最新人教版五年级数学下册长方体和正方体知识点

合集下载

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

人教版五年级数学下册同步重难点知识点第三单元长方体和正方体的体积温馨提示:图片放大更清晰!1.掌握长方体、正方体的特征,认识各个部分的名称。

2.掌握长方体和正方体的表面积的计算方法。

3.理解体积的概念,掌握体积单位及体积单位之间的进率,能正确进行单位的换算。

4.掌握长方体和正方体体积的计算方法。

5.掌握容积的意义、容积单位间的进率及容积单位与体积单位的换算。

6.会计算不规则物体的体积。

重点:1.长方体、正方体的特征。

2.长方体、正方体表面积和体积的计算方法。

难点:用公式解决生活中的实际问题。

知识点一:认识长方体长方体是由六个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。

一个长方体有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。

知识点二:认识正方体正方体是(也叫立方体)是由六个完全相同的正方形围成的立体图形。

一个正方体有6个面,每个面完全相同;有12条棱,每条棱长度相等;有8个顶点。

知识点三:长方体、正方体的展开图长方体和正方体的展开图都有多种。

利用长方体和正方体的展开图可以探究各个面之间的关系。

知识点四:长方体、正方体表面积的计算长方体或正方体6个面的总面积,叫做它的表面积。

长方体的表面积:(长×宽+长×高+宽×高)×2正方体的表面积:棱长×棱长×6知识点五:体积和体积单位物体所占空间的大小叫做物体的体积。

计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm³、dm³和m³。

知识点六:长方体、正方体体积公式的推导长方体的体积=长×宽×高 V = abh正方体的体积=棱长×棱长×棱长 V = a3知识点七:长方体、正方体体积公式的应用长方体或正方体底面的面积叫底面积。

长方体或正方体的体积=底面积×高V = Sh知识点八:体积单位间的进率1dm³=1000cm ³ 1m³=1000dm³高级单位转换成为低级单位,用乘法进率,小数点向右移;低级单位转化成高级单位,用除法进率,小数点向左移。

第三单元:长方体和正方体(单元复习课件)-人教版五年级数学下册

第三单元:长方体和正方体(单元复习课件)-人教版五年级数学下册
(1)一个长方体至少有4个面是长方形。(√ )
(1)一个长方体有6个面,一般情况下六个面都是长方形。 特殊情况时有两个面是正方形,其他四个面都是长方形,并且 这四个面完全相同。原题说法正确。
【例1】辨一辨。 (对的画“√”,错的画“×”) (2)把一个长方体截成两个小长方体后,截面不可能 是正方形。( × )
正方体的棱长=棱长总和÷12
正方体的体积=棱长×棱长×棱长
42÷12=3.5(厘米)
3.5×3.5×3.5
正方体的表面积=棱长×棱长×6 =12.25×3.5
3.5×3.5×6
=42.875(立方厘米)
=12.25×6
=73.5(平方厘米)
【例19】将一个棱长是10cm的正方体 石块放入右图的长方体鱼缸中,石9cm 块 完全浸入水中。此时水面高多少厘米?
【例12】要制作一个长5分米,宽4分米,高3分米的无盖
玻璃鱼缸,需要( 74 )平方分米的玻璃。
玻璃鱼缸的表面积=(15+20+12)×2-20
=94-20 =74(平方分米)
3分米 4分米 5分米
正方体的表面积
【例13】已知一个正方体的所有棱长之和是60分米,则它的表 面积是( 150 )平方分米。
3、如果把一个长方体的长、宽、高分别扩大到原来的3 倍,那么这个长方体的体积扩大到原来的( C )倍。 A、3 B、9 C、27
(2)如果一个长方体有两个面是正 方形,其他四个面都是长方形。这 样的长方体截成两个小长方体,截 面就是正方形,所以原题说法错误。
【例1】辨一辨。 (对的画“√”,错的画“×”) (3)有6个面、12条棱、8个顶点的立体图形都是长方 体。( × )
(3)有6个面、12条棱、8个顶点 的立体图形不都是长方体,也可能 是其他立体图形,如棱台,所以原 题说法错误。

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单一、长方体和正方体的定义及特征长方体:有6个面的立体图形,每个面都是长方形,任意两个相邻面都是全等的,相对的面是平行的。

