中考数学压轴题破解策略专题中点模型

合集下载

中考数学中点四大模型专题知识解读

中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。

【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。

中考数学复习几何模型专题讲解4---中点模型(解析版)

中考数学复习几何模型专题讲解4---中点模型(解析版)

中考数学复习几何模型专题讲解专题4 4 中点模型中点模型名师点睛中点模型,提到中点,我们需要想到关于中点的以下知识点:①三角形中线平分三角形面积,等分点等分面积;②等腰三角形“三线合一”的性质;③直角三角形斜边上的中线等于斜边的一半;④三角形中位线平行且等于第三边的一半. 这四点使我们已经深入学习过的有关中点运用的知识点,今天重点在结合四点的基础上探究另外一种中点模型,我们简称“平中对模型”,即“平行线+中点+对顶角”构造全等或相似模型,与倍长中线法相通。

A B C D E A B C DEFE D C B A典题探究例题1. 如图,在△ABC 的两边AB 、AC 向形外作正方形ABDE 和ACFG ,取BE 、BC 、CG 的中点M 、Q 、N .求证:MQ =QN .【解答】证明:连接BG 和CE 交于O ,∵四边形ABDE和四边形ACFG是正方形,∴AB=AE,AC=AG,∠EAB=∠GAC,∴∠EAB+∠EAG=∠GAC+∠EAG,∴∠GAB=∠EAC,在△BAG和△EAC中,,∴△BAG≌△EAC(SAS),∴BG=CE.∵BE、BC、CG的中点M、Q、N,∴MQ=CE,QN=BG,∵BG=CE,∴QN=MQ.变式练习>>>>变式练习1. 如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.【解答】证明:连接MB、MD,设FM与AC交于点P,∵B、D、M分别是AC、CE、AE的中点,四边形BCGF和四边形CDHN都是正方形,∴MD∥AC,且MD=AC=BC=BF;。

中考数学专题复习圆压轴八大模型题-弧中点的运用

中考数学专题复习圆压轴八大模型题-弧中点的运用

圆压轴题八大模型题(一)市七中佳彼学校易建洪引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中老题中的倒数第二题的位責上,是试卷中综合性与难度都比较大的习题。

一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。

把握了这些方法与技巧,就能台阶性地帮助考生解决问题。

类型1弧中点的运用在OO中,点O是处的中点,CE1AB于点£(1)在图】中,你会发现这些结论吗?CP= FP\② CH= AD\©AC^ = AP- AD=CF・ CB=AE・ SB.(2)在图2中,你能找出所有与相似的三角形吗?【分析】(1)①由等弧所对的圆周角相等及同角或等角的余角相等得:ZCAD= LAC巳/_ PCF= Z 所以AP= CP= FP.(1)②由垂径定理和弧中点的性质得,DC= AC= AH, 再由弧脅加得:CH^AD^X CH= AD.⑴③由共边角相似易证:\ACEs、ABC4ACPs“ADC4ACFs、BCA送而得AC1 =AE AB^ACr^APAaACr^CF CB:(2)垂径定理的推论得:CO丄SD易证:RtA/45C<^RtA C55^>RtA BD2 RtAZCG^RtACG^此外还有RtA/4^£^RtAZOG^RtA^5D^RtAC^G.运用这些相似三角形可以解决相关的计算与证明题.建议:将下列所有例题与习题转化到图】或图2上观察、比较、思考和总结。

【典例】(2018 •永州)如图,线段处为OO的直径,点C F在OO上,BC=CE, CQ丄S3,垂足为点O连接BE、弦3F与线段CQ相交于点F.(1)求证:CF= BF\⑵若COSZ/I5F=A,在S3的延长线上取一点M使购=4, OO的半径为6.求证:5・・ •专业【分析】(1)延长OQ 与圆相交,由垂径定理得到缸 =BG,再由BC=CE^到五=血=无,等弧所对的 角相等,等角对等边。

2024中考数学核心几何模型重点突破专题01 线段的中点模型(含解析)

2024中考数学核心几何模型重点突破专题01 线段的中点模型(含解析)

2024中考数学核心几何模型重点突破专题01线段的中点模型模型分析【理论基础】如图,已知点M 是线段AB 的中点⇒AB BM AM 21==【模型变式1】双中点求和型如图已知点M 是线段AB 上任意一点,点C 是AM 的中点,点D 是BM 的中点⇒AB CD 21=【证明】点C 是AM 的中点,点D 是BM 的中点MB MD AM CM 21,21==∴MD CM CD +=AB MB AM CD 212121=+=∴AB CD 21=∴【模型变式2】双中点求差型如图点M 是线段AB 延长线上任意一点,点C 是线段AM 的中点,点D 是线段BM 的中点⇒AB CD 21=【证明】点C 是线段AM 的中点,点D 是线段BM 的中点MB MD AM CM 21,21==∴MDCM CD -=)(212121MB AM MB AM CD -=-=∴AB CD 21=∴【模型总结】两中点之间的线段,等于原线段的一半。

典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cm B .3cm C .7cm 或3cm D .5cm【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或32.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC =B .AC BC AB +=C .2AB AC =D .12BC AB =3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为()A .6cmB .7cmC .8cmD .9cm4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为()A .10B .12C .16D .18二、填空题5.如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =8cm ,则CD =___cm .6.在直线上取A ,B ,C 三点,使得AB =9cm ,BC =4cm ,如果O 是线段AC 的中点,则线段OA 的长为_____.7.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .8.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C ,D 是线段AB 上的两个点,点M 、N 分别为AC 、BD 的中点(1)若AB =16cm ,CD =6cm ,求AC +BD 的长和M ,N 的距离;(2)如果AB =m ,CD =n ,用含m ,n 的式子表示MN 的长10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.参考答案与详细解析典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cmB .3cmC .7cm 或3cmD .5cm【答案】D【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【解析】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =-=-==.故选:D .【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【答案】4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【解析】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.∵M 是AB 的中点,∴1118922MB AB ==⨯=,由线段的和差,得:MN =MB -NB =9-5=4,故答案为:4.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?【答案】(1)10;(2)12a ;(3)12a ;(4)线段MN 的长度等于线段AB 的一半,与B 点的位置无关.【分析】(1)先求解,AC 再利用中点的含义求解,,MC NC 再利用线段的差可得答案;(2)先利用含a 的代数式,AC 再利用中点的含义,用含a 的代数式,,MC NC 再利用线段的差可得答案;(3)先利用含,a b 的代数式,AC 再利用中点的含义,用含,a b 的代数式,,MC NC 再利用线段的差可得答案;(4)由(1)(2)(3)总结出结论即可.【解析】解:(1)20,8AB BC ==,,M N 分别是,AC BC 的中点,1128,14,4,22AB BC AC MC AC NC BC ∴+======14410.MN MC NC ∴=-=-=(2),8AB a BC ==,,M N 分别是,AC BC 的中点,1118,4,4,222AB BC AC a MC AC a NC BC ∴+==+==+==1144.22MN MC NC a a ∴=-=+-=(3),AB a BC b ==,,M N 分别是,AC BC 的中点,11111,,,22222AB BC AC a b MC AC a b NC BC b ∴+==+==+==1111.2222MN MC NC a b b a ∴=-=+-=(4)由(1)(2)(3)的结果中可得:线段MN 的长度等于线段AB 的一半,与B 点的位置无关.模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或3【答案】C【分析】先分C 在AB 上和C 在AB 的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.【解析】解:如图:当C 在AB 上时,AC =AB -BC =2,∴AD =12AC =1如图:当C 在AB 的延长线上时,AC =AB +BC =6,∴AD =12AC =3故选C .2.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC=B .AC BC AB +=C .2AB AC =D .12BC AB =【答案】B【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、C 、D 都可以确定点C 是线段AB 中点.【解析】解:A 、AC =BC ,则点C 是线段AB 中点;B 、AC +BC =AB ,则C 可以是线段AB 上任意一点;C 、AB =2AC ,则点C 是线段AB 中点;D 、BC =12AB ,则点C 是线段AB 中点.故选:B .3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD的长为()A.6cm B.7cm C.8cm D.9cm 【答案】B【分析】利用线段和的定义和线段中点的意义计算即可.【解析】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=12AC=3,∴BD=BC+CD=4+3=7,故选B.4.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=8,CD=4,则AB的长为()A.10B.12C.16D.18【答案】B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【解析】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.二、填空题5.如图,点D是线段AB的中点,C是线段AD的中点,若AB=8cm,则CD=___cm.【答案】2【分析】由点D是线段AB的中点,C是线段AD的中点,可得14CD AB,即可求得答案.【解析】解:∵点D是线段AB的中点,∴12AD AB=,∵C是线段AD的中点,∴12CD AD=,∴1182cm44CD AB==⨯=,故答案为:2.6.在直线上取A,B,C三点,使得AB=9cm,BC=4cm,如果O是线段AC的中点,则线段OA的长为_____.【答案】2.5cm或6.5cm【分析】分两种情况:①当点C在线段AB上时,②当点C在线段AB的延长线上时,线求出AC,根据线段中点的定义求出OA.【解析】解:分两种情况:①当点C在线段AB上时,∵AB=9cm,BC=4cm,∴AC=AB-BC=9-4=5cm,∵O是线段AC的中点,∴1 2.52OA AC cm==;②当点C在线段AB的延长线上时,∵AB=9cm,BC=4cm,∴AC=AB+BC=9+4=13cm,∵O是线段AC的中点,∴1 6.52OA AC cm==;故答案为:2.5cm或6.5cm.7.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解析】解:∵MN=MB+BC+CN,MN=7cm,BC=3cm,∴MB+CN=7﹣3=4cm,∵M是AB的中点,N是CD的中点,∴AB=2MB,CD=2CN,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.8.如图,C,D两点将线段AB分为三部分,AC∶CD∶DB=3∶4∶5,且AC=6.M是线段AB的中点,N是线段DB的中点.则线段MN的长为____________.【答案】7【分析】先根据已知条件求出CD,DB的长,再根据中点的定义求出BM,BN的长,进而可求出MN的长.【解析】解:∵AC∶CD∶DB=3∶4∶5,且AC=6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M是线段AB的中点,∴MB=12AB=12×24=12,∵N是线段BD的中点,∴NB=12DB=12×10=5,∵MN=MB-NB,∴MN=12-5=7.故答案为:7.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C,D是线段AB上的两个点,点M、N分别为AC、BD的中点(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长【答案】(1)10cm ;11cm ;(2)2m n +.【分析】(1)根据AC +BD =AB -CD 列式进行计算即可求解,根据中点定义求出AM +BN 的长度,再根据MN =AB -(AM +BN )代入数据进行计算即可求解;(2)根据(1)的求解,把AB 、CD 的长度换成m 、n 即可【解析】(1)∵AB =16cm ,CD =6cm ,∴AC +BD =AB -CD =10cm ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=16-5=11(cm );(2)∵AB =m ,CD =n ,∴AC +BD =AB -CD =m -n ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=m -12(m -n )=2m n +.10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.【答案】(1)见解析(2)线段MN 的长度为10.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解析】(1)解:补全图形如图所示:;(2)解:由题意知可知AD =AB =BC ,且AB =10,∴AD =AB =BC =10,即CD =30,∵点M 是CD 的中点,点N 是AD 的中点,∴DM =12CD =15,DN =12AD =5,∴MN =DM -DN =10,∴线段MN 的长度为10.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.【答案】(1)2;(2)16.【分析】(1)由20AC =,点D 为线段AC 的中点,求得AD=DC=10,由8AB =,可求BD=AD-AB=2;(2)由1134BD AB CD ==,推出34AB BD CD BD ==,,由AE BE =,可用BD 表示3=2AE BE BD =,表示EC=132BD =13,求出2BD =,再求AE=3=可求,AC=AE+EC=16.【解析】(1)∵20AC =,点D 为线段AC 的中点,∴AD=DC=11201022AC =⨯=,∵8AB =,∴BD=AD-AB=10-8=2;(2)∵1134BD AB CD ==,∴34AB BD CD BD ==,,∵AE BE =,∴13=22AE BE AB BD ==,∵EC=313422BE BD DC BD BD BD BD ++=++==13,∴2BD =,∴AE=33=2322BD ⨯=,∴AC=AE+EC=3+13=16.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.【答案】(1)20,10;(2)14t =或6t =;(3)AD 的长为:1609或160.【分析】(1)由30AC BC +=,10AC BC -=,再两式相加,即可得到AC ,再求解BC 即可;(2)以A 为原点画数轴,再利用数轴及数轴上线段的中点知识分别表示,,,,,A C B P D E 对应的数,由CD =25DE ,利用数轴上两点之间的距离公式建立绝对值方程,解方程可得答案;(3)以A 为原点画数轴,分三种情况讨论,当D 在A 的左侧,当D 在线段AB 上,当D 在B 的右侧,利用数轴与数轴上线段的中点知识,结合数轴上两点之间的距离分别表示,,AD BD CE ,再利用1,2AD BD CE -=建立方程,解方程即可得到答案.【解析】解:(1)AB =30,30AC BC ∴+=①又AC -BC =10②,①+②得:240,AC =20AC ∴=,10.BC ∴=(2)如图,以A 为原点画数轴,则,,,,A P C B 对应的数分别为:0,,20,30t ,点D 为线段PB 的中点,D ∴对应的数为:()1130+15,22t t =+点E 为线段PC 的中点,E ∴对应的数为:()1120+10,22t t =+1115205,22CD t t ∴=+-=-11111510151052222DE t t t ⎛⎫=+-+=+--= ⎪⎝⎭,CD =25DE ,1255,25t ∴-=152,2t ∴-=1522t ∴-=或152,2t -=-解得:14t =或6t =.由20t <,经检验:14t =或6t =都符合题意.(3)如图,以A 为原点画数轴,设D 对应的数为m ,当D 在A 的左侧时,AD BD -<0,12AD BD CE ∴-≠,舍去,当D 在AB 上时,线段AD 的中点为E ,E ∴对应的数为:()110,22m m +=此时E 在AC 上,,30,AD m BD m ∴==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ⎛⎫∴--=- ⎪⎝⎭123010,4m m ∴-=-940,4m ∴=160,9m ∴=1609AD ∴=,当D 在B 的右侧时,如图,同理:,30,AD m BD m ==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ∴--=-12060,2m ∴-=120602m ∴-=或12060,2m -=-解得:80m =-(舍去),160,m =160AD ∴=,综上:AD 的长为:1609或160.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.【答案】(1)52;(2)172【分析】(1)根据图示知AM =12AC ,AC =AB ﹣BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .【解析】解:(1)线段AB =20,BC =15,∴AC =AB ﹣BC =20﹣15=5.又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3,∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5,∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.【答案】()17cm ;()22aMN =,证明解解析;()32bMN =,证明见解析;()4见解析【分析】()1根据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN CM CN =+即可求出MN 的长度即可;()2当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则存在12MN a =;()3点在AB 的延长线上时,根据M 、N 分别为AC 、BC 的中点,即可求出MN 的长度;()4根据前面的结果解答即可.【解析】解:()1,M N 分别是,AC BC 的中点,8,6AC cm CB cm ==11,22MC AC CN BC ∴==()12MN MC CN AC BC =+=+Q ()18672MN cm \=+=()22aMN =,M N 分别是,AC BC 的中点11,22MC AC CN BC ∴==又MN MC CN =+Q ()122a MN AC BC ∴=+=()32bMN =∵AC BC b -=,∴C 在点B 的右边,如图示:,M N 分别是,AC BC 的中点,AC BC b -=11,22MC AC NC BC ∴==又NM MC NC =-()122b MN AC BC ∴=-=()4只要满足点C 在线段AB 所在直线上,点M N ,分别是AC BC ,的中点.那么MN 就等于AB 的一半。

