综合题研究 代数综合题
高考代数综合题分析
高考代数综合题分析一、命题分析:本题综合性强,需要注意多个知识点的相互结合,把多种方法融会贯通,才能解答。
二、试题类型:填空题。
要求理解题意,明确问题,利用代数式的恒等变形解决实际问题。
例如(6分):(2)随着年龄的增长,速度应该越来越慢;(3)周期公式是:当C为自然常数时, A=6;(4)函数y=kx+b, k=0时, y=-x^2+2x;(5)若a,b均为实数且a>0时, x+x=4; x-x=3。
(7分)我觉得在最后复习阶段,不管是老师还是同学都容易犯两个错误:一是没有对高考的考点进行整;二是没有加强训练,使平时容易出现的问题积累起来,到了考场上一遇到就手忙脚乱,不知所措。
也有的同学总觉得高考数学的试题比较简单,抱着“高考数学轻松拿下”的心态去应付。
孰不知数学每年的难度都在加大,要想考好高考数学,首先必须树立信心,勇敢面对困难,其次就是要对各个章节的基础知识和基本方法烂熟于胸,只有这样,你才可以稳定发挥,从容应对。
以上是针对选择题部分。
接下来我们再看看大家更关注的解答题部分。
高考是要测量考生的综合能力,只要抓住“题目中给出的信息”和“题目要求”去分析问题,把握好题目中的信息和提示语,相信就不难找到正确的思路和方法。
三、几点建议1。
多做高考真题。
尤其是近十年来全国卷真题,因为这些题目具有很强的典型性和规律性,体现了教学的重点和方向。
2。
利用好高考信息解读资料。
近几年的高考考纲都会附有专门的高考信息解读资料,要好好地阅读和学习,弄清楚高考的命题趋势,指导自己复习备考。
3。
认真完成课本上的习题和课后题。
因为它们在内容和考点的覆盖面上是最广的。
4。
切忌好高骛远,脱离课本。
这是数学学习最大的弊病之一,在复习过程中,一定要根据课本的内容来组织自己的复习内容,反对好高骛远,脱离课本。
5。
学会总结。
无论你的基础怎么样,高考所涉及的知识面,都不会超过高中教材本身的范围,所以对于教材,我们不能仅仅满足于掌握知识点,更要学会总结方法和技巧,善于归纳总结知识间的联系,做到融会贯通。
代数综合【解析版】
全国联赛代数问题选1. 已 知 实 数 a, b, c 满 足 a b c 1,111 1 , 则b cb cac a baabc____.【答】 0.由题意知111 1,所以2c 1 2a1 2b1(1 2a)(12b) (1 2b)(1 2c) (1 2a)(1 2c) (1 2a)(1 2b)(12c)整理得 22(a b c) 8abc ,所以 abc0.2. 使得不等式9 n k8对唯一的整数 k 成立的最大正整数n为.17 n 15【答 】 144.由 条 件 得7 k8 , 由 k 的 唯 一 性 , 得 k 17 且 k 1 8 , 所 以8 n 9 n8 n 92 k 1 k18 7 1 144 .nnn9 8 ,所以 n7 2当 n144 时,由7k8 可得 126 k 128 , k 可取唯一整数值127.8n 9故满足条件的正整数n 的最大值为 144.3. 已知 x, y 为整数,且满足 (11)( 1212 )2(1414 ) ,则 xy 的可能的值x y xy3 xy有 _________ 个【答】 由已知等式得xy x 2 y 22 x 4 y 4 ,显然 x, y 均不为 0,所以 xy = 0xyx 2 y 2 3 x 4 y 4或 3xy2( x y) .若, 则又 x, y 为整数,可求得 x ,3xy 2( x y)( 3x2 ) (y32 ). 4y2,x,y 1或 xy1.所以 xy 1.因此, xy 的可能的值有 3 个 .4.已知非负实数 x, y, z 满足 x y z 1,则 t2xyyz 2zx 的最大值为 _________【答】471( y t 2 xy yz 2zx 2x( y z) yz 2x( y z)z)242x(1 x)1 (1 x) 27 x 23 x 17(x 3) 2 4 ,442 44 7 7易知:当 x32 时, t2xyyz 2zx 取得最大值 4, yz.777 5. 张不同的卡片上分别写有数字2, 2, 4, 4, 6, 6,从中取出 3 张,则这 3 张卡片上 所写的数字可以作为三角形的三边长的概率是 【 】【答】25若取出的 3 张卡片上的数字互不相同,有2× 2×2= 8 种取法;若取出的 3 张卡片上的数字有相同的,有 3× 4= 12 种取法 . 所以,从 6 张不同的卡片中取出3 张,共有 8+12= 20种取法 .要使得三个数字可以构成三角形的三边长,只可能是:( 2,4,4),( 4,4, 6),( 2, 6,6),( 4, 6, 6),由于不同的卡片上所写数字有重复,所以,取出的 3 张卡片上所写的数字可以作为三角形的三边长的情况共有4×2= 8 种 .82因此,所求概率为.2056. 设 [t ] 表示不超过实数t 的最大整数,令 {t } t [ t] . 已知实数 x 满足 x 3118 ,3{ 1}x则 { x} _________x【答】 1设 x1 a ,则 x31(x1)( x21 1) ( x1)[( x 1 ) 2 3] a( a 2 3) ,xx 3xx 2x x所以 a( a 2 3) 18,因式分解得 ( a3)(a 2 3a6) 0 ,所以 a3.由 x1 3解得 x1(35) ,显然 0{ x} 1,0 {1} 1,所以 { x} { 1} 1.x2xx7.小明某天在文具店做志愿者卖笔,铅笔每支售 4 元,圆珠笔每支售 7 元.开始时他有铅笔和圆珠笔共 350 支,当天虽然笔没有全部卖完,但是他的销售收入恰好是 2013 元.则他至少卖出了支圆珠笔.【答案】 207【解答】 设 x , y 分别表示已经卖出的铅笔和圆珠笔的支数,则4x 7 y 2013,x y 350,所以 x2013 7 y(503 2 y)y 14 4,于是y1是整数.又 20134( xy) 3 y4 350 3y ,4所以 y204 ,故 y 的最小值为 207,此时 x 141 .8. 实数 a , b , c , d 满足:一元二次方程x 2 cx d0 的两根为 a , b ,一元二次方程x 2 ax b 0 的 两 根 为 c , d , 则 所 有 满 足 条 件 的 数 组 ( a ,b ,,c d )为.【答案】 (1, 2,1,2) , (t,0, t,0) (t为任意实数)a b c,【解答】由韦达定理得ab d,c d a,cd b.由上式,可知 b a c d .若 b d0 ,则a d1,cb1,进而 b d a c 2 .b d若 b d0 ,则c a ,有(a,b,,c d )(t,0, t,0) (t为任意实数).经检验,数组(1, 2,1,2) 与 (t,0, t,0) (t为任意实数)满足条件9. 已知正整数a, b , c满足 a b2 2 c 2 0, 3a28b c0,则 abc 的最大值为.【答案】 2013【解答】由已知 a b22c 2 0 , 3a28b c0 消去c,并整理得b826a2a66.由a 为正整数及6a2a≤,可得≤ ≤ .661 a 3若 a 1 ,则 b8259,无正整数解;若 a 2 ,则 b8240,无正整数解;若 a 3 ,则 b829 ,于是可解得 b11 , b5.( i)若b11 ,则 c61 ,从而可得 abc311612013 ;( ii )若b 5,则c13 ,从而可得 abc3513195.综上知 abc 的最大值为2013.10.对于任意实数 x,y, z,定义运算“ * ”为:x y 3x3 y3x2 y2xy345,x3y36011且 x y z x y z ,则201320123 2 的值为().【答案】5463967【解答】设 20132012 4 m ,则20132012 4 3m33m333m29m2745,m33m23m164960于是2013 20123 2 92 3 932 3 92 22 92345 5463 .103 33 6096711. 设非零实数 a , b , c 满足a 2b 3c 0, 则 ab bc ca 的值为().2a 3b 4c 0, a 2 b 2 c 2【答案】12【解答】 由已知得 a b c (2 a 3b 4c)( a2b 3c) 0 ,故 ( a b c) 2 0 .于是 ab bcca1 (a2 b2c 2) ,所以abbc ca 1 .2a 2b 2c 2212. 如果关于 的方程有两个有理根,那么所有满足条件的正整数的个数是 _________个答案: 2解: 由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又 2≥,所以,当时,解得;当时,解得.13. 设 a n =( n 为正整数),则 a 1+a 2+, +a 2012 的值 1.(填“>”,“=”或“<” )【答案】 <解: 由 a n == , 得a 1+a 2+, +a 2012==< 1.14. 红、黑、白三种颜色的球各10 个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等, 那么共有法.种放【答案】25解: 设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即, ( 2)于是.因此中必有一个取 5.不妨设,代入( 1)式,得到.此时, y 可取 1,2, , , 8,9(相应地 z 取 9,8, , , 2,1),共 9 种放法.同理可得y=5,或者 z=5 时,也各有 9 种放法.但时,两种放法重复.因此共有9× 3- 2 = 25 种放法.15.5 32)( x 3) 的值为 ( ).设 x,则代数式 x( x 1)( x2【答】﹣ 1解: 由已知得 x 23x 1 0,于是x( x 1)(x 2)( x 3) ( x 2 3x)( x 2 3x2)( x 2 3x 1)211.16. 已知 x , y ,z 为实数,且满足 x 2y5z 3 , x 2 y z 5,则 x 2y 2z 2 的最小值为 _____________【答】5411,x 3z,x 2 y 5z 31解: 由x2 y 可得 y z 2.,z 5于是x 2 y 2 z 2 11z 2 2z5 .因此,当 z1 时, x 2y2z 2的最小值为54.111117. 若 x 1 , y0 ,且满足 xyx y , xx 3 y ,则 x y 的值为 ().y【答】92解:由题设可知 yx y 1,于是x yx 3 yx4y 11 1 .,所以 4 y故 y1 4.于是 x y9 ,从而 x2 .218.设S1 111 4S 的整数部分等于 ().32 333 ,则132011【答】 4解: 当 k2,3, ,2011 ,因为111 1 1 ,k 3k k 2 1 2 k 1 k k k 1 所以 1 S11 1 1 11 1 152333201132 22011 2012.4于是有 4 4S 5 ,故 4S 的整数部分等于4.19. 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1, 3, 4,5, 6, 8. 同时掷这两枚骰子,则其朝上的面两数之和为7 的概率是 .【答】 1.6解: 在 36 对可能出现的结果中,有6 对:(1, 6), ( 2, 5), ( 2,5), (3, 4),(3, 4),(4, 3)的和为7,所以朝上的面两数字之和为 7 的概率是6 1 .36 620. 若 y1 xx 1 的最大值为 a ,最小值为 b ,则 a 2b 2 的值为.2【答】 3.21≥ 0,得 1≤ x ≤ 1.解:由 1 x ≥ 0,且 x22y 21 2 x 2 3 x 1 1 2 ( x3 )2 1 .22 2 2 4 16由于1<3<1 ,所以当 x = 3 时, y 2 取到最大值 1,故 a = 1.2 4 4当 x = 1 或 1 时, y 2取到最小值1,故 b =2 .所以, a 2 b 23 .222221. 若方程 x 2 3x 1 0 的两根也是方程 x 4 ax 2 bx c 0 的根,则 a b 2c 的值为___________答案:﹣ 1122.对于自然数n ,将其各位数字之和记为 a n,如 a2009200911,a2010 2 0 1 0 3 ,则 a1a2a3a2009 a2010_________【答案】 28068.23.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5 个或 10 个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放___ 个球 .【答案】 1524.已知 t 是实数,若a, b是关于 x 的一元二次方程x22x t 10的两个非负实根,则( a21)(b2 1)的最小值是___________.【答案】﹣ 325.如果实数 a, b 满足条件 a2b21,|12a b |2a 1b2a2,则 a b ______.