正方体:是一种特殊的长方体,所有的面都是正方形。

二、长方体和正方体的面、棱和顶点1. 面:长方体有6个面,分别是底面、顶面和4个侧面。

正方体同样有6个面,每个面都是正方形。

2. 棱:长方体有12条棱,正方体有12条棱。

3. 顶点:长方体有8个顶点,正方体也有8个顶点。

三、长方体和正方体的名字长方体和正方体的命名按底部的形状来命名,如下所示:1. 底面为长方形的长方体,我们称为长方体;2. 底面为正方形的长方体,我们称为正方体。

四、长方体和正方体的面积和体积1. 面积:长方体的面积计算公式:面积 = 底面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 = 2ab + 2bc + 2ac(其中a、b、c分别为长方体的长、宽、高)正方体的面积计算公式:面积 = 正方形的边长 ×正方形的边长 ×6 = a × a × 6(其中a为正方体的边长)2. 体积:长方体的体积计算公式:体积 = 底面积 ×高 = 底面积 × c(其中c 为长方体的高)正方体的体积计算公式:体积 = 正方形的边长 ×正方形的边长 ×正方形的边长 = a × a × a(其中a为正方体的边长)五、长方体和正方体的应用及实例长方体和正方体在日常生活中有许多应用,比如:1. 盒子和容器:我们常见的纸箱、塑料盒子、储物箱等都是长方体或正方体的形状,它们能够容纳各种物品。

2. 建筑:很多建筑物的砖块、砖石等都是长方体形状的,如砖墙、柱子等建筑结构。

3. 学习用具:书包、文具盒等也常常是长方体或正方体的形状。

举例:1. 如果一座长方体的长、宽、高分别为3厘米、4厘米、5厘米,则该长方体的面积为36平方厘米,体积为60立方厘米。

最新人教五年级下册三单元长方体和正方体

最新人教五年级下册三单元长方体和正方体
立方米 立方分米 立方厘米
重点题型
运用转化法解决复合体积单位的换算问题
例1:填空
2m³300dm³=( )dm³ 8.25dm³=( )dm³( )cm³
运用图示法解决立体图形的拼割问题
例2:一个长方体木块,长1.2dm,宽9cm,高7cm。将它锯成棱长为0.3dm的正方体小木块,最多可以锯成多少块?
巩固练习
将棱长是6dm的正方体铁块浸没到一个长方体水槽中,水面上升了3dm.再放入一个不规则石块(石块完全浸没在水中),水面又上升了2dm(水没有溢出),求不规则石块的体积。
知识点三:长方体的长、宽、高
知识点:相交于一个顶点的三条棱的长度分别叫作长方体的长、宽、高。长方体的12条棱中有4条长、4条宽和4条高。长方体的棱长总和=(长+宽+高)×4
(注意:对于同一个长方体,摆放方式不同,长、宽、高也就不同)
知识点四:正方体的特征
知识点:正方体是由6个完全相同的正方形围成的立体图形。一个正方体由6个面、8个顶点、12条棱,所有的棱长度相等。正方体的棱长总和=棱长×12
重点题型
运用转化法解决水面升高问题
例1:有一个长方体容器,从里面量长5dm,宽4dm,高6dm,里面注有水,水深3dm,把一块棱长为2dm的正方体铁块浸入水中,水面上升了多少分米?
求不规则物体体积的实际运用
例2:一个长方体鱼缸,从里面量,长是25cm,宽是12cm,高是36cm.小雨放入10条金鱼后,水面高度从20cm上升到33cm.这10条鱼的总体积是多少立方厘米?
练习巩固
某小学五年级学生用棱长4cm的正方体积木在宣传栏旁边搭起了一面积木墙,这面墙长8m、宽12cm、高2m,这面墙一共用了多少块积木?
3.3.3容积和容积单位

XX五年级数学下册第三单元知识点总结(新人教版)

XX五年级数学下册第三单元知识点总结(新人教版)

XX五年级数学下册第三单元知识点总结(新人教版)第一篇:XX五年级数学下册第三单元知识点总结(新人教版) XX五年级数学下册第三单元知识点总结(新人教版)课件 第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点不同点面棱长方体都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等正方体6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