【中考专题】中点模型(通关篇)—三种方法

【中考专题】中点模型(通关篇)—三种方法

【中考专题】中点模型(通关篇)—三种⽅法以微课堂⾼中版奥数国家级教练与四位⾼中特级教师联⼿打造,⾼中精品微课堂。

35篇原创内容公众号线段中点是⼏何部分⼀个⾮常重要的概念,和后⾯学习的中线,中位线等概念有着密切的联系.在⼏何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三⾓形三线合⼀;直⾓三⾓形斜边上的中线等于斜边的⼀半;还是中位线定理?今天我们重点探究“倍长中线”法以及平⾏线间夹中点,延长中线交平⾏的应⽤。

建⽴模型模型⼀倍长中线如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种⽅法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进⽽得到AC=BE且AC//BE.模型⼆平⾏线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.平⾏线间夹中点.处理这种情况的⼀般⽅法是:延长过中点的线段和平⾏线我们把这种情况叫做平⾏线间夹中点相交.即“延长中线交平⾏”此时,易证△BEF≌△CED模型三中位线如图,在△ABC中,点D是AB边的中点.可作另⼀边AC的中点,构造三⾓形中位线.如下图所⽰:由中位线的性质可得,DE//BC且DE=1/2BC.模型运⽤例1、如图,在平⾏四边形ABCD中,AD=2AB,点E是BC边的中点.连接AE,DE.求∠AED的度数.分析:本题的证明⽅法有很多,⽐如利⽤“双平等腰”模型等(前⽂已对这种做法做过讲解,不再赘述.链接:课本例题引出的基本图形——双平等腰模型),这⾥主要讲⼀下平⾏线间夹中点的做法.根据平⾏四边形的性质可知,AB//CD,⼜点E是BC中点,构成了平⾏线间夹中点.当题中出现这些条件时,只需将AE延长和DC的延长线相交,就⼀定会得到全等三⾓形,进⽽得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平⾏四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE⼜∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD, ⼜∵AD=2CD∴AD=DF,⼜因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE⾄点F使EF=AE,连接CF.通过证明△ABE≌△FCE得到AB//CF,利⽤经过直线外⼀点有且只有⼀条直线与已知直线平⾏,得到D、C、F三点共线.再证明△DAF 是等腰三⾓形,利⽤等腰三⾓形三线合⼀得到结论.对于第⼆种⽅法,同学们可以⾃⼰尝试.例2、在△ABC中,AB=AC,点F是BC延长线上⼀点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满⾜平⾏线间夹中点,所以可将DG延长与BF 相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正⽅形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直⾓三⾓形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直⾓三⾓形,⼜∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正⽅形绕点C旋转任意⾓度,在旋转的过程中,上述结论还成⽴吗?试试看动画链接:/svg.html#posts/16428(选择复制并打开,可操作演⽰动画效果)(2)AG⊥DG,AG=√3DG如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是菱形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF⼜∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等边三⾓形∴AB=AC,∠ACD=180°-60°-60°=60°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=60°∴△DAH是等边三⾓形,⼜∵点G是DH的中点∴AG⊥DG.∠DAG=1/2∠DAH=30°∴AG=√3DG动画链接:/svg.html#posts/16429(选择复制并打开,可操作演⽰动画效果)(3)AG⊥DG,DG=AG×tan(α/2)证明:延长DG与BC交于H,连接AH、AD,∵四边形CDEF是菱形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BE的中点,∴BG=EG,∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2,∴∠ABC=∠ACD,∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=α/2,∴tan∠DAG=tan(α/2),∴DG=AGtan(α/2).动画链接:/svg.html#posts/16430(选择复制并打开,可操作演⽰动画效果)反思:在本题的证明中,我们结合题⽬中给出的平⾏线间夹中点这⼀条件,将DG进⾏延长和BC相交,通过全等使问题得证.对于本题我们也可以采⽤倍长中线法进⾏证明.下⾯⽤倍长中线法对第⼀种情况加以证明.证明:如图,延长AG⾄点H,使GH=AG.连接EH,AD,DH.在△ABG和△HEG中BG=EG,∠AGB=∠HGE,AG=HG∴△ABG≌△HEG∴AB=HE,∠ABG=∠HEG∵AB=AC∴AC=HE∵DE//BC∴∠DEG=∠EBC∴∠HED=∠HEB+∠DEG=∠ABG+∠EBC=∠ABC=45°⼜∠ACD=180°-45°-90°=45°∴∠ACD=∠HED在△ACD和△HED中AC=HE,∠ACD=∠HED,DC=DE∴△ACD≌△HEDDA=DH,∠ADC=∠HDE∴∠ADC-∠HDC=∠HDE-∠HDC即∠ADH=∠CDE=90°所以△ADH是等腰直⾓三⾓形⼜因为点G是AH的中点所以DG=AG,DG⊥AG.上⾯我们⽤倍长中线证明了第⼀种情况,请你对第⼆三问加以证明.反思:在本题的证明过程中,容易犯的⼀个错误是,许多同学看到HE经过点C,就说∠HED=45°.⽽这⼀结论是需要证明的.⼩试⾝⼿如图1,在正⽅形ABCD的边AB上任取⼀点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG.易证:EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图2所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图3所⽰,则线段EG和CG⼜有怎样的数量和位置关系?请写出你的猜想,并加以证明.(3)将△BEF绕点B旋转⼀个任意⾓度α,如图4所⽰,则线段EG和CG有怎样的数量和位置关系?请直接写出结论.前两问较简单,请同学们⾃⾏完成,这⾥只给出第三问的⼏种解法,仅供⼤家参考.解法⼀:如图,延长EG⾄点H,使GH=EG.连接DH,CE,CH.因为点G是DF的中点,所以GF=GD.根据SAS易证△GEF≌△GHDEF=HD且∠GEF=∠GHD,所以EF//DH.分别延长HD与EB交于点K,HD的延长线交BC于点M.如下图:因为EB⊥EF,⽽EF//DH,所以EK⊥HK,即∠BKM=∠MCD=90°.⼜∠BMK=∠CMD.根据三⾓形的内⾓和,可得∠KBM=∠MDC.所以∠EBC=∠HDC.⼜EB=HD,BC=DC所以△EBC≌△HDC.所以CE=CB且∠ECB=∠HCD.所以∠ECB=90°,即△BCE是等腰直⾓三⾓形,⼜因为点G是斜边EB的中点,所以CG⊥GE且CG=GE.⽹址链接:/svg.html#posts/16284(选中并打开⽹址看动态图)解法⼆:如图,延长CG⾄点N,是GN=CG.连接FN,EN,EC.以下过程可参照解法⼀⾃⾏完成解法三:延长FE⾄点P使得EP=EF,连接BP;延长DC⾄点Q,使得CQ=CD,连接BQ.连接FQ,DP。

初中数学常见解题模型及思路(中考数学难题破解自有定理)

初中数学常见解题模型及思路(中考数学难题破解自有定理)

初中数学常见解题模型及思路(中考数学难题破解自有定理)上下:2.04左右:2.17初中数学压轴题常见解题模型及套路(自有定理)a.代数篇:1.循环小数化分数:设元―扩大――相减(无限变有限)相消法。

