中考数学压轴题破解策略专题中点模型

中考数学压轴题破解策略专题中点模型
中考数学压轴题破解策略专题中点模型

专题19《中点模型》

破解策略

1.倍长中线

在△ABC中.M为BC边的中点.

图1 图2

(1)如图1,连结AM并延长至点F,使得ME=AM.连结CE.则△ABM≌△ECM.

(2)如图2,点D在AB边上,连结DM并延长至点E.使得MF=DM.连结CE,则△BDM ≌△CEM,

遇到线段的中点问题,常借助倍长中线的方法还原中心对称图形,利用“8”字形全等将题中条件集中,达到解题的目的,这种方法是最常用的也是最重要的方法.

2.构造中位线

在△ABC中.D为AB边的中点,

图1 图2

(1)如图1,取AC边的中点E,连结DE.则DE∥BC,且DF=1

2

B C.

(2)如图2.延长BC至点F.使得CF=B C.连结CD,AF.则DC∥AF,且DC=1

2 AE.

三角形的中位线从位置关系和数量关系两方面将将图形中分散的线段关系集中起来.通常需要再找一个中点来构造中位线,或者倍长某线段构造中位线,

3.等腰三角形“三线合一”

如图,在△ABC中,若AB=A C.通常取底边BC的中点D.则AD⊥BC,且AD平分∠BA C.事实上,在△ABC中:①AB=AC;②AD平分∠BAC;③BD=CD,④AD⊥B C.

对于以上四条语句,任意选择两个作为条件,就可以推出另两条结论,即“知二得二”.4.直角三角形斜边中线

如图,在△ABC看,∠ABC=900,取AC的中点D,连结BD,则有BD=AD=CD=1

2 AC.

反过来,在△ABC中,点D在AC边上,若BD=AD=CD=1

2

AC,则有∠ABC=900

例题讲解

例1 如图,在四边形ABCD 中,E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连结AG 、BG 、CG 且∠AGD =∠BGC ,若AD 、BC 所在直线互相垂直,求AD EF

的值 解 由题意可得△AGB 和△DGC 为共顶点等顶角的两个等腰三角形,

所以△AGD ≌△BGC ,△AGD ∽△EGF .

方法一:如图1,连结CE 并延长到H ,使EH =EC ,连EH 、AH ,则

AH ∥BC ,AH =BC ,而AD =BC ,AD ⊥BC

所以AD =AH ,AD ⊥AH ,连结DH ,则△ADH 为等腰直角三角形,又因为E 、F 分别为CH 、CD

的中点,所以=12

AD AD EF DH =

方法二:如图2,连结BD 并取中点H ,连结EH ,FH .则EH =

12AD ,且EH ∥AD ,FH =12BC , 而AD =BC ,AD ⊥BC ,所以△EHF

为等腰直角三角形,所以2=AD EH EF EF

=

例2 如图,在△ABC 中,BC =22,BD ⊥AC 于点D ,CE ⊥AB 于E ,F 、G 分别是BC 、DE 的中点,若ED =10,求FG 的长.

解:连结EF 、DF ,由题意可得EF 、DF 分别为RT △BEC ,RT △BDC 斜边的中线,所以DF =EF =

12

BC =11,而G 为DE 的中点,所以DG =EG =5,FG ⊥DE ,所以RT △FGD 中,FG

例3 已知:在RT △ACB 和RT △AEF 中,∠ACB =∠AEF =900

,若P 是BF 的中点,连结PC 、PE

(1)如图1,若点E 、F 分别落在边AB 、AC 上,请直接写出此时PC 与PE 的数量关系.

(2)如图2,把图1中的△AEF 绕着点A 顺时针旋转,当点E 落在边CA 的延长线上时,上述结论是否成立若成立,请给予证明;若不成立,请说明理由.

(3)如图3,若点F 落在边AB 上,则上述结论是否仍然成立若成立,请给予证明;若不成立,请说明理由.