五年级数学下册《长方体正方体体积》知识点及重点习题

五年级数学下册《长方体正方体体积》知识点及重点习题

五年级数学下册《长方体正方体体积》知识点及重点习题【知识点】1.体积:在这里,我们把一个物体(如土豆)所占空间的大小,叫做这个物体的体积。

2.棱长为1厘米的正方体的体积为1立方厘米。

通常用cm³表示立方厘米。

棱长为1分米的正方体的体积是1立方分米。

通常用dm³表示立方分米。

棱长为1米的正方体的体积是1立方米。

通常用m³表示立方米。

3.相邻两个体积单位的进率是1000。

4.容积:箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米;1毫升=1立方厘米;1升=1000毫升长方体和正方体的体积计算1.长方体的体积=长×宽×高, V=a×b×c;长=体积÷宽÷高,a=V÷b÷h ;宽=体积÷长÷高,b=V÷a÷h。

2.正方体体积=棱长×棱长×棱长;V=a×a×a=a³。

3.长(正)方体的体积=底面积×高,V=S(a×b)×h高=体积÷底面积 ,h=V÷S(a×b)4.计算某样东西的体积时,可以直接用体积公式,也可以先算出底面的面积,然后乘高。

【练习题及答案】1.一个长方体,它的长是2米,宽和高都是0.6米。

它的体积是(0.72)立方米。

2.一块正方体石料,棱长为0.6米。

这块石料的体积是(0.216)立方米。

3.一个长方体的饼干盒,长10cm,宽6cm,高12cm,如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有多少平方厘米?(10×12+6×12)×2=384(平方厘米)答:这张商标纸的面积至少有384平方厘米。

4.一个长方体的无盖水族箱,长是6m,宽是60cm,高是1.5m,这个水族箱占地面积多大?需要用多少平方米的玻璃?它的体积是多少?60厘米=0.6米 6×0.6=3.6(平方米)6×0.6+6×1.5×2+0.6×1.5×2=23.4(平方米)0.6×6×1.5=5.4(立方米)答:这个水族箱占地面积是3.6平方米,需要用23.4平方米的玻璃,它的体积是5.4立方米。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

小学五年级数学下册第三单元--长方体与正方体

小学五年级数学下册第三单元--长方体与正方体

第三单元长方体和正方体【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷121.长方体与正方体都有( )个面,( )个顶点和( )条棱,正方体是( )的长方体。

二、判断。

(对的画√,错的画×)1.在一个长方体中,最多有8条棱完全相等、6个面完全相同。

( ) 4.用棱长是1 cm的小正方体拼成一个大正方体,至少要6个小正方体。

( )4. 在一个长方体中,从一个顶点出发的三条棱的和是7.5分米,这个长方体的棱长总和是30分米.( )3. 长方体的12条棱中,平行的4条棱都相等.()1.用一根长36 cm的铁丝围成一个正方体框架,正方体框架的棱长是( )cm。

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳

人教版五年级数学下册长方体和正方体知识点归纳长方体和正方体是五年级数学下册的重要内容之一。

它们是立体几何中常见的几何体形状,具有特定的性质和特征。

本文将对人教版五年级数学下册关于长方体和正方体的知识点进行归纳。

一、长方体的定义和特征长方体是一种具有六个矩形面的立体几何体,其中相对的面两两平行且面积相等。

它的特征包括:1. 六个面都是矩形,相对的面两两平行且面积相等;2. 每个面的边长两两相等;3. 所有的顶点都是直角。

二、长方体的性质和运算长方体具有以下性质和运算:1. 面的个数:长方体有6个面;2. 顶点的个数:长方体有8个顶点;3. 边的个数:长方体有12条边;4. 表面积:长方体的表面积等于所有面的面积之和,可通过计算每个面的长乘以宽再乘以2,然后将六个面的面积相加得到;5. 体积:长方体的体积等于底面的面积乘以高,可通过计算底面的长乘以宽再乘以高得到。

三、正方体的定义和特征正方体是一种具有六个正方形面的立体几何体,每条边的长度相等。

它的特征包括:1. 六个面都是正方形,每个面的边长相等;2. 相邻面之间的夹角都是直角。

四、正方体的性质和运算正方体具有以下性质和运算:1. 面的个数:正方体有6个面;2. 顶点的个数:正方体有8个顶点;3. 边的个数:正方体有12条边;4. 表面积:正方体的表面积等于所有面的面积之和,可以通过计算一个面的边长的平方再乘以6得到;5. 体积:正方体的体积等于底面的边长的立方,可通过计算边长的立方得到。

