3(1)014f a ≤⇒≤<.综上,34a ≥. 16.【答案】79250每名学生不同的选法有21333310C C C +=.若三人均选了,,A B C 三门,则选法有1种;若三人恰有两人选了,,A B C 三门,则选法有22133327C C C =种;若三人恰有一人选了,,A B C 三门,则选法有()121121333333135C C C C A C +=种;若三人没有一人选了,,A B C 三门,则选法有11112111313333332333153C C C C C C C C A C ++=种.所以所求概率为31+27+135+15331679==100025010.17.【答案】238a =-记,c a b d a b =+=-,则(){}22max 11max ,=max ,6,,64411662544max ,228f x x x c x x d c c d d c c d d ⎧⎫=++-+-++-++⎨⎬⎩⎭⎧⎫-+++-+++⎪⎪⎪⎪≥=⎨⎬⎪⎪⎪⎪⎩⎭, 所以256=8c +且2568d +=,解得238a =-. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)【答案】(1)见解+析;(2)17. (1)当0a >时,点P 在第一象限,cos α==当0a <时,点P 在第三象限,cos α=. 高三数学答案解析第3页,共7页(2)由题意点P 在一三象限,1tan 3α=,所以22tan 3tan 241tan ααα==-. 所以()()()tan 2tan 21tan =tan 22=1tan 2tan 27a αβαβαβαβα+-+-=⎡⎤⎣⎦++⋅. 19.(本题满分15分)【答案】(1)见解+析;(2)14.(1)连接AC ,由于11AA CC ∥且11A C AC ∥,所以四边形11ACC A 为平 行四边形,即1A C AC ∥.又底面ABCD 为等腰梯形,且有AC CD ⊥. 侧棱1C C ⊥平面ABCD ,AC ⊂平面ABCD ,所以1C C AC ⊥. 又1CD CC C =,所以AC ⊥平面11CDD C ,故11AC ⊥平面11CDD C .(2)由题意1BC =延长DC 、11D C 、AB 、11A B 交于点G ,取CG 中点M ,连BM AC 、. 由11BM AC AC ∥∥,BM ⊄平面111A B C ,11AC ⊂平面111A B C ,所以BM ∥平面111A B C . 因此点B 到平面111A B C 的距离和点M 到平面111A B C 的距离相等.由(1)知11AC ⊥平面11CDD C ,又11AC ⊂平面111A B C ,所以平面111A B C ⊥面11CDD C .过点M 作1MH GD ⊥,则M H ⊥平面111A B C ,即点M 到平面111A B C的距离为MH 所以直线1BC 与平面111A B C 所成角为θ,则有11sin 4MH BC θ===.解法二:建系法以O为原点如图建立空间直角坐标系,则()()()()11,4,0,2,,1B A B C . ()12,0,2BC =-,()()11113,3,0,2,0,1AC B C =-=-,设平面111A B C 的法向量为(),,nx y z =由11113020AC n x B C n x z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,解得,2y z x =.取法向量()1,3,2n =.设直线1BC 与平面111A B C 所成角为θ,则11sin cos ,4BC n θ===. 20.(本题满分15分)【答案】(1)101041134⎛⎫- ⎪⎝⎭;(2)14194n n --⋅.(1)当1n =时,11=2a ;1A1高三数学答案解析第4页,共7页当2n ≥时,2112331++3+332nn n a a a a -⎛⎫++= ⎪⎝⎭,122123131++3+332n n n a a a a ---⎛⎫++= ⎪⎝⎭,两式相减得()1113132222n n n n n a a n --⎛⎫=⋅⇒=≥ ⎪⎝⎭.又11=2a 也符合表达式,所以12n na =. ()()()12201912345201820191242018b b b b b b b b b b b a a a +++=+++++++=++++210091010111411143444⎛⎫=++++=- ⎪⎝⎭(2)由题意2nn n b c =,则 ()()()12212111223121111=+++3223222221111 32221114141 =113494494n n n n n n n n n n n n nn n n b b b b b b b S b b b b b b b b -----⎡⎤⎛⎫⎛⎫-++++-⎢⎥ ⎪ ⎪⋅⎝⎭⎝⎭⎣⎦⎡⎤=+++++++⎢⎥⎣⎦-⎡⎤⎛⎫+++=-= ⎪⎢⎥⋅⎣⎦⎝⎭.21.(本题满分15分)【答案】(1)2x =;(2)12.(1)不妨设点()00,E x y ,则切点弦AB :()004+x x y y =.又切点弦AB 过点()2,0F ,有()004+2=02x x ⇒=-,因此点E 在定直线上2x =上.(2)设()22121212,,,0,088y y A y B y y y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭><.直线AB : 2x my =+与抛物线C :28y x =联立得212128160+=8,16y my y y m y y --=⇒=-.过点A 的切线方程为()114y y x x =+.令0x =得2111114842M y x y y y y ==⨯=,同理可得22N yy =.过点,A B 分别作y 轴的垂线,垂足分别为11,A B ,则()()111112*********=S 22222AMNB AA B B AMA BNB y yS S S x x y y x x ∆∆⎛⎫--=+--+ ⎪⎝⎭()()()()()()2233121211221212121112432x x y y x y x y y y y y y y ⎡⎤=+---==+---⎣⎦ ()(2212121148836448=12323232y y y y m ⨯⎡=+-+≥⎣. 当且仅当0m =时取等号. 22.(本题满分15分)高三数学答案解析第5页,共7页【答案】(1)()11ey x e-=+;(2)见解+析;(3)见解+析. (1)由()()'21x f x x e =+-知,()'111f e-=-,()1=0f -,所以在点()1,(1)f --处的切线方程为()11ey x e-=+. (2)当[)1,x ∈+∞时,ln 0x ≥,所以()ln 221ln 22a x ex e x ex +-≤-+-. 下先证:()()()()1ln 22=11x e x ex f x x e -+-≤+-. 即证:()()()()=111ln 22x g x x e e x ex +----+. ()()'1212x e g x x e e x-=+---,又()'g x 在[)1,x ∈+∞上单调递增,且()'10g =知()g x 在 [)1,x ∈+∞上单调递增,故()()1=0g x g ≥.因此()()()111ln +22ln +22x x e e x ex a x ex +-≥--≥-,得证.(3)由(1)知()f x 在点()1,(1)f --处的切线方程为()()11es x x e-=+. 构造()()()()1111xe F xf x x x e e e -⎛⎫=-+=+- ⎪⎝⎭,()()'12x F x x e e =+-,()()''3x F x x e =+. 所以()'F x 在(),3-∞-上单调递减,在()3,-+∞上单调递增. 又()'31130F e e -=--<,()'1lim x F x e→-∞=-,()'10F -=,所以()F x 在(),1-∞-上单调递减,在 ()1,-+∞上单调递增.所以()()()()()1101e F x F f x s x x e-≥-=⇒≥=+.设方程()()11=e s x x b e -=+的根'111ebx e=--.又()()()'111b s x f x s x ==≥,由()s x 在R 上单调递减,所以'11x x ≤.另一方面,()f x 在点()1,22e -处的切线方程为()()311t x e x e =---. 构造()()()()()()()11311=13x x G x f x t x x e e x e x e ex e =-=+---+++-+.()()'23x G x x e e =+-,()()''3x G x x e =+.所以()'G x 在在(),3-∞-上单调递减,在()3,-+∞上单调递增. 又()'31330G e e-=--<,()'lim 3x G x e →-∞=-,()'10G =,所以()F x 在(),1-∞上单调递减,在 ()1,+∞上单调递增. 所以()()()()()10311G x G f x t x e x e ≥=⇒≥=---.高三数学答案解析第6页,共7页设方程()()311=t x e x e b =---的根'2131e b x e ++=-.又()()()'222b t x f x t x ==≥,由()t x 在R 上单调递增,所以'22x x ≤. 所以''212111311b e ebx x x x e e ++-≤-=++--,得证.高三数学答案解析第7页,共7页。
2019年浙江省数学高考模拟精彩题选立体几何含答案
![2019年浙江省数学高考模拟精彩题选立体几何含答案](https://img.taocdn.com/s3/m/af133d967e21af45b207a857.png)