解(1)易得PC =PE =12

BF ,即PC 与PE 相等. (2)结论成立.理由如下:

如图4,延长CP交EF的延长线于点D,则BC∥FD,易证△BPC≌△FPD,所以PC=PD,而∠

CED=900,所以PE=1

2

CD=PC

(3)结论仍成立,理由如下:

如图5,过点F作FD∥BC,交CP的延长线于点D,易得PD=PC,FD=BC

所以AE EF EF AC BC FD

==

而∠AFE=∠PBC=∠PFD,所以∠EAC=1800-2∠AFE=∠EFD,

如图,连结CE,ED,则△EAC∽△EFD,所以∠AEC=∠FED,∠CED=∠AEF=900,

所以PE=1

2

CD=PC

例4已知:△ABC是等腰三角形,∠BAC=900,DE⊥CE,DE=CE=1

2

AC,连结AE,M是AE

的中点

(1)如图1,若D在△ABC的内部,连结BD,N是BD的中点,连结MN,NE,求证:MN⊥AE (2)如图2,将图1中的△CDE绕点C逆时针旋转,使∠BCD=300,连结BD,N是BD的中

点,连结MN,求MN AC

解:(1)如图3,延长EN至点F,使得NF=NE,连结FB,易证△DEN≌△BFN,从而可得BF∥DE,BF=DE,延长FB,CE交于点G,则∠G=900,从而A、B、G、C四点共圆

所以∠ABF=∠ACE,连结AF,所以△ABF≌△ACE(SAS),所以AF=AE,AF⊥AE,而MN∥

AF所以MN=1

2

AE,MN⊥AE

(2)如图4,同(1)可得,MN=1

2

AE,MN⊥AE,由题意可得AC=2CE,作EH⊥AC于H,则

∠ECH=600,所以CH=1

2

EC=

1

4

AC,EH AC,从而AE AC,所以

MN

AC

进阶训练

1.如图,△ABD和△ACE都是直角三角形,其中∠ABD =∠ACE=90°,且点C在AB上,连结DE,M为DE的中点,连结BM,CM,求证:BM=CM.

【答案】略

【提示】延长CM,DB交于点F,则∠CBF=90°,△CME≌△FMD,从而BM=1

2

CF=CM.

2.我们把两条中线互相垂直的三角形称为”中垂三角形”.如图1,AF,BE是△ABC的中

线,且AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.

(1)猜想a 2,b2,c2三者之间的关系,并加以证明;

(2)如图2,在平行四边形ABCD中,E,F,G分别是AD,BC,CD上的中点.BE⊥EG,

AD=AB=3.求AF的长.

【答案】(1) a 2+b2=5c2,证明略;(2)AF=4.

【提示】(1)如图,连结EF,由中位线定理可得PE

PB

PF

PA

EF

BA

1

2

.在Rt△APB,

Rt△APE和Rt△BPF中,利用勾股定理即可得到a 2+b2=5c2;

(2)如图,取AB的中点H,连结FH,AC,由中位线定理可得FH∥AC∥EG,从而FH ⊥BE,易证△APE≌△FPB,所以AP=FP,所以△ABF是“中垂三角形”从而利用(1)中结论求得AF的长.

3.巳知:△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F为BE的中点.连结DF,CF.

(1)如图,当点D在AB上,点E在AC上时,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);

(2)如图2.在(1)的条件下将△ADE绕点A顺时针旋转45°.请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3.在(1)的条件下将△ADE绕点A顺时针旋转角α,请你判断此时(1)中的结论是否仍然成立,井证明你的判断.

【答案】(1)DF=CF,DF⊥CF;(2)成立;(3)成立.

【提示】(2)延长DF交BC于点G,则△DEF≌△GBF,从而得DF=GF,CD=CG,即得证.

(3)延长CF至点G,使得FG=CF,连结EG,则GE=CB=CA,GE⊥AC,可得∠CAD=∠GE D.连结DG,CD,从而△ADC≌△EDG(SAS).即得证.

4.巳知:P是平行四边形ABCD对角线AC所在直线上的一个动点(不与点A、C重合).分别过点A、C向直线BP作垂线,垂足分别为E,F,O为AC的中点,如图1.将直线BP绕点B逆时针旋转,当∠OFE= 30°时,如图2所示,请你猜想线段CF,AE,OE之间有怎样的数量关系,并给予证明.

【答案】图1中OE=CF-AE;图2中OE=CF+AE.

【提示】如图1,延长EO交FC于点G,易证OE=OG,AE=CG,从而Rt△GFE中,OF=OG=OE.而∠OFE=30°,所以OE=CF-AE.

如图2,同理可得OE=CF+AE.