【答案】﹣ 126.已知 a, b 是正整数,且满足2(1515 ) 是整数,则这样的有序数对(a, b) 共有_____ a b对.【答案】 7 对27.设n是大于 1909 的正整数,使得n 1909为完全平方数的n的个数是 ______个2009n【答案】 4 个28.设 a7 1,则3a312 a26a 12__________【答案】 2429.用 [ x] 表示不大于x的最大整数,则方程x22[ x]30 的解为_________【答案】﹣ 3,1,或根号 530.已知实数 x, y 满足423, y4y23,则4y4的值为________x4x2x4【答】 7解:因为 x20 ,y2≥0,由已知条件得1 2 4 4 4 3 1 13 ,y21 1 4 3 1 13,x28422所以4y42 3 3 y22y2 6 7.x4x2x2(22 (222另解:由已知得:2 )x 2)302,以2为根的一元x ,显然x 2 y x 2 , y( y 2 ) y 23 0二次方程为 t 2t 30 ,所以( 2 ) y 21,( 2 )y 23x 2x 24422 2 2 (2 222(3)7故 x4y = [( x 2)y ]x 2 ) y( 1)31. 将 1,2,3,4,5 这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有_______种【答】5种解:设 a 1, a 2,a 3,a 4,a 5 是 1,2, 3, 4, 5 的一个满足要求的排列.首先,对于 a 1,a 2,a 3,a 4 ,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果 a ( 1≤ i ≤ 3)是偶数, a i 1 是奇数,则 a2是奇数,这说明一个偶数后面一定ii要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以 a 1, a 2, a 3,a 4,a 5 只能是:偶,奇,奇,偶,奇,有如下5 种情形满足条件:2, 1, 3,4, 5;2, 3,5, 4, 1;2, 5, 1, 4, 3;4, 3, 1, 2, 5; 4, 5,3, 2, 1.32. 对于实数 u v* ”为: u v uvv .若关于 x的方程 x (a x), ,定义一种运算 “14有两个不同的实数根,则满足条件的实数a 的取值范围是.【答】 a 0 ,或 a 1 .解:由 x ( a x)1,得 ( a 1)x 2(a 1)x1 0 ,44a 1,依题意有( a2(a 1),1) 0解得, a 0 ,或 a 1 .33. 关于 x , y 的方程 x 2y 2 208( xy) 的所有正整数解为.x 48, x 160, 【答】y 32, y32.解:因为 208 是 4 的倍数,偶数的平方数除以4 所得的余数为 0,奇数的平方数除以4所得的余数为 1,所以 x , y 都是偶数.设 x2a, y 2b ,则a 2b 2 104( a b) ,同上可知, a , b 都是偶数.设 a2c, b 2d ,则c 2d 2 52( c d ) ,所以, c , d 都是偶数.设 c2s, d2t ,则s 2 t 226( s t) ,于是( s 13)2 (t 13)2 = 2 132 ,其中 s , t 都是偶数.所以(s 13)2 2 132 (t 13)2 ≤ 2 132 152 112 .所以 s13 可能为 1,3,5, 7, 9,进而 (t 13)2 为 337, 329,313,289, 257,故只s ,s,能是 (t13)2=289,从而 s13 = 7.于是620t;t,44x ,x,因此48 160y , y 32.3222 1) b(b 2a)40 , a(b 1) b8 ,求 1 1的值.34.设实数 a,b 满足 a (ba2b 2解 由已知条件可得 a 2b 2 (a b)240, ab ( a b)8 .设 ab x , aby ,则有 x 2y 2 40 , x y 8 ,,,,, 5 分 联立解得 ( x, y) (2,6) 或 ( x, y)(6,2) .,,,10 分若 ( x, y)(2,6) ,即 ab2 , ab 6 ,则 a, b 是一元二次方程 t 22t 6 0的两根,但这个方程的判别式( 2)224200,没有实数根;,,,, ,15 分若 ( x, y) (6,2) ,即 ab 6 ,ab 2 ,则 a, b 是一元二次方程 t 2 6t2 0 的两根,这个方程的判别式( 6)2 8 28 0 ,它有实数根 . 所以11a2b2( a b) 22ab 62 2 28 .,,,20 分a2b2a2b2a2 b22235. 已知 c≤ b≤ a,且,求的最小值.解:已知,又,且,所以 b, c 是关于 x 的一元二次方程的两个根 .故≥0,≥ 0,即≥0,所以≥20.于是≤-10,≥ 10,从而≥≥ 10,故≥ 30,当时,等号成立.36.求关于 a, b, c,d 的方程组的所有正整数解.解:将 abc=d 代入 10ab+10bc+10ca=9d 得10ab+10bc+10ca=9 abc.因为 abc≠ 0,所以,.不妨设 a≤ b≤ c,则≥≥>0.于是,<≤,即<≤,<a≤.从而, a=2,或 3.若 a=2,则.因为<≤,所以,<≤,<b≤ 5.从而, b=3 , 4,5. 相应地,可得c=15,(舍去 ), 5.当a=2, b=3, c=15 时, d=90 ;当a=2, b=5, c=5 时, d=50.若 a=3,则.因为<≤,所以,<≤,<b≤.从而, b=2(舍去), 3.当 b=3 时, c=(舍去 ).因此,所有正整数解为(a, b, c,d)=(2 ,3, 15, 90), (2, 15,3, 90), (3, 2,15, 90),(3, 15, 2, 90), (15, 2, 3, 90), (15,3, 2, 90),(2, 5, 5,50), (5, 2,5, 50), (5, 5,2, 50).37. 已知关于x 的一元二次方程x2cx a 0 的两个整数根恰好比方程x2ax b0 的两个根都大 1,求a b c 的值.解:设方程 x2ax b 0 的两个根为,,其中,为整数,且≤ ,则方程 x2cx a0 的两根为1, 1 ,由题意得a,1 1 a ,,,,,,,,,,,,, 5 分两式相加,得221 0,即 (2)(2)3,2 ,2 ,所以,1或 3,,,,,,,,,,,,10 分2 ;21.3解得 , 或,15; 3.1又因为 a (),b , c ([ 1)( 1)],所以 a 0, b 1, c2 ;或者 a8, b 15, c 6 ,故 a b c 3 ,或 29.,,,,,,,,,,,,,,,,,,20 分38. 设整数 a,b, c ( a b c )为三角形的三边长,满足a 2b 2c 2 abac bc 13 ,求符合条件且周长不超过30的三角形的个数 .解 由已知等式可得(a b)2 (b c)2(a c)226①令 a b m, b cn ,则 a c m n ,其中 m,n 均为自然数 .于是,等式①变为m 2 n 2 (m n)226,即m 2 n 2 mn 13②由于 m, n 均为自然数, 判断易知,使得等式②成立的 m, n 只有两组:m 3, m 1,n和n3.1( 1)当 m 3, n 1 时, b c 1, ab 3c 4 .又 a, b, c 为三角形的三边长,所以 b c a , 即 (c 1) c c 4, 解 得 c 3.又因为三角形的周长不超过 30,即a b c( c4) ( c 1)c25 3 c25 ,所以 c 可以取值 4, 5,30,解得 c.因此 336, 7, 8,对应可得到5 个符合条件的三角形 .( 2)当 m 1,n 3 时, b c 3 , ab 1c 4. 又 a,b, c 为三角形的三边长,所以 b c a , 即 (c 3) c c 4, 解 得 c 1.又因为三角形的周长不超过 30,即a b c( c4) ( c 3)c23 1 c23 ,所以 c 可以取值 2, 3,30,解得 c.因此 334, 5, 6, 7,对应可得到 6 个符合条件的三角形 .综合可知:符合条件且周长不超过30 的三角形的个数为 5+ 6= 11.39. 已知 a, b, c 为正数,满足如下两个条件:a b c 32① b c a c a ba b c1②bccaab4是否存在以 a, b, c 为三边长的三角形?如果存在,求出三角形的最大内角.解法 1将①②两式相乘,得 (bc a c a ba bc)( a b c)8 ,bccaab即(b c)2a 2(c a)2 b 2( a b) 2 c 28 ,bccaab即 (b c)2a 24 (c a) 2 b 24 (a b)2c 2 0,bccaab即 (b c)2a 2(c a)2 b 2 (a b) 2 c 20 ,bccaab即 (bc a)(b c a)(c a b)(c ab) ( a b c)( a b c)0 ,bccaab即 (bca) [ a(b c a)b(c a b) c( a bc)]0 ,abc即 (b c a)[2 ab a2b2c 2] 0 ,即(b ca) [ c 2( a b)2 ] 0 ,abcabc即 (bc a) (c a b)(c a b) 0 ,abc所以 b c a 0 或 c a b 0 或 c ab 0 ,即 b ac 或 ca b 或 c b a .因此,以a ,b ,c 为三边长可构成一个直角三角形,它的最大内角为90°. 解法 2结合①式,由②式可得32 2a32 2b32 2c1bccaab,4变形,得 10242(a2b2c 2)1abc③4又由①式得 (ab c) 2 1024 ,即 a 2 b 2c 2 1024 2(ab bcca) ,代入③式,得 10242[1024 2( ab bcca)]1abc ,4即 abc 16( ab bc ca) 4096 .(a 16)(b 16)(c 16) abc16(ab bc ca) 256(ab c) 1634096256 32 163 0 ,所以 a16 或 b 16 或 c 16 .结合①式可得 b a c 或 c a b 或 c b a .因此,以a ,b ,c 为三边长可构成一个直角三角形,它的最大内角为90°.40. 已知 a,b 为正整数,关于x 的方程 x 2 2ax b 0 的两个实数根为 x 1,x 2 ,关 于 y的 方 程 y 22ay b 0的 两 个 实 数 根 为 y 1,y 2,且满足x 1 y 1 x 2 y 2 2008.求 b 的最小值 .解:由韦达定理,得x 1 x 2 2a,x 1 x 2b ; y 1 y 22a,y 1 y 2b即y 1 y 2 2a (x 1x 2)( x 1) ( x 2),y 1 y 2 b ( x 1 ) ( x 2 )解得:y 1 x1或y1x 2y 2x 2y 2x 1把y 1 , y 2的值分别代 入x 1 y 1 x 2 y 2 2008得x 1 ( x 1 ) x 2 ( x 2 )2008或 x 1 ( x 2 ) x 2 ( x 1 ) 2008 (不成立)即x 2 2 x 12 2008 , ( x 2 x 1 )( x 2 x 1 ) 2008因为x 1x 2 2a 0, x 1 x 2b 0所以 x 1 0, x 2 0于是有 2a 4a 2 4b2008即 a a 2b502 1 5022 251因为a,b都是正整数, 所以a 1或a 505或a 22或a 251a 2b2a 2a 2ba 2b 4502 b 1251a 1a 502 a 2 a 251分别解得:b 1 2 或 b 2 或 b 2 2 或24502 502 1 251 b 251经检验只有: a 502 , a 251 符合题意 .b 5022 b 2512 41所以 b 的最小值为:b 最小值2512 4=62997。
代数综合题(1)