20【一、轨迹问题】1.如图,平囿ABC _L平囿ct , ZCDB =45,点P为面1a内白16浙江精彩题选一一立体几何D为线段AB的中点, AB = 242 , / ---- 产,,*产;/ \ --- 7勺动点,且P到直线CD的距离为22 , ~~/ ----------- r /那么NAPB的最大值为______ .. . ..................... ' '. ・解:以AB为直径的圆与椭圆 A B相切/ a. /【二、动态问题】1. (2021 台州期末8)如图,在三棱锥P-ABC中,AB=AC=PB=PC=10 PA=8, BC=12,平面PBC内,且AM=7,设异面直线AM与BC所成角为口,那么CQSa的最大值分析:点A到平面PBC的距离为d=4j3, AM=7即为绕d旋转所成的圆锥的母线长,最大角为BC与圆锥底直径平行时,母线与直径所成的角2. 〔2021金华十校期末〕在四面体ABCD中, ADXBC; AD=6, BC=2且AB BD ACCD=2,那么V四面体ABCD的取大值为A.6B. 2、不C.2' 15D.8分析:由AB AC二二=二二=2得已C点的轨迹为阿波罗尼斯圆,由阿波罗尼斯圆的BD CD点M在A性质,那么B, C离AD的最远距离为4,可求3. 〔2021台州一模8〕如图,在长方体ABCD — A'B'C'D '中,点P,Q分别是棱BC ,CD上的4 〔2021宁波十校15〕如图,正四面体 ABCD 的棱CD 在平面口上,E 为棱BC 的中点.当正四面体 ABCD 绕CD 旋转时,直线 AE 与平面a 所成最大角的正 弦值为 .分析:CD _L 平面ABF,那么平面ABFL 平面a .设,平面AB f 〕,平面 a =a ,四面体不动,转动平面a ,那么AOL a 于O 交BF 于M AO 为平 面值的法向量.AE 与平面a 所成角正弦值最大=AE 与法向量AO 所成3角最小,即为AE 与平面ABF 所成角,sinQ =、,那么AE 与平面a 所5.〔温州二模8〕.棱长为2的正方体 ABCD —ABC 1D 1中,E 为 棱CG 的中点,点P,Q 分别为面ABGD I 和线段B I C 上的动点, 那么APEQ 周长的最小值为〔B 〕A. 2.2B. \T0C. .11D. 2.3分析:作对称6. 〔2021五校联考8〕如图,棱长为 4的正方体 ABCD — A1BGD 1,点A 在动点,BC=4,, CD =3, CC' = 2j 3直线CC'与平面PQC'所成的角为30 ◎,那么△ PQC '的面积的最小值是〔B 〕C'A.18、,5 5B. 8D. 10D' C〔第8题图〕成角的正弦即为8的余弦值33 6第8期平面0〔内,平面ABCD与平面0所成的二面角为30°,那么顶点G到平面3的距离的最大值是〔B 〕A. 2 2 22B. 2、, 3 、2 C, 2 , 3 1 D, 2 ,21分析:拖动拖动直线CA在平面P上移动,CA与平面口所成线面角在变化的过程中,当线面角与二面角重叠时线面角最大.此问题与2021年高考题填空最后一题是同一个原理^相关:〔2021浙江高考17题〕.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击练习.点A到墙面的距离为AB,某目标点p沿墙面的射击线CM移动,此人为了自确瞄准目标点p,需计算由点A观察点P的仰角8的大小.假设AE = 15m, AC = 25叫上BCM=3/,那么〔仰角8为直线AP与平面ABC所成角〕当PA与平面ABC的线面角为M-AC-B的平面角时,取最大,可秒解9.〔2021诸暨质检15〕.如图,直四棱柱ABCD-A i B i C i D i的底面是边长为1的正方形,高AA1=&,点A是平面Q内的一个定点,AA1与口所成角为;,点C1在平面a内的射影为P,当四棱柱ABCD-A 1B1C1D1按要求运动时〔允许四棱柱上的点在平面口的同侧或异侧〕,点P所经过的区域面积=解:当长方体绕A1A转的时候,C1C形成一个圆柱,过C1往平面色作垂线垂足P,就形成一个椭圆,其短轴为P1P2=J6,长轴为2J2的y型的椭圆,其中央A 点在平面口上的射影M.当AA 1绕着A点成600转时,那么椭圆就以A为圆心,Y2为半径的圆上运动,其扫过的区域为一个圆环,外径为 娓+亚,内径为医*,所以 2 22面积为[〔叵立〕2-〔而q2〕2].n=2君江 2 2【三、角度问题】1 .〔2021 名校联盟第一次 7〕.如图四边形 ABCD, AB= BD= DA=2, BC = CD = J2. 现将DABD 沿BD 折起,当二面角A- BD- C 处于[p ,5p ]过程中,直线AB 与CD 所成角的余弦值取值范围是 r 5 .2 x2n 12 5.2nA. [-——,--]B. [-Z-,——] 88 8 82 . 〔2021名校联盟第一次13〕.一平面与一正方体的12条棱的所成角都等于sin a =3 .〔2021温州一模8〕.如图,在矩形ABCD 中,AB = 2,AD=4,点E 在线段 AD 上且AE=3,..、. 2… 5, 2C. [0,不 D . [0,-] 8 8“,那么第7题图D现分别沿BE,CE将MBE,ADCE翻折,使得点D落在线段AE上,那么此时二面角D—EC—B的余弦值为〔D〕4 A.5 B. 56 C.D. 78分析:往折痕作垂线,就是平面角,关键点是BD刚好和CE垂直.n4. 〔2021宁波期末15〕.在△ ABC中,/ BAC=10°, Z ACB=3C0,将直线BC绕AC旋转得到B i C,直线AC绕AB旋转得到AG,那么在所有旋转过程中,直线B〔C与直线AG所成角的取值范围为—[10 , 5 0 J分析:两个圆锥的母线在转动时所成角的问题^5. 〔2021竦州期末8〕如图,四边形ABCD与ABEF均为矩形,BC = BE=2AB,二面角E -AB —C的大小为3.现将△ ACD绕着AC旋转一周, 3〔B 〕A.不存在某个位置,使得直线AD与BE所成的角为- 4B.存在某个位置,使得直线AD与BE所成的角为-2那么在旋转过程中,B第8题图百度文库,精选试题C.不存在某个位置,使得直线 AD 与平面ABEF 所成的角为-4 D.存在某个位置,使得直线 AD 与平面ABEF 所成的角为-2 6. (2021桐乡一模 8).如图, 折成△ A CD ,所成二面角 A. /A'DB <0,ZACB <0 C.ADB _ 工 A CB < u △ ABC CD 为NACB 的角平分线,沿直线 CD 将4ACD 翻A r -CD -B 的平面角为 日,那么 B. ADB 3 A CB _ i D. ADB A CB _ u 7. 〔2021绍兴二模〕如图,棱长为 3的正方体的顶点 A 在平面口上,三 条棱AB, AC,AD 都在平面a 的同侧.假设顶点B,C 到平面a 的距离分别为1, J2,那么顶点D 到平面a 的距离为 J6 ①…^11/ 〞 z 2d 3d 2 3zx 2 y 2 z 2 平方相加可得,d 3=、6 (M15A4)8 〔2021嘉兴二模6〕如图,小于90 口的二面角o 〔—l —P 中,OY, A,BWot ,且/AOB 为钝 角,/A'OB'是/AOB 在P 内的射影,那么以下结论错误 的是 〔D 〕A. B. C. D.分析:/A'OB'为钝角 A' OB' AOB AOB AOA':二 B'OB BOA AOA'二cos/BOl cos/BOB =cos/BOl 那么/BOl <jBOl ,同理/AOl </AOl (第 6题)可排除A, B选项,C、D方法同样.c«i«) 9. 〔2021杭二最后卷15〕正四面体A-BCD中:E为BC中点,F为直线BD上一点,那么平面AEF与平面ACD所成二面角的正弦值.的取值范围是 .解:把正四面体放到正方体内,平面ACD与平面AEF所成角的正弦=平面ACD的法向量BK与平面AEF所成角的余弦值.2、一一一,一,BK与AE所成角coset =㈢-,问题看成平面AEF绕AE转动,当BK与平面所成角等于BK与AE夹角时角最大,当平面AEF与BK平行时......... 、2所成角为0 ,那么cos汽W[—1]3 ’【四、根本概念】1. 〔2021五校联考4〕棱长为1的正方体ABCD - ABO 中,以下数学命题不正确的A.平面ACB,//平面AC1D ,且两平面的距.离为—3B.点P在线段AB上运动,那么四面体PABG的体积不变2C.与所有12条棱都相切的球的体积为—n3D. M是正方体的内切球的球面上任意一点, N是AAB1c外接圆的圆周上任意一点,那么+ 33 -42MN的最小值,是2。
2019年浙江省高考数学模拟试卷(含详细解析)
![2019年浙江省高考数学模拟试卷(含详细解析)](https://img.taocdn.com/s3/m/24a83a79f7ec4afe04a1dfa7.png)
2019年浙江省高考数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)已知全集U={1,2,3,4,5},∁U A={1,3,5},则A=()A.{1,2,3,4,5}B.{1,3,5}C.{2,4}D.∅2.(4分)以下关于双曲线M:x2﹣y2=8的判断正确的是()A.M的离心率为2B.M的实轴长为2C.M的焦距为16D.M的渐近线方程为y=±x3.(4分)某几何体的三视图如图所示,则该几何体的体积是()A.B.C.1D.4.(4分)复数i(i﹣1)的虚部为()A.1B.i C.﹣1D.﹣i5.(4分)函数y=x﹣2sin x的图象大致是()A.B.C.D.6.(4分)“m=﹣3”是“直线(m+1)x+y+1=0与直线2x+(m+2)y+2=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(4分)在一个箱子中装有大小形状完全相同的4个白球和3个黑球,现从中有放回的摸取5次,每次随机摸取一球,设摸得的白球个数为X,黑球个数为Y,则()A.E(X)>E(Y),D(X)>D(Y)B.E(X)=E(Y),D(X)>D(YC.E(X)>E(Y),D(X)=D(Y)D.E(X)=E(Y),D(X)=D(Y)8.(4分)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB ﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 9.