例.把0.108108108化为分数。

设s=0.108108108(1)两边同乘1000得:1000s=108.108108(2)(2)-(1)得:999s=108从而:s=108余例仿此――9992.对称式计算技巧:“平方差公式―完全平方公式”―整体思想之结合:x+y;x-y;xy;x2?y2中,知二求二。

222(x?y)?x?y?2xy?2x?2y(?x?)2y2?xy2222(x?y)?x?y?2xy?(x?)y?4xy加减配合,灵活变型。

2(x?)?x2?3.特定公式1x1?2的变型几应用。

x24.立方差公式:a3?b3?(a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。

例.求:1+2+3+222+2021的和。

三种方法举例:略6.等比数列议和法:方法+公式:设元―乘坐等比―相乘―解。

例.求1+2+4+8+16+32+2222n令s=1+2+4+8+16+32+222+2n(1)两边同乘2得:2s=2+4+8+32+64+222+2n+2n?1(2)(2)-(1)得:2s-s=2n?1-1从而求出s。

7.11n?m1111等。

的灵活应用:如:?mnmn62?3238.用二次函数的待定系数法求数列(图列)的通项公式f(n)。

9.韦达定理求关于两根的代数式值的套路:1上下:2.04左右:2.171111⑴.等距式:变小和内积。

x2?y2;?;2?2;xy2+x2y等(x、y为一元二次方程方程的两xyxy根)⑵.非对称式:根的定义―降次―变小和内积(一代二韦)。

10.三大非负数:三大永正数;211.常用最值式:。

(x?y)?正数等(非负数+正数)12.换元大法。

重要的几何模型之中点模型(二)(学生版)-2024年中考数学常见几何模型

重要的几何模型之中点模型(二)(学生版)-2024年中考数学常见几何模型

重要的几何模型之中点模型(二)中点模型是初中数学中一类重要模型,它在不同的环境中起到的作用也不同,主要是结合三角形、四边形、圆的运用,在各类考试中都会出现中点问题,有时甚至会出现在压轴题当中,我们不妨称之为“中点模型”,它往往涉及到平分、平行、垂直等问题,因此探寻这类问题的解题规律对初中几何的学习有着十分重要的意义。

常见的中点模型:①垂直平分线模型;②等腰三角形“三线合一”模型;③“平行线+中点”构造全等或相似模型(与倍长中线法类似);④直角三角形斜边中点模型;⑤中位线模型;⑥中点四边形模型。

本专题就中点模型的后三类模型进行梳理及对应试题分析,方便掌握。

模型1:直角三角形斜边中线模型定理:直角三角形斜边上的中线等于斜边的一半.如图1,若AD为Rt△ABC斜边上的中线,则:(1)AD=1BC=BD=DC;(2)△ABD,△ACD为等腰三角形;(3)∠ADB=2∠C,∠ADC=2∠B.2图1图2拓展:如图2,在由两个直角三角形组成的图中,M为中点,则(1)AM=MD;(2)∠AMD=2∠ABD.模型运用条件:连斜边上的中线(出现斜边上的中点时)1(2023·江苏盐城·统考中考真题)如图,在Rt△ABC中,CD为斜边AB上的中线,若CD=2,则AB=.2(2023·江苏扬州·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE ⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=.3(2023·河南新乡·统考三模)如图,点O为菱形ABCD的对角线AC,BD的交点,过点C作CE⊥AB于点E,连接OE,若OD=3,OE=2,则菱形ABCD的面积为.4(2023上·四川成都·九年级校考期中)如图,四边形ABCD中,∠ABC=∠ADC=90°,∠BAD=45°,连接AC、BD.M是AC的中点,连接BM、DM.若AC=10,则△BMD的面积为.5(2023·江苏常州·中考真题)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.66(2023·辽宁鞍山·校考三模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD,则下列说法不正确的是()A.BE=BCB.∠DFC=90°C.DG=3GFD.四边形BFDE是平行四边形模型2:中位线模型三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

中考数学复习几何问题 专题02 中点四大模型

中考数学复习几何问题 专题02 中点四大模型

专题02 中点四大模型模型1:倍长中线或类中线(与中点有关的线段)构造全等三角形模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移. 模型实例如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.②图B课堂巩固提升1.如图,在△ABC 中,D 是BC 的中点,DM ⊥DN ,如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=41(AB 2+AC 2).24A模型2:已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”.模型实例例题1 如图,在△AB C 中,AB =A C =5,B C =6,M 为B C 的中点,MN ⊥A C 于点N ,求MN 长度.NMC BA课堂巩固提升1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图CEFCC模型3:已知三角形一边的中点,可考虑中位线定理模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理: DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题. 模型实例例题2 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDBA巩固提升1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =(AB +BC +AC ); (2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立?(3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.12ED CBA图1G FEDCBA图2FED CBA图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO FE DC BAE图2G ABCDF模型4:已知直角三角形斜边中点,可以考虑构造斜边中线模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例例题3 如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .DCBA12M FEDCBA巩固提升1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 .问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MFE DC B A图2A BCDE FM图3ABCDEF M课后练习1.如图,在ABC ∆中,AB AC >,AD 是中线,AE 是角平分线,点F 是AE 上任意一点(不与A ,E 重合),连接BF 、CF .给出以下结论:①AB EB AC EC =;②1()2DAE ACB ABC ∠=∠-∠;③11()()22AB AC AD AB AC -<<+;④AB CF AC BF +>+.其中一定正确的有( )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,AB=8,AC=5,AD 是△ABC 的中线,则AD 的取值范围是( )A .3<AD<13B .1.5<AD<6.5C .2.5<AD<7.5D .10<AD<163.在△ABC 中,AC =6,中线AD =5,则边AB 的取值范围是( )A .1<AB <11 B .4<AB <13C .4<AB <16D .11<AB <164.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒5.已知三角形的两边长分别为4和6,则第三边的中线长x 的取值范围是_____.6.如图,在矩形ABCD 中,,E F 分别为边CD ,AD 的中点,CF 与EA 、EB 分别交于点M 、N .已知8AB =,12BC =,则MN 的长为______________.7.在中,是边上的中线,若,则长的取值范围是_________. 8.在平行四边形中,为边的中点,且交射线于点,若,则的长度为________9.已知:在中,AC=BC ,∠ACB=90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于CE 于点F ,交CD 于点G (如图1),求证:AE=CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M (如图2),求证:.ABC ∆AD BC 7,5AB AC ==AD ABCD E CD EAF DAE AF ∠=∠,BC F 133AF CF ==,BFABC BCE CAM ≌10.已知,△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是线段CA上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,连接CG并延长交直线AB于点H.(1)试说明:①AE=CF;②CG=GD;(2)若AE=6,CH=10,求边AC的长.。

中考数学 考点系统复习 第四章 三角形 方法技巧突破(二) “中点”之六大模型

中考数学 考点系统复习 第四章 三角形 方法技巧突破(二) “中点”之六大模型

如图,在△ABC 中,AB=AC=5,BC=6,点 M 为 BC 的中点,MN⊥AC 于点 N,则 MN 的长是__22..44__.
【思路点拨】连接 AM,根据等腰三角形三线合一的性质得到 AM⊥BC,根 据勾股定理求得 AM 的长,再根据在直角三角形的面积公式即可求得 MN 的长.
3.如图,在△ABC 中,D 是 AB 上一点,AD=AC,AE⊥CD,垂足为 E,EF ∥BD,交 BC 于点 F,若 BD=10,则 EF 的长为__5__.
【思路点拨】延长 FD 到 G,使 DG=DF,连接 CG.证明△BDF≌△CDG,得 BF=CG,再证明 CA=CG 便可得解.
证明:如解图,延长 FD 到 G,使 DG=DF,连接 CG. ∵AD 是 BC 边的中线,∴BD=CD. 在△BDF 和△CDG 中, BD= CD,
∠BDF=∠CDG, DF= DG, ∴△BDF≌△CDG(SAS),∴BF=CG,∠BFD=∠G. ∵AE=EF,∴∠EAF=∠EFA=∠BFD, ∴∠G=∠CAG,∴AC=CG,∴BF=AC.
模型六:遇到圆中含弦(弧)的中点,考虑垂径定理 【模型展示】
(图①:点 E 是弦 AB 的中点)
︵ (图②:点 C 是AB的中点)
如图,⊙O 的直径 CD 过弦 EF 的中点 G,∠DCF=20°,则∠EOD 等于 ( C)
A.10° B.20° C.40° D.80°
【思路点拨】连接 OF,由圆周角定理易求得∠DOF 的度数,再由 G 为 EF 中点,易得∠EOD=∠DOF.
作 BF⊥AD,垂足为 F,则∠EBF 的度数为
( B)
A.19° B.33° C.34° D.43°
模型三:等腰三角形中遇到底边上的中点,常联想“三线合一”的性质 【模型展示】

中考数学压轴题预测,压轴题解题策略,解题技巧,专项训练完整版

中考数学压轴题预测,压轴题解题策略,解题技巧,专项训练完整版

最新中考数学压轴题展望,压轴题解题策略,解题技巧,专项训练数学综压轴题是为观察考生综合运用知识的能力而设计的,集中表现知识的综合性和方法的综合性,多半为函数型综合题和几何型综合题。

函数型综合题:是给定直角坐标系和几何图形,先求函数的分析式,再进行图形的研究,求点的坐标或研究图形的某些性质。

求已知函数的分析式主要方法是待定系数法,重点是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(分析法)。

几何型综合题:是先给定几何图形,依据已知条件进行计算,而后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的分析式,求函数的自变量的取值范围,最后依据所求的函数关系进行研究研究。

一般有:在什么条件以下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或研究两个三角形知足什么条件相像等,或研究线段之间的数目、地点关系等,或研究面积之间知足必定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。

求未知函数分析式的重点是列出包括自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

找等量关系的门路在初中主要有益用勾股定理、平行线截得比率线段、三角形相像、面积相等方法。

求函数的自变量的取值范围主假如找寻图形的特别地点(极端地点)和依据分析式求解。

而最后的研究问题变化多端,但少不了对图形的剖析和研究,用几何和代数的方法求出x的值。

解中考压轴题技术:中考压轴题大多是以坐标系为桥梁,运用数形联合思想,经过成立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,获得某些代数问题的解答。

重点是掌握几种常用的数学思想方法。

一是运用函数与方程思想。

以直线或抛物线知识为载体,列(解)方程或方程组求其分析式、研究其性质。

二是运用分类议论的思想。

对问题的条件或结论的多变性进行观察和研究。

三是运用转变的数学的思想。

专题1.2平分---中点问题的常见模型-中考数学二轮复习必会几何模型剖析(全国通用)

专题1.2平分---中点问题的常见模型-中考数学二轮复习必会几何模型剖析(全国通用)
等腰中,造三线,两个条件快补全. 三线合一+中位线
【分析】本题中,点E已经是AB的中点,由CD平分∠ACB,
AD⊥CD,想到可以构造等腰三角形,利用三线合一,使点D
成为另一个中点,从而让ED变成“看得见”的中位线.
解:延长AD交BC于F.
∵CD平分∠ACB,AD⊥CD
∴∠ACD=∠FCD,∠ADC=∠FDC=90º,
8
的中点,若BD=16,则EF的长为____.
9.如图,在△ABC中,AB=8,AC=6,AD,AE分别是其角平分线和中线,点C作
1
CG⊥AD于点F,交AB于点G,连接EF,则线段EF的长为____.
C
A
D
N
B
M
F
E
C
A
D
A
G
B
B
F
E D
C
强化训练
中点问题的常见模型
提升能力
11.如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边中点,求证:AB=2DE.
∵AB=AC,AD=AC. ∴AB=AD. ∴∠ADB=∠ABD=20º.
∴∠ADC=∠ADB+∠BDC=50º.
D
A
1 2
N
4
3
M
C
针对训练
垂直平分线模型
知识点二
2.如图,已知AB=24,AB⊥BC于点B,AB⊥AD于点A,AD=10,BC=20.若点E是CD
13
的中点,则AE的长是_____.
∴BF=CF=EF=0.5EC
∴∠ABF=∠CEB.
G F
M
B
E
A
∵∠DCE=∠CEB, ∴∠ABF=∠DCF.