代数综合题(1)1.某仓库有甲种货物360吨,乙种货物290吨,计划用A、B两种共50辆货车运往外地.已知一辆A种货车的运费需0.5万元,一辆B种货车的运费需0.8万元.(1)设A种货车为x 辆,运输这批货物的总运费为y万元,试写出y与x的关系表达式;(2)若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B种货车能装载甲种货物6吨和乙种货物8吨.按此要求安排A,B两种货车运送这批货物,有哪几种运输方案?请设计出来;(3)试说明哪种方案总运费最少?最少运费是多少万元?2.某火车站有甲种货物60吨,乙种货物90吨,现计划用30节A、B两种型号的车厢将这批货物运出.设30节车厢中有A型车厢a节,(1)请用含a的代数式表示30节车厢中有B型车厢的节数;(2)如果甲种货物全部用A型车厢运送,乙种货物全部用B型车厢运送,则A 型、B型车厢平均每节运送的货物吨数刚好相同,请求出a的值;(3)在(2)的条件下,已知每节A型车厢的运费是x万元,每节B型车厢的运费比每节A型车厢的运费少1万元,设总运费为y万元,求y与x之间的函数关系式.如果已知每节A型车厢的运费不超过5万元,而每节B型车厢的运费又不低于3万元,求总运费y的取值范围3.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值4.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1x2=q请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0)求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知啊,b满足a2-15a-5=0,b2-15b-5=0,求a/b+b/a的值;(3)已知a,b,c满足a+b+c=0,abc=16求正数c的最小值5.已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)求该反比例函数的解析式;(2)将一次函数y=3x-2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)请直接写出一个同时满足如下条件的函数解析式:①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;②函数的图象与反比例函数的图象没有公共点.6.设a、b是关于x的方程kx2+2(k-3)x+(k-3)=0的两个不相等的实根(k是非负整数),一次函数y=(k-2)x+m与反比例函数y=n/x的图象都经过点(a,b).(1)求k的值;(2)求一次函数和反比例函数的解析式7.二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A (1,0)和点B(0,1).(1)试求a,b所满足的关系式;(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的5/4倍时,求a的值;(3)是否存在实数a,使得△ABC为直角三角形?若存在,请求出a的值;若不存在,请说明理由9.在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C (-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.(1)求经过A,B,C三点的抛物线的表达式;(2)求点M的坐标;(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由运费最少是33.4万元1(x 2,0)。
代数综合【解析版】
全国联赛代数问题选1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____. 【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144.由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤. 当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127.故满足条件的正整数n 的最大值为144.3.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有_________个【答】 由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-. 因此,x y +的可能的值有3个.4.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为_________ 【答】4721222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.5. 张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 【 】【答】25若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 6.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x+=,则1{}{}x x+=_________【答】 1 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =.由13x x +=解得1(32x =±,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 7.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.8. 实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件9. 已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=;(ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.10. 对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ). 【答案】5463967【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-,于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-. 11. 设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc ca a b c ++++的值为( ). 【答案】12-【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 12. 如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是_________个答案:2解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得 ; 当时,解得.13. 设a n =(n 为正整数),则a 1+a 2+…+a 2012的值 1.(填“>”,“=”或“<”)【答案】 <解:由a n ==, 得a 1+a 2+…+a 2012==<1.14. 红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等, 那么共有 种放法.【答案】25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9, 且, (1)即 ,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y 可取1,2,…,8,9(相应地z 取 9,8,…,2,1),共9种放法.同理可得y =5,或者z =5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法. 15. 设532x =,则代数式(1)(2)(3)x x x x +++的值为( ). 【答】﹣1 解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-16. 已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为_____________【答】5411解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125xy z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. 17. 若1x >,0y >,且满足3yy xxy x x y==,,则x y +的值为( ). 【答】92解:由题设可知1y y x -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.18. 设333311111232011S =++++,则4S 的整数部分等于( ). 【答】4解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.19. 一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16. 解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.20. 若y =a ,最小值为b ,则22a b +的值为 . 【答】32. 解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.21. 若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ___________答案:﹣1122. 对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= _________【答案】28068.23. 将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放___个球.【答案】1524. 已知t 是实数,若,a b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则22(1)(1)a b --的最小值是___________.【答案】﹣325. 如果实数,a b 满足条件221a b +=,22|12|21a b a b a -+++=-,则a b +=______.【答案】﹣126. 已知,a b 是正整数,且满足是整数,则这样的有序数对(,)a b 共有_____对.【答案】7对27. 设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数是______个【答案】4个28. 设1a =,则32312612a a a +--=__________【答案】2429. 用[]x 表示不大于x 的最大整数,则方程22[]30x x --=的解为_________ 【答案】﹣3,1,或根号5 30. 已知实数x y ,满足 42424233y y x x -=+=,,则444y x+的值为________ 【答】 7解:因为20x >,2y ≥0,由已知条件得212184x ++==, 21122y -+-+==, 所以444y x +=22233y x ++- 2226y x=-+=7.另解:由已知得:2222222()()30()30x xy y ⎧-+--=⎪⎨⎪+-=⎩,显然222y x -≠,以222,y x -为根的一元二次方程为230t t +-=,所以 222222()1,()3y y x x-+=--⨯=- 故444y x +=22222222[()]2()(1)2(3)7y y x x-+-⨯-⨯=--⨯-= 31. 将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有_______种【答】5种解:设12345a a a a a ,,,,是1,2,3,4,5的一个满足要求的排列.首先,对于1234a a a a ,,,,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果i a (1≤i ≤3)是偶数,1i a +是奇数,则2i a +是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以12345a a a a a ,,,,只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.32. 对于实数u ,v ,定义一种运算“*”为:u v uv v *=+.若关于x 的方程1()4x a x **=-有两个不同的实数根,则满足条件的实数a 的取值范围是 .【答】0a >,或1a <-. 解:由1()4x a x **=-,得21(1)(1)04a x a x ++++=, 依题意有 210(1)(1)0a a a +≠⎧⎨∆=+-+>⎩,,解得,0a >,或1a <-.33. 关于x ,y 的方程22208()x y x y +=-的所有正整数解为 .【答】481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,, 解:因为208是4的倍数,偶数的平方数除以4所得的余数为0,奇数的平方数除以4所得的余数为1,所以x ,y 都是偶数.设2,2x a y b ==,则22104()a b a b +=-,同上可知,a ,b 都是偶数.