(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足4•3=0,则||的最小值是()A.1B.1C.2D.210.(4分)定义函数的“拐点”如下:设f′(x)是函数f(x)的导数,f′(x)是函数f (x)的导函数,若方程f''(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,已知任何三次函数都有对称中心,且“拐点”就是对称中心:若f(x)=x3﹣9x2+20x﹣4,数列{a n}为等差数列,a5=3,则f(a1)+f(a2)+…+f(a9)=()A.44B.36C.27D.18二.填空题(共7小题,满分36分)11.(6分)若关于x的方程3|x﹣2|+k cos(2﹣x)=0只有一个实数解,则实数k的值为.12.(6分)若实数x,y满足约束条件,则的最小值是.13.(6分)在△ABC中,角A、B、C的对边分别为a、b、c,a,a cos B+b sin A=c,则△ABC的面积的最大值为.14.(4分)二项式()8的展开式的常数项是.15.(6分)已知λ∈R,函数f(x),,<,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.16.(4分)两位同学分4本不同的书,每人至少分1本,4本书都分完,则不同的分发方式共有种.17.(4分)已知点P(0,1),椭圆y2=m(m>1)上两点A,B满足2,则当m=时,点B横坐标的绝对值最大.三.解答题(共5小题,满分74分)18.(14分)如图,锐角α,β的终边与单位圆的交点分别为A(,)B(,).(I)求tanα;(II)求cos(α﹣β).19.(15分)如图,在四棱锥A﹣BCDE中,AC⊥平面BCDE,∠CDE=∠CBE=90°,BC =CD=2,DE=BE=1,AC,M为AE的中点.(1)求证:BD⊥平面AEC;(2)求直线MB与平面AEC所成角的正弦值.20.(15分)已知等差数列{a n}中,首项a1=1,公差d为整数,且满足a1+1≤a3.a2+3≥a4,数列{b n}满足b n,其前n项和为S n.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若S1,S2,S m(m∈N*)成等比数列,求m的值.。
(完整版)2019年浙江省高考数学试卷解析(精品)
![(完整版)2019年浙江省高考数学试卷解析(精品)](https://img.taocdn.com/s3/m/b8927b97ff00bed5b9f31dd3.png)
2019年浙江省高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=()A. {−1}B. {0,1}C. {−1,2,3}D. {−1,0,1,3}2.渐进线方程为x±y=0的双曲线的离心率是()A. √22B. 1C. √2D. 23.若实数x,y满足约束条件{x−3y+4≥03x−y−4≤0x+y≥0,则z=3x+2y的最大值是()A. −1B. 1C. 10D. 124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A. 158B. 162C. 182D. 3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在同一直角坐标系中,函数y=1a x ,y=1og a(x+12)(a>0且a≠1)的图象可能是()A. B.C. D.7.X0a1P 131313则当a 在(0,1)内增大时,( ) A. D(X)增大 B. D(X)减小 C. D(X)先增大后减小 D. D(X)先减小后增大8. 设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( )A. β<γ,α<γB. β<α,β<γC. β<α,γ<αD. α<β,γ<β9. 设a ,b ∈R ,函数f (x )={x ,x <0,13x 3−12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则( )A. a <−1,b <0B. a <−1,b >0C. a >−1,b <0D. a >−1,b >0 10. 设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n ∈N *,则( )A. 当b =12时,a 10>10 B. 当b =14时,a 10>10 C. 当b =−2时,a 10>10D. 当b =−4时,a 10>10二、填空题(本大题共7小题,共36.0分)11. 复数z =11+i (i 为虚数单位),则|z |=______.12. 已知圆C 的圆心坐标是(0,m ),半径长是r .若直线2x -y +3=0与圆C 相切于点A(-2,-1),则m =______,r =______.13. 在二项式(√2+x )9展开式中,常数项是______,系数为有理数的项的个数是______. 14. 在△ABC 中,∠ABC =90°,AB =4,BC =3,点D 在线段AC 上,若∠BDC =45°,则BD =______,cos ∠ABD =______. 15. 已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是______.16. 已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23,则实数a 的最大值是______.17. 已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗⃗ |的最小值是______,最大值是______. 三、解答题(本大题共5小题,共71.0分) 18. 设函数f (x )=sin x ,x ∈R .(Ⅰ)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(Ⅱ)求函数y =[f (x +π12)]2+[f (x +π4)]2的值域.19. 如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (Ⅰ)证明:EF ⊥BC ;(Ⅱ)求直线EF 与平面A 1BC 所成角的余弦值.20. 设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =√an2b n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *.21. 如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2. (Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求S 1S 2的最小值及此时点G 点坐标.22.已知实数a≠0,设函数f(x)=a ln x+√1+x,x>0.(Ⅰ)当a=-34时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注意:e=2.71828……为自然对数的底数.答案和解析1.【答案】A【解析】解:∵∁U A={-1,3},∴(∁U A)∩B={-1,3}∩{-1,0,l}={-1}故选:A.由全集U以及A求A的补集,然后根据交集定义得结果.本题主要考查集合的基本运算,比较基础.2.【答案】C【解析】解:根据渐进线方程为x±y=0的双曲线,可得a=b,所以c=则该双曲线的离心率为e==,故选:C.由渐近线方程,转化求解双曲线的离心率即可.本题主要考查双曲线的简单性质的应用,属于基础题.3.【答案】C【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由实数x,y满足约束条件作出可行域如图,联立,解得A(2,2),化目标函数z=3x+2y为y=-x+z,由图可知,当直线y=-x+z过A(2,2)时,直线在y轴上的截距最大,z有最大值:10.故选:C.4.【答案】B【解析】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即=27,高为6,则该柱体的体积是V=27×6=162.故选:B.由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.充分条件和必要条件的定义结合均值不等式、特值法可得结果.【解答】解:∵a>0,b>0,∴4≥a+b≥2,∴2≥,∴ab≤4,即a+b≤4⇒ab≤4,若a=4,b=,则ab=1≤4,但a+b=4+>4,即ab≤4推不出a+b≤4,∴a+b≤4是ab≤4的充分不必要条件故选A.6.【答案】D【解析】解:由函数y=,y=1og a(x+),当a>1时,可得y=是递减函数,图象恒过(0,1)点,函数y=1og a(x+),是递增函数,图象恒过(,0)点;当1>a>0时,可得y=是递增函数,图象恒过(0,1)点,函数y=1og a(x+),是递减函数,图象恒过(,0)点;∴满足要求的图象为D,故选D.对a进行讨论,结合指数,对数函数的性质即可判断.本题考查了指数函数,对数函数的图象和性质,属于基础题.7.【答案】D【解析】解:E(X)=0×+a×+1×=,D(X)=()2×+(a-)2×+(1-)2×=[(a+1)2+(2a-1)2+(a-2)2]=(a2-a+1)=(a-)2+∵0<a<1,∴D(X)先减小后增大故选:D.方差公式结合二次函数的单调性可得结果本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.【答案】B【解析】解:方法一、如图G为AC的中点,V在底面的射影为O,则P在底面上的射影D在线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosα===<=cosβ,可得β<α;tanγ=>=tanβ,可得β<γ,方法二、由最小值定理可得β<α,记V-AC-B的平面角为γ'(显然γ'=γ),由最大角定理可得β<γ'=γ;方法三、(特殊图形法)设三棱锥V-ABC为棱长为2的正四面体,P为VA的中点,易得cosα==,可得sinα=,sinβ==,sinγ==,故选:B.