模型41 单中点、双中点模型(解析版)-中考数学解题大招复习讲义

模型41 单中点、双中点模型(解析版)-中考数学解题大招复习讲义

模型介绍有关中点的知识点归纳:①三角形中线平分三角形面积;②直角三角形斜边上的中线等于斜边的一半;③等腰三角形“三线合一”的性质;④三角形中位线平行且等于第三边的一半.在题干中,出现一个中点时,我们通常想到中线;两个中点时,想到中位线。

模型一、双中点-中位线模型如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则,.模型二、单中点-倍长中线模型模型二、单中点-“三线合一”模型如图,在△ABC中,AB=AC,D为BC的中点,连接AD,则AD平分∠BAC,AD是边BC上的高,AD是BC边上的中线(AD是角平分线、中线、垂线).例题精讲考点一:单中点-倍长中线模型【例1】.如图,已知AB =12,AB ⊥BC 于B ,AB ⊥AD 于A ,AD =5,BC =10.点E 是CD 的中点,则AE 的长为()A .6B .C .5D .解:延长AE 交BC 于F ,如图所示:∵AB ⊥BC ,AB ⊥AD ,∴AD ∥BC ,∴∠D =∠C ,∵点E 是CD 的中点,∴DE =CE ,在△ADE 和△FCE 中,,∴△ADE ≌△FCE (ASA ),∴AE =FE ,AD =CF =5,∴BF =BC ﹣CF =5,在Rt △ABF 中,AF ===13,∴AE =AF =.故选:B .变式训练【变式1-1】.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP ⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°解:延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG(直角三角形斜边上的中线等于斜边的一半),∵PF=PG(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,易证FE=FG,∴∠FGE=∠FEG=55°,∵AG∥CD,∴∠FPC=∠EGF=55°故选:D.【变式1-2】.如图,在△ABC中,AB=12,AC=20,求BC边上中线AD的范围为4<AD<16.解:延长AD到E,使得DE=AD,连接BE,如图,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴BE=AC=20.∵BE﹣AB<AE<AB+BE,∴20﹣12<2AD<12+20,∴4<AD<16.故答案为:4<AD<16.考点二:双中点中位线模型【例2】.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为8.解:∵AD=AC,AE⊥CD,∴E为CD的中点,又∵F是CB的中点,∴EF为△BCD的中位线,∴EF∥BD,EF=BD,∵BD=16,∴EF=8,故答案为:8.变式训练【变式2-1】.如图,在Rt△ABC中,∠B=90°,AB=2,BC=3,D、E分别是AB、AC的中点,延长BC至点F,使CF=BC,连接DF、EF,则EF的长为.解:连接DE,CD,∵D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴DE∥CF,∵CF=BC,∴DE=CF,∴四边形DCFE是平行四边形,∴EF=CD,∵在Rt△ABC中,∠B=90°,AB=2,BC=3,∴CD===,∴EF=CD=,故答案为:.【变式2-2】.如图,在△ABC中,BE、CF分别为边AC、AB上的高,D为BC的中点,DM⊥EF于M.求证:FM=EM.证明:连接DE,DF,∵BE、CF分别为边AC、AB上的高,D为BC的中点,∴DF=BC,DE=BC,∴DF=DE,即△DEF是等腰三角形.∵DM⊥EF,∴点M时EF的中点,即FM=EM.考点三:单中点三线合一模型【例3】.如图,在△ABC中,∠B=2∠C,AD⊥BC,交BC于D,M为BC的中点,AB=10,求DM的长.解:延长CB到N,使BN=AB=10,连接AN,AM,则∠N=∠NAB,∵∠ABC=∠N+∠NAB,∠ABC=2∠C,∴∠N=∠C,∴AN=AC,∵AD⊥CN,∴DN=DC,∴BN+BD=CD=DM+CM=DM+BM=BD+2DM,∴BN=2DM,∴2DM=10,∴DM=5.变式训练【变式3-1】.在△ABC中,AB=AC=5,BC=6,M是BC的中点,MN⊥AC于点N,则MN=()A.B.C.6D.11解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:A.【变式3-2】.如图,在等腰直角三角形ABC中,∠ABC=90°,D为边AC的中点,过点D作DE⊥DF,交AB于点E,交BC于点F,连接EF,若AE=4,FC=3,求EF的长.解:连接BD.∵D是AC中点,∴∠ABD=∠CBD=45°,BD=AD=CD,BD⊥AC∵∠EDB+∠FDB=90°,∠+∠CDF=90°,∴∠EDB=∠CDF,在△BED和△CFD中,∵,∴△BED≌△CFD(ASA),∴BE=CF;∵AB=BC,BE=CF=3,∴AE=BF=4,在Rt△BEF中,EF==5.【变式3-3】.已知:如图,△ABC中,AB=AC,CD⊥AB于点D.求证:∠BAC=2∠DCB.解:过A作AE⊥BC于E,∴∠AEB=90°,∴∠BAE+∠B=90°,∵CD⊥AB,∴∠DCB+∠B=90°,∴∠DCB=∠BAE,∵AB=AC,∴∠BAE=∠BAC,∴∠BAC=2∠DCB.1.如图,在平行四边形ABCD中,CD=2AD,BE⊥AD于点E,F为DC中点,连接EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确的有()A.①②B.②③C.①②③④D.①②④解:如图,延长EF交BC的延长线于G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△CFG(ASA),∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:C.2.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的是()A.①③④B.②④⑤C.①③④⑤D.①③⑤解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;∵∠BAD=90°,AM⊥DE,∴△AED∽△MAD∽△MEA,∴===2,∴AM=2EM,MD=2AM,∴MD=2AM=4EM,故④正确;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF==a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故⑤正确;如图,过点M作MN⊥AB于N,则==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理,BM==a,过点M作GH∥AB,过点O作OK⊥GH于K,则OK=a﹣a=a,MK=a﹣a=a,在Rt△MKO中,MO==a,根据正方形的性质,BO=2a×=a,∵BM2+MO2=(a)2+(a)2=2a2,BO2=(a)2=2a2,∴BM2+MO2=BO2,∴△BMO是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:C.3.如图,在Rt△ABC中,∠ACB=90°,BC=6,AB的垂直平分线交AB于D,交AC于E,若CD=5,则AE=.解:如图,连接BE,∵AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴AB=2CD=10,又∵BC=6,∴AC=8,设AE=BE=x,则CE=8﹣x,∵∠BCE=90°,∴Rt△BCE中,CE2+BC2=BE2,即(8﹣x)2+62=x2,解得x=,∴AE=,故答案为:.4.如图在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,过点D作DE垂直AB交BC的延长线于点E,则CE的长是.解:在Rt△ABC中,由勾股定理得,AB==5,∵点D是AB的中点,∴BD=AB=,∵DE⊥AB,∴∠BDE=∠ACB=90°,∵∠B=∠B,∴△BDE∽△BCA,∴,∴,∴BE=,∴CE=BE﹣BC=﹣3=,故答案为:.5.如图.AB是半圆O的直径.点C、D在上.且AD平分∠CAB.已知AB=10,AC=6,则AD=4.解:如图,连接OD交BC于E点,∵AB为直径,∴AC⊥BC,又∵AB=10,AC=6,∴BC==8,∵AD平分∠CAB,∴=,∴OD垂直平分BC,由此可得:OE=AC=3,DE=OD﹣OE=5﹣3=2,又∵BE=BC=4,在Rt△BDE中,由勾股定理,得BD2=BE2+DE2=20,在Rt△ABD中,AD===4.故答案为:4.6.如图,四边形ABCD中,AB=8,CD=6,∠ADB=∠BCA=90°,以AD,AC为边作平行四边形DACE,连接BE,则BE的长为2.解:连接AE交CD于O,连接DM、CM,取AB的中点M,连接OM,如图所示:∵AB=8,∠ADB=∠BCA=90°,∴DM=CM=AB=4,∵四边形DACE是平行四边形,∴OA=OE,OC=OD=CD=3,∴OM是△ABE的中位线,∴BE=2OM,∵DM=CM,OC=OD,∴OM⊥CD,∴∠MOC=90°,由勾股定理得:OM===,∴BE=2OM=2;故答案为:2.7.如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②GH=;③AD=AH;④=,其中正确结论的序号是①③④.解:∵四边形ABCD是边长为6的正方形,点E是BC的中点,∴AB=AD=BC=CD=6,BE=CE=3,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=6,CE=3,∴DE===3,=×CD•CE=×DE•CH,∵S△DCE∴CH=,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴,∴CF==3,∴HF=CF﹣CH=,∴=,故④正确;如图,过点A作AM⊥DE于点M,∵DC=6,CH=,∴DH===,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=,AM=DH=,∴MH=DM=,又∵AM⊥DH,∴AD=AH,故③正确;∵DE=3,DH=,∴HE=,ME=HE+MH=,∵AM⊥DE,CF⊥DE,∴AM∥CF,∴,∴=,∴HG=,故②错误.综上,正确的有:①③④.故答案为:①③④.8.如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3EF,求的值.解:如图,∵BE是△ABC的中线,∴BE是△ABC的中线,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴==,∴DC=2GE,∵BF=3FE,∴=,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴=,∴=.9.如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长交AC 于点F,AF=EF,求证:AC=BE.证明:延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,∵,Ⅳ∴△BDG≌△CDA(SAS),∴BG=AC,∠CAD=∠G,又∵AF=EF,∴∠CAD=∠AEF,又∠BEG=∠AEF,∴∠CAD=∠BEG,∴∠G=∠BEG,∴BG=BE,∴AC=BE.10.已知线段AB=8(点A在点B的左侧).(1)若在直线AB上取一点C,使得AC=3CB,点D是CB的中点,求AD的长;(2)若M是线段AB的中点,点P是线段AB延长线上任意一点,点N是线段BP的中点,求的值.解:(1)①当点C在线段AB上时,如图1,∵AC=3BC,设BC=x,则AC=3x,∵AB=AC+BC,∴8=3x+x,∴x=2,∴BC=2,AC=6,∵点D是CB的中点,∴CD=BD=BC=1,∴AD=AC+CD=6+1=7;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=3BC=3x,∵AB=AC﹣BC=2x=8,∴x=4,∴BC=4,AC=12,AB=8,∵点D是CB的中点,∴BD=CD=BC=2,∴AD=AB+BD=8+2=10;③当点C在BA的延长线上时,明显,此情况不存在;综上所述,AD的长为7或10;(2)如图3,∵M是线段AB的中点,点N是线段BP的中点,∴BM=AB,BN=PB,∴MN=BM+BN=AB+PB=(AB+PB)=AP,∴==+1=2+1=3.11.如图所示,在△ABC中,AD是边BC上的高线,CE是边AB上的中线,DG⊥CE于点G,CD=AE(1)证明:CG=EG;(2)若AD=6,BD=8,求CE的长.解:(1)证明:CG=EG.连接DE,如图.∵AD⊥BC,∴∠ADB=90°,又E为AB中点,∴DE=AE=BE,∵CD=AE,∴DE=CD,又DG⊥EC,∴EG=CG;(2)过E作EM⊥BC于M,如图.∵AD⊥BC,EM⊥BC,∴EM∥AD,∵E为AB中点,∴EM是△ABD的中位线,∴EM=AD=3.∵AD=6,BD=8,∴AB==10,∵DE=AB=5,∴DM=4,∵CD=AE=DE=5,∴CM=CD+DM=9,∴CE==3.12.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).13.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BO的长.(1)证明:∵四边形ABCD为菱形,∴OB=OD,∵点E为AD中点,∴OE为△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG为平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG为矩形;(2)解:∵四边形ABCD是菱形,∴AB=AD=10,由(1)得:OE为△ABD的中位线,∴OE=AB=×10=5,∵点E为AD的中点,∴AE=AD=×10=5,由(1)可知,四边形OEFG是矩形,∴∠EFG=∠AFE=∠OGB=90°,OG=EF=4,FG=OE=5,∴AF===3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2,∴BO===2.14.在菱形ABCD和等边△BGF中,∠ABC=60°,P是DF的中点.(1)如图1,点G在BC边上时,①判断△BDF的形状,并证明;②请连接PB,若AB=10,BG=4,求PB的长;(2)如图2,当点F在AB的延长线上时,连接PG、PC.试判断PC、PG有怎样的关系,并给予证明.解:(1)①如图1,△BDF是直角三角形,理由是:∵四边形ABCD是菱形,∠ABC=60°,∴∠DBC=30°,∵△BGF是等边三角形,∴∠GBF=60°,∴∠DBF=∠DBC+∠GBF=90°,∴△BDF是直角三角形;②如图2,过A作AH⊥BD于H,∵∠BAD=120°,AB=AD,∴∠BAH=60°,∴∠ABH=30°,Rt△ABH中,AB=10,∴AH=5,∴BH==5,∴BD=2BH=10,∵△BGF是等边三角形,∴BF=BG=4,由勾股定理得:DF====2,由①知:△BDF是直角三角形,且P是DF的中点,∴PB=DF=;(2)如图3,PG=PC,理由是:延长GP交DA于点E,连接EC,GC,∵∠ABC=60°,△BGF是等边三角形,∴GF∥BC∥AD,∴∠EDP=∠GFP,在△DPE和△FPG中,,∴△DPE≌△FPG(ASA),∴PE=PG,DE=FG=BG,∵∠CDE=∠CBG=60°,CD=CB,在△CDE和△CBG中,,∴△CDE≌△CBG(SAS),∴CE=CG,∠DCE=∠BCG,∴∠ECG=∠DCB=120°,∵PE=PG,∴CP⊥PG,∠PCG=×120°=60°,∴PG=PC.15.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.+S△CEF与S△ABC的(1)如图1,当∠EDF绕D点旋转到DE⊥AC于E时,易证S△DEF+S△CEF=S△ABC;数量关系为S△DEF(2)如图2,当∠EDF绕D点旋转到DE和AC不垂直时,上述结论是否成立?若成立,请给予证明;、S△CEF、S△ABC的数量关系,不需证明.(3)如图3,这种情况下,请猜想S△DEF解:(1)当∠EDF绕D点旋转到DE⊥AC时,四边形CEDF是正方形.设△ABC的边长AC=BC=a,则正方形CEDF的边长为a.=a2,S正方形DECF=(a)2=a2∴S△ABC+S△CEF=S△ABC;即S△DEF+S△CEF=S△ABC;故答案为:S△DEF(2)(1)中的结论成立;证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,,∴△DME≌△DNF(ASA),=S△DNF,∴S△DME=S四边形DECF=S△DEF+S△CEF,∴S四边形DMCN=S△ABC,由以上可知S四边形DMCN+S△CEF=S△ABC.∴S△DEF(3)连接DC,证明:同(2)得:△DEC≌△DBF,∠DCE=∠DBF=135°,=S五边形DBFEC,∴S△DEF+S△DBC,=S△CFE+,=S△CFE﹣S△CFE=.∴S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.故S△DEF16.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是B.A.SSSB.SASC.AASD.HL(2)由“三角形的三边关系”可求得AD的取值范围是2<AD<10.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【初步运用】如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC =2,求线段BF的长.【灵活运用】如图3,在△ABC中,∠A=°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.解:(1)∵AD是BC边上的中线,∴CD=BD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)∵AB﹣BE<AE<AB+BE,即12﹣8<AE<12+8,∴4<AE<20,∵AD=AE,∴2<AD<10,故答案为:2<AD<10;【初步运用】延长AD到M,使AD=DM,连接BM,如图2所示:∵AE=EF.EF=3,∴AC=AE+EC=3+2=5,∵AD是△ABC中线,∴CD=BD,∵在△ADC和△MDB中,,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即BF=5;【灵活运用】线段BE、CF、EF之间的等量关系为:BE2+CF2=EF2,理由如下:延长ED到点G,使DG=ED,连接GF、GC,如图3所示:∵ED⊥DF,∴EF=GF,∵D是BC的中点,∴BD=CD,在△BDE和△CDG中,,∴△DBE≌△DCG(SAS),∴BE=CG,∠B=∠GCD,∵∠A=90°,∴∠B+∠ACB=90°,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CG2+CF2=GF2,∴BE2+CF2=EF2.17.(1)【提出问题】在一次思维训练营上老师给同学们出了这样一个问题:如图①在△ABC 中,AD为BC边上的中线,延长AD与AC的平行线BE交于点E.如果AD=5,那么AE长为多少?小凯同学立刻利用全等三角形解决了老师的问题.请你直接写出AE的长.解:∵AD是BC边上的中线,∴BD=CD,又∵AC∥BE,∴∠CAD=∠E.在△ADC和△EDB中,∴△ADC≌△EDB(AAS).∴AD=DE.又∵AD=5,∴AE=10.(2)【猜想证明】如图②,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试猜想线段AB,AD,DC之间的数量关系,并证明你的猜想.(3)【拓展延伸】如图③,已知某学校内有一块梯形空地,AB∥CD,生物小组把它改造成了花圃,内部正好有两条小路BC,AE,经过测量发现AB=BC=50米,CD=16米,△ABE和△ACE正好面积相等,分别种上了玫瑰和郁金香,在△BCD内种了向日葵.现在准备在地下建一条水管DF,且已知∠DFE=∠BAE=30°,但由于不便于测量DF的长,请你用所学几何知识求出DF的长,并说明理由.解:(1)AE=AD+DE=10,故答案为:10.(2)结论:AB+DC=AD,证明:延长AE,DC相交于点A',∵点E是BC的中点,∴BE=CE,∵AB∥CD,∴∠B=∠A'CE在△ABE和△A'CE中,,∴△ABE≌△A'CE(ASA),∴AB=A'C,∠BAE=∠A',∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠A′=∠DAE,∴AD=A'D=A'C+CD=AB+CD(3)解:延长AE,DC相交于点A',=S△ACE,∵S△ABE∴BE=CE,∵AB∥CD,∴∠ABE=∠BCA'在△ABE和△A'CE中,,∴△ABE≌△A'CE(ASA),∴AB=A'C=50(m),∠BAE=∠A'=30°,∵∠DFE=∠BAE=30°,∴∠A'=∠DFE,∴DF=A'D=A'C﹣CD=50﹣16=34(m)。