设2,2a c b d ==,则2252()c d c d +=-,所以,c ,d 都是偶数.设2,2c s d t ==,则2226()s t s t +=-,于是 22(13)(13)s t -++=2213⨯,其中s ,t 都是偶数.所以222(13)213(13)s t -=⨯-+≤2222131511⨯-<.所以13s -可能为1,3,5,7,9,进而2(13)t +为337,329,313,289,257,故只能是2(13)t +=289,从而13s -=7.于是62044s s t t ==⎧⎧⎨⎨==⎩⎩,,;,因此 481603232.x x y y ==⎧⎧⎨⎨==⎩⎩,,,34.设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值. 解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, …………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ………10分若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ………… … 15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ………20分35. 已知c ≤b ≤a ,且,求的最小值.解:已知,又,且,所以b ,c 是关于x 的一元二次方程的两个根.故≥0,≥0,即 ≥0,所以≥20. 于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.36. 求关于a ,b ,c ,d 的方程组的所有正整数解.解:将abc =d 代入10ab +10bc +10ca =9d 得10ab +10bc +10ca =9abc .因为abc ≠0,所以,.不妨设a ≤b ≤c ,则≥≥>0.于是, <≤,即 <≤,<a ≤.从而,a =2,或3.若a =2,则.因为<≤,所以,<≤,<b ≤5.从而,b =3,4,5. 相应地,可得 c =15,(舍去),5.当a =2,b =3,c =15时,d =90; 当a =2,b =5,c =5时,d =50.若a =3,则.因为<≤,所以,<≤,<b ≤.从而,b =2(舍去),3.当b =3时,c =(舍去).因此,所有正整数解为(a ,b ,c ,d )=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).37. 已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=,所以,2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩, ………………………………10分解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29. ………………………………………………20分38. 设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由已知等式可得222()()()26a b b c a c -+-+-=①令,a b m b c n -=-=,则a c m n -=+,其中,m n 均为自然数. 于是,等式①变为222()26m n m n +++=,即2213m n mn ++=②由于,m n 均为自然数,判断易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩(1)当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.(2)当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.39. 已知,,a b c 为正数,满足如下两个条件:32a b c ++= ① 14b c a c a b a b c bc ca ab +-+-+-++= ②. 解法1 将①②两式相乘,得()()8b c a c a b a b ca b c bc ca ab+-+-+-++++=, 即222222()()()8b c a c a b a b c bc ca ab +-+-+-++=, 即222222()()()440b c a c a b a b c bc ca ab +-+-+--+-+=, 即222222()()()0b c a c a b a b c bc ca ab----+-++=, 即()()()()()()0b c a b c a c a b c a b a b c a b c bc ca ab-+---+--+++-++=,即()[()()()]0b c a a b c a b c a b c a b c abc -+----++++=,即222()[2]0b c a ab a b c abc -+--+=,即22()[()]0b c a c a b abc -+--=,即()()()0b c a c a b c a b abc-++--+=,所以0b c a -+=或0c a b +-=或0c a b -+=,即b a c +=或c a b +=或c b a +=.90°.解法2 结合①式,由②式可得32232232214a b c bc ca ab ---++=, 变形,得222110242()4a b c abc -++= ③又由①式得2()1024a b c ++=,即22210242()a b c ab bc ca ++=-++, 代入③式,得110242[10242()]4ab bc ca abc --++=,即16()4096abc ab bc ca =++-.3(16)(16)(16)16()256()16a b c abc ab bc ca a b c ---=-+++++-3409625632160=-+⨯-=,所以16a =或16b =或16c =.结合①式可得b a c +=或c a b +=或c b a +=.90°. 40. 已知,a b 为正整数,关于x 的方程220x ax b -+=的两个实数根为12x x ,,关于y的方程220y ay b ++=的两个实数根为12y ,y ,且满足11222008x y x y -=.求b 的最小值. 解:由韦达定理,得12122,x x a x x b +== ;12122,y y a y y b +=-= 即12121212122()()(),()()y y a x x x x y y b x x +=-=-+=-+-⎧⎨==--⎩ 解得:11122221y x y x y x y x =-=-⎧⎧⎨⎨=-=-⎩⎩或 把12,y y 的值分别代入11222008x y x y -= 得1122()()2008x x x x ---=或1221()()2008x x x x ---=(不成立)即22212008x x -=,2121()()2008x x x x +-=因为121220,0x x a x x b +=>=> 所以120,0x x >> 于是有 22442008aa b -=即250215022251aa b -==⨯=⨯因为a,b都是正整数,所以2222221505225150212514a a a a ab a b a b a b ====⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=-=⎩⎩⎩⎩或或或 分别解得:2222150222511502502122512514a a a ab b b b ====⎧⎧⎧⎧⎨⎨⎨⎨=-=-=-=-⎩⎩⎩⎩或或或经检验只有:2250225150212514a ab b ==⎧⎧⎨⎨=-=-⎩⎩, 符合题意. 所以b 的最小值为:2251462997b =-最小值=。
初中数学竞赛---代数式竞赛50道综合题练习(含答案解析)
16.(2021·全国·九年级竞赛)分解因式: (c a)2 4(b c)(a b) . 【答案】 (a c 2b)2 【详解】解法一 原式 (c2 2ca a2 ) 4(ab b2 ac bc) (c2 2ca a2 ) (4ab 4bc) 4b2 (a c)2 4b(a c) (2b)2 (a c 2b)2 . 解法二 原式 [(c b) (a b)]2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 4(c b)(a b) (c b)2 2(c b)(a b) (a b)2 [(c b) (a b)]2 (a c 2b)2 .
17.(2021·全国·九年级竞赛)分解因式: x2 (x a)2 a2x2 a2 (x a)2 . 【答案】 (x2 ax a2 )2 【详解】解法一 原式 [x2 (x a)2 a2 (x a)2 ] a2x2 (x2 a2 )(x a)2 a2 x2 (x2 a2 )(x2 2ax a2 ) a2 x2 (x2 a2 )2 2ax(x2 a2 ) (ax)2 (x2 a2 ax)2 (x2 ax a2 )2 . 解法二 原式 x2[(x a)2 a2 ] a2 (x a)2 x2 (x2 2ax 2a2 ) a2 (x a)2 (x2 )2 2x2 a(x a) [a(x a)]2 [x2 a(x a)]2 (x2 ax a2 )2 .
4.(2021·全国·九年级竞赛)
1
1
的值为( ).
4 59 30 2 3 66 40 2
A.无理数 【答案】D
B.真分数
C.奇数
D.偶数
【详解】原式
1
1
4 (5 2)2 25 2 3 32 3 (5 2)2 25 2 4 42
代数综合题
中考数学——代数综合题方程存在整数根问题1.已知关于x的方程0kx+k.+x-k32)1+(2=(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10+-++=的整数根(a为正整数).y a k y a2.已知关于x的方程(k+1)x2+(3k-1)x+2k-2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值;(3)若抛物线y=(k+1)x2+(3k-1)x+2k-2与x轴的两个交点之间的距离为3,求k的值.3.已知:关于x 的方程2(1)(1)20a x a x --++=.(1)a 取何整数值时,关于x 的方程2(1)(1)20a x a x --++=的根都是整数;(2)若抛物线y =2(1)(1)20a x a x --++=的对称轴为x =-1,顶点为M ,当k 为何值时,一次函数13y kx k =+的图象必过点M .图象的平移、翻折问题4. 已知关于x 的一元二次方程210x px q +++=的一个实数根为 2. (1) 用含p 的代数式表示q ;(2) 求证:抛物线2y x px q =++与x 轴有两个交点;(3) 设抛物线21y x px q =++的顶点为M ,与 y 轴的交点为E ,抛物线221y x px q =+++顶点为N ,与y 轴的交点为F ,若四边形FEMN 的面积等于2,求p 的值.5.已知:关于x 的一元二次方程:22240x mx m -+-=. (1)求证:这个方程有两个不相等的实数根;(2)当抛物线2224y x mx m =-+-与x 轴的交点位于原点的两侧,且到原点的距离相等时,求此抛物线的解析式;(3)将(2)中的抛物线在x 轴下方的部分沿x 轴翻折,其余部分保持能够不变,得到图形C 1,将图形C 1向右平移一个单位,得到图形C 2,当直线y=x b +(b <0)与图形C 2恰有两个公共点时,写出b 的取值范围.6. 已知:关于x 的一元二次方程02)21(22=-++-k x k x 有两个实数根. (1)求k 的取值范围; (2)当k 为负整数时,抛物线2)21(22-++-=k x k x y 与x 轴的交点是整数点,求抛物线的解析式;(3)若(2)中的抛物线与y 轴交于点A ,过A 作x 轴的平行线与抛物线交于点B ,连接OB ,将抛物线向上平移n 个单位,使平移后得到的抛物线的顶点落在△OAB 的内部(不包括△OAB 的边界),求n 的取值范围.7. 已知关于x 的一元二次方程22(41)30x m x m m -+++=. (1)求证:无论m 取何实数时,原方程总有两个实数根;(2)若原方程的两个实数根一个大于2,另一个小于7,求m 的取值范围;(3)抛物线22(41)3y x m x m m =-+++与x 轴交于点A 、B ,与y 轴交于点C ,当m 取(2)中符合题意的最小整数时,将此抛物线向上平移n 个单位,使平移后得到的抛物线顶点落在△ABC 的内部(不包括△ABC 的边界),求n 的取值范围(直接写出答案即可).代数式变形与整体代入8.已知关于x 的方程 03)13(2=+++x m mx . (1)求证: 不论m 为任何实数, 此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式;(3)若点P ),(11y x 与Q ),(21y n x +在(2)中抛物线上 (点P 、Q 不重合), 且y 1=y 2, 求代数式81651242121++++n n n x x 的值.函数图象与三角形问题9. 在平面直角坐标系xOy 中,二次函数y 1=mx 2-(2m +3)x +m +3与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C (其中m >0)。