本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.【答案】C【解析】解:当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b=0,得x=;y=f(x)-ax-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,y′=x2-(a+1)x,当a+1≤0,即a≤-1时,y′≥0,y=f(x)-ax-b在[0,+∞)上递增,y=f(x)-ax-b最多一个零点.不合题意;当a+1>0,即a<-1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)-ax-b恰有3个零点⇔函数y=f(x)-ax-b在(-∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴<0且,解得b<0,1-a>0,b>-(a+1)3.故选:C.当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.本题考查了函数与方程的综合运用,属难题.10.【答案】A【解析】解:对于B,令=0,得λ=,取,∴,∴当b=时,a10<10,故B错误;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,∴a2=2,…,a n=2<10,∴当b=-2时,a10<10,故C错误;对于D,令x2-λ-4=0,得,取,∴,…,<10,∴当b=-4时,a10<10,故D错误;对于A,,,≥,a n+1-a n>0,{a n}递增,当n≥4时,=a n+>1+=,∴,∴>()6,∴a10>>10.故A正确.故选:A.对于B,令=0,得λ=,取,得到当b=时,a10<10;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,得到当b=-2时,a10<10;对于D,令x2-λ-4=0,得,取,得到当b=-4时,a10<10;对于A,,,≥,当n≥4时,=a n+>1+=,由此推导出>()6,从而a10>>10.本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.11.【答案】√22【解析】解:∵z==.∴|z|=.故答案为:.利用复数代数形式的除法运算化简,然后利用模的计算公式求模.本题考查了复数代数形式的除法运算,考查了复数模的求法,是基础题.12.【答案】-2 √5【解析】解:如图,由圆心与切点的连线与切线垂直,得,解得m=-2.∴圆心为(0,-2),则半径r=.故答案为:-2,.由题意画出图形,利用圆心与切点的连线与切线垂直列式求得m,再由两点间的距离公式求半径.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.13.【答案】16√2 5【解析】解:二项式的展开式的通项为=.由r=0,得常数项是;当r=1,3,5,7,9时,系数为有理数,∴系数为有理数的项的个数是5个.故答案为:,5.写出二项展开式的通项,由x的指数为0求得常数项;再由2的指数为整数求得系数为有理数的项的个数.本题考查二项式定理及其应用,关键是熟记二项展开式的通项,是基础题.14.【答案】12√257√2 10【解析】解:在直角三角形ABC中,AB=4,BC=3,AC=5,sinC=,在△BCD中,可得=,可得BD=;∠CBD=135°-C,sin∠CBD=sin(135°-C)=(cosC+sinC)=×(+)=,即有cos∠ABD=cos(90°-∠CBD)=sin∠CBD=,故答案为:,,解直角三角形ABC,可得sinC,cosC,在三角形BCD中,运用正弦定理可得BD;再由三角函数的诱导公式和两角和差公式,计算可得所求值.本题考查三角形的正弦定理和解直角三角形,考查三角函数的恒等变换,化简整理的运算能力,属于中档题.15.【答案】√15【解析】解:椭圆=1的a=3,b=,c=2,e=,设椭圆的右焦点为F',连接PF',线段PF的中点A在以原点O为圆心,2为半径的圆,连接AO,可得|PF'|=2|AO|=4,设P的坐标为(m,n),可得3-m=4,可得m=-,n=,由F(-2,0),可得直线PF的斜率为=.故答案为:.求得椭圆的a,b,c,e,设椭圆的右焦点为F',连接PF',运用三角形的中位线定理和椭圆的焦半径半径,求得P的坐标,再由两点的斜率公式,可得所求值.本题考查椭圆的定义和方程、性质,注意运用三角形的中位线定理,考查方程思想和运算能力,属于中档题.16.【答案】43【解析】解:存在t∈R,使得|f(t+2)-f(t)|≤,即有|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,可得-≤2a(3t2+6t+4)-2≤,即≤a(3t2+6t+4)≤,由3t2+6t+4=3(t+1)2+1≥1,可得0<a≤,可得a的最大值为.故答案为:.由题意可得|a(t+2)3-(t+2)-at3+t|≤,化为|2a(3t2+6t+4)-2|≤,去绝对值化简,结合二次函数的最值,以及不等式的性质,不等式有解思想,可得a的范围,进而得到所求最大值.本题考查不等式成立问题解法,注意运用去绝对值和分离参数法,考查化简变形能力,属于基础题.17.【答案】0 2√5【解析】解:正方形ABCD 的边长为1,可得+=,=-, •=0, |λ1+λ2+λ3+λ4+λ5+λ6| =|λ1+λ2-λ3-λ4+λ5+λ5+λ6-λ6|=|(λ1-λ3+λ5-λ6)+(λ2-λ4+λ5+λ6)| =,由于λi (i=1,2,3,4,5,6)取遍±1, 可得λ1-λ3+λ5-λ6=0,λ2-λ4+λ5+λ6=0,可取λ5=λ6=1,λ1=λ3=1,λ2=-1,λ4=1, 可得所求最小值为0;由λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6的最大值为4,可取λ2=1,λ4=-1,λ5=λ6=1,λ1=1,λ3=-1,可得所求最大值为2.故答案为:0,2. 由题意可得+=,=-,•=0,化简|λ1+λ2+λ3+λ4+λ5+λ6|=,由于λi (i=1,2,3,4,5,6)取遍±1,由完全平方数的最值,可得所求最值.本题考查向量的加减运算和向量的模的最值求法,注意变形和分类讨论,考查化简运算能力,属于基础题. 18.【答案】解:(1)由f (x )=sin x ,得f (x +θ)=sin (x +θ),∵f (x +θ)为偶函数,∴θ=π2+kπ(k ∈Z ), ∵θ∈[0,2π),∴θ=π2或θ=3π2,(2)y =[f (x +π12)]2+[f (x +π4)]2=sin 2(x +π12)+sin 2(x +π4) =1−cos(2x+π6)2+1−cos(2x+π2)2=1-12(cos2xcos π6−sin2xsin π6−sin2x) =34sin2x −√34cos2x +1=√32sin(2x −π6)+1,∵x ∈R ,∴sin(2x −π6)∈[−1,1],∴y =√32sin(2x −π6)+1∈[1−√32,1+√32],∴函数y =[f (x +π12)]2+[f (x +π4)]2的值域为:[1−√32,1+√32].【解析】(1)函数f (x+θ)是偶函数,则=(k ∈Z ),根据的范围可得结果; (2)化简函数得y=,然后根据x 的范围求值域即可.本题考查了三角函数的奇偶性和三角函数的图象与性质,关键是熟练掌握三角恒等变换,属基础题. 19.【答案】方法一:证明:(Ⅰ)连结A 1E ,∵A 1A =A 1C ,E 是AC 的中点,∴A 1E ⊥AC ,又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,∴A 1E ⊥平面ABC ,∴A 1E ⊥BC ,∵A 1F ∥AB ,∠ABC =90°,∴BC ⊥A 1F , ∴BC ⊥平面A 1EF ,∴EF ⊥BC .解:(Ⅱ)取BC 中点G ,连结EG 、GF ,则EGFA 1是平行四边形, 由于A 1E ⊥平面ABC ,故A 1E ⊥EG , ∴平行四边形EGFA 1是矩形, 由(Ⅰ)得BC ⊥平面EGFA 1, 则平面A 1BC ⊥平面EGFA 1,∴EF 在平面A 1BC 上的射影在直线A 1G 上,连结A 1G ,交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成角(或其补角), 不妨设AC =4,则在Rt △A 1EG 中,A 1E =2√3,EG =√3,∵O 是A 1G 的中点,故EO =OG =A 1G 2=√152, ∴cos ∠EOG =EO 2+OG 2−EG 22×EO×OG=35, ∴直线EF 与平面A 1BC 所成角的余弦值为35.方法二:证明:(Ⅰ)连结A 1E ,∵A 1A =A 1C ,E 是AC 的中点, ∴A 1E ⊥AC ,又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , ∴A 1E ⊥平面ABC ,如图,以E 为原点,EC ,EA 1所在直线分别为y ,z 轴,建立空间直角坐标系, 设AC =4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F (√32,32,2√3),C (0,2,0),EF ⃗⃗⃗⃗⃗ =(√32,32,2√3),BC ⃗⃗⃗⃗⃗ =(-√3,1,0), 由EF⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,得EF ⊥BC . 