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

(新)中考数学--选择题压轴题(含答案)

题型一选择题压轴题 类型一选择几何压轴题 1?如图,四边形ABCD是平行四边形,ZBCD=I20o , AB = 2, BC = 4,点E是直线BC上的点,点F是直线CD上的点,连接AF, AE, EF,点M, N分别是AF, EF 的中点,连接MW则MN的最小值为() 2.如图,四边形ABCD是菱形,对角线AC与BD交于点0, AB = 4, AC = 2√TT,若直线1满足:①点A到直线1的距离为2;②直线1与一条对角线平行;③直线1与菱形ABCD的边有交点,则符合题意的直线1的条数为() 3?如图,在四边形ABCD 中,AD/7BC, AB=CD, AD = 2, BC = 6, BD = 5.若点P 在四边形ABCD的边上,则使得APBD的面积为3的点P的个数为() -√3 (第2(第3

4?如图,点M是矩形ABCD的边BC, CD上的动点,过点B作BN丄AM于点P,交

矩形ABCD 的边于点N,连接DP.若AB=4, AD = 3,则DP 的长的最小值为( ) A. √T3-2 5?如图,等腰直角三角形ABC 的一个锐角顶点A 是。()上的一个动点,ZACB= 90° ,腰AC 、斜边AB 分别交Oo 于点E, D,分别过点D, E 作OO 的切线,两线 交于点F,且点F 恰好是腰BC 上的点,连接O C, ()D, OE.若Θ0的半径为2,则 OC 的长的最大值为( ) 6.如图,在矩形ABCD 中,点E 是AB 的中点,点F 在AD 边上,点M, N 分别是 CD, BC 边上的动点?若AB=AF 二2, AD 二3,则四边形EFMN 周长的最小值是( ) 7.如图,OP 的半径为1,且点P 的坐标为(3, 2),点C 是OP 上的一个动点, 点A, B 是X 轴上的两点,且OA=OB, AC 丄BC,则AB 的最小值为( ) √TT √T3 C. √5+l +√13 √2+2√5 ÷√5 √2+1 O B (第5 (第6 (第7(第8

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

中考数学压轴题(选择填空)

中考数学压轴题解题技巧 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数与方程思想。以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。 二是运用分类讨论的思想。对问题的条件或结论的多变性进行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。 解中考压轴题技能技巧: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题或几个“难点”一个时间上的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学选择题压轴题汇编

资料收集于网络,如有侵权请联系网站删除 2017年中考数学选择题压轴题汇编(1) 2a的解为正数,且使关于的分式方程y的不等(2017重庆)若数a使关于x1.4?? x?11?xy?2y???1?23的解集为y,则符合条件的所有整数a的和为()式组 2???????0y?2a? A.10 B.12 C.14 D.16 【答案】A 【解析】①解关于x的分式方程,由它的解为正数,求得a的取值范围. 2a 4??x?11?x去分母,得2-a=4(x-1) 去括号,移项,得4x=6-a 6?a 1,得x=系数化为46?a6?a≠1,解得a且a≠2;6?,且,∴x≠1∵x且00?? 44②通过求解于y的不等式组,判断出a的取值范围. y?2y???1?32 ?????0y?2a?解不等式①,得y;2???a;解不等式②,得y ∵不等式组的解集为y,∴a;2??2??③由a且a≠2和a,可推断出a的取值范围,且a≠2,符合条件的所有整数6?a6??2?2??a为-2、-1、0、1、3、4、5,这些整数的和为10,故选A.2.(2017内蒙古赤峰)正整数x、y满足(2x-5)(2y-5)=25,则x+y等于()A.18或10 B.18 C.10 D.26 【答案】A, 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)只供学习与交流. 资料收集于网络,如有侵权请联系网站删除 又∵正整数x、y满足(2x-5)(2y-5)=25, ∴2x-5=5,2y-5=5或2x-5=1,2y-5=25 解各x=5,y=5或x=3,y=15. ∴x+y=10或x+y=18. 故选A. x?a?0?3.(2017广西百色)关于x的不等式组的解集中至少有5个整数解,则正数a?2x?3a?0?的最小值是() 2 D..1 B.2 CA. 3 3B. 【答案】3a3a<x≤a,因为该解集中至少5个整数解,所以a比至少【解析】不等式组的解集为??223a+5,解得a≥2 a≥.大5,即?2111122=n-m-2,则-的值等于(4.(2017四川眉山)已知m+n )44mn1D.- 1 C.B0 .-A.1 4C 【答案】11112222,m+1)n+(-1)m=0,从而=-2即1)1)由题意,【解析】得(m+m++(n-n +=0,(24421111 =-1.=n2,所以-=-2nm2-端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙.(2017聊城)5之前的函数关系式如图所示,下列两队与时间500米的赛道上,所划行的路程(min)my()x 说法错误的是()到达终点.乙队比甲队提前A0.25min 时,此时落后甲队.当乙队划行B110m15m