初中数学 中考复习 第07讲—中点五大模型

初中数学 中考复习  第07讲—中点五大模型
解答:双平模型+三线合一,可证
【例4】如图所示,在 中, , , 是 的中点, 于点 ,交 于点 ,连接 ,求证:
解答:
①方法一:三线合一模型
②方法二:十字型三垂直模型
可证
模型四:斜边中线模型
【例1】如图,在 中, 和 是高, 为 的中点, 为 的中点,求证:
解答:可证
【例2】如图,在 中, , 于点 , 是 中点, ,求 的长度
解答:可证
【例3】已知, 和 都是直角三角形,且 ,如图甲,连接 ,设 为 的中点
(1)说明:
(2)设 ,固定 ,让 绕顶点 在平面内旋转到图乙位置,试问: 是否还能成立?并证明其结论
解答:
(1)①方法一:斜边中线模型【方程思想用字母表示角】
②方法二:平行夹中点模型
③方法三:相似【作 交 于点 得证】
解答:【等对边四边形(方法连接对角线)】可证
【例3】在 中, , 点在 上, , 分别是 的中点,连结 并延长,与 的延长线交于点 ,若 ,连结 ,判断 的形状并证明
解答:【类等对边四边形(方法连接对角线)】可证
【例4】如图,在四边形 中, 与 相交于点 , , 分别是 的中点,连结 ,分别交 于点 ,判断 的形状
解答:(1)可证
(2)图2成立,同理可证;图3不成立
模型五:中位线模型
【例1】已知四边形 是梯形, ,如图, 是 中点,试写出 与 之间的关系
解答:
①方法一:中位线+三点共线,得证
②方法二:平行线夹中点模型,构造8字型全等,得证
【例2】如图,在四边形 中, , 分别是 的中点,连结 并延长,分别与 的延长线交于点 ,证明:
解答:【中点四边形(方法连接对角线)】可证

2023年中考数学一轮复习满分突破专题13 线段双中点模型【题型方法解密】

2023年中考数学一轮复习满分突破专题13 线段双中点模型【题型方法解密】
(4)由(1)(2)(3)的结果中可得:线段 的长度等于线段 的一半,与 点的位置无关.
【点睛】本题考查的是线段的中点的含义,线段的和差关系,掌握利用线段的中点及线段的和差关系求解线段的长度是解题的关键.
【提高测试】
1.点 , , 在同一条直线上, , , 为 中点, 为 中点,则 的长度为()
A. B. C. 或 D.不能确定
9.如图,点C在线段 上, , ,点M,N分别是 , 的中点.
(1)求线段 的长.
(2)若点C为线段 上任意一点,满足 ,其他条件不变,你能猜想 的长度吗?并说明理由.
(3)若点C在线段 的延长线上,且满足 ,点M,N分别为 , 的中点,你能猜想 的长度吗?并说明理由.
10.如图,点 在线段AB上, ,点 分别是 的中点.
A. B. C. 或 D.不能确定
2.(易错)(2022·四川绵阳·七年级期末)已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()
A.7cmB.3cmC.7cm或3cmD.5cm
3.如图,在数轴上有A,B两点(点B在点A的右边),点C是数轴上不与A,B两点重合的一个动点,点M、N分别是线段AC,BC的中点,如果点A表示数a,点B表示数b,求线段MN的长度.下列关于甲、乙、丙的说法判断正确的是()
8.(1)如图,已知点C在线段AB上,线段AC=6,BC=4,点M、N分别是AC、BC的中点,求MN的长度;
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,请猜想出MN的长度吗?并说明理由;
(3)对于(1)题,如果将“点C在线段AB上”改为“点C在射线AB上”,其它条件不变,求MN的长度.
A.5.5cmB.2.5cm