解:(Ⅱ)设直线EF 与平面A 1BC 所成角为θ, 由(Ⅰ)得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2√3),设平面A 1BC 的法向量n⃗ =(x ,y ,z ), 则{BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =−√3x +y =0A 1C ⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =y −√3z =0,取x =1,得n⃗ =(1,√3,1), ∴sinθ=|EF ⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||EF⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |=45, ∴直线EF 与平面A 1BC 所成角的余弦值为35. 【解析】法一:(Ⅰ)连结A 1E ,则A 1E ⊥AC ,从而A 1E ⊥平面ABC ,A 1E ⊥BC ,推导出BC ⊥A 1F ,从而BC ⊥平面A 1EF 由此能证明EF ⊥BC .(Ⅱ)取BC 中点G ,连结EG 、GF ,则EGFA 1是平行四边形,推导出A 1E ⊥EG ,从而平行四边形EGFA 1是矩形,推导出BC ⊥平面EGFA 1,连结A 1G ,交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成角(或其补角),由此能求出直线EF 与平面A 1BC 所成角的余弦值. 法二:(Ⅰ)连结A 1E ,推导出A 1E ⊥平面ABC ,以E 为原点,EC ,EA 1所在直线分别为y ,z 轴,建立空间直角坐标系,利用向量法能求出直线EF 与平面A 1BC 所成角的余弦值.本题考查空间线面垂直的证明,三棱锥体积的计算.要证线面垂直,需证线线垂直,而线线垂直可以通过平面中的勾股定理、等腰三角形的性质等来证明,也可以通过另外的线面垂直来证明.求三棱锥的体积经常需要进行等积转换,即变换三棱柱的底面.20.【答案】解:(Ⅰ)设数列{a n }的公差为d ,由题意得{a 1+2d =4a 1+3d =3a 1+3d,解得a 1=0,d =2, ∴a n =2n -2,n ∈N *. ∴S n =n 2-n ,n ∈N *,∵数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. ∴(S n +1+b n )2=(S n +b n )(S n +2+b n ),解得b n =1d (S n+12−S n S n+2), 解得b n =n 2+n ,n ∈N *.证明:(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N *, 用数学归纳法证明:①当n =1时,c 1=0<2,不等式成立;②假设n =k ,(k ∈N *)时不等式成立,即c 1+c 2+…+c k <2√k , 则当n =k +1时, c 1+c 2+…+c k +c k +1<2√k +√k (k+1)(k+2)<2√k +√1k+1<2√k +2√k+1+√k =2√k +2(√k +1−√k)=2√k +1, 即n =k +1时,不等式也成立.由①②得c 1+c 2+…+c n <2√n ,n ∈N *. 【解析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出a 1=0,d=2,从而a n =2n-2,n ∈N *.S n =n 2-n ,n ∈N *,利用(S n+1+b n )2=(S n +b n )(S n+2+b n ),能求出b n . (Ⅱ)==,n ∈N *,用数学归纳法证明,得到c 1+c 2+…+c n <2,n ∈N *.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.21.【答案】解:(Ⅰ)由抛物线的性质可得:p2=1,∴p =2,∴抛物线的准线方程为x =-1;(Ⅱ)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ), 令y A =2t ,t ≠0,则x A =t 2,由于直线AB 过F ,故直线AB 的方程为x =t 2−12ty +1,代入y 2=4x ,得:y 2−2(t 2−1)t y −4=0,∴2ty B =-4,即y B =-2t ,∴B (1t 2,-2t ),又x G =13(x A +x B +x C ),y G =13(y A +y B +y C ),重心在x 轴上, ∴2t −2t +y C =0,∴C ((1t −t )2,2(1t −t )),G (2t 4−2t 2+23t 2,0),∴直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0), ∵Q 在焦点F 的右侧,∴t 2>2, ∴S 1S 2=12|FG|⋅|y A |12|QG|⋅|y C |=|2t 4−2t 2+13t 2|⋅|2t||t 2−1−2t 4−2t 2+23t 2|⋅|2t−2t|=2t 4−t 2t 4−1=2-t 2−2t 4−1,令m =t 2-2,则m >0,S 1S 2=2-mm 2+4m+3=2-1m+3m+4≥2-12√m⋅3m+4=1+√32,∴当m =√3时,S 1S 2取得最小值为1+√32,此时G (2,0).【解析】(Ⅰ)由抛物线的性质可得:=1,由此能求出抛物线的准线方程;(Ⅱ)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ),令y A =2t ,t≠0,则,从而直线AB 的方程为x=,代入y 2=4x ,得:,求出B (,-),由重心在x 轴上,得到=0,从而C (()2,2()),G (,0),进崦直线AC 的方程为y-2t=2t (x-t 2),得Q (t 2-1,0),由此结合已知条件能求出结果.本题考查实数值、抛物线标准方程的求法,考查三角形的面积的比值的最小值及相应点的坐标的求法,考查抛物线、直线方程、重心性质、弦长公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题. 22.【答案】解:(1)当a =-34时,f (x )=-34lnx +√1+x ,x >0,f ′(x )=-34x 21+x =√1+x−2)(2√1+x+1)4x √1+x,∴函数f (x )的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f (x )≤12a ,得0<a ≤√24,当0<a ≤√24时,f (x )≤√x4a,等价于√x a 2-2√1+xa-2ln x ≥0,令t =1a ,则t ≥2√2,设g (t )=t 2√x -2t √1+x -2ln x ,t ≥2√2, 则g (t )=√x (t -√1+1x)2-x -2ln x ,(i )当x ∈[17,+∞)时,√1+1x≤2√2,则g (x )≥g (2√2)=8√x −4√2√1+x −2lnx , 记p (x )=4√x -2√2√1+x -ln x ,x ≥17, 则p ′(x )=√x√2√x+1-1x=√x √x+1−√2x−√x+1x √x+1 =√x(√2x+2−1)]x √x+1(√x+1)(√x+1+√2x),∴g (t )≥g (2√2)=2p(x)=2p (x )≥0.(ii )当x ∈[1e 2,17)时,g (t )≥g (√1+1x)=√xlnx−(x+1)2√x,令q (x )=2√x ln x +(x +1),x ∈[1e ,17], 则q ′(x )=√x +1>0,故q (x )在[1e 2,17]上单调递增,∴q (x )≤q (17),由(i )得q (17)=-2√77p (17)<-2√77p (1)=0,∴q (x )<0,∴g (t )≥g (√1+1x)=-2√x >0,由(i)(ii)知对任意x∈[1e2,+∞),t∈[2√2,+∞),g(t)≥0,即对任意x∈[1e2,+∞),均有f(x)≤√x2a,综上所述,所求的a的取值范围是(0,√24].【解析】(1)当a=-时,f′(x)=-=,利用导数性质能求出函数f(x)的单调区间.(2)由f(x)≤,得0<a≤,当0<a≤时,f(x)≤,等价于--2lnx≥0,令t=,则t,设g(t)=t2-2t-2lnx,t,则g(t)=(t-)2--2lnx,由此利用分类讨论思想和导导数性质能求出a的取值范围.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.。
浙江省杭州市2019届高考数学命题比赛模拟试题3及参考答案
![浙江省杭州市2019届高考数学命题比赛模拟试题3及参考答案](https://img.taocdn.com/s3/m/13df2ee9011ca300a7c3906b.png)
浙江省杭州市2019届高考数学命题比赛模拟试题32019年高考模拟试卷数学卷双向细目表绝密★考试结束前2019年高考模拟试卷数学卷考生须知:1. 本卷满分150分,考试时间120分钟;2. 答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方。
3. 答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一律无效。
4. 考试结束后,只需上交答题卷。