五、长方体和正方体的应用长方体和正方体在生活和实际问题中有广泛的应用,例如:1. 房间的体积:我们可以将房间看作一个长方体,通过测量长度、宽度和高度,计算房间的体积,从而确定房间的空间大小;2. 体育器材:篮球、足球、乒乓球等体育器材往往具有正方体或长方体的形状,了解它们的形状特征和性质,有助于更好地认识和使用它们;3. 包装箱的运输:考虑到方便和安全,一些物品在运输过程中会被装在长方体或正方体的包装箱中,了解包装箱的体积和表面积有助于合理选择箱子和运输方式。

人教版五年级数学下册 长方体和正方体 知识点归纳

人教版五年级数学下册 长方体和正方体 知识点归纳

《长方体和正方体》知识点归纳知识点一、长方体的特征1、长方体由6个面围成,相对的面互相平行且形状大小相同。

通常这些面的形状都是长方形,特殊情况下可有2个相对的面是正方形。

2、长方体有8个顶点。

3、长方体两个面相交的边叫做这个长方体的棱,共有12条棱,且每条棱长都相等。

相邻的三条棱互相垂直。

相对的两条棱互相平行。

4、相交于一个顶点的三条棱分别叫做这个长方体的长、宽、高。

底面中较长的一条棱是长,较短的一条棱是宽,垂直于底面的棱是高。

长方体有4条长、4条宽、4条高。

知识点二、正方体的特征1、正方体由6个面围成,每个面的形状大小都相同,且形状都是正方形,其中相对的两个面互相平行。

2、正方体有8个顶点。

3、正方体两个面相交的边叫做这个正方体的棱,共12条棱,且每条棱长都相等。

相邻的三条棱互相垂直。

相对的两条棱互相平行。

4、正方体可以视为长、宽、高都相等的长方体。

因此正方体是特殊的长方体。

5、从某一点观察,能够呈现几何体整体形状的绘图叫做直观图,其中看见不见的边要用虚线表示。

这里长方体和正方体的图都是直观图。

知识点三、长方体和正方体的相关计算1、物体外部各个面的面积之和叫做物体的表面积。

2、物体所占空间的大小叫做物体的体积。

3、表面积和面积的单位是一样的,常用的有:平方厘米、平方分米、平方米,分别写作cm2、dm2、m2。

4、常用体积单位有:立方厘米、立方分米、立方米,分别可以写作cm3、dm3、m3。

5、单位换算:①1m=10dm,1dm=10cm 。

(进率是10)②1m2=100dm2 ,1dm2=100cm2。

(进率是100)③1m3=1000dm3,1dm3=1000cm3。

(进率是1000)6、大单位转化为小单位,要乘以进率。

小单位转化为大单位,要除以进率。

7、长方体和正方体的表面积公式:温馨提示:计算表面积的时候,要注意物体是否有6个面。

例如游泳池、鱼缸等物体并不是完整长方体,它们只有5个面,我们算出长方体的表面积后,还要减去那1个缺少的面。

小学五年级数学的长方体和正方体知识点

小学五年级数学的长方体和正方体知识点

一、长方体1.定义:长方体是一个具有6个面的多面体,每个面都是一个长方形,相邻两个面都通过四条边相连,边长相等且不相交。

2.面、边和顶点:长方体由6个面、12条边和8个顶点组成。

3.命名:长方体的三个相对的面叫做底面和顶面,底面和顶面之间的四个面叫做侧面。

长方体的相对的两条边叫做长度,另外两条边叫做宽度,底面和顶面之间的两条边叫做高度。

4.性质:(1)对角线:长方体的对角线可以通过顶点连接得到,长度等于立方体的空间对角线长度。

(2)面积:长方体的表面积是所有六个面的面积之和。

(3)体积:长方体的体积等于底面的面积乘以高度。

(4)对称性:长方体在一些对称面两侧的面积和体积相等。

(5)剖分:长方体可以通过平行于底面的切割面成为若干个小的长方体。

二、正方体1.定义:正方体是一种特殊的长方体,所有的面都是正方形,相邻两个面通过边相连,边长相等且不相交。

2.面、边和顶点:正方体由6个面、12条边和8个顶点组成。

3.命名:正方体的相对的两个面叫做底面和顶面,底面和顶面之间的四个面叫做侧面。

正方体的相对的两条边叫做边长。

4.性质:(1)对角线:正方体的对角线可以通过顶点连接得到,长度等于正方体的空间对角线长度。

(2)面积:正方体的表面积是所有六个面的面积之和。

(3)体积:正方体的体积等于底面的面积乘以高度。

(4)对称性:正方体在一些对称面两侧的面积和体积相等。