经典中考专题复习代数综合题
代数综合题【知识梳理】概述:代数综合题是中考题中较难的题目,要想得高分必须做好这类题,•这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时,•计算不能出差错,思维要宽,考虑问题要全面.【典例精析】例1.已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,O),B(x2,0)(x1<x2),•顶点M的纵坐标为-4,若x1,x2是方程x2-2(m-1)x+m2-7=0的两个根,且x12+x22=10.(1)求A、B两点的坐标;(2)求抛物线的解析式及点C的坐标;(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所符合条件的点的坐标;若不存在,请说明理由.例2.已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0,若点A关于y轴的对称点是D.(1)求过点C、B、D的抛物线的解析式;(2)若P是(1)所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD和△CBD 的积相等,求直线PH的解析式.例3.矩形OABC在直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,3),直线y=34x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式;(3)P为x轴上方,(2)中抛物线上一点,求△POA面积的最大值;(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.例4.如图所示,抛物线y=a x2+bx+c(a≠0)与x轴、y轴分别相交于A(•-1,0)、B(3,0)、C(0,3)三点,其顶点为D.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2ba-,244ac ba-).(1)求:经过A、B、C三点的抛物线的解析式;(2)求四边形ABDC的面积;(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.◆变式练习:1.已知一抛物线经过O(0,0),B(1,1)两点,如图,且二次项系数为-1a(a>0).(1)求该抛物线的解析式(系数用含a的代数式表示);(2)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),• 求M,N的坐标(用含a的代数式表示);(3)在(2)的条件下,当a在什么范围内取值时,ON+bm的值为常数?当a在什么范围内取值时,ON-bM的值也为常数?(第24题图)2.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试写出y 与x 的函数关系式;(2)如果每节A 型车厢最多可装甲种货物35吨或乙种货物15吨,每节B 型车厢最多可装甲种货物25吨或乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费多少元?3.在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药物后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似地满足如图所示的折线. (1)写出注射药液后每毫升血液中含药量y 与时间t•之间的函数关系式及自变量取值范围; (2)据临床观察:每毫克血液中含药量不少于4微克时,控制“非典”病情是有效的/如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?(3)假若某病人一天中第一次注射药液是早上6点钟,问怎样安排此人从6:00•~20:00注射药液的时间,才能使病人的治疗效果最好?4.已知抛物线y=12x 2-x+k 与x 轴有两个不同的交点.(1)求k 的取值范围;(2)设抛物线与x 轴交于A 、B 两点,且点A 在原点的左侧,抛物线与y 轴交于点C ,若OB=2.OC ,求抛物线的解析式和顶点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P (点D 除外),使得以A 、B 、P•三点为顶点的三角形与△ABD 相似?如果存在,求出P 点坐标;如果不存在,请说明理由.【中考真题体验】(08江苏连云港)24.(本小题满分14分)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的AO B △,C O D △处,直角边O B O D ,在x 轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至P E F △处时,设P E P F ,与O C 分别交于点M N ,,与x 轴分别交于点G H ,. (1)求直线A C 所对应的函数关系式;(2)当点P 是线段A C (端点除外)上的动点时,试探究: ①点M 到x 轴的距离h 与线段B H 的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S 是否存在最大值?若存在,求出这个最大值及S 取最大值时点P 的坐标;若不存在,请说明理由.(08江苏宿迁)27.(本题满分12分)如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.第27题27.解:(1) ∵四边形ABCD 为正方形 ∴CD AD ⊥∵A 、O 、D 在同一条直线上 ∴︒=∠90ODC ∴直线CD 与⊙O 相切; (2)直线CD 与⊙O 相切分两种情况:①如图1, 设1D 点在第二象限时,过1D 作x E D ⊥11轴于点1E ,设此时的正方形的边长为a ,则2225)1(=+-aa ,解得4=a 或3-=a (舍去).由BOA Rt ∆∽11OE D Rt ∆ 得OBOD BAE D OAOE 1111==∴54,53111==E D OE ∴)54,53(1-D ,故直线OD 的函数关系式为x y 34-=;②如图2, 设2D 点在第四象限时,过2D 作x E D ⊥22轴于点2E ,设此时的正方形的边长为b ,则2225)1(=++b b ,解得3=b 或4-=b (舍去).由BOA Rt ∆∽22OE D Rt ∆ 得OBOD BAE D OAOE 2222==∴53,54222==E D OE∴)53,54(2-D ,故直线OD 的函数关系式为x y 43-=.(3)设),(0y x D ,则201x y -±=,由)0,5(B 得x x x DB 1026)1()5(22-=-+-=∴x x BDS 513)1026(21212-=-==∵11≤≤-x∴851318513=-==+=最小值最大值,SS .24.解:(1)由直角三角形纸板的两直角边的长为1和2, 知A C ,两点的坐标分别为(12)(21),,,.设直线A C 所对应的函数关系式为y kx b =+. ···························································· 2分有221k b k b +=⎧⎨+=⎩,.解得13k b =-⎧⎨=⎩,.所以,直线A C 所对应的函数关系式为3y x =-+. ·····················································4分(2)①点M 到x 轴距离h 与线段B H 的长总相等.因为点C 的坐标为(21),,所以,直线O C 所对应的函数关系式为12y x =.又因为点P 在直线A C 上, 所以可设点P 的坐标为(3)a a -,.过点M 作x 轴的垂线,设垂足为点K ,则有M K h =.因为点M 在直线O C 上,所以有(2)M h h ,. ·······················6分因为纸板为平行移动,故有EF O B ∥,即E F G H ∥.又EF PF ⊥,所以P H G H ⊥.法一:故R t R t R t M K G PH G PFE △∽△∽△,从而有12G K G H E F M KP HP F===.第27题图1第27题图2(第24题答图)得1122G K M K h ==,11(3)22G H PH a ==-.所以13222O G O K G K h h h =-=-=. 又有13(3)(1)22O G O H G H a a a =-=--=-. ························································8分 所以33(1)22h a =-,得1h a =-,而1B H O H O B a =-=-,从而总有h BH =.····································································································· 10分法二:故R t R t P H G P F E △∽△,可得12G H E F P HP F=-.故11(3)22G H PH a ==-.所以13(3)(1)22O G O H G H a a a =-=--=-.故G 点坐标为3(1)02a ⎛⎫-⎪⎝⎭,. 设直线P G 所对应的函数关系式为y cx d =+, 则有330(1)2a ca d c a d -=+⎧⎪⎨=-+⎪⎩,.解得233c d a =⎧⎨=-⎩ 所以,直线P G 所对的函数关系式为2(33)y x a =+-.···············································8分 将点M 的坐标代入,可得4(33)h h a =+-.解得1h a =-.而1B H O H O B a --=-,从而总有h BH =. ························································· 10分 ②由①知,点M 的坐标为(221)a a --,,点N 的坐标为12a a ⎛⎫⎪⎝⎭,.O N H O N G S S S =-△△1111133(1)222222a N H O H O G h a a a -=⨯-⨯=⨯⨯-⨯⨯-22133133224228a a a ⎛⎫=-+-=--+ ⎪⎝⎭. ····································································· 12分 当32a =时,S 有最大值,最大值为38.S 取最大值时点P 的坐标为3322⎛⎫⎪⎝⎭,. ········································································ 14分。
线性代数综合练习100题
(C)若 A 经行的初等变换化成 B ,则 AX = 0 与 BX = 0 同解;
(D)若 A 经列的初等变换化成 B ,则 A 的列向量组与 B 的列向量组等价.
⎛ a11 a12 a13 ⎞
⎛ a21
a22
a23 ⎞
18.设
A
=
⎜ ⎜
a21
a22
a23
⎟ ⎟
,
B
=
⎜ ⎜
a11
a12
a13
⎟ ⎟
⎜⎝ a31 a32 a33 ⎟⎠
15.设 A 是 n 阶方阵, A2 = E ,则(C). (A) A 为正定矩阵;(B) A 为正交矩阵;(C) ( A*)2 = E ;(D) tr( A) = n2 .
16.设 A, B 是 n 阶方阵,下列结论中错误的是(D).
(A)若 A, B 都可逆,则 A′B 也可逆; (B)若 A, B 都是实对称正定矩阵,则 A + B−1 也是实对称正定矩阵;
8.设有两个平面方程 π1 : a1x + b1 y + c1z + d1 = 0 ,
π 2 : a2 x + b2 y + c2 y + d2 = 0 ,
如果
秩
⎛ ⎜ ⎝
a1 a2
b1 b2
c1 c2
⎞ ⎟ ⎠
=
2
,则一定有(D)
(A) π1 与 π 2 平行; (C)π1 与 π 2 重合;
(B) π1 与 π 2 垂直; (D) π1 与 π 2 相交.