(完整)2019年高中数学虚设零点消元法在导数压轴大题中的应用含解析答案.doc

谈虚设零点消元法在导数压轴大题中的应用 ------以 2019 年几道模拟题为例 在高考的导数压轴题中,经常会遇到导函数具有零点但求解又相对比较复杂甚至是无法求解的问题,这个时候,从正面去强求函数的零点值是很困难的,我们不妨只须设出函数的零点,然后利用其满足的关系式,谋求一种整体的替换和过 渡,往往会给我们带来意向不到的效果,最后再结合题目的其他条件,就可以很快 解决这类问题。对于最近的几道地市模拟题的导数压轴题,我们发现它们 用的好像都是同一个方法 -- 虚设零点消元法,只分析第一道,其他同理,顺便再看看之前曾经出现过的两道经典题. 一、【 2019 合肥一模理科 21】 二、【 2019 顺德三模理科 21】 三、【 2019 佛山 3 月统考(北京燕博园)理科21】 四、【 2019 广州一模理科 21】 五、【 2019 广东模拟理科 21】 六、【 2018 广州二模理科 21】 七、【 2013 全国二卷理科 21】 一、【 2019 合肥一模理科21】 21.(本小题满分12 分 ) 已知函数 f (x) e x ln(x 1) ( e 为自然对数的底数 ). (Ⅰ )求函数 f (x) 的单调区间; (Ⅱ )若 g(x) f (x) ax , a R ,试求函数g(x) 极小值的最大值. 解析: ( Ⅰ) 易知x 1 ,且 f (x) e x 1 . x 1 【求一阶导数发现是超越函数,无法确定导数的零点】 令 h(x) e x 1 ,则 h (x) e x 1 0 , x 1 (x 1)2 【进一步求二阶导数,发现二阶导数恒大于0, 说明一阶导数递增】 ∴函数 h(x) e x 1 在 x ( 1, ) 上单调递增,且h(0) f (0) 0 . x 1 【找到一阶导数的一个零点,而且是唯一的由负变正的零点,从而确定单调区间】可知,当 x ( 时,h(x) f (x) 0 , f (x) x ln(x 1) 单调递减; 1, 0) e 当 x (0, ) 时, h(x) f (x) 0 , f (x) e x ln(x 1) 单调递增. ∴函数 f (x) 的单调递减区间是( 1, 0) ,单调递增区间是 (0, ) . 【反思:有的学生提出,我们很容易就观察得到了h(0) f (0) 0 . 但是,对于

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

专题01 导数与函数的最(极)值(训练篇A)-用思维导图突破导数压轴题

专题01 导数与函数的最(极)值(训练篇A ) -用思维导图突破导数压轴题 《挑战压轴题?高中数学?精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者 上海市特级教师文卫星 A 组: 1.(2017年山东理第15题)若函数()x e f x ( 2.71828e =L 是自然对数的底数)在 ()f x 的 定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序 号为_______. ①()2x f x -= ②()3x f x -= ③3 ()f x x = ④2 ()2f x x =+ 解析:① ()2x f x -=,有()()2 x x e e f x =在R 上单调递增 ②()3x f x -=,有()()3 x x e e f x =在R 上单调递减 ③ 3 ()f x x =,有 () x e f x 的导函数为 2(3) x e x x +,有 ()()() ()3 22'33x x x e f x e x x e x x =+=?+,因此在(),3-∞-上,函数()x e f x 单调递减; ④2()2f x x =+,有()x e f x 的导函数为22 (22)[(1)1]0x x e x x e x ++=++>在R 上单调 递增. 综上所述,具有M 性质的函数的序号是(1)(4). 2.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 解 由题可得12121()(2)(1)[(2)1]x x x f x x a e x ax e x a x a e ---'=+++-=+++-. 因为(2)0f '-=,所以1a =-,21 ()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-. 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1) -单调递减,所以()f x 极小值(1)f =11 (111)1e -=--=-,故选A. 3.(2015年四川文第理15题)已知函数,2)(x x f =2()g x x ax =+,R a ?.对于不相等的