参考公式:如果事件,A B 互斥,那么柱体的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B = 锥体的体积公式如果事件A 在一次试验中发生的概率为p ,那么n13V Sh =次独立重复试验中事件A 恰好发生k 次的概率为 其中S 表示锥体的底面积,h 表示锥体的高()()10,1,2),,(k k n k n n P k C p p k n -==⋯- 球的表面积公式台体的体积公式24S R =π121()3V S S h = 球的体积公式其中12,S S 分别表示台体的上、下底面积, 343V R =πh 表示为台体的高 其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.(原创) 1.已知U R =,集合{}|11A x x =-<<,则U C A = A .(1,1)-B .(,1)(1,)-∞-+∞UC.[1,1]-D .(,1][1,)-∞-+∞U【命题意图】考查集合的基本运算(★)(原创) 2.设i z +=11,i z -=12(i 是虚数单位),则2111z z += A .1 B .-1 C .i D .-i 【命题意图】考查复数的基本运算(★)(原创) 3.若实数,x y 满足约束条件0,30,20,y x y x y ⎧⎪⎨⎪⎩+--≥≤≥ 则2z x y =+的取值范围是A .[4,)+∞B .[0,6]C .[0,4]D .[6,)+∞【命题意图】考查简单的二元一次线性规划(★★)(原创) 4.已知互相垂直的平面,αβ交于直线l .若直线,m n 满足//m α,n β⊥,则 A .//l mB .//m nC .n l ⊥D .m n ⊥【命题意图】考查立体几何线面平行、面垂直的性质定理(★★) (原创) 5.观察下列各式: ,则A .196B .197C .198D .199【命题意图】考查斐波那契数列的简单推理(★★) (改编) 6.已知函数且,则A . B.C.D.【命题意图】考查函数的图像与性质(★★★) (原创) 7.已知 是正整数,满足的正整数解有A .54种B .55种C .56种D .57种【命题意图】考查排列组合(★★★) (改编) 8.已知点为的外心,则的最小值为A .1B .2C .D .【命题意图】考查向量的应用(★★★★)(原创) 9.已知为双曲线C:上的一点,若的内切圆的直径为a,则双曲线C的离心率的取值范围为A. B. C.D.【命题意图】考查求曲线的离心率(★★★★)10.已知函数 ,函数,若函数恰有4个零点,则的取值范围为A.B. C.D.【命题意图】用函数数形结合(★★★★)摘自《至精至简的数学思想方法》非选择题部分 (共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2019年浙江省高考数学试卷word版含参考答案及解析
![2019年浙江省高考数学试卷word版含参考答案及解析](https://img.taocdn.com/s3/m/1cbbfe63360cba1aa911da84.png)
2019年浙江省高考数学试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
A . { 0B . {0 , 1}C . { 1 , 2, 3}D . { 1 , 2 •渐进线方程为 x y 0的双曲线的离心率是( )A .2B . 1C .2D . 22x 3y 4- 03 .若实数x , y 满足约束条件 3x y 4,0 , 则z 3x 2 y 的取大值疋()xA . 1B . 1C . 10D . 12) 0, 1 , 3}1 .已知全集U {1,0,1 , 2, 3},集合A{0 , 1, 2} , B { 1 , 0, 1} ,则(e A )| B (4 •祖暅是我国南北朝时代的伟大科学家,他提出的“幕势既同, 理,利用该原理可以得到柱体的体积公式 V 主体 高•若某柱体的三视图如图所示,则该柱体的体积是则积不容异”称为祖暅原sh ,其中 s 是柱体的底面积, h 是柱体的162C . 182D . 324a 0,b 0 ,充分不必要条件 b, 4 ” 是“ ab 4 ”的 B . ( )必要不充分条件充分必要条件6 .在同一直角坐标系中, 函数既不充分也不必要条件11og a (x ) , (a 0且a 1)的图象可能是(25•若X 0a1 P1 1 1 333则当a 在(0,1)内增大时,( )A . D(X)增大C .D (X )先增大后减小D . D (X )先减小后增大面角为 A . ,则( ) B .x,x 0,9 .设 a , bR ,函数f (x)1 3 12x(a 1)x3 2点,则()A . a1 , b 0B . a1 , b 010 .设 ab R ,数列 {a n }满足 a 1 a ,an 1A .当 b 1 » -时, a10102C .当 b 2时, ai010C .D .若函数yf(x) axb 恰有3个零ax, x ・・0gC . a 1 , bD . a1 , b 02*a nb , n N ,则()B .1 当b —时,a10104D . 当b 4时,a1010二、填空题:本大题共7小题,多空题每题 6分,单空题每题 4分,共36分。
2019届高考数学浙江省新高考第九章解析几何测试卷(解析版)
![2019届高考数学浙江省新高考第九章解析几何测试卷(解析版)](https://img.taocdn.com/s3/m/fe8c6245783e0912a2162ac2.png)
2019届高考数学浙江省新高考第九章解析几何测试卷(解析版)一、选择题(本大题共10小题,每小题4分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【四川省2019届高三第一次诊断】抛物线的焦点坐标是()A. B. C. D.【答案】C【解析】抛物线y2=2px的焦点坐标为(,0),则抛物线y2=4x的2p=4,解得 p=2,则焦点坐标为(1,0),故选:C2.【江西省新余市第四中学2018届适应性】已知为实数,直线,,则“”是“”的( )A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件【答案】A【解析】3.【陕西省西安市长安区第五中学2019届高三上期中】已知抛物线上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B. C. 1 D. 2【答案】D【解析】4.【2018届广西南宁市马山县金伦中学高三上开学】若,则双曲线的离心率的取值范围是()A. B. C. D.【答案】C【解析】,,,,,则,选C.5.【河北省唐山市2018届三模】已知是抛物线上任意一点,是圆上任意一点,则的最小值为()A. B. 3 C. D.【答案】D【解析】设点的坐标为,由圆的方程可得圆心坐标,,,是圆上任意一点,的最小值为,故选D.6.【河北省衡水中学2019届高三上期中】已知是椭圆的左、右焦点,点M(2,3),则∠的角平分线的斜率为()A. 1 B. C. 2 D.【答案】C【解析】7.【四川省成都市双流中学2018届考前模拟】若F(c,0)是双曲线﹣=1(a>b>0)的右焦点,过F作该双曲线一条渐近线的垂线与两条渐近线交于A,B两点,O为坐标原点,△OAB的面积为,则该双曲线的离心率e=()A. B. C. D.【答案】C【解析】如图所示:设,,所以,所以的面积为,解得,所以该双曲线的离心率 .故选C8.【河北省石家庄2018届检测(二)】倾斜角为的直线经过椭圆右焦点,与椭圆交于、两点,且,则该椭圆的离心率为( )A. B. C. D.【答案】A【解析】9.【安徽省淮南市2018届第一次(2月)模拟】设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30︒的直线交C 于,A B 两点, O 为坐标原点,则OAB 的面积为( )A .. 94 C .. 6332【答案】B10.【江西省南昌市2018届二轮测试(七)】《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题.直角三角形的三条边长分别称“勾”“股”“弦”.设、分别是双曲线,的左、右焦点,是该双曲线右支上的一点,若分别是的“勾”“股”,且,则双曲线的离心率为( )A. B. C. D.【答案】D【解析】由双曲线的定义得,所以,即,由题意得,所以,又,所以,解得,从而离心率故选D.二、填空题(本大题共7小题,共36分.把答案填在题中的横线上.)11.经过点,且与椭圆有相同的离心率的椭圆的标准方程为______________.【答案】或【解析】12.【湖北省荆州市荆州中学2018届统一考试】已知双曲线的渐近线方程为0x,焦±y3=4点坐标为)±,则双曲线的方程为_________.(0,5【答案】【解析】双曲线的渐近线方程为可得,解得双曲线的方程为13. 【浙江省杭州市学军中学2018年5月高三模拟】已知椭圆的右焦点为,其关于直线的对称点在椭圆上,则离心率__________,__________.【答案】. .【解析】设Q(m,n),由题意可得,14.【浙江省教育绿色评价联盟2018届高三5月适应性考试】已知,直线与曲线和直线分别交于两点,若恒成立,则实数的取值范围为______.【答案】【解析】分析:由关于直线对称,可得它们的交点为,而当经过点时,取得最小值,由题意可得的不等式,解不等式求得实数的取值范围.详解:15.【福建省厦门市2018届三模】若双曲线的渐近线与圆无交点,则的离心率的取值范围为__________.【答案】【解析】曲线的渐近线与圆无交点,圆心到直线的距离大于半径,即,,,,即的离心率的取值范围为,故答案为.16.【黑龙江省2018年仿真模拟(一)】椭圆的右焦点与抛物线的焦点重合,点是椭圆和抛物线的一个公共点,点满足,则的离心率为__________.【答案】.【解析】如图,17.【浙江省“七彩阳光”联盟2019届高三期初联考】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,则满足的点的轨迹的圆心为____________,面积为____________.【答案】【解析】设,即化简可得故圆心坐标为面积为三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.【广东省化州市2019届一模】已知椭圆右焦点坐标为,短轴长为.(1)求椭圆的方程;(2)过左焦点的直线与椭圆分别交于两点,若(为直角坐标原点)的面积为,求直线的方程.【答案】(1);(2)或.【解析】原点到直线的距离,∴三角形的面积, 由得,故,∴直线的方程为,或, 即或.19.