(5)剖分:正方体可以通过平行于底面的切割面成为若干个小的长方体。

三、解题方法和技巧1.长方体和正方体的边长、面积和体积之间的关系:(1)对于长方体:若已知两个边长,可以通过求解第三个边长得到体积;若已知一条边长和体积,可以通过求解其他两条边长得到面积。

(2)对于正方体:所有的边长相等,可以通过已知的边长计算面积和体积。

2.利用图形特点解题:学生可以根据长方体和正方体的特点,如对称性、剖分等,寻找规律和解题方法。

例如,可以通过剖分正方体,将正方体切割成较简单的几何图形,计算出各部分的面积和体积之后再求和。

最新人教版数学五年级下册第三单元长方体和正方体《长方体和正方体的认识》优质课件

最新人教版数学五年级下册第三单元长方体和正方体《长方体和正方体的认识》优质课件
7
探索新知
1.观察你手中的长方体模型,并且用手摸一摸,看有什么发现? 2.根据你的发现完成课本19页上面的表格。 3.把你的发现说给同组的同学听一听。
8
探索新知

顶点:棱和棱的 交点
棱:面与面相 交的线段
提示: 面面相交即成棱,棱棱相交即成点。
9
探索新知
(1)长方体有__6__个面。
(2)每个面是什么形状的? 每个面是长方形(特 殊情况有两个相对的面是正方形)。
长方体,用图来表示是:
(长方体 ) (正方体 )
26
小试牛刀
5.判断。
(1)有两个面是完全一样的正方形的长方体,一定是正方体。 ( × )
(2)从正方体的一个顶点引出的三条棱,它们的长度一定相等。 ( √ )
(3)长方体是特殊的正方体。
(× )
(4)有四个面是完全一样的正方形的长方体,一定是正方体。 ( √ )
(3)哪些面是完全相同的? 相对的面完全相同。
(4)长方体有_1_2__条棱。
(5)哪些棱长度相等? 相对的棱长度相等。
(6)长方体有__8__个顶点。
10
探索新知
长方体一般是由6个长方形(特殊情况有两个相对 的面是正方形)围成的立体图形。 在一个长方体中,相对的面完全相同,相对的棱长度相等。
11
6个完全相同的正方形
12条棱的长度 都相等
17
探索新知
正方体可以看成是长、宽、高都相等的长方体。我们可以用 下图来表示长方体和正方体的关系。
长方体
长方体
正方体 长=宽=高
正方体
正方体是特殊的长方体。
18
典题精讲
1.剪下本书附页中上面的图样,按要求做。

人教版五年级下册数学第三单元知识点易错点汇总(配练习)

人教版五年级下册数学第三单元知识点易错点汇总(配练习)

人教版五年级下册数学第三单元知识点、易错点汇总(1)一、长方体和正方体的认识【知识点1】要素立体图形棱面顶点数量特征数量特征数量特征长方体互相平行的棱长度相对的面同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体垂直于正方形面的棱长度个面是正方形,其余四个面是完全相同的正方体所有的棱长度都所有面都是正方形且完全相同一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!把长方体放在桌面上,最多可以看到()个面。

最少可以看到()个面。

【知识点2】棱长和(1)有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。

(2)一个长方体的礼堂如图,过节时需要在四周装上成串的彩灯,每串彩灯长2m,一共需要多少串彩灯?【知识点3】小正方体拼大正方体的规律由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……练习:(1)两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是()平方厘米。

(2)用棱长为1厘米的小正方体拼一个棱长为6厘米的大正方体需要()个小正方体。

(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要()个小正方体。

A、4个B、8个C、16个D、27个(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。

【新】五年级下册数学 人教版 长方体和正方体的表面积(知识点+试题)