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题 以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x) g(x) ”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题. 类型一构造y=f(x)±g(x)型可导函数 [例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有() A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0) C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0) [解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A. [答案] A [题后悟通] 当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题. 类型二构造f(x)·g(x)型可导函数 [例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是() A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) [解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0?F(x)>0的解集为(-3,0)∪(3,+∞),故选A. [答案] A [题后悟通] 当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题. 类型三构造f(x) g(x) 型可导函数

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学选择题压轴题汇编

年中考数学选择题压轴题汇编

————————————————————————————————作者:————————————————————————————————日期: 2

3 2017年中考数学选择题压轴题汇编(1) 1.(2017重庆)若数a 使关于x 的分式方程2411a x x +=--的解为正数,且使关于y 的不等式组()213220y y y a +?->???-≤? 的解集为y 2<-,则符合条件的所有整数a 的和为( ) A .10 B .12 C . 14 D .16 【答案】A 【解析】①解关于x 的分式方程,由它的解为正数,求得a 的取值范围. 2411a x x +=-- 去分母,得2-a =4(x -1) 去括号,移项,得 4x =6-a 系数化为1,得x = 64a - ∵x 0>且x≠1,∴64a -0>,且64 a -≠1,解得a 6<且a≠2; ②通过求解于y 的不等式组,判断出a 的取值范围. ()213220y y y a +?->???-≤? 解不等式①,得y 2<-; 解不等式②,得y ≤a ; ∵不等式组的解集为y 2<-,∴a 2≥-; ③由a 6<且a≠2和a 2≥-,可推断出a 的取值范围26a -≤<,且a≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 2.(2017内蒙古赤峰)正整数x 、y 满足(2x -5)(2y -5)=25,则x +y 等于( ) A .18或10 B .18 C .10 D .26 【答案】A , 【解析】本题考查了分解质因数,有理数的乘法法则和多项式的乘法,能列出满足条件的等式是解题的关键. 由两数积为正,则这两数同号.∵25=5×5=(-5)×(-5)=1×25=(-1)×(-25)

中考数学压轴题专题训练

2018中考数学压轴专题一、动点与面积问题 例1 如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-1, 0),B (4, 0)两点,与y 轴交于点C (0, 2).点M (m , n )是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M 作x 轴的平行线交y 轴于点Q ,交抛物线于另一点E ,直线BM 交y 轴于点F . (1)求抛物线的解析式,并写出其顶点坐标; (2)当S △MFQ ∶S △MEB =1∶3时,求点M 的坐标. 例2如图,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 例3如图,已知二次函数的图象过点O (0,0)、A (4,0)、B (43 2,3 -),M 是OA 的中点. (1)求此二次函数的解析式; (2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求点P 的坐标; (3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连结CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由. 例4如图,直线l 经过点A (1,0),且与双曲线m y x = (x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平 行线分别交曲线m y x =(x >0)和m y x =-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式; (2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

专题04 导数与切线(训练篇B)-用思维导图突破导数压轴题

专题04 导数与切线(训练篇B ) -用思维导图突破解导数压轴题 《挑战压轴题?高中数学?精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者 特级教师文卫星 1. 设曲线x e y =在点)1,0(处的切线与曲线)0(1 >=x x y 上点P 处的切线垂直,则P 的坐标为 . 解 设),(00y x P ,由导数的几何意义知,曲线x e y =在点)1,0(处的切线斜率11=k ,曲线)0(1>= x x y 上点P 处的切线斜率2021 x k -=,因为两切线垂直,所以121-=k k ,即 11 20 -=- x ,又00>x ,所以1,100==y x ,所以)1,1(P . 2.已知曲线f (x )=x 3+ax +1 4 在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 ________. 解 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=1 4,∴曲线y =f (x )在x =0处的 切线方程为y -1 4 =ax . 设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1 x , ∴??? -ln x 0-1 4 =ax 0, ① a =-1 x 0 . ② 将②代入①得ln x 0=34 ,∴x 0=e 3 4 ,∴a =-e -3 4. 3. 如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( ) A .-1 B .0 C .2 D .4 解 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切 线的斜率为-13,即f ′(3)=-1 3,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 所以g ′(3)=1+3×??? ?-1 3=0.

相关文档
最新文档