(A)若有全不为 0 的数 k1, k2 ,", km 使 k1α1 +" + kmαm = 0 ,则向量组α1,α2 ,",αm 线性无关; (B)若有一组不全为 0 的数 k1, k2 ,", km 使得 k1α1 + k2α2 +" + kmαm ≠ 0 ,则向量组α1,α2 ,",αm 线
最新中考数学:代几综合题—以代数为主的综合
代几综合题(以代数为主的综合) 典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点.(1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动)。
代数综合题
代数综合题Ⅰ、综合问题精讲:代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法、配方法等.解代数综合题要注意归纳整理教材中的基础知识、基本技能、基本方法,要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.注意知识间的横向联系,从而达到解决问题的目的. Ⅱ、典型例题剖析【例1】已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值. 解:设方程的另一根为x 1,由韦达定理:2 x 1=-6, ∴ x 1=-3.由韦达定理:-3+2= k +1,∴k=-2.【例2】已知关于x 的一元二次方程(k-4)x 2+3x+k 2-3k -4=0的一 个根为0,求k 的值.解:把x=0代入这个方程,得k 2-3k -4=0,解得k 1=-l ,k 2=4.因为k-4≠0.所以k ≠4,所以k =-l 。
点拨:既然我们已经知道方程的一个根了,那么我们就可以将它代入原方程,这样就可以将解关于x 的方程转化为解关于k 的方程.从而求出b 的解.但应注意需满足k+4的系数不能为0,即k ≠-4。
【例3】已对方程 2x 2+3x -l =0.求作一个二次方程,使它的两根分别是已知方程两根的倒数.解:设2 x 2+3x -l =0的两根为x 1、x 2则新方程的两根为1211, x x 得12123212x x x x ⎧+=-⎪⎪⎨⎪=-⎪⎩所以12121211==3 x x x x x x ++所以新方程为y 2-3y -2=0· 点拨:熟记一元二次方程根与系数的关系是非常必要的【例4】某产品每件成本10元,试销阶段每件产品的日销售价x (元)与产品的日销售量y (件)之间的关系如下表:⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 解:⑴经观察发现各点分布在一条直线上, ∴设b kx y += (k≠0)用待定系数法求得40+-=x y ,⑵设日销售利润为z 则y xy z 10-= =400502-+-x x 当x=25时,z 最大为225,每件产品的销售价定为25元时,日销售利润最大为225元。
代数综合题(6)
代数综合题(6)1.青岛国际帆船中心举行帆船比赛.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A、B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程;(2)根据计算判断:哪种购票方案更省钱?2.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的2/3,又不少于B种笔记本数量的1/3,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时花费是多少元?3.有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3, B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出—个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)若用(m,n)表示小明取球时m与n 的对应值,请画出树状图并写出(m,n)的所有取值;(2)求关于x的一元二次方程x2-mx+0.5n=0有实数根的概率4.某市道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?5.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?6.苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面n亩,则年租金共需多少元?(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润:收益-成本);(3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款.用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水田,并向银行贷款多少元,可使年利润超过35000元?7.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示,已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?8.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.(1)求A、B两地间的距离;(2)如果两人到达目的地后都立即按原路返回出发地,求何时两人还相距36千米9.某机场对出境旅客进行安全检测,假设安全检测开始时有a名旅客,检测开始后仍有旅客继续进入机场等待安全检测,旅客按固定每分钟b人的速度增加,而每名工作人员按每分钟2人的速度检测.若用3名工作人员进行检测,需要10分钟才能将旅客全部检测完;若用4名工作人员进行检测,则只需6分钟就可将旅客全部检测完.(1)求a和b的值.(2)现要求不超过2分钟将旅客全部检铡完,以使后来需要出境的旅客能随到随检,机场至少要派多少名工作人员进行检测?10.某市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商给予以下两种优惠方案供其选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费每平方米每月1.5元,请问哪种方案更优惠?代数综合题(6)答案1.解:(1)根据题意,得x ≥(15-x )/2,600x+120(15-x )≤5000,解得5≤x ≤20/3所以满足条件的x 为5或6。
代数综合问题(含答案)
代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。
初中代数综合题(精选)
代数综合题代数综合题 解题点拨解题点拨例1 二次函数b ax x y ++=22的图象经过)3,2(点,并且其顶点在直线23-=x y 上,求b a 、.例2在平面直角坐标系内,一次函数)0,0(<>+=b kb b kx y 的图象分别与x 轴、y 轴和直线4=x 交于点C B A 、、,直线x x 与4=轴交于点D ,四边形OBCD 的面积是10,若A 点横坐标是21-,求这个一次函数的解析式.,求这个一次函数的解析式. 例3 如图,已知直线P A 是一次函数)0(>+=n n x y 的图象,直线PB 是一次函数)(2n m m x y >+-=的图象.(1)用n m 、表示出P B A 、、点的坐标;(2)若点Q 是P A 与y 轴的交点,且四边形PQOB 的面积是2,65=AB ,试求P 点的坐标,并写出直线PB PA 与的解析式.的解析式.例4已知:如图,直线133+=x y 和x 轴、y 轴分别交于点A 和点B ,以线段AB 为边在第一象限内作等边三角形ABC .如果在第一象限内有一点)21,(m P ,且△ABP 的面积与△ABC 的面积相等,求m 的值.的值.例5已知:如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2ax y =在第一象限内交于点P ,又知△AOP 的面积为29,求a 的值.的值.xyQ OP BA 第3题图题图xyCOP B A第4题图题图lxyOP BA5例6如图,直线AB 过x 轴上的)0,2(A 点,且与抛物线2ax y =相交于C B 、两点,已知B 点坐标是)1,1(.(1)求直线和抛物线所表示的函数的解析式;(2)如果抛物线上有一点D ,使得OBCOADSSD D =,求这时D 点的坐标.点的坐标.例7在直角坐标系中,直线l 经过)0,4(A 点,且与两条坐标轴围成的直角三角形面积等于8.有一个二次函数的图象经过l 与两坐标轴的交点,且以3=x 为对称轴,开口向下.求这个二次函数的解析式.向下.求这个二次函数的解析式.例8如图,已知在同一坐系标系中中,直线22kkx y -+=与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,()0,(21x B x A 、两点,C 是抛物线顶点.(1)求此二次函数的最小值(用含k 的代数式表示);(2)若点A 在点B 的左侧,且021<x x ,①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S D D =如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由.如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由.xyDCOB A第6题图题图lxy l 'B'O B A第7题图题图xy CO P BA第8题图题图模拟训练模拟训练 1、 已知关于x 的二次函数34)2(2---=nx x m y 的图象的对称轴是2=x ,且顶点在反比例函数x y 2=的图象上,求此二次函数的解析式.的图象上,求此二次函数的解析式.2、 已知抛物线c bx ax y ++=2与x 轴交于)0,1(-A 和)0,3(B ,它的顶点到x 轴的距离等于4;直线m kx y +=经过抛物线与y 轴的交点和抛物线的顶点,求抛物线和直线的解析式.析式. 3、 已知以次函数b kx y +=的图象经过点)1,0(A 和点)3,(a a B -,0<a ,且点B 在反比例函数xy 3-=的图象上.(1)求a 的值;(2)求一次函数的解析式,并画出其图象;(3)利用画出的图象,求当这个一次函数的y 值在31££-y 范围内,相应的x 值的范围;(4)如果),1(),(21y m Q y m P +、是这个一次函数图象上的两个点,试比较1y 与2y 的大小.的大小.4、 如图,Rt △ABO 的顶点A 是双曲线xk y =与直线)1(++-=k x y 在第四象限的交点,x AB ^轴于B ,且23=D ABO S .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点C A 、的坐标和△AOC 的面积.的面积.5、 如图,反比例函数)0(<=k xky 的图象经过点),3(m A -,过A 作x AB ^轴于点B ,△AOB 的面积为3.(1)求k 和m 的值;(2)若过A 点的直线b ax y +=与x 轴交于C 点,且30=ÐACO °,求此直线的解析式.°,求此直线的解析式.6、 已知:如图,直线3+-=x y 与x 轴、y 轴分别交于点C B 、,抛物线c bx x y ++-=2经过点C B 、,点A 是抛物线与x 轴的另一外交点.(1)求抛物线的解析式;(2)若点P 在直线BC 上,且PAB PAC S S D D =21,求点P 的坐标.的坐标.x y C O B A 第4题图题图 x y O B A 第5题图题图 xy COPBA 第6题图题图,3x=的图象与一次函数y C O B A 第8题图题图 x y C O B A第9题图题图 xy Q O P 第12题图13、已知二次函数的图象过点121),1,0()0,()0,(x C x B x A -、、和2x 是方程0322=--x x 的两根,切21x x >.(1)求这个二次函数的解析式;(2)用配方法求出这个二次函数顶点D 的坐标;(3)在抛物线上求D ¢点,使ABCD D AB S S 四边形=¢D .14、如图,抛物线q px x y ++-=2的顶点M 在第一象限,它与y 轴正半轴相交于点B ,与x 轴相交于)0,2(A ,并且四边形AMBO 的面积是411,求q p 、的值.的值.15、已知平行四边形ABCD 在直角坐标系中的位置如图,O 是坐标原点,12,5:3:1::==ABCD S OA OC OB 平行四边形.抛物线经过B A D 、、三点.(1)求C A 、两点的坐标;(2)求抛物线的解析式;(3)E 是抛物线与DC 交点,以DE 为边的平行四边形,它的面积与平行四边形ABCD 的面积相等,且另两顶点中有一个顶点P 在抛物线上,求P 点的坐标.点的坐标.16、已知二次函数图象与x 轴交于)0,3()0,1(B A 、-,与y 轴交于点C ,顶点P 到x 轴距离为4.(1)写出这个二次函数的解析式;(2)在这个二次函数的图象上是否存在点M ,使△MAB 的面积等于四边形ACPB 面积的32如果存在,写出所有点M 的坐标;如果不存在,请说明理由.的坐标;如果不存在,请说明理由.17、抛物线的解析式c bx ax y ++=2满足四个条件:c b a ca bc ab c b a abc <<-=++=++=,4,3,0.(1)求这条抛物线的解析式;(2)设该抛物线与x 轴的两交点分别为B A 、(A 在B 的左边),与y 轴的交点为P C ,是抛物线上第一象限内的点,AP 交y 轴于点5.1,=OD D ,试比较DPC AO AOD D SS D D 与的大小.的大小.x y M O B A 第14题图题图 xy E D C O B A 第15题图题图。
初中数学代数综合题
初中数学代数综合题(一)一.选择题(共26小题)1.如果x2﹣(m+1)x+1就是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣32.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的就是()A.a+b<0B.a﹣b<0C.a•b>0D.>03.在实数,,0,,,﹣1、414,有理数有()A.1个B.2个C.3个D.4个4.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0、2×10﹣4米C.2×10﹣5米D.2×10﹣4米5.计算3、8×107﹣3、7×107,结果用科学记数法表示为()A.0、1×107B.0、1×106C.1×107D.1×1066.的平方根就是()A.±3B.3C.±9D.97.下列计算结果正确的就是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣)﹣2=4D.(﹣2)0=﹣18.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.69.下列计算正确的就是()A.|﹣2|=﹣2B.a2•a3=a6C.(﹣3)﹣2=D.=310.若分式,则分式的值等于()A.﹣B.C.﹣D.11.已知分式的值为0,那么x的值就是()A.﹣1B.﹣2C.1D.1或﹣212.已知x2﹣3x﹣4=0,则代数式的值就是()A.3B.2C.D.13.化简﹣等于()A. B. C.﹣ D.﹣14.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的就是()A.①②B.②③C.①③D.①②③15.如果,那么x取值范围就是()A.x≤2B.x<2C.x≥2D.x>216.要使二次根式有意义,x必须满足()A.x≤2B.x≥2C.x>2D.x<217.若代数式+有意义,则实数x的取值范围就是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠118.某个体商贩在一次买卖中,同时卖出两件上衣,售价都就是135元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中她()A.不赚不赔B.赚9元C.赔18元D.赚18元19.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108B.54﹣x=20%(108+x)C.54+x=20%×162D.108﹣x=20%(54+x)20.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉与螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的就是()A.2×1000(26﹣x)=800xB.1000(13﹣x)=800xC.1000(26﹣x)=2×800xD.1000(26﹣x)=800x21.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤9B.﹣1≤x<9C.﹣1<x≤9D.x≤﹣1或x≥922.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的就是()A.ac>bcB.|a﹣b|=a﹣bC.﹣a<﹣b<cD.﹣a﹣c>﹣b﹣c23.如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,顶点B的坐标为(4,6),直线y=kx+3k将平行四边形OABC分割成面积相等的两部分,则k的值就是()A. B. C.﹣ D.﹣24.下列各式计算正确的就是()A.a0=1B.C.(﹣3)﹣2=﹣D.25.在实数π,2,0,3、14,﹣,tan45°,3、1415926,,1、010010001…(每两个1之间0的个数依次加1)中,无理数的个数就是()A.2个B.3个C.4个D.5个26.已知x=1就是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0B.1C.0或1D.0或﹣1二.填空题(共3小题)27.分解因式:4+12(x﹣y)+9(x﹣y)2=.28.若关于x、y的方程组的解满足x+y=,则m=.29.二次函数y=ax2+bx+c(a,b,c就是常数,a≠0)图象的对称轴就是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的就是(把正确的序号都填上).三.解答题(共1小题)30.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B 的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上就是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.。
代数综合题的精准化练习
6 .在平面直角坐标系 xOy 中,抛物线 y mx2 2mx m 4 ( m 0 )的顶点为 A ,与 x 轴交于 B, C 两点(点 B
7y
6 5 4 3 2 1
–5 –4 –3 –2 –1 O
1 2 3 4 5x
–1
–2
–3
–4 –5
–6
–7
新图象 M .若直线 y=x+b 与图象 M 有三个公共点,求 b 的取值范围.