中考数学必考几何模型:中点四大模型

中考数学必考几何模型:中点四大模型

中点四大模型模型1 倍长中线或类中线(与中点有关的线段)构造全等三角形②图①图构造全等倍长类中线倍长中线DCBAFF ACABCDCA模型分析如图①,AD 是△ABC 的中线,延长AD 至点E 使DE =AD ,易证:△ADC ≌△EDB (SAS ). 如图②,D 是BC 中点,延长FD 至点E 使DE =FD ,易证:△FDB ≌△EDC (SAS )当遇见中线或者中点的时候,可以尝试倍长中线或类中线,构造全等三角形,目的是对已知条件中的线段进行转移.模型实例如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF =EF ,求证:AC =BE .FECA1.如图,在△ABC 中,AB =12,AC =20,求BC 边上中线AD 的范围.BA解:延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC与△EDB中,⎪⎩⎪⎨⎧=∠=∠=DEADBDEADCCDBD,∴△ADC≌△EDB(SAS),∴EB=AC=20,根据三角形的三边关系定理:20-12<AE<20+12,∴4<AD<16,故AD的取值范围为4<AD<16.2.如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2.求证:AD2=41(AB2+AC2).NMD CA证明:如图,过点B作AC的平行线交ND的延长线于E,连ME.∵BD =DC , ∴ED =DN .在△BED 与△CND 中,∵⎪⎩⎪⎨⎧=∠=∠=DN ED CDN BDE DC BD ∴△BED ≌△CND (SAS ). ∴BE =NC . ∵∠MDN =90°,∴MD 为EN 的中垂线. ∴EM =MN .∴BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2, ∴△BEM 为直角三角形,∠MBE =90°. ∴∠ABC +∠ACB =∠ABC +∠EBC =90°. ∴∠BAC =90°. ∴AD 2=(21BC )2=41(AB 2+AC 2).模型2 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.ABCDDCBA模型分析等腰三角形中有底边中点时,常作底边的中线,利用等腰三角形“三线合一”的性质得到角相等,为解题创造更多的条件,当看见等腰三角形的时候,就应想到: “边等、角等、三线合一”. 模型实例如图,在△ABC 中,AB =AC =5,BC =6,M 为BC 的中点,MN ⊥AC 于点N ,求MN 的长度.NM CB A解答: 连接AM .∵AB =AC =5,BC =6,点M 为BC 中点, ∴AM ⊥BC ,BM =CM =21BC =3. ∵AB =5, ∴AM =4352222=-=-BM AB .∵MN ⊥AC ,∴S △ANC =21MC ·AM =21AC ·MN . 即:21×3×4=21×5×MN .∴MN =512跟踪练习1.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AE ⊥DE ,AF ⊥DF ,且AE =AF ,求证:∠EDB =∠FDC .F证明:连结AD ,∵AB =AC ,D 是BC 的中点, ∴AD ⊥BC ,∠ADB =∠ADC =90° 在Rt △AED 与Rt △AFD 中,⎩⎨⎧==ADAD AFAB , ∴Rt △AED ≌Rt △AFD .(HL ) ∴∠ADE =∠ADF , ∵∠ADB +∠ADC =90°, ∴∠EDB =∠FDC .2.已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当∠EDF 绕D 点旋转到DF ⊥AC 于E 时(如图①),求证:S △DEF +S △CEF =21S △ABC ; (2)当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、S △CEF 、S △ABC 又有怎样的数量关系?请写出你的猜想,不需要证明.③图②图①图ABDEFACDDCA解:(1)连接CD ;如图2所示: ∵AC =BC ,∠ACB =90°,D 为AB 中点, ∴∠B =45°,∠DCE =21∠ACB =45°,CD ⊥AB ,CD =21AB =BD , ∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠B DCB BD CD 21, ∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =21S △ABC ; (2)不成立;S △DEF −S △C EF =21S △ABC ;理由如下:连接CD ,如图3所示:同(1)得:△DEC ≌△DBF ,∠DCE =∠DBF =135° ∴S △DEF =S 五边形DBFEC , =S △CFE +S △DBC ,=S △CFE +21S △ABC , ∴S △DEF -S △CFE =21S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF -S △CEF =21S △ABC . 21ABCDE模型3 已知三角形一边的中点,可考虑中位线定理构造中位线取另一边中点EDDA模型分析在三角形中,如果有中点,可构造三角形的中位线,利用三角形中位线的性质定理:DE ∥BC ,且DE =21BC 来解题.中位线定理中既有线段之间的位置关系又有数量关系,该模型可以解决角问题,线段之间的倍半、相等及平行问题.模型实例如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M ,N .求证:∠BME =∠CNE .NM FEDCBA解答如图,连接BD ,取BD 的中点H ,连接HE 、HF . ∵E 、F 分别是BC 、AD 的中点, ∴FH =21AB ,FH ∥AB ,HE =21DC ,HE ∥NC . 又∵AB =CD ,∴HE =HF .∴∠HFE =∠HEF . ∵FH ∥MB ,HE ∥NC ,∴∠BME =∠HFE ,∠CNE =∠FEH . ∴∠BME =∠CNE .练习:1.(1)如图1,BD ,CE 分别是△ABC 的外角平分线,过点A 作AD ⊥BD ,AE ⊥CE ,垂足分别为D ,E ,连接DE ,求证:DE ∥BC ,DE =12(AB +BC +AC );(2)如图2,BD ,CE 分别是△ABC 的内角平分线,其他条件不变,上述结论是否成立? (3)如图3,BD 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,其他条件不变,DE 与BC 还平行吗?它与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中一种情况进行证明.E D CBA图1G FEDCBA图2FED CBA图31.解答(1)如图①,分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌ △BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12HK .又∵HK =BK +BC +CH =AB +BC +AC . ∴DE =12(AB +AC +BC ).(2)猜想结果:图②结论为DE =12(AB +AC -BC ) 证明:分别延长AE ,AD 交BC 于H ,K . 在△BAD 和△BKD 中ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB同理可证,AE =HE ,AC =HC . ∴DE =12HK . 又∵HK =BK +CH -BC =AB +AC -BC∴DE =12(AB +AC -BC )GABCDEKHF 图2(3)图③的结论为DE =12(BC +AC -AB ) 证明:分别延长AE ,AD 交BC 或延长线于H ,K . 在△BAD 和△BKD 中,ABD DBK BD BDBDA BDK ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BAD ≌△BKD (ASA ) ∴AD =KD ,AB =KB .同理可证,AE =HE ,AC =HC . ∴DE =12KH . 又∵HK =BH -BK =BC +CH -BK =BC +AC -AB∴DE =12(BC +AC -AB ).ABCD EKHF图32.问题一:如图①,在四边形ABCD 中,AB 与CD 相交于点O ,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF ,分别交DC ,AB 于点M ,N ,判断△OMN 的形状,请直接写出结论.问题二:如图②,在△ABC 中,AC >AB ,D 点在AC 上,AB =CD ,E ,F 分别是BC ,AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若∠EFC =60°,连接GD ,判断△AGD 的形状并证明.图1NMO F E DC BAE图2G ABCDF2.证明(1)等腰三角形(提示:取AC 中点H ,连接FH ,EH ,如图①)(2)△AGD 是直角三角形如图②,连接BD ,取BD 的中点H ,连接HF ,HE . ∵F 是AD 的中点, ∴HF ∥AB ,HF =12AB . ∴∠1=∠3.同理,HE ∥CD ,HE =12CD , ∴∠2=∠EFC , ∴AB =CD , ∴HF =HE . ∴∠1=∠2.∵∠EFC =60°,∴∠3=∠EFC =∠AFG =60°. ∴△AGF 是等边三角形. ∴AF =FG . ∴GF =FD .∴∠FGD =∠FDG =30°.∴∠AGD =90°,即△AGD 是直角三角形.图2321G A BCDF H模型4 已知直角三角形斜边中点,可以考虑构造斜边中线DCBA模型分析在直角三角形中,当遇见斜边中点时,经常会作斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即CD =12AB ,来证明线段间的数量关系,而且可以得到两个等腰三角形:△ACD 和△BCD ,该模型经常会与中位线定理一起综合应用. 模型实例如图,在△ABC 中,BE ,CF 分别为AC ,AB 上的高,D 为BC 的中点,DM ⊥ EF 于点M ,求证:FM =EM .M FEDCBA证明连接DE ,DF .BE ,CF 分别为边AC ,AB 上的高,D 为BC 的中点,DF =12BC ,DE =12BC .DF =DE ,即△DEF 是等腰三角形. DM ⊥EF ,点M 是EF 的中点,即FM =EM .ABCDEFM练习:1.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点,AB =10,求DM 的长度.1.解答取AB 中点N ,连接DN ,MN .在Rt △ADB 中,N 是斜边AB 上的中点, ∴DN =12AB =BN =5.∴∠NDB =∠B .在△ABC 中,M ,N 分别是BC ,AB 的中点, ∴MN ∥AC∴∠NMB =∠C ,又∵∠NDB 是△NDM 的外角, ∴∠NDB =∠NMD +∠DNM .即∠B =∠NMD +∠DNM =∠C +∠DNM . 又∵∠B =2∠C ,∴∠DNM =∠C =∠NMD . ∴DM =DN . ∴DM =5.N MD CBA2.已知,△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,M 为DE 的中点,连接MB ,MC ,求证:MB =MC .MEDCBA2.证明延长BM 交CE 于G ,∵△ABD 和△ACE 都是直角三角形, ∴CE ∥BD .∴∠BDM =∠GEM .又∵M 是DE 中点,即DM =EM , 且∠BMD =∠GME , ∴△BMD ≌△GME . ∴BM =MG .∴M 是BG 的中点,∴在Rt △CBG 中,BM =CM .3.问题1:如图①,三角形ABC 中,点D 是AB 边的中点,AE ⊥ BC ,BF ⊥AC ,垂足分别为点E ,F .AE 、BF 交于点M ,连接DE ,DF ,若DE =kDF ,则k 的值为 . 问题2:如图②,三角形ABC 中,CB =CA ,点D 是AB 边的中点,点M 在三角形ABC 内部,且∠MAC =∠MBC ,过点M 分别作ME ⊥BC ,MF ⊥ AC ,垂足分别为点E ,F ,连接DE ,DF ,求证:DE =DF .问题3:如图③,若将上面问题2中的条件“CB =CA ”变为“CB ≠CA ”,其他 条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.图1MF DCBA图2ABCDE FM图3ABCDF M3.解答∵(1)AE ⊥BC ,BF ⊥AC ,∴△AEB 和△AFB 都是直角三角形, ∵D 是AB 的中点, ∴DE =12AB ,DF =12AB .∴DE =DF . ∵DE =KDF , ∴k =1. (2)∵CB =CA , ∴∠CBA =∠CAB . ∵∠MAC =∠MBC ,∴∠CBA -∠MBC =∠CAB -∠MAC ,即∠ABM =∠BAM . ∴AM =BM .∵ME ⊥BC ,MF ⊥AC , ∴∠MEB =∠MF A =90°. 又∵∠MBE =∠MAF ,∴△MEB ≌△MF A (AAS ) ∴BE =AF .∵D 是AB 的中点,即BD =AD , 又∵∠DBE =∠DAF ,∴△DBE ≌△DAF (SAS ) ∴DE =DF .(3)DE =DF .图1M F E DCB A如图,作AM的中点G,BM的中点H,连DG,FG,DH,EH. ∵点D是边AB的中点,∴DG∥BM,DG=12 BM.同理可得:DH∥AM,DH=12AM.∵ME⊥BC于E,H是BM的中点.∴在Rt△BEM中,HE=12BM=BH.∴∠HBE=∠HEB.∴∠MHE=2∠HBE.又∵DG=12BM,HE=12BM,∴DG=HE.同理可得:DH=FG. ∠MGF=2∠MAC.∵DG∥BM,DH∥GM,∴四边形DHMG是平行四边形.∴∠DGM=∠DHM.∵∠MGF=2∠MAC,∠MHE=2∠MBC,∠MBC=∠MAC,∴∠MGF=∠MHE.∴∠DGM+∠MGF=∠DHM+∠MHE.∴∠DGF=∠DHE.在△DHE与△FGD中DG HEDGF DHEDH FG=⎧⎪∠=∠⎨⎪=⎩∴△DHE≌△FGD(SAS)∴DE=DF.图2AB CDEFM。