【新】五年级下册数学 人教版 长方体和正方体的表面积(知识点+试题)

长方体和正方体二、内容讲解:知识点一:长方体和正方体的特征(1)长方体:由6个长方形围成的立体图形。

(2)正方体:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

它是一种特殊的长方体。

(3)两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

特征:①有几个面?面的位置和大小有什么关系?②有多少条棱?棱的位置、长短有什么关系?③有多少个顶点?例一:1、(a)图是()体,它的6个面是()形。

(b)图是()体,它的6个面是()形。

2、长方体有()个面,()条棱,()个顶点。

相对的棱的长度(),相对的面完全()。

3、正方体所有的面都(),()条棱都()。

4、长、宽、高相等的长方体叫做()。

知识点二:长方体、正方体棱长的计算(1)各棱长之间的关系及棱长的计算方法长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例二:1、一个长方体的长8厘米,宽7厘米,高6厘米,棱长和是多少厘米?2、如果用一根长72厘米的铁丝做一个宽4厘米,高6厘米的长方体框架,长是多少厘米?知识点三:长方体、正方体的表面积表面积:长方体或正方体6个面的总面积,叫做它的表面积已知长、宽、高,求面积S=(ɑb+bc+ɑc)×2长方体的表面积= ( 长×宽+ 长×高+ 宽×高) × 2正方体的表面积=(长×宽)×6例三:1、一个长方体油箱,从里面量长是70厘米,宽是30厘米,高是85厘米,如果每升汽油重约0. 73千克,这个油箱最多能装多重的汽油?(一)已知棱长和求面积长方体棱长和=(长+宽+高)×4正方体棱长和=棱长×12例四:1、一个正方体框架是用一根长48分米的铁丝焊接成的,如果给这个正方体粘上一层塑料,至少需要多少平方分米的塑料?(二)已知长、宽、高的关系求面积例五:1、已知一个长方体的长是20分米,这个长方体的宽是长的4/5,高是宽的一半,求这个长方体的面积?2、一个长方体房间,长8米,宽比长短1/4,高比宽短1/3,这个房间的表面积是多少?(三)已知棱长和,求转换后图形面积例六:1、一根铁丝可以围成一个长6分米、宽4.5分米、高2.5分米长方体框架,现在想将其围成一个正方体,这个正方体的表面积是多少?(四)求面不全的长方体(正方体)表面积柱子:求四个面的面积,不算上下两面(长×宽)鱼缸:正面是玻璃,1、求其他五个面的面积,不算正面(长×高)2、前面的玻璃坏了,若求配上的玻璃面积,则只求正面的面积。

【新】五年级下册数学 人教版 长方体与正方体的体积复习(知识点+练习题)1

【新】五年级下册数学 人教版 长方体与正方体的体积复习(知识点+练习题)1

长方体与正方体的体积错题回顾:1、有两根钢丝,长度分别是12米、18米,现在要把它们截成长度相同的小段,但每一根都不许剩余,每小段最长是多少米?一共可以截成多少段?2、有两根分别长20和16米的方木.要把它们都锯成同样长的木段做家私用不许有剩余,每根木段最长能有多长?一共可以锯成多少段?一、教学内容:知识点①:体积与容积单位换算1.箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

※举例:一个汽车油箱约能容纳40L油,即它的容积为40L。

2.计量容积,一般就用体积单位。

计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。

※举例:一个烧杯约能装水500ml。

3.容积单位间及容积单位和体积单位间的进率:1L=1000ml 1L=1dm3 1ml=1cm3※举例:520ml=0.52L 5.67L=5.67 dm3=5670cm34.形状不规则的物体可以用排水法求得它们的体积。

※举例:一个烧杯中原有水200毫升,放入西红柿后水位上升至350毫升处,则西红柿的体积就是水面上升的那部分水的体积:350-200=150(ml)=150(cm3知识点②:长方体体积【讲透错题】:1、有一个长10分米,宽8分米,高5分米的容器,如果装水120升,那么水的高度是多少?2、一个长方体的木块,截成两个完全相等的正方体。