10
x ,关于 x 的不等式 x2 2x 1 a 0恒成立,则 a 的取值范围是 y
参考小捷思考问题的方法,解决问题:
关于 x 的方程 x 4
a3 在0
x
4
x
范围内有两个解,求 a 的取值范围.
1
O1
x
3
2 . 阅读下面材料:
如图 1 ,在平面直角坐标系 xOy 中,直线 y1 ax b 与
双曲线 y2
设 y3 x 2 4x 1, y4 4 ,在同一坐标系 x
中分别画出这两个函数的图象.
4
双曲线 y4
如图 2 所示,请在此坐标系中
x
画.出.抛.物.线. y3 x2 4 x 1;
(不用列表)
图2
( 3)确定两个函数图象公共点的横坐标
观察所画两个函数的图象, 猜想并通过代入函数解析式验证可知: 满足 y3 y4 的
(2)根据画出的函数图象,写出:
① x=4 对应的函数值 y 约为
;
②该函数的一条性质:
代数综合题的三种类型(26)
代数综合题的三种类型类型一抛物线的性质问题此类题目重点考查抛物线性质,如:轴对称性,增减性,以及图象的平移、旋转、轴对称变换等.解题的关键是熟练掌握抛物线的性质,结合所画抛物线与直线相交方面知识点,直接写出或列出满足题意的方程或不等式,从而解决问题.例[2017·北京27题]在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A,B(点A 在点B的左侧),与y轴相交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).若x1<x2<x3,结合函数图象,求x1+x2+x3的取值范围.【分层分析】(1)利用抛物线解析式求得点B,C的坐标,利用待定系数法求得直线BC的表达式即可;[2019·顺义二模]在平面直角坐标系xOy中,抛物线y=mx2+2mx-3(m>0)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,该抛物线的顶点D的纵坐标是-4.(1)求点A,B的坐标;(2)设直线l与直线AC关于该抛物线的对称轴对称,求直线l的表达式;(3)平行于x轴的直线b与抛物线交于点M(x1,y1),N(x2,y2),与直线l交于点P(x3,y3),若x1<x3<x2,结合函数图象,求x1+x2+x3的取值范围.1.[2019·海淀一模]在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,-3)和B(3,0).(1)求c的值及a,b满足的关系式;(2)若抛物线在A,B两点间从左到右上升,求a的取值范围;(3)结合函数图象判断:抛物线能否同时经过点M(-1+m,n),N(4-m,n)?若能,写出一个符合要求的抛物线的表达式和n的值;若不能,请说明理由.2.[2019·大兴期末]已知抛物线y=-x2+(5-m)x+6-m.(1)求证:该抛物线与x轴总有交点;(2)若该抛物线与x轴有一个交点的横坐标大于3且小于5,求m的取值范围;(3)设抛物线y=-x2+(5-m)x+6-m与y轴交于点M,若抛物线与x轴的一个交点关于直线y=-x 的对称点恰好是点M,求m的值.3.[2019·平谷期末]在平面直角坐标系xOy中,抛物线y=ax2+bx+3(a≠0)经过(1,0),且与y轴交于点C.(1)直接写出点C的坐标;(2)求a,b的数量关系;(3)点D(t,3)是抛物线y=ax2+bx+3上一点(点D不与点C重合).①当t=3时,求抛物线的表达式;②当3<CD<4时,求a的取值范围.4.[2019·石景山一模]在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.类型二抛物线与直线(线段)的公共点问题此类题目的最后一问是难点,通常已知抛物线与直线(线段)的公共点个数,求抛物线中参数的取值范围.此类问题通常需要根据所画的直线(或线段),结合抛物线大致形状(一般会分开口向上和向下两种情况),找到满足题意的每种临界情况(例如,抛物线分别经过线段的两个端点或与线段相切),解出每种临界情况下参数的值后,结合图象和参数的意义,最终确定参数的取值范围.例[2018·北京26题]在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx-3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.【分层分析】(1)根据直线解析式y=4x+4可求点B的坐标,根据平移的性质可求点C的坐标;【配练】[2019·丰台期末]在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(-1,0).(1)求抛物线的对称轴;(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围.1.[2019·平谷二模]已知:二次函数C1:y1=ax2+2ax+a-1(a≠0).(1)把二次函数C1的表达式化成y=a(x-h)2+b(a≠0)的形式,并写出顶点坐标;(2)已知二次函数C1的图象经过点A(-3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象与线段AB只有一个交点,求k的取值范围.2.[2019·朝阳二模]在平面直角坐标系xOy中,抛物线y=ax2-2a2x(a≠0)的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数y=-x+(-1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.3.[2019·顺义一模]在平面直角坐标系xOy中,抛物线y=mx2+(m-3)x-3(m>0)与x轴交于A,B 两点(点A在点B左侧),与y轴交于点C,AB=4,点D为抛物线的顶点.(1)求点A和顶点D的坐标;(2)将点D向左平移4个单位长度,得到点E,求直线BE的表达式;(3)若抛物线y=ax2-6与线段DE恰有一个公共点,结合函数图象,求a的取值范围4.[2019·东城二模]在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标.(2)将抛物线y=x2-2mx+m2-1沿直线y=-1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值.(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2-2mx+m2-1只有一个公共点时,直接写出k的取值范围.类型三抛物线与直线(线段)构成的封闭区域内的整点问题此类问题的最后一问通常已知抛物线与直线围成的封闭图形内的整点个数,求直线或抛物线中参数的取值范围.解决此类问题的关键有两个,一是分类讨论思想,往往直线的倾斜方向或抛物线的开口方向要分两种情况讨论,二是数形结合思想,要根据给定的整点个数,画出满足题意的图象,结合图象,列出不等式,从而求得参数的取值范围.例[2019·石景山期末]在平面直角坐标系xOy中,直线y=kx+b(k≠0)与抛物线y=ax2-4ax+3a的对称轴交于点A(m,-1),点A关于x轴的对称点恰为抛物线的顶点.(1)求抛物线的对称轴及a的值;(2)横、纵坐标都是整数的点叫做整点.记直线y=kx+b(k≠0)与抛物线围成的封闭区域(不含边界)为W.①当k=1时,直接写出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,求b的取值范围.【分层分析】(1)抛物线y=ax2-4ax+3a变形为顶点式求出对称轴x=2与顶点坐标(2,1),代入即可求a;【配练】[2019·门头沟二模]在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2-2ax-3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2-2ax-3a经过点(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2-2ax-3a在“G区域”内有4个整点,直接写出a的取值范围.1.[2019·通州期末]在平面直角坐标系xOy中,抛物线y=ax2-4ax+m(a≠0)与x轴的交点为A,B(点A在点B的左侧),且AB=2.(1)求抛物线的对称轴及m的值(用含字母a的代数式表示);(2)若抛物线y=ax2-4ax+m(a≠0)与y轴的交点在(0,-1)和(0,0)之间,求a的取值范围;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有5个整点,结合函数的图象,直接写出a的取值范围.2.[2019·丰台一模]在平面直角坐标系xOy中,抛物线y=ax2+bx+c过原点和点A(-2,0). (1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点B0,,记抛物线与直线AB围成的封闭区域(不含边界)为W.①当a=1时,求出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,直接写出a的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合题研究之代数综合题(课标版-原创)【专题导引】综合题考查内容包括①以方程、函数等有关知识解决数学问题;②以平行线、三角形、四边形、圆等有关知识解决数学问题;③在直角坐标系内,运用点的坐标、距离、函数、方程等代数知识,并结合所学的几何知识解决数学问题;④在几何图形中运用有关几何知识,并结合所学的代数知识解决数学问题.常用到的数学思想方法有:化归思想、分类思想、数形结合思想、代入法、待定系数法、配方法等.代数综合题【考点知晓】考查内容:代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题,主要包括方程、函数、不等式等内容,解代数综合题注意归纳整理代数中的基础知识,基本技能,基本方法,要注意各知识点之间的联系,注意数学思想方法、解题技巧的灵活运用、要抓住题意、化整为零、层层深入、各个击破,加强知识间的横向联系,从而达到解决问题的目的.考点评说:代数综合题历年来是中考试题中的重点题型,由于这类题型能较全面反映学生的综合能力并具有较好的区分度,因此是各地中考的热点题型.【考题漫步】例1(2006年安徽省)老师在黑板上写出三个算式:52一32= 8×2,92-72=8×4,152-32=8×27,王华接着又写了两个具有同样规律的算式:112 5 2=8×12,152-72=8×22,……(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律;(3 )证明这个规律的正确性.思路分析:通过观察、对比每个等式可知左边是两个奇数的平方差,右边是8与某个因数的乘积,同时左边的两个奇数不一定是连续的,所以不能用2n-1或2n+1表示,于是只有用两个不同的字母m,n来表示,并且要针对m,n的奇偶性讨论.解(1)如:152-112=8×13;172-152=8×8(2)规律:任意两个奇数的平方差等于8的倍数(3)证明:设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1)(a)当m,n同是奇数或偶数时,m-n一定为偶数,所以4(m-n)一定是8的倍数(b)当m、n为一奇一偶时,则m+n+1一定为偶数,所以4(m+n+1)一定是8的倍数.故任意两个奇数的平方差是8的倍数.