中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题

中考数学基本模型—中点模型,初三数学专题复习总结倍长中线练习题

中考数学基本模型——中点模型线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用线相交.即“延长中线交平行”此时,易证△BEF≌△CED模型三如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:时,只需将AE延长和DC的延长线相交,就一定会得到全等三角形,进而得到我们需要的结果.证明:如图,延长AE交DC的延长线于点F.∵四边形ABCD是平行四边形∴AB//CD,即AB//DF∴∠BAE=∠CFE,∠B=∠FCE又∵点E是BC中点∴BE=CE∴△ABE≌△FCE∴CF=AB=CD,AE=FE∴DF=2CD,又∵AD=2CD∴AD=DF,又因为点E是AF的中点∴DE⊥AF即∠AED=90°.反思:对于本题,还可以延长AE至点F使EF=AE,连接CF.通过证明△ABE ≌△FCE得到AB//CF,利用经过直线外一点有且只有一条直线与已知直线平行,得到D、C、F三点共线.再证明△DAF是等腰三角形,利用等腰三角形三线合一得到结论.对于第二种方法,同学们可以自己尝试.例2、在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.分析:由题可知,DE//BF,且点G是BE的中点,满足平行线间夹中点,所以可将DG延长与BF相交.证明:(1)AG=DG,且AG⊥DG.如图,延长DG交BF于点H,连接AH,AD.∵四边形CDEF是正方形,∴DE//CF即DE//BC∴∠GBH=∠GED,∠GHB=∠GDF又∵点G是BF的中点∴GB=GF∴△GBH≌△GDF(AAS)∴GD=GH,BH=DF∵DE=DC,∴BH=CD因为△ABC是等腰直角三角形∴AB=AC,∠ACD=180°-45°-90°=45°=∠ABC∴△ABH≌△ACD∴AH=AD,∠BAH=∠CAD∴∠DAH=∠CAD+∠CAH=∠BAH+∠CAH=∠BAC=90°∴△DAH是等腰直角三角形,又∵点G是DH的中点∴AG=DG且AG⊥DG.反思:若将正方形绕点C旋转任意角度,在旋转的过程中,上述结论还成立吗?试试看。

中考数学一轮培优微专题 中点问题七大模型

中考数学一轮培优微专题  中点问题七大模型

D. 1
第6题图
模型六 遇到三角形一边垂线过这边中点时,利用垂直平分线的性质 模型分析
如图,当三角形一边垂线过这边中点时,可以考虑用垂直平分线的性质得到AE=BE, 证明线段间的数量关系.
针对演练 7.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,过点D
7 作DE ⊥AB交BC的延长线于点E,则CE 的长为____6____.
第7题图
8.如图,在Rt△ABC中,∠ACB=90°,BC=6,AB的垂直平分线交AB于D,交AC 25
于E,若CD=5,则AE=_____4____.
第8题图
模型七 遇到圆中弦(或弧)的中点,利用垂径定理及圆周角定理 模型分析
如图,(1)O是直径的中点,常与已知中点连接,或过点O作一边的平行线或垂线构造中 位线; (2)圆中遇到弦的中点,联想“垂径定理”,出现“四中点一垂直”解决相应问题; (3)圆中遇到弧的中点,利用“一等四等”、“垂径定理”解决相应问题.
微专题 中点问题七大模型
(绵阳:2考;宜宾:3考;眉山:4考) 中点问题常用性质及常见辅助线作法: 1. 多个中点或平行+中点 联 想构造中位线; 2. 直角+斜边中点 联 想直角三角形斜边中线; 3. 中线或与中点有关的线段 联 想 倍长中线构造全等; 4. 等腰+底边中点 联 想 等腰三角形“三线合一”; 5. 三角形面积+中点 联 想 被中线分割成的两个小三角形面积相等; 6. 同一边遇垂直+中点 联 想 垂直平分线性质; 7. 圆+弦或弧的中点 联 想 垂径定理及圆周角定理
第10题图
W
点击链接至综合训练
针对演练
9. 如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD的长

20XX年初中数学突破中考压轴题几何模型之中点模型教案

20XX年初中数学突破中考压轴题几何模型之中点模型教案

20XX年初中数学突破中考压轴题几何模型之中点模型教案以下是为大家整理的20XX年初中数学突破中考压轴题几何模型之中点模型教案的相关范文,本文关键词为20XX年,初中,数学,突破,中考,压轴,几何,模型,中点,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。

中点模型授课日期主题时间中点模型教学内容学习过中位线之后,你能否总结一下,目前我们学习了哪些定理或性质与中点有关?直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么?1.直角三角形斜边中线定理:如图,在Rt?Abc中,?Acb?90?,D为Ab中点,则有:cD?AD?bD?c1Ab。

2bDA2.三线合一:在?Abc中:(1)Ac?bc;(2)cD平分?Acb;(3)AD?bD,(4)cD?Ab.“知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。

cADb3.中位线定理:如图,在?Abc中,若AD?bD,Ae?ce,则De//bc 且De?A1bc。

2Debc4.中线倍长(倍长中线):如图(左图),在?Abc中,D为bc中点,延长AD到e使De?AD,联结be,则有:?ADc≌?eDb。

作用:转移线段和角。

AAbmbDeccD例1:如图所示,已知D为bc 中点,点A在De上,且Ab?ce,求证:?bAD??ceD.eAbDc提示:用倍长中线法,借助等腰三角形和全等三角形证明试一试:如图,已知在?Abc中,AD是bc边上的中线,e是AD上一点,且be?Ac,延长be交Ac于F,求证:AF?eF。

AFebDc证明:延长De至点g,使得eD=Dg,联结cg类比倍长中线易得:≌bDe≌≌cDg所以≌beD=≌Dgc,be=cg因为be=Ac,所以Ac=gc所以≌eAc=≌Dgc,因为≌beD=AeFAFebgDc所以≌AeF=≌FAe所以AF=eF例2:如图,已知?Abc中,bD,ce为高线,点m 是bc的中点,点n是De的中点..求证:mn?De。

初中数学突破中考压轴题几何模型之中点模型教案

初中数学突破中考压轴题几何模型之中点模型教案

初中数学突破中考压轴题几何模型之中点模型教案集团标准化工作小组[Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]中点模型学习过中位线之后,你能否总结一下,口前我们学习了哪些定理或性质与中点有关直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你乂想到了什么1.直角三角形斜边中线定理:如图,在RZBC中,ZACB = 90% D 为AB 中点,则有:CD = AD = BD = -AB o2.三线合一:在AABC中:(1) 4C = BC;(2) CD平分ZACB ;(3) AD = BD,(4) CD丄“知二得二”:比如由(2) (3)可得出(1) (4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。

3.中位线定理:如图,在AABC中,若AD = BD, AE = CE,则DE//BC且DE = -BC o24.中线倍长(倍长中线):如图(左图),在AABC中,D为BC中点,延\^AD到E使DE = AD,联结则有:^ADC^AEDBo 作用:转移线段和角。

Y C D例1:如图所示,已知D为BC中点,点A在DEJt, ^AB = CE,求证:ZBAD= ZCED ・提示:用倍长中线法,借助等腰三角形和全等三角形证明试一试:如图,已知在AABC中,AD是3C边上的中线,E是AD L一点,且BE=AC,延长BE交AC于F,求证:AF = EF。

证明:延长%至点G使得毎0G联结CG类比倍长中线易得:'BDE^'CDG 所以乙BEX乙DGC,B申CG 因为B&AC,所以AOGC所以ZEAUZDGC,因为ABED^AEF所以ZAEF^ZFAE所以A&EF例2:如图,已知AABC中,BD.CE为高线,点M是BC的中点,点N是DE的中点..求证:MN丄DE。

证明:联结ZK DM 在Rt'BEC中在Rt'BDC中DM=l3C2 2所以EPZZ”,乂因为£匸切,所以MN丄DE例3:如图,在SABC中,AD为ZA的平分线,M为BC的中点,AD//ME,求证:BE=CF = -(AB+AC)O2D M证明:延长刖至点G,使得FKG,联结%类比倍长中线易得:鳩所以乙匕乙CFM, BUCF因为旳9〃刃/,所以ZBAXZE, ZDA&/EFA因为ZB心ZDAC, ZAF吕ZCFM所以ZBZAF吕乙CF并ZG所以於於防AB=AF1.在梯形ABCD中,AD//BC. AB = AD+BC, E为CD的中点,求证:AE丄BE提示:延长月佼庞交于点尸,易证△血阻△尸6E得4CF, A&EF。