两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少3、将一根3米长的长方体木料锯成相同的两段后,表面积增加了96平方分米,这根木料原来的体积是多少立方分米?4、一段长方体木材,长1米,如果锯断2厘米,它的体积就减少20立方厘米,这段木材原来的体积是多少立方厘米?5、一个长方体的底面是边长为4厘米的正方形,它的表面积是128平方厘米,它的体积是多少立方厘米?6、一个长方体容器,长20厘米,宽15厘米,高10厘米。

容器内装满水后,将一块铁块放入容器中,有部分水溢出,再将铁块取出,这时容器中的水面高是6厘米,这块铁块的体积有多大?7、有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章长方体和正方体
一、长方体和正方体的认识
1、长方体的特征:由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。

一个长方体有6个面、12条棱和8个顶点。

相对的面完全相同,相对的棱长度相等
2、长方体的长、宽、高:相交于同一顶点的三条棱的长度
3、正方体的特征:由6个完全相同的正方形围成的立体图形。

正方体有6个面、12条棱和8个顶点,6个面完全相同,12条棱长度相等
4、长方体和正方体的关系:正方体是特殊的长方体
二、长方体和正方体的表面积
1、长方体或正方体6个面的总面积,叫做它的表面积
2、长方体表面积S=(ab+ah+bh)×2
3、正方体表面积S=6a²
三、长方体和正方体的体积
1、体积:物体所占空间的大小
2、常用体积单位:cm
3、dm3、m3
3、长方体体积V=abh
4、正方体体积V=a3
5、长方体(正方体)V=Sh
6、1m3=1000dm3=1000000cm3
7、容积:容器等所能容纳物体的体积。

单位:L、mL
8、容积计算方法
①规则容器容积与体积计算方法相同,但要从里面测量数据
②不规则较小容器用量杯或量筒测量容器所能容纳液体体积
③不规则较大容器借助于液体转化成求规则容器
9、1L=1dm3=1000mL=1000cm3
10、求形状不规则物体的体积可用排水法
面试题目的范围很广,几乎涉及到了每个IT技术领域,而且每部分的题在我看来都有点偏,没有一定的深度是很难回答清楚的。

一共有20页,2个小时完成。

大概分了9个部分,具体的记不得了
1、基本知识
a) 经常使用的搜索引擎(至少三个)。

百度、google、sohu等等
b) 经常访问的国内外网络安全方面的网站和URL(至少四个)。

2、名词解释
全是关于网络攻击方面的术语解释,具体有DDoS、Worm、IP Spoof、SYN Flood、Brute Attack、Social
Engineering、Honeybot、ShellCode 等差不多十个。

3、系统知识
1) Windows方面
a) NT最新SP版本、Windows 2000最新SP版本
b) Windows用的组策略编辑器是哪个
c) 使用IIS应如何进行相应的安全设置。

2)UNIX/Linux方面
有关于Unix、Linux、Sun、FreeBSD这几个操作系统方面的问题,因为我都没做,题目不少,但记得的不多。

a) 关于sendmail方面的问题(具体不记得了)。

b) 修改文件的宿主、组和其他用户的读写权限,两种方法。

c) 如何禁用linux的root用户登陆FTP。

4、网络方面
a) A、B、C三类的私有IP地址范围。

b) Cisco中line配置的远程登陆密码是明文显示的,哪条命令可以使其显示为暗文。

c) 配置出口的ICMP的ping数据包不大于256k的命令列表。

d) ACL列表number分别支持的协议:1~99、100~199、200~299、300~399、400~499、500~599、600~699、700~799、800~899、900~999、1000~1999。

(简直要吐血,估计是CCIE出的题)。

5、安全方面
a) 防火墙的常用三种技术
b) 使用Linux的安全风险有哪些
c) 国内外的不同linux产品(各列举3个)
d) 139端口和445端口的区别是什么?
e) 主流的防病毒厂商和产品(国内、外各列举3个)
f) 使用过的主流漏扫产品,其优缺点有哪些?
g) 主流的防火墙厂商和产品品牌(国内、外各列举3个)
h) 使用select 查询语句的不安全之处在哪
6、能力测试
1)拓扑设计,具体网络概述如下:
a) 路由器接入Internet网
b) 外部Mail服务器提供邮件服务。

c) 核心交换机上划分财务、人事、业务、办公和内部服务器5个VLAN,下挂接入交换机
d) 内部有www服务器,另有独立的MSSQL服务器和OA服务器。

相关文档
最新文档