重要提醒:本题虽然第一、第二个等式的左边均是两个连续奇数,但其它的等式左边却不是,因而在探索规律时,不能眼睛只盯住其中一个或两个甚至更多个的规律,应该是总揽全局,要观察、分析出每一个都具有的规律,同时本题证明时,应注意分类讨论的思想.触类旁通:(2006年浙江省)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的(取正数)平方差是神秘数吗?为什么?解:(1)是,如28=4×7=82-62;2012=4×503=5042-5022(2)是,(2k+2)2-(2k)2=4(2k+1)(3)不是.例2(2006·齐齐哈尔)某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于180万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.思路分析:“进货方案”实质上是指在甲、乙两种商品共20件的基础上分配进甲、乙各多少件?有几种分配方法?于是设购甲或乙任一种商品的件数为x,由总件数得出另一种商品的件数;由资金列出不等式组,即可求出件数x的取值范围,再求出利润与件数的函数关系式,再应用函数性质或代入验证求利润的最大值及设计方案.解:(1)设购进甲种商品x件,乙种商品(20-x)件则:190≤12x+8(20-x)≤200解得:7.5≤x≤10因为x非负整数,可得x取8,9,10故有三种进货方案:购甲种商品8件, 乙种商品12件购甲种商品9件, 乙种商品11件购甲种商品10件, 乙种商品10件(2) 甲商品每件利润为14.5-12=2.5万元乙商品每件利润为10-8=2万元方法一:利润W=2.5x+2(20-x)=0.5x+40∵W是x的一次函数,且x的系数0.5>0,故W随着x的增大而增大故当x为最大值10时,W有最大值为45方法二: (1)中三种方案的利润分别是44万元,44.5万元,45万元,故购甲种商品10件, 乙种商品10件时,可获最大利润45万元.(3)购甲种商品1件, 乙种商品4件时,可获得最大利润重要提醒:本题迁涉数量关系四个: 甲商品件数+乙商品件数=总件数,商品件数×进价=总价,售价-进价=每件商品的利润,每件商品的利润×商品件数=总利润;同时注意弄清哪些量是已知的,哪些量可用代数式表式,并且数据较多,防止混淆.触类旁通(2006年·贵阳市)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元;面包车每辆4万元;公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有哪几种?请说明理由.有三种方案:(2)如果每辆轿车的日租金为200元;每辆面包车的日租金为110元;假设新购买的这10辆车每日都可租出,要使这10辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案?解:(1)①轿车3辆,面包车7辆②轿车4辆,面包车6辆③轿车5辆,面包车5辆(2)选方案三例3 为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费).思路分析:若企业购买A型号的设备x台,则购买B型号的设备(10-x)台,根据表格给出的A、B两种型号设备的有关信息,即可求出企业购买设备的资金.解:(1)设购买污水处理设备A型x台,则B型(10-x)台.由题意知,12x+10(10-x) ≤105,解得x≤2.5.①x取非负整数,x可取0,1,2.①有三种购买方案:购A型0台,B型10台;购A型1台,B型9台;购A型2台,B型8台.(2)由题意,得240x+200(10-x)≥2040,解得x≥1.①x为1或2.当x=1时,购买资金为12×1+l0×9=102(万元);当x=2时,购买资金为12×2+ l0×8=104(万元).①为了节约资金,应选购A型1台,B型9台.(3)10年企业自己处理污水的总资金为102+10×10=202(万元).若将污水排到污水厂处理,10年所需费用2040×12×10×l0=2448000(元)=244.8(万元).244.8-202=42.8(万元),①能节约资金42.8万元.重要提醒:对于不同的购买方案,何种最优?最好的办法就是分类讨论.触类旁通:某企业为了适应市场经济的需要,决定进行人员结构调整,该企业现有生产性行业人员100人,平均每人全年创造产值a 元,现欲从中分流出x 人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a 元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业的全年总产值的一半,试确定分流后从事服务性行业的人数.解:设分流后从事服务性行业的人数为x 人,可创造产值3.5a 元,则企业生产性人员还有(100-x )人,可创产值(1+20%)a (100-x ).分流前共创产值100a 元,于是可列不等式组求解. 由题意,得⎪⎩⎪⎨⎧⨯≥≥+-.100215.3,100%)201)(100(a ax a a x 即⎩⎨⎧≥≥-.505.3,100)100(2.1x x 解得3507100≤≤x . ① x 为正整数,①x 的取值为15,16.答:从事服务性行业的人员为15人或16人.例4(2006年浙江绍兴市)某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.请结合图象,回答下列问题:(1) 根据图中信息,请你写出一个结论;(2) 问前15位同学接水结束共需要几分钟?(3) 小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.思路分析:(1)由平面直角坐标系的横轴(x 轴)表示接水的时间,纵轴(y 轴)表示锅炉内的余水量,容易得出图象中的三个点的坐标所表示的意义等.(2)前15位同学需接水15×2=30升,又由图象知接水分:开放两个水龙头和一个水龙头前后两个过程,且第一个过程96-80=16不够,因而还需在第二个过程中,故要求第二个过程的解析式;但此时知道剩余水y=96-15×2=66,即可求得x 的值;(3)小敏寝室8位同学去接水应分三种情况讨论,即:(一)全部在第一个过程,(二)有在第一个过程,又有在第二个过程,(三)全部在第二个过程.解:(1)锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升;接水4分钟后,,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2,设函数解析式为y=k 1x+b 1,把x=0,y=96,x=2,y=80代入得:⎩⎨⎧=+=80296111b k b 解得:⎩⎨⎧=-=96811b k ①y=-8x+96(0≤x≤2).当x>2时,设函数解析式为y=k 2x+b 2,把x=2,y=80和x=4,y=72代入得:⎩⎨⎧+=+=2222472280b k b k 解得⎩⎨⎧=-=88422b k ①y=-4x+88(x>2)因为前15位同学接完水时,余水量为96-15×2=66(升),所以66=-4x+88,x=5.5 答:前15位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水时,则接水时间断8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.①若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t 分钟开始接水.当0<t≤2时,则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,①t=1(分)①(2-t)+[ 3-(2-t)]=3(分)符合①当t>2时,则8×2÷4=4(分).即8位同学接完水需4分钟,与接水时间恰好3分钟不符.所以第2个 第1个 第3个 ……第4个 小敏的说法是可能的,即从1分钟开始8位同学连续接完水愉好用了3分钟.触类旁通:(2006年·湖州市)为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费为y 元,则y (元)和x (小时)之间的函数图像如图所示. (1)根据图像,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y 与x 之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?解:(1)如小强父母给小强每月的基本生自学成才费150元,又如小强每月家务劳动时间不超过20小时,每小时奖等(2)y=2.5x+150(3)32.5小时【轻松演练】1.(2006年·河北省) 观察下列的点陈图形和与之相对应的等式,探究其中的规律;(1)请你在①和①后面的横线上分别写出相应的等式①4×0+1=4×1-3①4×1+1=4×2-3①4×2+1=4×3-3①①(2)通过猜想:写出第n 个图形相对应的等式.解:(1)①4×3+1=4×4-3,①4×4+1=4×5-3(2)4×(n -1)+1=4n -32.(2006年·河南省)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠;设顾客预计累计购物x>x y (元)(小时)O 2030150200240元(x>300)(1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用.(2)试比较顾客到哪家超市购物更优惠?说明你的理由解:①y 甲=300+0.8(x -300)=0.8x+60 y 乙=200+0.85(x -200)=0.85x+30①当x=600时,两家一样;当x>600时, 甲更优惠;当300<x<600时, 乙更优惠.3.由于电力紧张,某地决定对工厂实行鼓励错峰用电,规定:在每天的7:00至24:00为用电高峰期,电价为a 元/度,每天0:00至7:00为用电平稳期,电价为b 元/度,下表为某厂4、5月份的用电量和电费情况统计表:(1)若4月份在平稳期用电量占当月用电量的31,5月份在平稳期的用电量占当用用电量的41,求a,b 的值; (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围.解:(1)a=0.6; b=0.4(2)设比例为k,则10<20(1-k)×0.6+20k×0.4<10.6解得:0.35<k<0.54.东方专卖店专销某种品牌的计算器,进价为12元/个,售价为20元/个,为了促销,专卖店决定:凡是买10个以上的,每多买一个,售价就降低0.10元(例如,某人买20个计算器,于是每个降价0.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.(1)求顾客一次至少买多少个,才能以最低价购买?(2)写出当一次购买x(x>10)个时,利润y(元)与购买量x(个)之间的函数关系式;(3)有一天,一位顾客买了46个,另一位顾客买了50个,专卖店发现卖了50个反而比卖46个赚的钱少,为了使每次卖得多赚钱也多,在其他促销条件不变的情况下,最低价16元/个至少要提高到多少?为什么?解:(1)50个(2)当10<x≤50时,y=[20-0.1(x-10)-12]x=-0.1x2+9x当x>50时,y=(16-12)x=4x(3)利润y=-0.1x2+9x=-0.1(x-45)2+202.5 故x=45时最低售价为20-0.1(45-10)=16.5元。