中考数学压轴题《中点模型》

中考数学压轴题《中点模型》

解题方法一. 倍长中线在△遊中•”为證边的中点.图1(1) 如图1,连结川/并延长至点尸,使得ME=AM.连结⑦ 则△月&溜(2) 如图2,点。

在初边上,连结6/并延长至点呂使得\fF=DM.连结⑦ 则△血孑 Q'CEH 、遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等 将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.二. 构造中位线在△磁中.Q 为初边的中点,图1 图2(1) 如图1,取M 边的中点伐 连结比 则DE//BC.且DF=-BC ・2(2) 如图2・延长證至点尸.使得CF=BC ・连结AF.则DC//AF.且DC=-AE.三角形的中位线从位置关系和数量关系两方而将将图形中分散的线段关系集中起来•通 常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,三. 等腰三角形“三线合一”《中点模型》 A AE如图,在△磁中,若AB=AC・通常取底边氏的中点D・则初丄万G且肋平分ZBAC.事实上,在△磁中:(£)AB=AC;②初平分ZBAC;③BD=CD、④初丄反・对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”・B u四・直角三角形斜边中线如图,在△遊看,Z磁=90°,取胚的中点Q,连结助,则有BD=AD=CD=-AC. 2反过来,/£AABC中,点Q在川7边上,若BD=AD=CD=、AC,则有ZABC=90Q例题讲解例1如图,在四边形丽G?中,E、尸分别是曲、仞的中点,过点疋作曲的垂线,过点尸作切的垂线,两垂线交于点G,连结/1G、BG、CG且ZAGD=ZBGC,若肋、證所在直线互相垂直,求呼的值EF解由题意可得阳和为共顶点等顶角的两个等腰三角形,所以△必谑△07G HEGF.方法一:如图1,连结传并延长到F,使曲=云7,连EH、AH,则AH//BC. AH=BC、而/1P=万G ADLBC所以肋=加肋丄加连结加则△妙为等腰直角三角形,又因为E尸分别为阳、CD的中点,所停益皿2方法二:如图2,连结助并取中点/连结胡FH.则EH= ' AD,孔EH"AD 、FH= 1 BC. 2 2而AD=BC. ADLBC.所以△砂为等腰直角三角形,所以巴=空=迈 EF EF解:连结曰DF >由题意可得厅、ZF 分别为砒△亦G A7△磁斜边的中线,所以DF=EF 存“,而6沁的中点,所以心心仆丄加所以刃△磁中,心阿F =4\/6如图,在△磁中,氏=22,BD 丄AC 于点D, CE 丄AB 于E, F 、G 分别是应; 眩的中点,若劭=10,求尺;的长.例3 已知:在RT/^ACB和斤7△遁■中.ZACB=ZAEF=9,若尸是莎的中点,连结FGPE(1)如图1,若点忒尸分别落在边仙、/1Q上,请直接写出此时陽与肱的数量关系.(2)如图2,把图1中的△川莎绕着点£顺时针旋转,当点f落在边©的延长线上时,上述结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,若点尸落在边丽上,则上述结论是否仍然成立?若成立,请给予证明:若不解(1)易得PC=PE=、BF、即尸0与胶"相等.2(2)结论成立.理由如下:如图4,延长6P交疗的延长线于点Q,则證〃刊,易证△毋倶所以PC=PD.而Z㈤=90°,所以PE=-CD=PC2cD(3)结论仍成立,理由如下:如图5,过点F作FD//BC,交疗的延长线于点Q,易得PD=PC, FD=BC 所以兰=空=空AC BC FD而ZAFE= ZPBC= ZPFD.所以ZEAC=\8”一2ZAFE= ZEFD、如图,连结比ED、则△內,所以ZAEC= ZFED,乙CED=乙AEF=90 所以PE=、CD=PC2例4已知:△遊是等腰三角形,ZBAC=900, DELCE. DE=CE=-AC,连结個"是处2的中点(1)如图1,若0在△磁的内部,连结助,.V是別的中点,连结NE.求ilE:MN1.AE <2)如图2,将图1中的△宓绕点C逆时针旋转,使ZBCD= 30°,连结加,A•是勿的中点,连结血;求竺ACD解:(1)如图3,延长少至点尸,使得肿=\5;连结尬易证△加胫△"';从而可得BF//DE. BF= DE.延长胁CE 交于点G,则ZG=9Q\从而小B、G、Q四点共圆所以ZABF= ZACE、连结胪所以△ ABf陛“ACE (SAS),所以加=広AFLAE.而燃〃肿所以MN= 1AE. MN LAE2G(2)如图4,同(1)可得•亞V=1也 MV •丄也由题意可得AC=2CE.作EHLAC 于",则 2MN _打 AC =T【答案】略【提示】延长饰场交于点尸,则ZCBF=90c , \CME3\FMD 、从而BM=-CF=CM. 22. 我们把两条中线互相垂直的三角形称为”中垂三角形”・如图b AF.亦是△月證的中 线,且处丄庞于点只像△磁这样的三角形均称为“中垂三角形”,设BC=a, AC=b, AB=c ・(1) 猜想a‘,歹,£三者之间的关系,并加以证明;(2) 如图2,在平行四边形月万G?中,E. F, G 分别是月必BC 、切上的中点.BE LEG.AD=2y/5 . AB=3.求府的长.Eg 所以防弓◎抄'盼纠°从而近妬 F进阶训练1. 如图,△.血和△月他都是直角三角形, 曲上,连结眩”为亦的中点,连结 英中Z ABD =ZACE=90° ,且点C 在,所以PE PF EF【提示】⑴如图,连结肿,由中位线定理可得莎=莎=丽飞•在Rt △遊,Rt △加近和Rt △咖中,利用勾股怎理即可得到』+歹=5c ;(2)如图,取M 的中点〃,连结曲,AC,由中位线泄理可得FH//AC//EG.从而必 丄亦,於込APE^'FPB 、所以莎=〃,所以△月肿是"中垂三角形"从而利用(1)中结 论求得£尸的长・3. 巳知:△磁和是等腰直角三角形,ZACB=ZADE=9Q° ,尸为亦的中点・连结 DF 、CF.(1) 如图,当点D^AB 上,点疋在EC 上时,请直接写出此时线段力;G 7的数量关系 和位宜关系(不用证明);(2) 如图2.在(1)的条件下将△/!%绕点月顺时针旋转45° .请你判断此时(1) 中的结论是否仍然成立,并证明你的判断:(3) 如图3.在(1)的条件下将△川疋绕点月顺时针旋转角",请你判断此时(1) 中的结论是否仍然成立,井证明你的判断.【答案】 (1) J+F =5c\ 证明略: (2) £F=4・EB图1 B 图2【答案】(1)DF= CF. DFLCFx(2)成立:(3)成立.【提示】(2)延长DF交氏于点G,则咤△如,从而得DF=GF, CD=CG,即得证・(3)延长G7至点G使得尸片G7,连结%,则GE=CB=CA, GE LAC.可得乙CAD=乙必D・连结QG, CD.从而△ ADX'EDG JSAS)•即得证.4. 匚知:F是平行四边形对角线“所在直线上的一个动点(不与点丛Q重合)・分别过点川、Q向直线歹作垂线,垂足分别为E F, 0为川6•的中点,如图1.将直线册绕点万逆时针旋转,当ZOFE= 30°时,如图2所示,请你猜想线段併,AE,处之间有怎样的数量关系,并给予证明.[答案]图]中处二/一处:图2中OE=CF+AE・【提示】如图1,延长丹交尸C于点G,易证莎=&, AE=CG.从而R也GFE中,OF=OG=OE.而ZOFE=30° ,所U OE=CF-AE・如图2,同理可得处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题19《中点模型》
破解策略
1.倍长中线
在△ABC中.M为BC边的中点.
图1 图2
(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.
(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM,
遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.
2.构造中位线
在△ABC中.D为AB边的中点,
图1 图2
(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1
2
B C.
(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=1
2 AE.
三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,
3.等腰三角形“三线合一”
如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.
对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.4.直角三角形斜边中线
如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1
2 AC.
反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1
2
AC,则有∠ABC=900
例题讲解
例1 如图,在四边形ABCD 中,E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结AG 、BG 、CG 且∠AGD =∠BGC ,若AD 、BC 所在直线互相垂直,求AD EF
的值 解 由题意可得△AGB 和△DGC 为共顶点等顶角的两个等腰三角形,
所以△AGD ≌△BGC ,△AGD ∽△EGF .
方法一:如图1,连结CE 并延长到H ,使EH =EC ,连EH 、AH ,则
AH ∥BC ,AH =BC ,而AD =BC ,AD ⊥BC
所以AD =AH ,AD ⊥AH ,连结DH ,则△ADH 为等腰直角三角形,又因为E 、F 分别为CH 、CD
的中点,所以=12
AD AD EF DH =
方法二:如图2,连结BD 并取中点H ,连结EH ,FH .则EH =
12AD ,且EH ∥AD ,FH =12BC , 而AD =BC ,AD ⊥BC ,所以△EHF
为等腰直角三角形,所以2=AD EH EF EF
=
例2 如图,在△ABC 中,BC =22,BD ⊥AC 于点D ,CE ⊥AB 于E ,F 、G 分别是BC 、DE 的中点,若ED =10,求FG 的长.
解:连结EF 、DF ,由题意可得EF 、DF 分别为RT △BEC ,RT △BDC 斜边的中线,所以DF =EF =
12
BC =11,而G 为DE 的中点,所以DG =EG =5,FG ⊥DE ,所以RT △FGD 中,FG

例3 已知:在RT △ACB 和RT △AEF 中,∠ACB =∠AEF =900
,若P 是BF 的中点,连结PC 、PE
(1)如图1,若点E 、F 分别落在边AB 、AC 上,请直接写出此时PC 与PE 的数量关系.
(2)如图2,把图1中的△AEF 绕着点A 顺时针旋转,当点E 落在边CA 的延长线上时,上述结论是否成立若成立,请给予证明;若不成立,请说明理由.
(3)如图3,若点F 落在边AB 上,则上述结论是否仍然成立若成立,请给予证明;若不成立,请说明理由.
解(1)易得PC =PE =12
BF ,即PC 与PE 相等. (2)结论成立.理由如下:
如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠
CED=900,所以PE=1
2
CD=PC
(3)结论仍成立,理由如下:
如图5,过点F作FD∥BC,交CP的延长线于点D,易得PD=PC,FD=BC
所以AE EF EF AC BC FD
==
而∠AFE=∠PBC=∠PFD,所以∠EAC=1800-2∠AFE=∠EFD,
如图,连结CE,ED,则△EAC∽△EFD,所以∠AEC=∠FED,∠CED=∠AEF=900,
所以PE=1
2
CD=PC
例4已知:△ABC是等腰三角形,∠BAC=900,DE⊥CE,DE=CE=1
2
AC,连结AE,M是AE
的中点
(1)如图1,若D在△ABC的内部,连结BD,N是BD的中点,连结MN,NE,求证:MN⊥AE (2)如图2,将图1中的△CDE绕点C逆时针旋转,使∠BCD=300,连结BD,N是BD的中
点,连结MN,求MN AC
解:(1)如图3,延长EN至点F,使得NF=NE,连结FB,易证△DEN≌△BFN,从而可得BF∥DE,BF=DE,延长FB,CE交于点G,则∠G=900,从而A、B、G、C四点共圆
所以∠ABF=∠ACE,连结AF,所以△ABF≌△ACE(SAS),所以AF=AE,AF⊥AE,而MN∥
AF所以MN=1
2
AE,MN⊥AE
(2)如图4,同(1)可得,MN=1
2
AE,MN⊥AE,由题意可得AC=2CE,作EH⊥AC于H,则
∠ECH=600,所以CH=1
2
EC=
1
4
AC,EH AC,从而AE AC,所以
MN
AC
进阶训练
1.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在AB上,连结DE,M为DE的中点,连结BM,CM,求证:BM=CM.
【答案】略
【提示】延长CM,DB交于点F,则∠CBF=90°,△CME≌△FMD,从而BM=1
2
CF=CM.
2.我们把两条中线互相垂直的三角形称为”中垂三角形”.如图1,AF,BE是△ABC的中
线,且AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.
(1)猜想a 2,b2,c2三者之间的关系,并加以证明;
(2)如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD上的中点.BE⊥EG,
AD=AB=3.求AF的长.
【答案】(1) a 2+b2=5c2,证明略;(2)AF=4.
【提示】(1)如图,连结EF,由中位线定理可得PE
PB

PF
PA

EF
BA

1
2
.在Rt△APB,
Rt△APE和Rt△BPF中,利用勾股定理即可得到a 2+b2=5c2;
(2)如图,取AB的中点H,连结FH,AC,由中位线定理可得FH∥AC∥EG,从而FH ⊥BE,易证△APE≌△FPB,所以AP=FP,所以△ABF是“中垂三角形”从而利用(1)中结论求得AF的长.
3.巳知:△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F为BE的中点.连结DF,CF.
(1)如图,当点D在AB上,点E在AC上时,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);
(2)如图2.在(1)的条件下将△ADE绕点A顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;
(3)如图3.在(1)的条件下将△ADE绕点A顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.
【答案】(1)DF=CF,DF⊥CF;(2)成立;(3)成立.
【提示】(2)延长DF交BC于点G,则△DEF≌△GBF,从而得DF=GF,CD=CG,即得证.
(3)延长CF至点G,使得FG=CF,连结EG,则GE=CB=CA,GE⊥AC,可得∠CAD=∠GE D.连结DG,CD,从而△ADC≌△EDG(SAS).即得证.
4.巳知:P是平行四边形ABCD对角线AC所在直线上的一个动点(不与点A、C重合).分别过点A、C向直线BP作垂线,垂足分别为E,F,O为AC的中点,如图1.将直线BP绕点B逆时针旋转,当∠OFE= 30°时,如图2所示,请你猜想线段CF,AE,OE之间有怎样的数量关系,并给予证明.
【答案】图1中OE=CF-AE;图2中OE=CF+AE.
【提示】如图1,延长EO交FC于点G,易证OE=OG,AE=CG,从而Rt△GFE中,OF=OG=OE.而∠OFE=30°,所以OE=CF-AE.
如图2,同理可得OE=CF+AE.。

相关文档
最新文档