【广东省化州市2019届一模】已知抛物线的焦点为,是上关于焦点对称的两点,在点、点处的切线相交于点.(1)求的方程;(2)直线交于、两点,且的面积为16,求的方程.【答案】(1);(2).【解析】∴4k2+32=64,即k2=8,∴所以直线方程为:20.【浙江省余姚中学2018届高三选考科目模拟考试(一)】如图,直线22y x =-与抛物线22(0)x py p =>交于12,M M 两点,直线2p y =与y 轴交于点F ,且直线2p y =恰好平分12M FM ∠.(1)求p 的值;(2)设A 是直线2p y =上一点,直线2AM 交抛物线于另一点3M ,直线13M M 交直线2p y =于点B ,求OA OB ⋅的值.【答案】(1)4p =;(2)20OA OB ⋅=.【解析】(1)由2222y x x py=-⎧⎨=⎩,整理得2440x px p -+=, 设111(,)M x y ,222(,)M x y ,则212121616044p p x x p x x p ⎧∆=->⎪+=⎨⎪=⎩, 因为直线2p y =平分12M FM ∠,∴120M F M F k k +=, 所以1212220p p y y x x --+=,即12122222220p p x x x x ----+=, 所以12124(2)02p x x x x +-+⋅=,得4p =,满足0∆>,所以4p =.21.【广东省珠海市2019届9月摸底】设椭圆,离心率,短轴(1)求椭圆和抛物线的方程;(2)设坐标原点为,为抛物线上第一象限内的点,为椭圆是一点,且有,当线段的中点在轴上时,求直线的方程.【答案】(1),(2)【解析】(1) 由得,又有,代入,解得所以椭圆方程为由抛物线的焦点为得,抛物线焦点在的参数轴,且,22.【湖南省长沙市雅礼中学2019届月考二】已知椭圆的离心率为为左焦点,过点作轴的垂线,交椭圆于两点,.(1)求椭圆的方程;(2)过圆上任意一点作圆的切线交椭圆于两点,为坐标原点,问:是否为定值?若是,请求出定值;若不是,请说明理由.【答案】(1);(2)0.【解析】(1)∵离心率为,则.∴.∵,∴.∴,.则椭圆E的标准方程为.(2)当切线斜率不存在时,取切线为时,代入椭圆方程是,,或,.∴,同理,取切线为时,.当切线斜率存在时,设切线,则,∴.①联立.设,,则,④把①②③代入④得,∴.综合以上,为定值0.。
2019年浙江省数高考模拟精彩题选立体几何 Word版含答案
![2019年浙江省数高考模拟精彩题选立体几何 Word版含答案](https://img.taocdn.com/s3/m/88b64d2555270722192ef7e3.png)
高考数学精品复习资料2019.520xx 浙江精彩题选——立体几何【一、轨迹问题】1.如图,平面ABC ⊥平面α,D 为线段AB 的中点,22=AB ,︒=∠45CDB ,点P 为面α内的动点,且P 到直线CD 的距离为2,则APB ∠的最大值为 . 解:以AB 为直径的圆与椭圆A ‘B ’相切【二、动态问题】1.(20xx 台州期末8)如图,在三棱锥P-ABC 中,AB=AC=PB=PC=10,PA=8,BC=12,点M 在平面PBC 内,且AM=7,设异面直线AM 与BC 所成角为α,则cos α的最大值为17分析:点A 到平面PBC 的距离为d=AM=7即为绕d 旋转所成的圆锥的母线长,最大角为BC 与圆锥底直径平行时,母线与直径所成的角2.(20xx 金华十校期末)在四面体ABCD 中,已知AD ⊥BC ,AD=6,BC=2,且AB ACBD CD==2,则ABCD V 四面体的最大值为 ( C )A.6B.C.D.8分析:由AB ACBD CD==2得B 、C 点的轨迹为阿波罗尼斯圆,由阿波罗尼斯圆的性质,则B ,C 离AD 的最远距离为4,可求3.(20xx 台州一模 8)如图,在长方体D C B A ABCD ''''-中,点Q P ,分别是棱BC ,CD 上的动点,4,BC =, 3,CD=CC '=直线C C '与平面C PQ '所成的角为︒30,则△C PQ '的面积的最小值是( B )AB .8 CD .104(20xx 宁波十校15)如图,正四面体ABCD 的棱CD 在平面α上,E 为棱BC 的中点.当正四面体ABCD 绕CD 旋转时,直线AE 与平面α所成最大角的正弦值为 .分析:CD ⊥平面ABF ,则平面ABF ⊥平面α。
设,平面ABF ⊥平面α=a ,四面体不动,转动平面α,则AO ⊥α于O 交BF 于M ,AO 为平面α的法向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016浙江精彩题选——解析几何解答题1.(2016名校联盟第一次)19.(本题满分15分)已知椭圆C :22ax +y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,离心率为e .直线l :y =ex +a 与x 轴、y 轴分别交于点A ,B 两点,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设.(Ⅰ)若l =34,求椭圆C 的离心率; (Ⅱ)若D PF 1F 2为等腰三角形,求l 的值.2.(2016温州一模19).(本题满分15分)如图,已知椭圆C:22221(0) x ya ba b+=>>经过点,且离心率等于2.点,A B分别为椭圆C的左、右顶点,NM,是椭圆C上非顶点的两点,且OMN∆的面积等于2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点A作OMAP//交椭圆C于点P,求证:ONBP//.解:(Ⅰ)由题意得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+====+222222221)26(1cbaaceba,解得:⎪⎩⎪⎨⎧==2422ba故椭圆C的方程为:12422=+yx……………………………………5分(Ⅱ)解法一:如图所示,设直线OM,ON的方程为OMy k x=,ONy k x=联立方程组22142OMy k xx y=⎧⎪⎨+=⎪⎩,解得M,同理可得(N,……………………………………7分作'MM x⊥轴, 'NN x⊥轴,','M N是垂足,OMNS∆=''''OMM ONNMM N NS S S∆∆--梯形1[()()]2M N M N M M N Ny y x x x y x y=+--+1()2M N N Mx y x y=-12==9分已知OMNS∆2=,化简可得21-=ONOMkk.……………………………………11分设(,)P PP x y,则2242P Px y-=,又已知AP OM k k =,所以要证BP ON k k =,只要证明12AP BP k k =-……………………13分 而2212242P P P AP BP P P P y y y k k x x x ===-+--所以可得ON BP //…………………………………………………………………………15分 (,M N 在y 轴同侧同理可得)解法二:设直线AP 的方程为)2(+=x k y OM ,代入4222=+y x得0488)12(2222=-+++OM OM OM k x k x k ,它的两个根为2-和P x可得124222+-=OM OMp k k x 1242+=OM OM P k k y ……………………………………7分 从而OM OM OMOM OMBPk k k k k k 2121242124222-=-+-+= 所以只需证ON OM k k =-21 即21-=ON OM k k …………………………………9分 设),(11y x M ,),(22y x N ,若直线MN 的斜率不存在,易得221±==x x 从而可得21-=ON OM k k …………………………………10分若直线MN 的斜率存在,设直线MN 的方程为m kx y +=, 代入12422=+y x 得0424)12(222=-+++m kmx x k则124221+-=+k km x x ,12422221+-=k m x x ,0)24(822>-+=∆m k ………11分212)24(8||21||||2122221=+-+⋅=-⋅=∆k m k m x x m S OMN化得0)12()24(22224=+++-k m k m ,得1222+=k m (13)分214)12(2412424)(222222************-=-+-+=--=+++==⋅k k k m k m x x m x x km x x k x x y y k k ONOM (15)分3.(2016嵊州期末)(本小题满分15分)已知椭圆C :()222210x y a b a b+=>>,直线l :10x y +-=与C 相交于A ,B两点.(Ⅰ)证明:线段AB 的中点为定点,并求出该定点坐标;(Ⅱ)设()1,0M ,MA BM λ=,当a ∈⎝时,求实数λ的取值范围. 解:(Ⅰ),得223a b =. ………………2分设()()1122,,,A x y B x y ,联立22233010x y b x y ⎧+-=⎨+-=⎩,,消去y 得()2246310x x b -+-=故1232x x +=,()212314b x x -=, ………………4分所以12324x x +=,121211224y y x x ++=-=. 故线段AB 的中点为定点3144⎛⎫⎪⎝⎭,. ………………6分(Ⅱ)()1,0M ,MA BM λ=,得()1211x x λ-=-. ………………8分结合1232x x +=解得2121x λλ-=-,122(1)x λλ-=-. 由()212314b x x -=得211231b λλ+=+-.………………10分因为a ∈⎝,故27,112b ⎛⎫∈ ⎪⎝⎭, ………………12分 从而2115102,3123b λλ⎛⎫+=+∈ ⎪-⎝⎭.………………13分解得()11,2,332λ⎛⎫∈ ⎪⎝⎭.………………15分法二:本题在运算时用12y y λ=-再利用y 的韦达定理算出λ的式子,用21212()y y y y +来算要好算一点.4.(2016嘉兴一模).(本题满分15分)过离心率为22的椭圆)0(1:2222>>=+b a b y a x C 的右焦点)0,1(F 作直线l 与椭圆C 交于不同的两点B A 、,设||||FB FA λ=,)0,2(T .(Ⅰ)求椭圆C 的方程;(Ⅱ)若21≤≤λ,求ABT ∆中AB 边上中线长的取值范围. 解:(Ⅰ)∵22=e ,1=c ,∴1,2==c a 即椭圆C 的方程为:1222=+y x . …7分(Ⅱ)(1)当直线的斜率为0时,显然不成立.(2)设直线1:+=my x l ,设),(11y x A ,),(22y x B 联立01222=-+y x 得012)2(22=-++my y m 得22221+-=+m m y y ,21221+-=m y y ,由||||FB FA λ=,得21y y λ-=∵12211y y y y +=-+-λλ,∴24)(212221221+-=+=+-+-m m y y y y λλ ∴722≤m 又∵AB 边上的中线长为221221)()4(21||21y y x x TB TA ++-+=+→→2224)2(494+++=m m m427)2(2222++-+=m m ]16213,1[∈ …8分 5.(2016浙江六校联考19)如图,椭圆1C :22221(0)x y a b a b+=>>和圆2C :222x y b +=,已知圆2C 将椭圆1C 的长轴三等分,且圆2C 的面积为π.椭圆1C 的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆2C 相交于点A ,B ,直线EA ,EB 与椭圆1C 的另一个交点分别是点P ,M . (I )求椭圆C 1的方程;(II )求△EPM 面积最大时直线l 的方程.19. 解:(1)由题意得:1b =,则3a b = (2)由题意得:直线,PE ME 的斜率存在且不为0,PE EM ⊥,x不妨设直线PE 的斜率为(0)k k >,则:1PE y kx =-由:22119y kx x y =-⎧⎪⎨+=⎪⎩,得:22218919191k x k k y k ⎧=⎪⎪+⎨-⎪=⎪+⎩或01x y =⎧⎨=-⎩所以:2221891:(,)9191k k P k k -++ 同理得:222189:(,)99k k M k k --++ 2110PMk k k-= ………………8分 由2211y kx x y =-⎧⎨+=⎩,得:22221:(,)11k k A k k -++, 所以:212AB k k k -=所以:342221162()1162()929829982EPM k k k k S PE EM k k k k ∆++=⋅==++++ ………………12分 设1t k k =+, 则2162162276496489EPM t S t t t∆==≤++ ……13分 当且仅当183t k k =+=时取等号,所以1k k -=则直线2111:()22k AB y x k x k k-==- 所以所求直线l方程为:y x = ………………15分特别提醒:6.(2016丽水一模19)(15分)已知椭圆E :13422=+y x 的左、右顶点分别为B A ,,N M ,是椭圆E 上异于B A ,的两点,直线BN AM ,交于点)4(t P ,. (Ⅰ)若直线MN 与x 轴垂直,求实数t(Ⅱ)记PAB PMN ∆∆,的面积分别是)()(21t S t S ,,求)()(21t S t S 的最小值.解.(Ⅰ)设),(),,(0000y x N y x M -,直线AM 的方程为)2(200++=x x y y直线BN 的方程为)2(20--=x x y y联立⎪⎪⎩⎪⎪⎨⎧--=++=)2(2)2(20000x x y y x x y y 得:)24(000x y x P ,44=∴x 解得:23,100±==y x代入直线AM 可得3±=t ……………………………………(6分)(Ⅱ)直线AM 的方程为()26+=x ty ,代入椭圆的方程并整理得:()()010*********=-+++t x t x t解得⎪⎪⎭⎫ ⎝⎛++-2718,27254222t t t t M直线NB 的方程为()22-=x ty ,代入椭圆的方程并整理得: ()()0124432222=-+-+t x t x t解得⎪⎪⎭⎫ ⎝⎛+-+-36,362222t t t t N所以22N P1M P 2A P B P 18t 6tt t PM PN y y S (t)y y t 27t 3S (t)PA PB y y y y t t---⋅--++==⋅=⋅⋅---- 392792222++⋅++=t t t t 19112911081222+++⎪⎭⎫⎝⎛+-=t t当181912=+t ,即3±=t 时,12min S (t)3S (t)4⎛⎫= ⎪⎝⎭ …………………(15分) 7.(2016台州一模19)(本小题满分15分)如图,已知椭圆C :)0(12222>>=+b a by a x 的上顶点为(0,1)A ,(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点A 作圆()2221:r y x M =++()10<<r 的两条切线分别与椭圆C 相交于点,B D (不同于点A ).当r 变化时,试问直线BD 是否过某个定点?若是,求出该定点;若不是,请说明理由.解:(Ⅰ) 由已知可得,2221,,2,12,b ca b aa b c =⎧⎪⎪=⇒==⎨⎪⎪=+⎩,所求椭圆的方程为2214x y += ---------------------------5分 (Ⅱ)设切线方程为1y kx =+,则2|1|1k r k-=+,即222(1)210r k k r --+-=, 设两切线,AB AD 的斜率为1212,()k k k k ≠,则12,k k 是上述方程的两根,所以121k k ⋅=; ------------------------------------8分由22114y kx x y =+⎧⎪⎨+=⎪⎩得:22(14)80k x kx ++=,所以211112211814,1414k k x y k k --==++, 同理可得:222121222222212188144,144144k k k k x y k k k k ----====++++,-----------------12分 所以221122211111122114144141883414BDk k k k k k k k k k k ---+++==----++, 于是直线BD 方程为22111221111418()14314k k k y x k k k -+--=--++, 令0x =,得2221111222111114185205143143(14)3k k k k y k k k k -+---=+⨯==-+++,故直线BD 过定点5(0,)3-. ----------------------------15分 分析:本题应直接设BD 的方程,其本质是求BD 的定点只需:BD l y kx m =+中的k 、m 两个字母变一个字母,就可求出定点,而两条切线就是一个AB k 与AD k 的一个等量关系.题目所提供的方法麻烦了.8.(2016十二校联考19)(本小题满分15分)已知椭圆221:143x y C +=,抛物线2:C 24y x =,过抛物线2C 上一点P (异于原点O )作切线l 交椭圆1C 于(I )求切线l 在x 轴上的截距的取值范围;(II )求AOB ∆面积的最大值. 分析:(1)设),4(2t t P ,则切线方程为22tx t y +=与椭圆联立得 0128)163(222=-+++t x x t0)12646414412(6422>⨯-+--=∆t t ,1602<<t ∴x 轴上的截距)0,4(42-∈-t(2)O 到直线AB 的距离为||t d = ||AB ===AOB S ∆∴===第19题图令22163t m t =+,则AOB S ∆==≤当222163t m t==+时,此时取到最大值. 9.(2016桐乡一模 19). (本题满分15分)已知椭圆1922=+y x ,过)1,0(A 作互相垂直的两直线AC AB ,与椭圆交于C B ,两点. (Ⅰ)若直线BC 经过点)54,58(,求线段BC 的长;(Ⅱ)求ABC ∆ 面积的最大值.解:(Ⅰ)不妨设直线AB : )0(1>+=k kx y ,则AC 的方程为11+-=x ky . 由⎪⎩⎪⎨⎧=++=19122y x kx y 得:018)91(22=++kx x k ⎪⎪⎭⎫⎝⎛+-+-∴2229191,9118k k k k B , 同理k 用k 1-代入得,⎪⎪⎭⎫ ⎝⎛+-+99,918222k k k k C k k k k k kk k k k k BC10191891189991912222222-=+-+-+--+-=∴………………………………………………4分 ∴直线)9118(1019191:2222kk x k k k k y BC ++-=+--, 即541012--=x k k y ∴直线过定点⎪⎭⎫⎝⎛-540,…………………………………………5分 又因为直线过)54,58(,∴直线BC :54-=x y ,⎪⎩⎪⎨⎧=+-=∴995422y x x y 得025********=--x x 由弦长公式可得251176=∴BC ………………………………………………………7分 (Ⅱ)由(Ⅰ)可得29118k k x B +-=∴,2918k kx C+= 从而有222291811,91181k kk AC k k k AB ++=++=…………………………11分试题习题,尽在百度于是 82)1(91162)9)(91()1(1622122222+++=+++==∆kk k k k k k k AC AB ABC S ………13分令21≥+=k k t ,有8276491626491622≤+=+=∆tt t t S ABC 当且仅当238>=t ,827)(max =∆ABC S ……………………………………………15分 10.。